11,790 research outputs found

    Database of RNA binding protein expression and disease dynamics (READ DB)

    Get PDF
    RNA Binding Protein (RBP) Expression and Disease Dynamics database (READ DB) is a non-redundant, curated database of human RBPs. RBPs curated from different experimental studies are reported with their annotation, tissue-wide RNA and protein expression levels, evolutionary conservation, disease associations, protein-protein interactions, microRNA predictions, their known RNA recognition sequence motifs as well as predicted binding targets and associated functional themes, providing a one stop portal for understanding the expression, evolutionary trajectories and disease dynamics of RBPs in the context of post-transcriptional regulatory networks

    The 2011 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection

    Get PDF
    The current 18th Database Issue of Nucleic Acids Research features descriptions of 96 new and 83 updated online databases covering various areas of molecular biology. It includes two editorials, one that discusses COMBREX, a new exciting project aimed at figuring out the functions of the ‘conserved hypothetical’ proteins, and one concerning BioDBcore, a proposed description of the ‘minimal information about a biological database’. Papers from the members of the International Nucleotide Sequence Database collaboration (INSDC) describe each of the participating databases, DDBJ, ENA and GenBank, principles of data exchange within the collaboration, and the recently established Sequence Read Archive. A testament to the longevity of databases, this issue includes updates on the RNA modification database, Definition of Secondary Structure of Proteins (DSSP) and Homology-derived Secondary Structure of Proteins (HSSP) databases, which have not been featured here in >12 years. There is also a block of papers describing recent progress in protein structure databases, such as Protein DataBank (PDB), PDB in Europe (PDBe), CATH, SUPERFAMILY and others, as well as databases on protein structure modeling, protein–protein interactions and the organization of inter-protein contact sites. Other highlights include updates of the popular gene expression databases, GEO and ArrayExpress, several cancer gene databases and a detailed description of the UK PubMed Central project. The Nucleic Acids Research online Database Collection, available at: http://www.oxfordjournals.org/nar/database/a/, now lists 1330 carefully selected molecular biology databases. The full content of the Database Issue is freely available online at the Nucleic Acids Research web site (http://nar.oxfordjournals.org/)

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Recent advances in malaria genomics and epigenomics

    Get PDF
    Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3 years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines

    Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host

    Get PDF
    Background: Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from reinfection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157: H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. Results: In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. Conclusions: Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157: H7 (Stx(-)) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function
    • 

    corecore