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Article

Allelic expression mapping across cellular lineages
to establish impact of non-coding SNPs
Veronique Adoue1, Alicia Schiavi2,†, Nicholas Light2,†, Jonas Carlsson Almlöf3, Per Lundmark3, Bing Ge2,

Tony Kwan2, Maxime Caron2, Lars Rönnblom4, Chuan Wang3, Shu-Huang Chen2, Alison H Goodall5,6,7,

Francois Cambien7,8, Panos Deloukas7,9, Willem H Ouwehand7,10,11, Ann-Christine Syvänen3 &

Tomi Pastinen2,*

Abstract

Most complex disease-associated genetic variants are located in
non-coding regions and are therefore thought to be regulatory in
nature. Association mapping of differential allelic expression (AE) is
a powerful method to identify SNPs with direct cis-regulatory
impact (cis-rSNPs). We used AE mapping to identify cis-rSNPs regu-
lating gene expression in 55 and 63 HapMap lymphoblastoid cell
lines from a Caucasian and an African population, respectively, 70
fibroblast cell lines, and 188 purified monocyte samples and found
40–60% of these cis-rSNPs to be shared across cell types. We
uncover a new class of cis-rSNPs, which disrupt footprint-derived
de novo motifs that are predominantly bound by repressive factors
and are implicated in disease susceptibility through overlaps with
GWAS SNPs. Finally, we provide the proof-of-principle for a new
approach for genome-wide functional validation of transcription
factor–SNP interactions. By perturbing NFjB action in lympho-
blasts, we identified 489 cis-regulated transcripts with altered AE
after NFjB perturbation. Altogether, we perform a comprehensive
analysis of cis-variation in four cell populations and provide new
tools for the identification of functional variants associated to
complex diseases.

Keywords allelic expression; cis-rSNPs; complex disease; NFjB; repressor

Subject Categories Genome-Scale & Integrative Biology; Chromatin,

Epigenetics, Genomics & Functional Genomics

DOI 10.15252/msb.20145114 | Received 13 January 2014 | Revised 9 September

2014 | Accepted 11 September 2014

Mol Syst Biol. (2014) 10: 754

Introduction

The vast majority of Genome-Wide Association Studies (GWAS)

variants for complex diseases lie in non-coding DNA (~90%) and

are specifically enriched in areas of open chromatin in cell types that

are relevant to the disease of interest (Manolio et al, 2009; Maurano

et al, 2012). These non-coding variants are thought to act primarily

through altering regulation of gene expression in cis. Characteriza-

tion and prediction of the cell-type specificity of cis-regulatory varia-

tion are therefore important in identifying causal disease-relevant

cis-rSNPs (Pastinen, 2010). To date, most studies investigating cis-

regulatory variation have utilized expression quantitative trait loci

(eQTL) mapping, where variants are tested for their association with

gene expression (Schadt et al, 2003). While eQTL studies have

proven to be a powerful tool in investigating the genetics of gene

expression in a broad sense, the investigation of cis-regulatory

mechanisms requires an approach that isolates the role of cis-rSNPs

to transcription. The cis-acting components of expression variation

can be identified through the mapping of differences in allelic

expression (AE), which is the measure of relative expression

between two allelic transcripts (Ge et al, 2009). The parallel geno-

typing of genomic DNA and RNA (cDNA) on high-density genotyp-

ing chips allows interrogation of AE variation across transcribed

loci, including both exons and introns. Since both alleles are

impacted by the same trans-acting and environmental effects, AE

mapping reduces the complexity of gene expression to its cis compo-

nents. A recent study showed that this approach greatly improved

the sensitivity of detecting cis-rSNPs compared to standard eQTL

mapping and demonstrated that an eightfold decrease in sample size
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is sufficient to achieve the same statistical power as in standard

eQTL mapping (Almlof et al, 2012). Studies of AE mapping in

lymphoblastoid cell lines (LCLs) have revealed that approximately

30% of all loci have significant AE imbalance, with cis-rSNPs

explaining more than 50% of the population variance in AE (Ge

et al, 2009). The effect of cis-rSNPs on other disease-relevant cell

types depends on the proportion of regulatory elements that are

shared between cell types, compared to those that are specific to a

single cell type or restricted to a small subset of cell types. Earlier

eQTL studies have suggested that over 50% of cis-rSNPs are shared

between any two tissues, for example, LCLs and fibroblasts (Emilsson

et al, 2008; Kraft, 2008; Dimas et al, 2009; Ding et al, 2010).

Large-scale functional mapping projects, such as ENCODE, have

generated massive collections of high-resolution functional genom-

ics data. However, much of this information has yet to be integrated

with studies on population expression variation (The ENCODE

Project Consortium, 2012). Hundreds of new transcription factor

(TF) recognition motifs that exhibit cell-selective occupancy were

discovered using DNase I footprinting (Neph et al, 2012), providing

the opportunity to study new DNA elements in conjunction with

population variation. Importantly, these projects have reported a

large fraction of open and functional chromatin sites to be cell-type

specific. This is in contrast with previous eQTLs reports, which

showed considerable sharing in functional regulatory variation

across tissues (Emilsson et al, 2008; Kraft, 2008; Dimas et al, 2009;

Ding et al, 2010; The ENCODE Project Consortium, 2012; Thurman

et al, 2012).

Despite progress in mapping functional elements, defining causal

cis-rSNPs among correlated sites in high linkage disequilibrium (LD)

remains a challenge. Traditional tools such as reporter gene assays

typically isolate the putative regions from their functional chromatin

context (Cirulli & Goldstein, 2007). New approaches for the global

functional assessment of the molecular bases of mapped associa-

tions are needed.

This study utilizes the allelic expression approach to investigate

the genetic determinants of differential allelic expression of protein-

coding and non-coding genes across four cell populations. We

examine TF binding site disruption by mapped cis-rSNPs and inves-

tigate their regulatory role on gene expression across tissues.

Finally, we propose a novel platform to globally examine the role of

key regulators by combining allelic expression read-outs with

targeted approaches to perturb TFs in living cells.

Results

Quantitative allelic expression measurements and mapping in 4
cell populations

Genome-wide quantitative AE measurements were carried out on

Human1M-Duo BeadChips (Ge et al, 2009) for four populations

covering 3 distinct cell types. As in our previous work, we used both

intronic and exonic SNPs passing the signal intensity threshold, with

75% of the SNPs used for AE mapping located intronically in non-

processed transcripts. We restricted our analysis to differences in

normalized allele ratios in RNA (cDNA) at heterozygous sites aver-

aged across fully annotated primary transcripts (Grundberg et al,

2011), in order to detect allelic differences impacting full transcripts,

rather than changes in splicing or 30 usage (Ge et al, 2009) (see

Methods). In addition to 55 HapMap lymphoblastoid cell lines

(LCLs) from a Caucasian population (CEU), we included 63 LCLs

from an African population (YRI), 70 fibroblast cell lines from a

Caucasian population (FBs) (Wagner et al, 2014), and 188 purified

monocyte samples (MNCs) from unrelated healthy donors residing

in the UK (Almlof et al, 2012). This selection of cell types enabled

us to capture a wide range of potential cis-variants and aided in the

fine mapping of common variants between populations.

The application of the BeadChip genotyping process, which

includes amplification, allows for the detection of rare transcripts.

In order to focus on genes with biologically relevant expression

levels, we restricted our analysis to expressed loci independently

determined using RNA-seq expression data, with up to eight

samples per cell type (see Methods). Using this method, we identi-

fied 11,723, 9,982, and 11,487 non-overlapping expressed tran-

scripts in LCLs, fibroblasts, and monocytes, respectively. We next

applied a filter for the statistical significance of genetic effects on

allelic expression in order to limit the discovery of false-positive

associations, requiring that loci be mapped below the threshold of

1% FDR (see Methods). This led to the detection of 49, 36, and 81%

of allelically regulated transcripts in LCLs, fibroblasts, and mono-

cytes, respectively. Examples of proximal and distal allelic expres-

sion associations in individual transcripts are depicted in Fig 1. In

order to include the optimal number of associated SNPs in our

analysis, we assessed simulated candidate loci with known “causal”

sites (Supplementary Methods). Through the simulation analysis,

we observed that the percentage of missing causal SNPs is below

5% when the top 10 ranked SNPs by P-value are included per locus,

and thus, we focused our subsequent analyses using this cutoff

(Supplementary Fig S1). A summary of mapped associations and

number of tested SNPs are displayed in Table 1 and Supplementary

Table S1, respectively.

All classes of transcripts annotated in GENCODE V15 were

included in our analysis. This allowed us to map cis-regulatory vari-

ants for 266 lincRNAs, 642 processed transcripts, 308 antisense tran-

scripts, and 15 sense-intronic transcripts (Supplementary Table S2).

Shared cis-regulatory variation is high between cell types
and populations

In order to assess the biological relevance of cis-regulatory variation

between the four cell population panels, we defined cell-type-

specific and shared associations. We applied a stringent approach to

assess exactly shared top associations across tissues requiring not

only significant association in both tissues, but also converging

association pattern. To account for cases of detecting true cis-

regulatory associations at weak significance levels, which could

result in underestimating the number of shared associations, we

used a method that is conceptually similar to that used by Nica et al

(2011). For each locus, all primary associations in one population

were compared to the first percentile of mapped SNPs in another cell

population (see Methods). We observed 10–23% of SNP-transcript

associations in each tissue (same population) as shared in the two

others and that a majority is shared between at least two tissues

(Table 1 and Supplementary Table S3). Monocytes showed the

highest (61%) proportion of cell-selective associations. We also

identified 38–48% of loci shared between different ethnicity (CEU

Molecular Systems Biology 10: 754 | 2014 ª 2014 The Authors

Molecular Systems Biology Cis-rSNPs disrupt repressor binding sites Veronique Adoue et al

2



A

B

Figure 1. Examples of allelic expression mapping in individual transcripts.
Regression tests were carried out using phased AE data: y-axis shows the mean D het ratio across all individuals heterozygous for top SNP across population or the D het ratio
for individual examples. NA19099 and NA18507 in panel (A) and NA 18871 and NA19172 in panel (B) are heterozygous for top SNP, and profiles reflect differential AE at
population level. NA19172 and NA19128 in panel (A) and NA19128 and NA18853 in panel (B) are homozygous for top SNP and show weak differential AE with no significant
bias toward one haplotype.

A Example of cis-rSNP located close to the TSS of its associated transcript. Differential AE of RAB31 is associated to rs1893126 genotype.
B Example of cis-rSNP located far away from its associated transcript. The strongest association for CACNA1E is rs12077014 and is located > 53 kb from its TSS.
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versus YRI LCLs) of the same cell type (Supplementary Table S3).

We noted that this tissue sharing is conservative as compared to

methods recently used to estimate tissue sharing in eQTL studies

allowing for uncertainty in mapping accuracy (Grundberg et al,

2012). Estimates of pairwise tissue sharing based on p1 values are

similar to eQTL studies and range from 39% between YRI LCLs

and fibroblasts to over 60% for monocyte lead associations and

the three other sample panels (Supplementary Table S4) (see Meth-

ods). We explored the relevance of mapped shared associations in

full datasets using IPA (Ingenuity Systems, www.ingenuity.com).

Networks of genes associated to cis-rSNPs shared across all three

studied cellular lineages are involved in basic cellular functions

(Supplementary Fig S2). In contrast, associations shared by the

two LCL panels are enriched in cell-to-cell signaling and immune

response networks, and associations shared between lymphoblasts

and monocytes are enriched in networks related to immunological

disease and immune response. Finally, we hypothesized that the

variation in the number of mapped loci, which are tissue indepen-

dent or cell-type selective, could be due to differences in the

number of analyzed samples, leading to discovery of weaker

effects less likely to be shared across tissues in larger samples.

Down sampling to equally powered datasets (see Supplementary

Methods) shows the ratio of cell type-dependent versus all associa-

tions is quite stable across comparisons, suggesting that the level

of sharing we observed is mainly influenced by (i) tissue-depen-

dent differences, where cultured cells of Caucasian origin (CEU

and FB) show lowest level of tissue differentiation and (ii) popula-

tion genetic variation (YRI versus all others) where sequence diver-

gence predominates (Supplementary Fig S3).

To improve the mapping resolution, we next applied meta-

analyses across populations (see Methods). By breaking up blocks

of SNPs in high LD, this approach significantly reduced the total

number of associated SNPs per loci by ~2.1-fold (chi-squared test,

P < 2 × 10�32, Supplementary Fig S4) (Hess & Iyer, 2007). Intersect-

ing our data with the RegulomeDB (RegDB) database (Boyle et al,

2012) yielded a significant enrichment of mapped SNPs overlapping

functional elements (1.1-fold, chi-squared test, P = 0.02). A signifi-

cant increase in the proportion of GWAS hits (1.9-fold, chi-squared

test, P = 2 × 10�16) was also observed, particularly in autoimmune

diseases (1.5-fold, chi-squared test, P = 1.4 × 10�32). These findings

may be partially attributed to the use of two immune cell types

(lymphoblasts and monocytes) among the three cell lineages stud-

ied. The spatial distribution of the mapped cis-rSNPs follows an

expected trend (Nica et al, 2011): high density of sites in 50UTRs,
gene bodies, and 30UTRs, which rapidly decreases as a function of

the distance from the gene in flanking regions. The associations

shared between cell populations display a striking enrichment at the

TSS of the associated transcript. In parallel, we observe a depletion

of cell-type-specific associated variants at the TSS, with a simulta-

neous increase in more distal associations (Supplementary Fig S5).

Only 0.4% of all rSNPs associations localized further than 200 kb

away from the associated transcript. The density of long-range asso-

ciations may be slightly underestimated for the monocyte sample

due to reliance on statistical rather than family-based approach in

phase assignment and potential of confounding errors in long-range

haplotypes. We observe rate of long-range effects of 0.2% in mono-

cytes versus 1.1% in the three other cell types. Overall, these data

support the validity of our approach to map high-quality cis-

regulatory variants in different cell population.

We further observed the same cis-rSNP to be associated to AE of

multiple transcripts (up to 10) in the same cell population for 35%

of all mapped transcripts (n = 3825). Moreover, we detect the oppo-

site allelic direction of regulatory effect for transcripts linked to the

same cis-rSNPs in 33% of these cases. Two examples of these

complex loci are depicted in Supplementary Fig S6. We previously

reported this type of effect for a single disease locus (Verlaan et al,

2009) and showed an impact of genetic variants on higher order

chromatin function. Supplementary investigation would be needed

to establish if this could be a common phenomenon across human

cell types.

Table 1. Number of mapped loci per gene type and cell population.

Cell Types

Lymphoblastoid Cell Lines-CEU Lymphoblastoid Cell Lines-YRI Fibroblasts Monocytes

Number of samples 55 63 70 188

Total number of associations 3343 3982 3983 8175

Number of associations per gene type

Protein-coding 2938 3486 3526 7367

lincRNA 74 109 89 156

Processed transcripts 200 241 234 437

Antisense transcripts 108 118 115 162

Sense-intronic transcripts 6 6 3 11

Others 17 22 16 42

Cell-selective associationsa 1293 (39%) 1997 (50%) 1610 (40%) 4978 (61%)

Shared across all tissuesb 613 (23%) – 668 (19%) 769 (9.5%)

Shared across all tissues and populationsc 407 (15%) 371 (12%) 435 (13%) 485 (6%)

aSNP–transcript associations mapped in one cell population.
bSNP–transcript associations mapped in CEU LCLs, fibroblasts, and monocytes (same population).
cSNP–transcript associations mapped in CEU LCLs, YRI LCLs, fibroblasts, and monocytes.
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Cis-rSNPs are linked with disease variants

To investigate the role of mapped regulatory variants and disease,

cis-rSNPs for each cell-type specificity class were intersected with

hits from the NHGRI Catalog of Published GWAS at genome-wide

significance (P < 5 × 10�8). In total, we identified 540 loci with at

least one cis-rSNP in nearly absolute LD (r2 ≥ 0.9) with a disease

hit (Table 2; Supplementary Table S5). These cis-rSNPs showed

a high degree of functionality, with 42.2% of them falling into

categories 1–5 from RegDB, which is significantly higher than

for all cis-rSNPs in our study (34.8%) (chi-squared test,

P = 3.8E × 10�23). Transcripts for non-coding RNAs, including

lincRNA, antisense, processed and sense-intronic RNAs, represent

7.8% (n = 42) of the disease-associated loci. One interesting exam-

ple is located in the genomic region 3q12.3, where rs771767, a SNP

linked by GWAS to multiple sclerosis, localizes to an intergenic

region > 168 Kb from the closest protein-coding gene (Fig 2A–B)

(International Multiple Sclerosis Genetics C, Wellcome Trust Case

Control C, 2011). This variant is located in a region of open chro-

matin (ENCODE data) and, in our data, is the top-ranked cis-rSNP

(P = 1.96 × 10�6) for the lincRNA RP11-221J22.1. This association

is specific to monocytes, a cellular lineage with a role in instigating

neuroinflammation in multiple sclerosis disease models (Hendriks

et al, 2005). Globally, we found a correlation between the catego-

ries of traits of the GWAS hits and the cell-type specificity of the

cis-rSNPs with which they are in LD (Fig 2C). SNPs associated to

hematological traits are significantly enriched (1.9-fold, chi-squared

test, P < 0.01) in cis-rSNPs mapped in monocytes. We also

observed a significant enrichment (chi-squared test, P < 0.05) of

variants associated with auto-immune diseases among the cis-

rSNPs mapped in the immune-related cell types, the lymphoblasts

(1.6-fold), and the monocytes (1.4-fold), as has been earlier

observed in eQTL studies (Fairfax et al, 2012). Finally, we identi-

fied shared genetic effects between autoimmune diseases as previ-

ously described (Cotsapas et al, 2011). One key example is located

in 9q34.3: rs3812560 (RegDG score = 1f), which is linked to four

different diseases, and is associated to differential allelic expression

of at least five genes (Supplementary Fig S7), suggesting that

rs3812560 may act as a master regulator, involved in multiple

physiological contexts and diseases. Molecular investigation of the

role of rs3812560 and other master regulators may be beneficial in

the elucidation of the shared mechanisms involved in the develop-

ment of autoimmune diseases.

Motif disruption at cis-rSNPs revealed new regulatory function

One mechanism by which cis-rSNPs may act and mediate disease

risk is through the disruption of transcription factor binding sites.

Databases of TF binding matrices, such as TRANSFAC (http://

www.biobase-international.com), can be used to detect these

events. However, they contain only a minority of the human tran-

scription factors with predicted high-quality sequence-specific DNA

binding domains (Vaquerizas et al, 2009). Recently, Neph et al

(2012) performed unbiased de novo motif discovery within the foot-

prints left by regulatory factor binding to genomic DNA and protect-

ing the underlying sequence from cleavage by DNase I in 41 cell

types. This approach allowed them to discover 683 unique de novo

motifs (numbered 1–683), 289 of which showed no match in previ-

ous motif databases. This new genome-wide dataset of transcription

factor binding, in conjunction with the major motif database

TRANSFAC which contains 721 motifs, provides an opportunity to

interrogate both known and unknown DNA–protein interactions

that may be affected by cis-rSNPs.

To investigate the relationship between cis-rSNPs and TF bind-

ing, we used the FIMO motif scanning software (see Methods) to

calculate the number of disrupted binding sites per motif at

cis-rSNPs based on cell-type specificity (Supplementary Table S6).

As expected, sites for general transcription factors such as SP1,

AP1/2, and CTCF are frequently disrupted in all cell types (Supple-

mentary Table S7). However, we also observed cell-type-specific

activity at TRANSFAC and footprint-derived motifs (Fig 3) (chi-

squared test, P < 0.05): For example, binding motifs for NFjB and

IRF factors and the de novo motif “616” are frequently disrupted in

LCLs in agreement with previous studies (Ernst et al, 2011; Neph

et al, 2012). Motifs for FOXO3A and PU.1 factors are more specific

to fibroblasts and monocytes (Ito et al, 2009; Wang et al, 2014).

We next explored the regulatory role of factors binding TRANS-

FAC and footprint-derived motifs by combining allele-specific matrix

affinity scores at cis-variants with the AE data of the associated tran-

script. Motifs for transcriptional activators are expected to exhibit a

higher matrix score for the same haplotype as the overexpressed

allele, while inhibitors should more frequently recognize the haplo-

type for the under-expressed allele. Using genotypes at cis-variants

from the four population panels, we systematically compared the

matrix score between both alleles and across all sites where a given

motif was found. We identified 63 motifs (11%) with significant

matrix score allelic bias (P binomial test < 0.01) (Table 3 and

Supplementary Table S8). Among these, 41 (65%) were associated

with an activatory activity: We observed significantly more cases

where the “higher matrix score” was on the same haplotype as the

more expressed allele. The vast majority of these potential activator-

binding sites overlapped a known motif from TRANSFAC (76%).

The most significant of these motifs bind well-known transcriptional

activators: NFjB, CEBP (CCAAT/enhancer-binding family), and

PU1, a lymphoid-specific enhancer (Kueh et al, 2013). Overall, nine

“de novo” motifs present potential enhancer activity (P binomial

test < 0.01).

We identified 22 motifs with significantly more cases where the

“higher matrix score” was on the same haplotype as the expected

under-expressed allele, suggesting a repressor activity. Several of

the top 10 most significant motifs are bound by factors with

published inhibitory activity, such as NRSF (a.k.a. REST) (Chong

Table 2. Number of loci with a cis-rSNP in high LD with SNP from the
GWAS catalog.

Number of loci with
cis-rSNP in high LDa with
a GWAS hit (LD ≥ 0.9)

Number of
locus–disease
associationsb

Cell-selectiveb 360 418

Shared by at least
2 cell types

182 230

Shared by all
cell types

20 25

Total 540 648

ar2 > 0.9
bAs a same cis-regulatory variant can be associated to multiple diseases, the
total number of locus–disease associations are also reported.

ª 2014 The Authors Molecular Systems Biology 10: 754 | 2014

Veronique Adoue et al Cis-rSNPs disrupt repressor binding sites Molecular Systems Biology

5

http://www.biobase-international.com
http://www.biobase-international.com


et al, 1995; Schoenherr & Anderson, 1995) with an extensively

documented repressor activity, HFH4, a FOX factor (Hoggatt

et al, 2000; Myatt & Lam, 2007), or PAX5 (Fazio et al, 2008).

Unexpectedly, we also identified many “de novo” motifs among the

most significant hits: 79% of the “de novo” motifs are bound by

factors with repressive function (Fig 4A). To exclude bias due to

the way in which matrices were produced with the “DNase I foot-

printing” method, we examined footprint-generated motifs which

had not been called as “de novo” due to redundancy with other

datasets (Neph et al, 2012). We observed a majority of “activators”

(62%), a proportion more similar to the motifs from the TRANSFAC

database (90%), suggesting no bias in the footprint-derived motif

generation (Fig 4A). To further validate these findings, we assessed

chromatin state at cis-rSNP sites where motifs are disrupted (see

Methods) (Degner et al, 2012). We used in-house, high-depth

H3K4me3 ChIP-seq data generated in LCLs. When looking at all
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Figure 2. Cis-rSNPs are linked with disease variants.

A The most significant cis-regulatory variant of RP11-221J22.1 mapped by regression analysis in the monocyte population, rs771767 (P = 1.96 × 10�6), is also a GWAS
hit linked to multiple sclerosis.

B Screenshot of the rs771767 genomic region from the UCSC genome browser.
C Proportion of cis-rSNPs in high LD with GWAS hits in each disease category. Both LCLs and monocytes showed significant enrichment in autoimmune diseases

(P < 0.05). Monocyte-specific cis-rSNPs are enriched in hematological traits (P < 0.01, *P < 0.05, **P < 0.01).
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cis-rSNPs (P < 1.10E�9), we observed significant enrichment

(~1.2-fold, t-test, P = 5.4 × 10�7) on the same haplotype of the

expected overexpressed allele, confirming global enhancer activity

for most of the cis-variants. In contrast, when we restricted the

analysis to cis-rSNPs leading to the disruption of a “repressor” site,

we observed the opposite trend (~1.2-fold, t-test, P = 3.2 × 10�4,

Fig 4B). Overall, these data suggest that the disruption of repressor

activity is an important source of heritable cis-regulatory variation

and that repressor–DNA interactions are under-represented among

annotated transcription factor binding sites (TFBS).

Next, we asked whether the cis-rSNPs associated with repressor

activity were enriched in GWAS hits. We first identified 129 loci

where cis-variants are in high LD (r2 ≥ 0.9) with a disease hit and

alter matrix scores for motifs associated to enhancer or repressor

activity as described above. Among them, 66 cis-variants sit on a

predicted repressor binding site. For example, rs2303369, which has

been linked to age at onset of menopause, is in high LD (r2 = 0.9)

with rs780100, a cis-regulatory variant which disrupts a repressor

binding site for the de novo motif “607”, and is associated to differ-

ential AE of NRBP1, a gene with a growth-promoting role, in the

monocyte population (P = 2.7 × 10�27) (Fig 4C and D) (Ruiz et al,

2012; Stolk et al, 2012). In order to validate the binding of a repres-

sor factor, we examined allelic ChIP-seq signals for H3K4me3 at

rs780100 across all individuals that are heterozygous for this vari-

ant. We observed a significantly higher signal (~twofold, chi-

squared test, P < 0.001 for all individuals except for MNC491 with

P < 0.05) for active chromatin on the same haplotype as the less

expressed allele, reinforcing our hypothesis of a repressor binding

NRBP1 promoter region (Fig 4E) (Light et al, 2014). It is also

interesting to note that the risk allele is associated to the repression

of this gene.

Taken together, the fine-mapped cis-rSNPs point toward frequent

involvement of both known and currently uncharacterized tran-

scription factors in the variation of gene expression in cell popula-

tions and in the pathogenesis of complex diseases. The global

Figure 3. Heat map of differential motif disruption by cis-rSNPs
according to the cell type.
Heat map representing disruption frequency of motifs for TF binding sites
(TRANSFAC, left panel; footprint-derived de novo, right panel) in LCLs, fibroblasts,
and monocytes. Only motifs significantly enriched or depleted in at least one
tissue are represented (P-value chi-squared < 0.05). Low disruption: white; high
disruption: dark red. Numbers on the right panel correspond to the unique de
novo motifs numbered 1–683 as defined by Neph et al (see main text).

Table 3. Table of TF biding sites with the most significant global
activator or repressor activity.

Activity Motif P-valuea Bias=#over/#underb

Activators V_PU1_Q4 1.33E-06 1.72

V_PU1_Q6 2.53E-06 2.61

V_CEBP_C 1.11E-05 3.11

V_ELK1_01 2.04E-04 2.02

V_NFKAPPAB_01 2.66E-04 2.30

V_GADP_01 3.42E-04 1.78

V_P53_01 5.35E-04 2.28

V_GABP_B 8.57E-04 1.61

572 8.78E-04 1.44

413 9.08E-04 1.60

154 9.66E-04 1.74

V_NKX3A_01 1.07E-03 3.33

Repressors 421 1.46E-05 0.55

481 6.43E-04 0.42

275 9.12E-04 0.63

V_HFH4_01 1.05E-03 0.45

V_NUR77_Q5 1.40E-03 0.36

V_PAX5_01 2.22E-03 0.33

373 2.46E-03 0.36

V_NFY_Q6_01 2.67E-03 0.43

217 2.78E-03 0.65

V_NRSF_01 2.83E-03 0.58

aBased on global higher matrix score deviation toward the haplotype of the
expected over or under-expressed allele.
bTotal number of motifs with higher matrix score on the expected over or
under-expressed allele.
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Figure 4. Footprint-based de novo motifs are enriched for repressor activity and linked to diseases.

A Proportion of disrupted motifs by cis-rSNPs for TF binding sites with globally significant activator or repressor activity (P binomial test < 0.01). Motifs are split into
three categories: (i) footprint-based de novo motif with no match in any other major motif database; (ii) footprint-based de novo motif with a match in other major
motif database: TRANSFAC, JASPAR, and UniPROBE databases (Neph et al, 2012); (iii) TRANSFAC motifs. Whereas TRANSFAC and previously known footprint-based
motifs are mostly bound by activators, true de novo motifs showed enrichment for repressor binding sites.

B ChIP-seq read depth is correlated to genotype of cis-rSNPs. Average normalized read depth according to genotype and across all LCL samples (n = 7) is depicted for
H3K4me3 at all cis-rSNPs (P < 1.1 × 10�9) or at top cis-rSNPs associated to a change in a recognition motif for a repressor motif. For all mapped cis-rSNPs, ChIP-
seq coverage is significantly higher (P = 5.4 × 10�7) for homozygotes for the expected overexpressed allele (blue line) as compared to homozygotes for the opposite
allele (red line). We observed the opposite trend for repressor sites (P = 3.2 × 10�4).

C–E Example of a repressor site in high LD with a GWAS hit. (C) Variant rs2303369 is associated to age of onset of menopause. It is in high LD with rs780100, located in
active chromatin and associated to differential AE of NRBP1. (D) AE linear regression graph. Regression test was carried out using phased AE data: y-axis shows the
D het ratio, left dots correspond to heterozygotes carrying the B-allele in phased chromosome 2 (“0” on the x-axis), middle dots to homozygotes (“1” on the x-axis),
and right dots to heterozygotes carrying the A-allele in phased chromosome 2 (“2” on the x-axis). (E) A recognition site for the de novo motif “607” is found at the
location of rs780100 on the same haplotype as the under-expressed allele; no motif is recognized on the other haplotype. Allelic ChIP-seq for H3K4me3 at this site
showed significant bias toward the expected, under-expressed allele across all heterozygous individuals (*P < 0.05, ***P < 0.001) (first 6 samples = LCLs, last two
samples are from fibroblast and monocyte (MNC491) cell population, respectively).
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enrichments alone, however, are insufficient to confirm the role of

specific TFs at defined loci.

Genome-wide validation of NFjB allelic regulation in LCLs

For confirmation of TF–cis-rSNP interactions in a functional context,

we developed a method that perturbs TF followed by monitoring

genome-wide allelic expression measurements in living cells. As a

model for this novel approach, we chose the factor NFjB. Activation
of NFjB is known to regulate the expression of genes that are

involved in the pathogenesis of inflammatory pathologies (Kempe

et al, 2005; Sehnert et al, 2013) and SNPs associated to diseases are

enriched in NFjB binding regions (Karczewski et al, 2013). Three

motifs for NFjB binding (“V_NFΚB_C”, “V_NFΚB_Q6_01”, and

“V_NFKAPPAB_01”) are associated with significant global enhancer

activity (P binomial test < 0.01) in this dataset (Supplementary

Table S8). We observed that cis-rSNPs from 126 loci disrupted one

of these NFjB binding sites are preferentially located in NFjB ChIP-

seq peaks (ENCODE) (6.5-fold, chi-squared test, P = 2.6 × 10�23),

when compared to other mapped loci in LCLs suggesting true regu-

lation by this TF. Among these cis-rSNPs, 12 are in high LD with

GWAS hits for 12 diseases and linked to differential allelic expres-

sion of 15 genes. Overall, both the literature and our own data

support NFjB as an interesting biological model to test this novel

approach. Briefly, we performed TNF-a induction coupled to inhibi-

tion of NFjB in LCLs followed by AE analysis on Illumina Human-

Omni5-Quad BeadChips (see Methods). Samples used included two

HapMap trios: one from the CEU (GM12891, GM12892, and

GM12878) and one from the YRI (GM19239, GM19238, and

GM19240) population. Validation of NF-jB knockdown was done

using RT–PCR of known gene targets for NFjB (Supplementary Fig

S8) (Mori & Prager, 1996; Catz & Johnson, 2001; Kang et al, 2007;

Son et al, 2008). We looked for transcripts with AE differences in

cells induced by TNF-a compared to cells induced by TNF-a in

combination with inhibition of NFjB. We observed perturbation of

AE of many known NFjB targets, such as CXCL17, SERPINE2, and

IL-1A/IL-1B (Hiscott et al, 1993; Mori & Prager, 1996; Suzuki et al,

2006; Takegawa et al, 2008; Supplementary Table S9). Within the

transcripts included for mapping in the CEU and YRI population, we

identified 489 transcripts that are allelically regulated by NFjB,
according to AE pertubation in at least two individuals heterozygous

for the top cis-rSNP (see Methods). Using ENCODE NFjB ChIP-seq

experiments, we observed significantly (~1.1-fold, chi-squared test,

P = 4 × 10�17) higher NFjB signals at cis-rSNP locations from

perturbed than non-perturbed transcripts, validating the global cis-

regulation of perturbed genes by NFjB (Fig 5A). We then investi-

gated whether the loci responding to NFjB perturbation and

mapped in at least 1 cell population were associated to complex

diseases according to an overlap between cis-rSNPs and GWAS hits

(LD ≥ 0.9). We identified 26 transcripts that are perturbed by NFjB
and had a regulatory variant linked to a complex disease, including

immune-related and/or autoimmune diseases such as systemic

lupus erythematosus (SLE), multiple sclerosis and Kawasaki disease

(Supplementary Table S9). We focused on the BLK region, which is

linked to SLE susceptibility, and for which we had previously fine-

mapped the promoter region (Ge et al, 2009). Using significantly

more individuals (118 CEU and YRI LCLs versus 53 CEU LCLs), we

identified rs998683 (RegDB = 1f) as the most strongly associated

SNP to differential AE of BLK (ENST00000259089.4) in the LCL

population. This variant is located in the first intron of BLK gene

and may act as an enhancer. We observed a change in AE of BLK

after NFjB perturbation (Fig 5B–C) and an overlap of rs998683 with

an NFjB ChIP-seq peak, which strongly supports the role of NFjB
in the regulation of BLK expression. Another example of converging

functional data supporting the role of NFjB in the circulating plas-

minogen activator inhibitor-1 (PAI-1) concentration through the

allelic regulation of SERPINE1 is depicted in Supplementary Fig S9.

Interestingly, we observed among the mapped and perturbed genes

a significant enrichment of lincRNAs and processed transcripts

(~twofold, chi-squared test, P = 4.4 × 10�20).

These results demonstrate that whole-genome perturbation of TF

activity associated with allele-specific assessment and mapping can

be successfully used to identify pathways and functional roles of

regulatory variation associated to disease.

Discussion

In this study, we mapped cis-regulatory variants in three cell

types, examined their global impact on TF binding sites and demon-

strated a new approach to validate the role of key regulators by

combining allelic expression mapping data with targeted approaches

to perturb TFs in living cells. The large fraction of discovered cis-

regulatory variants in three cell types is in line with data from recent

eQTL studies using RNA sequencing of blood cells or lymphoblasts

(Lappalainen et al 2013, Battle et al 2014). We were able to achieve

an equivalent number of associations using lower sample sizes due

to the greater power of allelic expression measurements (Almlof

et al, 2012). When shared associations are observed, the feasibility

to fine-map cis-regulatory variants is improved by parallel applica-

tion of meta-analyses across cell types as shown by their greater

power to predict functionality. Finally, our results detect that up to

40–60% of cis-rSNPs that were originally mapped in each cell type

show strong evidence of tissue independence, demonstrating a large

pool of regulatory elements where sequence context predominates

as determinate of variance. This reflects the strong sequence depen-

dence of cis- regulation (Wilson et al, 2008).

Global investigation of the disruption of TF binding sites by cis-

rSNPs can contribute to identifying important cell-type-specific

regulatory factors and to distinguish functional variants associated

to disease. Our analysis revealed that TFs with an inhibitory activ-

ity are likely to be more prevalent than previously thought. This

inhibitory activity is more common for TF binding to de novo foot-

print-derived motifs than to known motifs from TRANSFAC. The

fact that a TF can act as a repressor or an activator, depending on

the chromatin or cellular context, appears to be a limitation for

comprehensive mapping of repressor activity. Here, we focused on

factors with a major global repressive activity. The knowledge of

GWAS-

associated variants implicated in repressor binding could be of

practical importance in, for example, confirming the desired modu-

lation of gene targets or their regulators in GWAS-based drug

repositioning (Sanseau et al, 2012).

The intersection of cis-rSNPs with variants from the GWAS catalog

reveals a large number of shared hits, with a remarkable enrichment

of mapped variants from relevant cell types with disease types.
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Immune-related diseases are overrepresented in LCLs and monocyte-

specific-associated SNPs, which are cell types with a well-known role

in auto-immune diseases (Kwan et al, 2008; Zhang et al, 2008; Mont-

gomery et al, 2010; Pickrell et al, 2010; Fairfax et al, 2012), reiterat-

ing the importance of using cellular lineages that match the disease

biology. We observe that phenotypically important SNPs are enriched

for complex transcriptional variation in populations where multiple

independent transcripts are affected. This intriguing observation in

some loci may have a biological basis, but in practice, it suggests that

comprehensive characterization of genetically variable transcription

in the vicinity of trait SNPs is essential to assign functional mecha-

nisms to disease haplotypes (Verlaan et al, 2009).

A recent method proposed to investigate endogenous regulatory

elements by selectively altering their chromatin state using program-

mable reagents (Mendenhall et al, 2013). Although promising, this

method does not allow for genome-wide assessment of TF regula-

tory activity and their associated transcripts. We demonstrated a

new approach for in vivo exploration of genome-wide functional

activity of a transcription factor, focusing on NFjB given its key role

in immune regulation. We validated allele-specific differences in TF

binding in the human genome and successfully identified transcripts

that are allelically regulated by NFjB in LCLs and whose regulatory

activity is associated to complex diseases. We noticed an enrich-

ment of lincRNAs and processed transcripts in genes regulated by

A B

C

Figure 5. Direct assessment of allele-specific NFjB binding highlights target genes and its implication in diseases.

A ENCODE NFjB ChIP-seq signal at cis-rSNPs. We observe higher signal for transcripts that are allelically perturbed by NFjB. Lines represent normalized NFjB ChIP-
seq read count for NFjB perturbed (blue) and unperturbed (red) transcripts. P-values were calculated with the chi-squared test using the read counts at the SNP
position.

B Allelic perturbation of BLK after treatment with helenalin/TNF-a, TNF-a, DMSO, or after no treatment. The value 1 on the y-axis represents equal expression of the
two alleles of BLK. A complete or partial loss of allelic imbalance is observed after specific inhibition of NFjB (red) in cells heterozygous for rs998683 (GM19238,
GM19239, and GM12891). No difference in allelic expression between treatments is observed for homozygous individuals (GM12892 and GM12878).

C Screenshot of the rs998683 (cis-rSNP of BLK) region from the UCSC genome browser. An overlap between rs998683 and the NFjB ChIP-seq peak is seen in a LCL
sample.
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NFjB. We hypothesize that lincRNAs are more easily perturbed due

to their lower stability versus protein-coding genes or that there are

fewer post-transcriptional mechanisms that buffer the effect of cis-

rSNPs in lincRNAs. This result also supports a potential role of non-

coding RNA in modulation of inflammatory processes. Our novel

approach to perturb NFjB and monitor the consequences of the

perturbation on a genome-wide scale can be generically extended to

other transcription factors or combinations of them in different cell

types. Moreover, this approach may be used to test specific TF activ-

ity on isolated cells from patients and thereby identify allele-specific

differences with controls.

Future analyses using allele-specific expression data for mapping

cis-variants and for in vivo genome-wide assessment of TF activity

in populations of diverse cell types hold tremendous promise for the

large-scale identification of the specific causal variants that affect

gene expression detected by genome-wide association studies for an

assortment of complex diseases.

Materials and Methods

Cell preparation and cDNA synthesis

All LCLs were obtained from Coriell (Camden, NJ, USA) and cultured

as previously described (Ge et al, 2009). Fibroblast cell lines were

obtained from Coriell and the McGill Cellbank (Montreal, QC,

Canada) and grown in medium containing a-MEM (Sigma-Aldrich,

Oakville, ON, Canada) supplemented with 2 mmol/l L-glutamine,

100 U/ml penicillin, 100 mg/ml streptomycin, and 10% fetal bovine

serum (Sigma-Aldrich) at 37°C with 5% CO2. At 70–80% confluence,

the cells were harvested and stored at �70°C until RNA and DNA

extraction. RNA was extracted from cell lysates, and we applied a

cDNA synthesis protocol as previously described (Ge et al, 2009).

Circulating monocytes were collected from healthy adult blood

donors of European origin (n = 188) recruited from the United King-

dom National Blood Service Centre in Cambridge, UK, as part of the

Cardiogenics Transcriptomic Study (Garnier et al, 2013). The

Cambridgeshire 1 Research Ethics Committee approved the donor

recruitment. CD14+ magnetic microbeads (autoMACS Pro, Miltenyi

Biotec, Bergisch Gladbach, Germany) were used to isolate mono-

cytes from whole blood. RNA was extracted from cell pellets, and

cDNA was prepared as previously described (Almlof et al, 2012).

RNA-seq samples preparation

Total RNA from LCLs (x3), fibroblasts (x4), and primary monocytes

(x8) were extracted from cell lysates using the miRNeasy Mini Kit

(Qiagen, Mississauga, Canada) (including a DNase I treatment step)

with the quality assessed by Agilent 2100 BioAnalyzer (Agilent Tech-

nologies, Palo Alto, CA, USA). Libraries for RNA sequencing were

prepared according to the Illumina TruSeq protocol. The quality of

each library was assessed by Agilent 2100 BioAnalyzer. Samples were

indexed and sequenced on Illumina Genome Analyzer II (paired-end

2 × 76 bp) or on Illumina HiSeq 2000 (paired-end 2 × 100 bp). High-

quality RNA-seq reads were aligned to the human reference genome

build hg19 using Tophat v1.4.1 (Trapnell et al, 2012). Annotated tran-

scripts (Gencode V15) with median FPKM score > 0.01 across

samples were considered as expressed (Trapnell et al, 2010).

AE mapping and normalization of allele ratios in
Illumina Beadchips

AE mapping was performed as previously described (Ge et al, 2009)

except for the signal intensity normalization at heterozygous sites,

which followed a slightly modified approach (Grundberg et al,

2011). Briefly, approximately 200 ng of genomic DNA and a 50–

300 ng double-stranded cDNA sample was used for the parallel

genotyping and AE analysis on the Illumina Infinium Human1M or

Human1M-Duo SNP bead microarray according to the manufac-

turer’s instructions. Raw data were processed in the genotyping

module (Ver. 3.3.7) of BeadStudio software (3.1.3.0), filtered and

normalized. For transcript-based AE regression tests, associations

were carried out using average intensity signal for SNPs (minimum

three per transcript) across any annotation from GENCODE version

15. We used 1000 Genomes project data as a reference set (release

1000G Phase I v3, updated 26 Aug 2012) for the imputation of geno-

types from our panel of HapMap individuals. Untyped markers were

inferred using algorithms implemented in IMPUTE2 (Howie et al,

2009). R2 was used as an imputation quality control metric, which

estimates the squared correlation between imputed and true geno-

types. We systematically removed all poorly imputed markers with

r2 < 0.8. For each gene, only the most highly expressed isoform

with minimum FPKM value of 0.01 was retained. In regression tests,

we decided to exclude intensity signal from genomic regions over-

lapped by more than one gene to avoid conflicting data. We called

“partial-length transcripts” in cases where only part of the AE data

were used due to these low confidence regions. For “full-length”

transcripts, no region was excluded. The AE associations were

tested in phased chromosomes with D het ratio data correlated with

local (�500-kb flanking sequence) genotypes, the marginal (at 0.01

permutation significance level) associations observed in either

population from non-overlapping transcripts. The number of tested

SNPs per cell population can be found in Supplementary Table S1.

Overall, 4939556, 7659025, 4947257 and 4933245 SNPs with

MAF ≥ 0.05 were tested in CEU LCLs, YRI LCLs, fibroblasts, and

monocyte population, respectively, using 12411 full- and 3901

partial-length transcripts. To be conservative, loci were included

only if the P-value of the most significant association was less than

the P-value at 1% FDR, which was 3.282 × 10�6, 1.263 × 10�6,

4.238 × 10�6 and 3.276 × 10�5 for the CEU LCLs, YRI LCLs, fibro-

blasts, and monocytes, respectively.

Shared associations and Fisher combined test

For each locus, all primary associations from each population were

compared to the first percentile of mapped SNPs in others cell popula-

tion. A P-value cutoff of 1.1 × 10�4 was used in the secondary popu-

lation. At this threshold, > 95% of mapped associations showed the

same direction of effect between two populations. When at least one

regulatory variant was found in common, we considered this locus as

sharing regulatory activity between these populations. A Fisher’s

combined approach was then used to improve mapping resolution

and generate new associations for shared loci across populations.

To allow comparison of our approach to recent works reporting

higher level of sharing, we used same approach for comparing

P-values between datasets. Specifically, we took lead association in

one tissue (based on our definition by FDR) and fetch exactly the

ª 2014 The Authors Molecular Systems Biology 10: 754 | 2014

Veronique Adoue et al Cis-rSNPs disrupt repressor binding sites Molecular Systems Biology

11



data for same SNP-transcript pair in the other tissues. We used as

input these P-value lists in the R package “qvalue” and run the

default setting in the two datasets separately. The output p0 in the

summary file is used to calculate p1 values (1-p0), which represents

the proportion of shared hits among the tested. This approach is

more liberal and allows for uncertainties of mapping accuracy in

differently powered datasets; consequently, pairwise sharing esti-

mated based on this approach is substantially higher (40–60%).

To evaluate the potential functionality of these new associations,

we intersected our data with the RegulomeDB (RegDB) database

(Boyle et al, 2012). Categories 1–5 were used to indicate active regu-

latory regions (a lower score indicating stronger evidence of func-

tionality), whereas categories 6 and 7 are attributed to SNP with low

potential of functionality.

ChIP-seq samples preparation

Cells were cross-linked with 1% formaldehyde at room temperature

for 10 min. After quenching with glycine for 5 min (125 mM glycine

per ml of media), the cells were washed twice with ice-cold PBS.

Cells were collected after each wash by centrifugation at 2,000 g for

5 min. Cell pellets were flash-frozen and stored at �80°C. Frozen

pellets were thawed, and cells were lysed in Farnham lysis buffer

(5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40 and protease inhibi-

tors) for 10 min on ice. After centrifugation and a wash with 1 ml of

RIPA buffer containing 50 mM Tris–HCl pH 8, 150 mM NaCl, 1%

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and protease inhibi-

tors, lysates were diluted with 500 ll of RIPA buffer to proceed to the

sonication step. Cells were sonicated in non-stick tubes under condi-

tions optimized to yield soluble chromatin fragments in a size range

of 100–250 base pairs. Chromatin from 40 million cells was sonicated

for 10 min using a Branson 250 sonicator at 20% power amplitude

(pulses: 10 s on and 30 s off). Lysate was clear by centrifuging at

12,000 g for 10 min at 4°C to eliminate cellular debris. Chromatin

was then flash-frozen and stored at �80°C or used immediately for

the next step. Before each immunoprecipitation, chromatin was pre-

cleared with 50 ll of pre-washed ProteinA-magnetic beads (Invitro-

gen; 100-02D) to avoid non-specific binding. Immunoprecipitation

was carried out for 12 hours by rotation at 4°C in 500 ll of chroma-

tin/RIPA buffer supplemented with protease inhibitor cocktails

(Roche; 04 693 159 001) and PMSF. We used 10–30 million cells and

2–5 lg of the following antibodies for each assay: H3K4me1 (abcam;

ab8895) and H3K4me3 (Diagenode; #pAb-003-050). After overnight

incubation, samples were rotated with 100 ll of pre-washed Protein-

A-magnetic beads at 4°C for 1 h. The beads were then collected by

brief centrifugation at 2,000 g following by the use of a magnetic

rack. Beads were washed five times with 1 ml of LiCl wash buffer

(100 mM Tris pH 7.5, 500 mM LiCl, 1% NP-40, 1% sodium deoxy-

cholate) by resuspending the beads and keeping them on ice for

10 min. Bound chromatin was then eluted from the beads by incuba-

tion with 200 ll of elution buffer (50 mM Tris–HCl, pH 8.0, 10 mM

EDTA, 1.0% SDS) at 65°C for 1 h with vortexes performed every

15 min. This was followed by a centrifugation at 14,000 g at room

temperature for 3 min. The eluted chromatin and the “input” sample

were then incubated at 65°C overnight after adding 0.2 M of NaCl to

reverse cross-links. Samples were then treated with RNase A at 37°C

for 30 min, followed by digestion with proteinase K at 55°C for 1 h.

Immunoprecipitated DNA was then purified using QIAquick PCR

Purification Kit (QIAGEN; 28104) and eluted to a final quantity of

30 ll. Enrichments of interesting regions were validated using real-

time PCR experiments. Primers were designed to genomic sites

known to bind H3K4me1 and H3K4me3 enriched or not enriched

(negative control) regions. Library preparation for ChIP-seq assays

was carry out using Paired-End DNA Sample Prep Kit V1 (Illumina;

PE-102-1001) and sequenced using the Illumina Genome Analyzer II

(2 × 76 bp) or HiSeq Sequencing System (2 × 100 bp). The panel we

used consisted of 7 HapMap samples: 3 CEU LCLs (GM12891,

GM12892, and GM12878) and 4 YRI LCLs (GM19238, GM19239,

GM19240, and GM18507); 2 fibroblast cell lines from Coriell:

GM02456 and GM2555; 2 purified monocyte samples: MNC491 and

MNC492. Reads were trimmed for quality (phred33 ≥ 30) and length

(n ≥ 32) using Trimmomatic v. 0.22 (Bolger et al, 2014). The filtered

reads were aligned to the hg19 reference genome using BWA v. 0.61.

Peaks were calls using MACS v. 1.4.2 (Feng et al, 2012).

Motif over-representation and allelic positional bias

Matrices for TRANSFAC (version 2009.4) and de novo footprint-

derived motifs (Neph et al, 2012) were used in association with the

FIMO motif scanning software, version 4.9.0, using a P < 1 × 10�4

threshold, to find all motif instances � 15 nucleotides from a mapped

cis-rSNP sitting on a DHS footprint region (Grant et al, 2011). All

motifs displaying no change in matrix affinity score, according to cis-

rSNP genotypes, were discarded. To account for multiple testing, we

used a Bonferroni correction (0.05/1380 = 3.62e-05). Among the de

novo motifs, 58% matched matrices from other databases (TRANS-

FAC, JASPAR or UniPROBE). These motifs were not considered as de

novo for the analyses. After normalization to a mean value of 0 and

variance 1, a heat map with 1 row per motif instance was generated

using matrix2png (Pavlidis & Noble, 2003), version 1.2.1. The full

dataset is accessible in Supplementary Table S6.

GWAS intersection

The GWAS catalog was obtained from http://www.genome.gov/

admin/gwascatalog.txt on June 26, 2012. We grouped SNPs into

classes of similar diseases or traits according to the classification

used by Maurano et al (2012).

Perturbation of NFjB

LCLs from HapMap trios from the CEU (GM12891, GM12892, and

GM12878) and YRI (GM19239, GM19238, and GM19240) LCL popula-

tions were used. Cells were plated in 6-well plates with 500,000 cells/

ml in 2 ml one day prior to the experiment. Cells were either

directly treated with TNF-a (3 ng/ul) for NFjB activation or primar-

ily transfected for one hour with helenalin (5 lM) (EMD Chemicals,

USA) in order to inhibit the activation of NFjB (p65) (Lyss et al,

1998). Helenalin is a sesquiterpene lactone that acts as a specific

NFjB DNA binding inhibitor by irreversibly alkylating free sulfhydr-

yls of the cysteine residues on the p65 subunit. Following this inhi-

bition, cells were stimulated with TNF-a (3 ng/ll) at time points

consisting of 4, 6, 8, 12, 24, and 48 h in order to select for the ideal

stop point. Validation of the perturbation of NFjB and induction by

TNF-a was done by RT–PCR for genes targeted by NFjB including

IL-6, IL-8, IL-1a, and Bcl-2. The most optimal time point to stop the
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experiment was deemed 8 hours post-transfection. Total RNA and

DNA were extracted for dscDNA synthesis. Differential AE was

assessed on Illumina HumanOmni5-Quad BeadChips for each experi-

mental condition: (1) inhibition with helenalin followed 1 h later by

activation by TNF-a (H-TNF-a); (2) activation by TNF-a (TNF-a);
(3) DMSO; and (4) no treatment. We selected NFjB perturbed genes

using the following criteria: differential allelic expression must be

higher in (2) than in (1) and with more than 1.2-fold change between

H-TNF-a and TNF-a in at least two individuals. We required that this

variation was measured in at least three independent heterozygous

SNPs in both conditions.

RT–PCR

Total RNA was annealed to 500 ng of random primers. First-strand

cDNA synthesis was performed using SuperScriptII reverse trans-

criptase (Invitrogen Corporation, Carlsbad, CA, USA) according to

the manufacturer’s recommendations and as described above. The

cycling conditions on the Rotor-GeneTM 6000 real-time rotary

analyzer were 4 min at 95°C, 40 cycles ×20 s at 95°C, 30 s at 58°C

and 30 s at 72°C, followed by the dissociation protocol at 72°C.

Results were analyzed using the comparative CT method. The CT

mean and standard deviation of each technical replicate were calcu-

lated, and the mean CT values were then normalized to the 18S

mean CT value. Primers were designed using the Primer3 v. 0.4.0

software (http://frodo.wi.mit.edu/), and all primer sequences used

can be found in Supplementary Table S10.

Data access

Primary Data:

cDNA and gDNA raw data for YRI LCLs can be accessed through the

GEO accession number GSE52442.

RNA-seq data for primary monocytes and YRI LCLs can be accessed

through the GEO accession number GSE53837.

ChIP-seq data for primary monocytes can be accessed through the

GEO accession number GSE53837.

cDNA and gDNA raw data after NFjB perturbation (treatment and

controls) for the two LCLs trio can be accessed through the GEO

accession number GSE61254.

Referenced Data:

cDNA and gDNA raw data for monocytes and fibroblasts can be

accessed through accession number EGAS00000000119 at EGA and

the GEO accession number GSE52442, respectively.

RNA-seq data for fibroblasts can be accessed through the GEO

accession number GSE53837.

ChIP-seq for fibroblasts and LCLs can be accessed through the GEO

accession number GSE53837.

Supplementary information for this article is available online:

http://msb.embopress.org
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