74,841 research outputs found

    WESTT (Workload, Error, Situational Awareness, Time and Teamwork): An analytical prototyping system for command and control

    Get PDF
    Modern developments in the use of information technology within command and control allow unprecedented scope for flexibility in the way teams deal with tasks. These developments, together with the increased recognition of the importance of knowledge management within teams present difficulties for the analyst in terms of evaluating the impacts of changes to task composition or team membership. In this paper an approach to this problem is presented that represents team behaviour in terms of three linked networks (representing task, social network structure and knowledge) within the integrative WESTT software tool. In addition, by automating analyses of workload and error based on the same data that generate the networks, WESTT allows the user to engage in the process of rapid and iterative ā€œanalytical prototypingā€. For purposes of illustration an example of the use of this technique with regard to a simple tactical vignette is presented

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Incorporating Structured Commonsense Knowledge in Story Completion

    Full text link
    The ability to select an appropriate story ending is the first step towards perfect narrative comprehension. Story ending prediction requires not only the explicit clues within the context, but also the implicit knowledge (such as commonsense) to construct a reasonable and consistent story. However, most previous approaches do not explicitly use background commonsense knowledge. We present a neural story ending selection model that integrates three types of information: narrative sequence, sentiment evolution and commonsense knowledge. Experiments show that our model outperforms state-of-the-art approaches on a public dataset, ROCStory Cloze Task , and the performance gain from adding the additional commonsense knowledge is significant

    Developing a Culture of Publication: a joint enterprise writing retreat

    Get PDF
    Purpose: Many students irrespective of level of study produce excellent course work which, if given support and encouragement could clearly be of a publishable standard. Academic staff are expected to produce quality publications meeting peer review standards although they may be relatively novice authors. All are engaged in some aspects of academic writing practices but not as frequently involved in co-production of publications emanating from student work. This activity is still at the margins of much of the student experience. Design/methodology: Mindful of these issues, we designed and offered a writing programme including a writing retreat. This brought together undergraduate and postgraduate students from a range of applied disciplines (health and art, design and architecture) and their supervisors with the aim of co-producing publications and participating in a community of scholarly practice. The project was delivered over nine months. It involved four days ā€˜compulsoryā€™ attendance and included a preparatory workshop, a two day off campus writing retreat and a dissemination event. Student and supervisors applied to participate as a team. Kirkpatrickā€™s (2006) four-stage classic model: reaction, learning, changes in behaviour and real world results was used as a framework for the educational evaluation. Key findings organised thematically were: Supervisor-supervisee relationships; space and time; building confidence enabling successful writing and publication. Originality/Value: This paper will provide an overview of the design, content and approaches used for successful delivery of this innovative project. It will draw on examples that illustrate the different types of joint enterprise that emerged, illuminate experiences of co-production and co-authorship along with recommendations for future ventures

    EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks.

    Get PDF
    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a "reach/saccade to spatial target" cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Predicting Completion Risk in PPP Projects using Big Data Analytics

    Get PDF
    Accurate prediction of potential delays in public private partnerships (PPP) projects could provide valuable information relevant for planning and mitigating completion risk in future PPP projects. However, existing techniques for evaluating completion risk remain incapable of identifying hidden patterns in risk behavior within large samples of projects, which are increasingly relevant for accurate prediction. To effectively tackle this problem in PPP projects, this study proposes a Big Data Analytics predictive modeling technique for completion risk prediction. With data from 4294 PPP project samples delivered across Europe between 1992 and 2015, a series of predictive models have been devised and evaluated using linear regression, regression trees, random forest, support vector machine, and deep neural network for completion risk prediction. Results and findings from this study reveal that random forest is an effective technique for predicting delays in PPP projects, with lower average test predicting error than other legacy regression techniques. Research issues relating to model selection, training, and validation are also presented in the study
    • ā€¦
    corecore