5,577 research outputs found

    Technical Research Priorities for Big Data

    Get PDF
    To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data

    A GIS-based methodological framework to identify superficial water sources and their corresponding conduction paths for gravity-driven irrigation systems in developing countries

    Get PDF
    The limited availability of fresh water is a major constraint to agricultural productivity and livelihood security in many developing countries. Within the coming decades, smallholder farmers in drought-prone areas are expected to be increasingly confronted with local water scarcity problems, but their access to technological knowledge and financial resources to cope with these problems is often limited. In this article, we present a methodological framework that allows for identifying, in a short period of time, suitable and superficial water sources, and cost-effective water transportation routes for the provisioning of gravity-driven irrigation systems. As an implementation of the framework, we present the automated and extensible geospatial toolset named “AGRI’’, and elaborate a case study in Western Honduras, where the methodology and toolset were applied to provide assistance to field technicians in the process of identifying water intake sites and transportation routes. The case study results show that 28 % of the water intake sites previously identified by technicians (without the support of AGRI) were found to be not feasible for gravity-driven irrigation. On the other hand, for the feasible water intake sites, AGRI was able to provide viable and shorter water transportation routes to farms in 70 % of the cases. Furthermore, AGRI was able to provide alternative feasible water intake sites for all considered farms, with correspondingly viable water transportation routes for 74 % of them. These results demonstrate AGRI’s potential to reduce time, costs and risk of failure associated with the development of low-cost irrigation systems, which becomes increasingly needed to support the livelihoods of some of the world’s most vulnerable populations

    Beyond data collection: Objectives and methods of research using VGI and geo-social media for disaster management

    Get PDF
    This paper investigates research using VGI and geo-social media in the disaster management context. Relying on the method of systematic mapping, it develops a classification schema that captures three levels of main category, focus, and intended use, and analyzes the relationships with the employed data sources and analysis methods. It focuses the scope to the pioneering field of disaster management, but the described approach and the developed classification schema are easily adaptable to different application domains or future developments. The results show that a hypothesized consolidation of research, characterized through the building of canonical bodies of knowledge and advanced application cases with refined methodology, has not yet happened. The majority of the studies investigate the challenges and potential solutions of data handling, with fewer studies focusing on socio-technological issues or advanced applications. This trend is currently showing no sign of change, highlighting that VGI research is still very much technology-driven as opposed to theory- or application-driven. From the results of the systematic mapping study, the authors formulate and discuss several research objectives for future work, which could lead to a stronger, more theory-driven treatment of the topic VGI in GIScience.Carlos Granell has been partly funded by the RamĂłn y Cajal Programme (grant number RYC-2014-16913

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Text-based Spatial and Temporal Visualizations and their Applications in Visual Analytics

    Get PDF
    Textual labels are an essential part of most visualizations used in practice. However, these textual labels are mainly used to annotate other visualizations rather than being a central part of the visualization. Visualization researchers in areas like cartography and geovisualization have studied the combination of graphical features and textual labels to generate map based visualizations, but textual labels alone are not the primary focus in these representations. The idea of using symbols in visual representations and their interpretation as a quantity is gaining more traction. These types of representations are not only aesthetically appealing but also present new possibilities of encoding data. Such scenarios regularly arise while designing visual representations, where designers have to investigate feasibility of encoding information using symbols alone especially textual labels but the lack of readily available automated tools, and design guidelines makes it prohibitively expensive to experiment with such visualization designs. In order to address such challenges, this thesis presents the design and development of visual representations consisting entirely of text. These visual representations open up the possibility of encoding different types of spatial and temporal datasets. We report our results through two novel visualizations: typographic maps and text-based TextRiver visualization. Typographic maps merge text and spatial data into a visual representation where text alone forms the graphical features, mimicking the practices of human map makers. We also introduce methods to combine our automatic typographic maps technique with spatial datasets to generate thema-typographic maps where the properties of individual characters in the map are modified based on the underlying spatial data. Our TextRiver visualization is composed of collection of stream-like shapes consisting entirely of text where each stream represents thematic strength variations over time within a corpus. Such visualization enables additional ways to encode information contained in temporal datasets by modifying text attributes. We also conducted a usability evaluation to assess the potential value of our text-based TextRiver design

    Emerging approaches for data-driven innovation in Europe: Sandbox experiments on the governance of data and technology

    Get PDF
    Europe’s digital transformation of the economy and society is one of the priorities of the current Commission and is framed by the European strategy for data. This strategy aims at creating a single market for data through the establishment of a common European data space, based in turn on domain-specific data spaces in strategic sectors such as environment, agriculture, industry, health and transportation. Acknowledging the key role that emerging technologies and innovative approaches for data sharing and use can play to make European data spaces a reality, this document presents a set of experiments that explore emerging technologies and tools for data-driven innovation, and also deepen in the socio-technical factors and forces that occur in data-driven innovation. Experimental results shed some light in terms of lessons learned and practical recommendations towards the establishment of European data spaces

    Geospatial big data and cartography : research challenges and opportunities for making maps that matter

    Get PDF
    Geospatial big data present a new set of challenges and opportunities for cartographic researchers in technical, methodological, and artistic realms. New computational and technical paradigms for cartography are accompanying the rise of geospatial big data. Additionally, the art and science of cartography needs to focus its contemporary efforts on work that connects to outside disciplines and is grounded in problems that are important to humankind and its sustainability. Following the development of position papers and a collaborative workshop to craft consensus around key topics, this article presents a new cartographic research agenda focused on making maps that matter using geospatial big data. This agenda provides both long-term challenges that require significant attention as well as short-term opportunities that we believe could be addressed in more concentrated studies.PostprintPeer reviewe
    • …
    corecore