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Geospatial big Data and Cartography: Research Challenges and 

Opportunities for Making Maps that Matter  

Geospatial big data present a new set of challenges and opportunities for cartographic 

researchers in technical, methodological, and artistic realms. New computational and 

technical paradigms for cartography are accompanying the rise of geospatial big data. 

Additionally, the art and science of cartography needs to focus its contemporary efforts on 

work that connects to outside disciplines and is grounded in problems that are important to 

humankind and its sustainability. Following the development of position papers and a 

collaborative workshop to craft consensus around key topics, this article presents a new 

cartographic research agenda focused on making maps that matter using geospatial big 

data. This agenda provides both long-term challenges that require significant attention as 

well as short-term opportunities that we believe could be addressed in more concentrated 

studies. 
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Introduction 

The emergence of big data presents a call to action for cartographers. The process of making a 

map is, at its core, an act of generalization to make sense out of an infinitely complex world. As 

data sources creep closer toward the ability to describe every detail, all the time, for every place, 

the ways in which we make maps to make decisions must adapt to handle this data windfall. New 

sources of information, including streaming imagery from satellites and millions of 

conversations via location-enabled social media, are examples which stretch the limits of what 

and how we map. These new data sources are of limited utility if we cannot find meaning in 

them, therefore an overarching goal for cartographers is to find a way to use these data to make 

maps that matter to people. 

In this article we present a new research agenda for making maps that matter from big 

data. Maps that matter are those that pique interest, are tacitly understandable, and are relevant to 



our society. Achieving any one of these goals with a given map is non-trivial, and achieving 

them together is even more difficult. And yet cartography and geographic visualization are 

uniquely placed to develop tailored representations and methods of interaction that can help 

humans to visually discover the hidden content of big spatiotemporal data (MacEachren & 

Kraak, 2001, p. 3). Many of the challenges outlined in previous cartographic research agendas 

remain relevant (G. Andrienko et al., 2007; Fairbairn, Andrienko, Andrienko, Buziek, & Dykes, 

2001; MacEachren, 1994; MacEachren & Kraak, 2001; MacEachren & Kraak, 1997; Virrantaus, 

Fairbairn, & Kraak, 2009), but we focus here on new challenges posed by the emergence of big 

data. To develop this focus for a research agenda and associated key challenges and 

opportunities, we followed a multi-phase collaborative ideation process. Members of four 

International Cartographic Association (ICA) Commissions collaborated using Google 

Moderator to propose, comment on, and vote to promote key research issues in cartography. 

Twenty-nine research needs emerged from this activity, which were then categorized into three 

major areas; research methods in cartography, designing for human ability and map use contexts, 

and leveraging geospatial big data. Each research aim was further expanded upon through the 

development of fifteen position papers for an ICA workshop titled Envisioning the Future of 

Cartographic Research held in 2015. At this workshop, the challenges and opportunities 

described in this agenda were iteratively refined and elaborated. A complete description of the 

agenda development process is described in (Griffin, Robinson, & Roth, Submitted). 

Since the emergence of the concept in recent years, big data have been discussed in many 

disciplines and a number of research agendas for big data have appeared, generating ample new 

scholarship. The definition of big data is nebulous, however. It was not so long ago that one 

megabyte of data was seen as ‘big’ and which required vast computational power to explore. 



While there is no widely accepted common definition for what constitutes big data, the most 

commonly cited definition suggests that big data is characterized by large volumes, high 

velocity, and a high degree of variety (Laney, 2001). Additional dimensions have been 

subsequently proposed to include veracity (Li et al., In Press; Thatcher, 2014; Tsou, 2015), high 

resolution, a high degree of flexibility, relational nature, and an exhaustive scope. For the 

purposes of this agenda, we focus on big data volume, velocity, variety, and veracity. Recent 

research agendas on big data in GIScience have focused on methods and algorithmical 

complexities (Jin, Wah, Cheng, & Wang, 2015), on social media (Li et al., In Press; Tsou, 2015) 

and on defining geospatial big data (Lee & Kang, 2015; Li et al., In Press). Researchers are also 

pondering what big data really mean (Jagadish, 2015) or how to contextualize them within the 

traditional disciplines, such as geography (Graham & Shelton, 2013; Kitchin, 2013).  

Our agenda contributes to this discussion to identify what cartography and 

geovisualization can do to efficiently and effectively visualize complex spatial data to make 

decisions and support reasoning. Cartography and geovisualization can support exploratory as 

well as confirmatory analysis of big data, serving a role to help users identify patterns worthy of 

analysis as well as to interrogate previously known problems. We also emphasize the critical 

need for interdisciplinary knowledge transfer between various data sciences, given the 

complexity of geospatial big data in its current and anticipated future forms. Each of the research 

aims in this article deserves collaborative attention between cartographers and experts from 

allied domains such as computer science, human-computer interaction, game design, virtual 

reality, information visualization, data mining, and the visual arts. 

We begin by highlighting core concepts in cartography that provide a basis for 

cartographic research with big data, many sources of which are location-based (or have location 



as an attribute) which makes mapping them essential. Then we present our research agenda in 

two major sections. First we present the long-term and large-scale research challenges that face 

cartography and geovisualization in relation to big data and its four primary dimensions. To go 

further, we look at potential approaches informed by Art, an essential component of cartography. 

In the second part of this agenda we introduce short-term research opportunities that we believe 

can be achieved in more concentrated investigations. We structure these around the development 

of new visual, computational, and artistic methods for geospatial big data. Finally, we explain 

how cartography and geovisualization can tackle research challenges and opportunities to make 

maps that matter; maps that generate insights from complex, large, unstructured, varied data on 

problems that have broad impacts to society and our environment. 

Core Concepts 

Geospatial big data, a special type of big data, can be categorized into two classes. The first is 

geolocalized big data in which location is an additional, accessory attribute. These data are often 

points, such as GPS locations from smartphones or customer addresses from business 

intelligence systems. The other category of geospatial big data are spatially-grounded, in which 

location, shape, size, orientation, and spatial relationships are integral to the data. These data 

come from sources such as sensor networks, collections of text reports with spatial references, 

high-resolution imagery from drones and satellites, and 3D laser scans. In the context of 

geospatial big data, space and time are inherently linked as many big data sources include 

temporal information. In the following sections, we outline five crosscutting themes that provide 

key perspectives on cartographic research with geospatial big data. 



Place, Space, and Time 

A core theme concerns an understanding of space and place so that we can appreciate the 

cartographic complexity of representing geospatial big data. Space might be regarded as abstract 

while place is something more tangible that people can identify with, model and map as part of a 

space (Seamon & Sowers, 2008; Tuan, 1977). A place gives a space meaning. It is those features 

of a place that can be captured, modelled and mapped. In this sense, geospatial big data allow us 

to model a place. Geospatial big data can go beyond mapping of individual places and features 

and begins to allow us to define combinations of places. Perhaps this will lead to a mechanism to 

better characterize the linkages of places that form a space. We therefore envision the potential 

that mapping big data may lead to big cartography which conceptualizes and visualizes complex 

representations of place and space. Coupled with the important but poorly researched temporal 

dimension (Kraak, 2014; Rosenberg & Grafton, 2010) this has the promise of making it possible 

for cartographers to tackle pressing and non-trivial issues in visualization concerned with 

references to place. 

Representation 

In the context of cartography, representations are the constructions we develop to signify features 

and concepts in reality in a simplified form for interpretation via maps (Dodge, Kitchin, & 

Perkins, 2011; Fairbairn et al., 2001; MacEachren, 1995). In the context of big data, advances in 

representation are necessary to produce graphics, including maps, that help people see patterns 

and outliers, as well as derive meaning from massive, complex datasets (and computational 

results derived from them). It is also essential to craft new means for representation in 

computational structures, as complex data and their interrelations will need to be carefully 

modelled so that we can effectively and efficiently compute on massive data collections. 



Interaction 

Maps as overviews to big data can provide a powerful visual gateway for analysis, but only if 

their interactive affordances are carefully designed and evaluated. Interaction is the essential 

mechanism by which users can navigate, search, filter, and compare (among other actions) using 

geographic data sources. The wide range of form factors for digital maps today presents a new 

set of challenges to support user interaction, including touch, voice, and gesture-based interfaces. 

We have much to learn yet to determine best practices for manipulating maps via digital 

interaction (Andrienko & Andrienko, 1999; Roth, 2013). Interaction also plays a key role now in 

determining what data is captured or emphasized in the future, as evidenced by new predictive 

computational approaches by industrial giants like Google and Amazon. It is possible that 

interaction with a digital map today could influence what is collected and/or emphasized 

tomorrow – highlighting a new age for map use in which map interaction itself can influence 

which data we can map later. 

Scale 

Map scale is the relationship between distances on the map  and their corresponding ground 

distances (Kimerling, Buckley, Muehrcke, & Muehrcke, 2011). Geographic or spatial scale is the 

operational level at which the analyses are conducted, for example, from cities to continents. In 

other sciences such as physics, biology, and mathematics (Mandelbrot, 1982), scale is primarily 

defined in a manner in which a series of extents are related to each other in a hierarchy. These 

concepts of scale overlap in interesting ways with big data. The degree of resolution (map scale) 

associated with big data can influence types of operational scales for analysis. Both present 

challenges associated with showing detail on maps. Requirements for cartographic abstraction 

(generalization, simplification, classification, and symbolization) are exacerbated for big data, 



and while there are well-known issues associated with abstracting to smaller-scale 

representations (Fotheringham & Wong, 1991), new approaches are providing promising 

avenues for exploration, such as those that support visual analysis across multiple scales of social 

statistics (Dykes & Brunsdon, 2007; Goodwin, Dykes, & Slingsby, 2014). 

Users and Usability 

Understanding users and prioritizing their needs is key to helping people make sense of 

geospatial big data. A major goal is to support a high degree of usability in the tools and 

techniques for mapping big data, as these are increasingly complicated in terms of their form and 

function (Brown et al., 2013). This challenge is not a new one (Andrienko et al., 2002; Robinson, 

Chen, Lengerich, Meyer, & MacEachren, 2005; Slocum et al., 2001), but it retains importance 

today as users expect real-time interaction and the ability to manipulate model parameters to 

explore outcomes. This need challenges existing computational and rendering capabilities, and 

requires that complex algorithms and their parameters are readily understandable to non-experts. 

The emergence of crowdsourcing as a mechanism for conducting user studies (Liu, Bias, Lease, 

& Kuipers, 2012) and cognitive testing (Klippel et al., 2013) also suggest the potential for 

evaluating usability at scale to help refine cartographic approaches to geospatial big data. 

Context 

Every map is situated within a specific context of use, which is frequently defined as the 

information that can be used to describe the situation of an entity (Brézillon, 1999; Dey, 2001; 

Tomaszewski & MacEachren, 2012). Contextual factors impact the interface between 

cartography and big data because the scientific challenges associated with mapping big data are 

inextricable from the relevance of real-world problems. Context may also determine whether or 



not we consider a specific dataset to be big. Advances in knowledge and technology must be 

linkable to contexts that matter for society, for example, via connection to global goals for 

sustainable development (General Assembly, 2015). The type of visualization a user might need 

will depend on the context in which it is used, and little is known regarding which visualization 

types are best suited to which contexts. 

Research Challenges 
 

Here we outline key long term research challenges for cartography and geospatial big data, 

organized into six broad areas; making sense of geospatial big data, volume, variety, velocity, 

veracity, and art and geospatial big data (Figure 1). 



 

Figure 1: An overview of major research challenges for cartography and geospatial big data. 

Making sense of geospatial big data 

Big data has become a buzzword that carries different meanings in a variety of contexts 

(Jagadish, 2015). Consequently, there is a need to define what we actually mean when we 

consider big data in the context of cartography. Further, a known challenge lies in how to find 



the hidden knowledge inherent in big data; to make sense of big data. This challenge is not 

unique to big data per se, but big data’s attributes make revealing knowledge more difficult to 

achieve. Progress made toward the development of better map overview methods, pattern 

analysis techniques, and dynamic spatial visualizations will set the stage for research to improve 

methods and interfaces for synthesizing results and for analytical reasoning about space and 

geography. Map users need the ability to add meaning to individual findings in mapping 

interfaces, to ensure that results provenance is maintained, and to develop sharable stories to 

support decisions (Robinson, 2011). In this section we present challenges that refer to these 

issues in the context of cartography, geovisualization, and visual analytics. 

Challenge: Develop visual analytical reasoning systems that help users add meaning to 

and organize what they discover from geospatial big data 

To support visual analytics with geospatial big data, we have to move beyond naïve exploration 

and focus attention on tools that help people reason about what they are seeing. It is not enough 

to build systems that help users find patterns. Those same users need to be able to save, annotate, 

and compare their findings as they work on complex problems. This action of information 

synthesis was proposed early on by DiBiase (1990) and expanded upon by MacEachren (1995), 

but has received relatively little attention since that time. One thing we do know is that once 

analysts have made discoveries using analytical systems, many turn to generic office 

productivity software to collect, organize, and add meaning to their results (Robinson, 2009). 

Supporting information synthesis will require significant advances in how we help users capture 

insights and maintain provenance (Gotz & Zhou, 2009; Morisette et al., 2013; Ragan, Endert, 

Sanyal, & Chen, 2016) while telling stories about data using geovisual analytics tools (Eccles, 

Kapler, Harper, & Wright, 2008). 



Challenge: Design effective map-based interfaces to support long-term analytical 

engagement with complex spatiotemporal problems and geospatial big data 

Support for analytical reasoning with geospatial big data must enable long-term engagement on 

complex societal and environmental problems. Many research efforts on evaluating geovisual 

support for analytical reasoning focus on short-term, tactical problems that are easier to observe 

and compare (Robinson, 2011). However, many problems that have broad impacts on society 

and the environment will require months, years, or even decades of concerted effort to solve 

(Kang & Stasko, 2011). We do not yet know how best to support long-term, collaborative 

analytical engagement (Jeong, Ji, Suma, Yu, & Chang, 2015), effective recall of past 

spatiotemporal insights, or the use of structured analytic techniques with geospatial big data. 

Challenge: Develop new approaches for supporting collaborative decision making using 

the map as a mutual interface for analyzing geospatial big data 

Decision making is almost always a collaborative task, yet guidelines for designing effective 

maps and map-based interfaces to support collaborative decision making are missing (Gennady 

Andrienko et al., 2007). Supporting collaborative analysis using map-based interfaces (Brewer, 

MacEachren, Abdo, Gundrum, & Otto, 2000; Rinner, 2001) has been mentioned in most of the 

previous research agendas in our field. Much of the published research on this area was 

conducted in the early days of web-mapping, and does not account for mobile devices, high 

performance touch/gesture/voice interfaces, cloud computing, augmented reality, and other 

significant advancements. 



Challenge: Develop techniques that allow users to express and match a spatiotemporal 

pattern they have in mind using the map as an interface for analyzing geospatial big data 

Exploratory spatial data analysis typically seeks to reveal new patterns in complex datasets to 

prompt engagement and (hopefully) new discoveries. Pattern detection methods are abundant 

today, employing a wide range of quantitative techniques for uncovering clusters and outliers. 

The next generation of techniques and tools must also support users who wish to seek examples 

for what they already have in mind. This should build on work initiated as early as 1990 by 

cartographers who proposed a cognitive framework for how humans explore data on maps which 

relies on the recognition of patterns (MacEachren & Ganter, 1990). We need to provide users 

with effective visualizations that show interesting spatiotemporal patterns, and we also must give 

them the ability to provide their own concept of a relevant pattern and have the system find 

examples of similar patterns in their data. To support the latter we must design and evaluate 

approaches that support the flexible expression of a user-desired multivariate 

spatiotemporalspatiotemporal pattern. An expressed pattern could come in the form of a verbal 

or written description, or via a graphical depiction, as demonstrated by Shao et al. (2016). 

Challenge: Understand when, how and if maps can help us understand geospatial big data 

The final challenge we highlight in this section is that as cartographers we have a natural thirst to 

find a way to map something. It is rare that anyone asks for a map of something, yet we make 

them nevertheless. We value the cartographic perspective and the way in which mapping 

something brings us insight. It remains entirely possible that for many situations, maps of big 

data are not the ideal solution. Knowing when to make a map is just as important and knowing 

how to make a map. We need to determine in which situations maps help people make decisions, 

just as much as we need to understand what qualities aid (or hinder) effectiveness in terms of 



map design. 

Volume 

Volume refers to data size (Gandomi & Haider, 2015), and depending on the discipline, these 

sizes can vary considerably, from several million data points in a movement dataset (Stienen et 

al., 2016), to petabytes in imagery sources. What these definitions have in common is that the 

volume of the data exceeds the handling capabilities of current computational systems. We focus 

here on how the challenges associated with big data volume prompt new directions for 

cartographic research. 

Challenge: Identify effective methods for creating overviews of geospatial big data 

Maps remain one of the best ways to reduce complexity and render actionable complex spatial 

datasets. However, we routinely come up against the limits of traditional map-based overviews 

of big data, for example when we attempt to show millions of social media conversations 

(MacEachren et al., 2011) or movement trajectories captured from mobile phone users 

(Andrienko & Andrienko, 2011). We need new approaches for generating overviews and we 

need to know which overview methods work better than others. We also need to know more 

about user requirements for interaction with displays of big data, for example, controls for 

manipulating overview maps and linking them to other visualizations. Coordinated-view systems 

(Roberts, 2005) may provide solutions for visualizing big data, and a significant amount of work 

has focused on their development in the field of information visualization (Shneiderman, 1996), 

but we know relatively little about their limits (Andrienko & Andrienko, 2007) in generating 

insight about geographic phenomena. 



Challenge: Develop methods that embody the volume of geospatial big data 

In terms of data volume, we need cartography that can intelligently process and display big data 

at a size and in a format that users can realistically handle. We need methods that can highlight 

the most salient aspects of the data to reveal something useful for a user. Fortunately, a number 

of researchers are working on geospatial visual analytics, which focuses on this area of 

cartographic inquiry (Andrienko et al., 2016). To embody large volumes, we need mapping 

methods that handle volume at each phase in the analysis and visualization pipeline: collation 

and categorization of vast collections of data into constituent parts; processing and analysis to 

draw out essential characteristics; and graphical display and manipulation of the results to reveal 

insights. This will require solutions that support coupled analysis and visualization, as big data 

often needs to be analyzed before it is visualized (this order is reversed in exploratory 

visualization). 

Variety 

Traditionally, variety refers to data heterogeneity (Gandomi & Haider, 2015), that is, data lie in 

different formats and representations that can be structured, semi-structured, or unstructured. 

Most existing visual exploratory and analytical systems are only able to deal with geospatial big 

data of particular types, such as trajectory data from animal tracking or phone records that 

include location information. Geospatial big data is diverse, often less structured, includes a 

temporal component, and will feature qualitative and quantitative dimensions. While integration 

of geospatial big data is a problem, location can be used as a common denominator, and the 

linked data concept (Heath, Bizer, & Hendler, 2011) is also promising. Additionally, we 

recognize the significant analytical potential that can come from diverse data representing 

different perspectives on a problem. 



We also propose that it is not only the data that have this property, but that the variety 

dimension should be considered in the terms of users of mapping systems, and this needs to be 

addressed through user-centered design. We are still quite far from the goal of developing walk-

up-and-use geovisual systems that are accessible for first-time users (Thomas & Cook, 2005).  

Challenge: Design and develop cartographic interfaces that can handle the complexity of 

geospatial big data 

Data are becoming cheaper to acquire and can be sensed in automated ways to provide live feeds 

that populate repositories with vast quantities of information with varying degrees of structure. 

Traditional database frameworks are ill-equipped to do analytical work with these sources, but 

distributed computing provides a framework to support their use with geospatial big data. To 

expose the variety within geospatial big data, we need front-end visualization methods that 

integrate and synchronize disparate displays to provide multiple windows into data (Agrawal et 

al., 2012). Synchronized displays, often referred to as Coordinated Multiple View systems 

(Roberts, 2005), include a variety of forms (for example, maps, graphs, tables, and reports), in 

which an operation (for example, zoom or filter) on one display automatically applies to all other 

displays. Such approaches are not novel, but we do not yet know how best to design coordinated 

geovisual environments in the context of geospatial big data. Recent work to define new types of 

data structures around spatial dimensions (Bédard, Proulx, Rivest, & Badard, 2006) and 

trajectories (Leonardi et al., 2013) could help support rapid interaction with new cartographic 

interfaces to big data. 

Because big data are collected in a variety of formats and the data represent a variety of 

phenomena, cartographic methods should be developed that directly link visualization methods 

with the format of the data and the phenomena they represent. For example, temporal data could 



be displayed dynamically to leverage intuitive connection between dynamic processes and data 

that describe them (Buckley, 2013). Similarly, virtual reality (VR) could be used to explore 

geospatial big data in an immersive environment that simulates a physical presence in real (or 

imagined) places (Olshannikova, Ometov, Koucheryavy, & Olsson, 2015). We need to evaluate 

the potential utility of VR in the context of geospatial big data and cartographic representation. 

Challenge: Develop techniques for understanding change over time in geospatial big data 

In the geographic context, change in geospatial big data can not only refer to changes in location 

or in character but also include dynamic processes over time. From a temporal perspective events 

might occur at changing time intervals; they might occur only once, or they might return in 

irregular overlapping and different cycles (Andrienko & Andrienko, 2012). The advantage of 

sensors continuously providing data means that there is less chance we might miss events 

entirely due to intervals between collections. 

So how do we detect changes over time? Finding spatial patterns at one moment in time 

is not a problem. Finding temporal patterns and subsequent changes over time can be done with 

existing algorithms. Examples include the analysis of changing temperature over the last 30 

years at one particular weather station (Wu, Zurita-Milla, & Kraak, 2015). Another example 

could be the changing wind pattern over multiple years at a particular location observed at 

different heights (Yusof, Zurita-Milla, Kraak, & Retsios, 2016). For both examples the 

complexity will increase if we consider multiple locations with observations. Data mining 

algorithms alone will not suffice. Visual interfaces to guide and support their action as well as 

understanding their results will be necessary. 



Challenge: Craft new approaches to support predictive analytics of dynamic phenomena 

with maps leveraging geospatial big data 

Solving problems associated with recognizing change on maps is an essential step toward 

tackling the larger issue of prompting change prediction using maps. Effective situational 

awareness requires knowledge of the key spatiotemporalspatiotemporal elements, understanding 

their meaning, and making predictions about their status into the future (Endsley, 1995). Most 

dynamic mapping and visualization systems are only designed to support the first two priorities 

of identifying key elements and understanding their meaning. Predictive analytics can use past 

patterns and modelled outcomes to alert users to important changes in data streams and to 

suggest potential future outcomes (Maciejewski et al., 2011). 

Challenge: Develop spatiotemporal visualization methods for geospatial big data that 

support a variety of uses and users 

Once big data has been analyzed, it needs to be presented in meaningful visualizations that assist 

interpretation and build understanding. In doing so one has to consider the potential tasks that 

user might have to address in respect to the spatiotemporal data (Roth, 2012). Geospatial big data 

visualization systems should include a rich palette of display options that convey the significance 

of analytical results. These displays must be presented in a way that is best understood by users 

within their particular domains, or, in some cases, by the general public. Cartographers can draw 

upon Bertin’s concept of the Map-to-See, which is “a clear graphic representation which can be 

comprehended in a short moment”, and as such is “the most efficient means to communicate a 

message” (Kraak, 1989). At the same time, the messy nature of big data may be more effectively 

expressed in a “messy map”, which is an example of a more complex Map-to-Read (Kraak, 

1989). 



Geospatial big data visualizations are used in a wide variety of applications and domains: 

science and research; education; intelligent transportation; environmental preservation; business 

intelligence; personalized health care; urban planning; homeland security; and more (Jiang, 

2013b). Our challenge is to provide cartographic visualization solutions that can be applied 

across these domains for users at varying levels of expertise. Alternative approaches such as 

spatialization may be intuitive for some users (Fabrikant, 2000). For non-expert audiences, 

intelligent automated mapping may provide solutions through dashboards (Few, 2013) or via 

interfaces that incorporate storyboarding techniques from the cinematic arts to convey a broader 

understanding of big data (Roth, Hart, Mead, & Quinn, In Press), and could also support data-

driven journalism (Lewis, 2015). 

Velocity 

Velocity is the speed at which geospatial big data are generated and at which they should be 

analyzed (Gandomi & Haider, 2015). Recent technological developments in data creation have 

led to fast, continuous and ubiquitous data streams that exceed capabilities of contemporary 

computing systems to map and analyze in real-time. 

Challenge: Develop methods that embody the velocity of geospatial big data 

In many situations, the results of geospatial big data analysis and visualization are required 

immediately—to detect the locations of fraudulent credit card transactions, for example. In these 

cases the ideal solution is to flag the activity before the event has ended. A full analysis of all 

relevant data in this sort of situation is not feasible in real-time—nor is it necessary. Instead, we 

need to produce predictive partial results, presented in personalized displays, so that incremental 

computation with new data can be used to make quick decisions. 



Challenge: Create maps and map-oriented interfaces that prompt attention to important 

changes in dynamic geospatial big data sources  

The dynamic behavior of people and their environments is now captured and streamed in real-

time (Andrienko et al., 2010). Although there are a range of representation techniques for 

showing change, maps suffer well-known issues associated with change blindness (Fish, 

Goldsberry, & Battersby, 2011). Yet it is more important than ever for users to recognize change 

when it is occurring in their datasets, and to be able to anticipate future changes through the use 

of predictive techniques. Designing visualizations that are able to handle data generated at high 

velocity is not necessarily a problem if the changes to trends and patterns in those data are 

limited. However, if the data changes frequently and/or with high magnitudes, traditional 

graphics will not suffice. Further development in cartographic animation techniques could be one 

direction to take, however, its success will depend on the nature of changes and the scale at 

which they occur. We will need to work with global changes, local changes, and combinations 

across scales. In addition, if we display every possible change at once, then the graphical 

displays become cluttered. Creating summaries of change may be the solution, but we do not yet 

know how to select important patterns and generalize to something that a user can understand. 

A dashboard with streaming visual summaries of geospatial big data’s vital statistics 

could be part of the solution (Few, 2013). It could offer a selective (analytical) overview, 

including the data’s spatial extent, the range and variability of the attributes, and time interval, as 

well as information about its geographic context. Although dashboards are supposed to be simple 

in design, at times they may become complex due to the nature of the data at hand (Andrienko, 

Andrienko, Fuchs, Rinzivillo, & Betz, 2015). Embedded within this challenge is the need for 

design guidelines for summary maps that can readily characterize geospatial big data. 



Veracity 

In data analytics, veracity refers to the inherent unreliability of data (Gandomi & Haider, 2015) 

in terms of precision and other aspects of uncertainty. For example, social media data, which 

contain human judgements, are subjective in their basic nature and may refer only vaguely to 

places and times. This however is not novel to cartography, which has a long tradition of dealing 

with uncertainty in spatial data (Zhang & Goodchild, 2002). 

Challenge: Characterize the quality and certainty of geospatial big data 

Maps can claim to be authoritative and the more fuzzy, dubious, or nefarious the data, the more 

the map’s message is brought into question. With increasingly large spatial datasets that are 

distilled into a simplistic metric for reporting, the potential for over-simplification is clear. What 

may be more problematic is quality in terms of the bias that the data may contain. For instance, 

many have mapped dimensions of social media feeds (Field & O'Brien, 2010; MacEachren et al., 

2011), but the resulting maps, which at first glance may appear to reveal insights, are rarely 

representative of what they purport to show. Their ability to be representative of a societal view 

is fundamentally flawed given what we know about which people use (and don’t use) social 

media. This requires map readers to be cautioned and aware of the limits of what they are seeing. 

The same could be said of datasets captured and published by non-traditional sources. We 

are no longer limited to making maps with official data gathered by National Mapping and 

Census agencies (Goodchild, 2007). Anyone can capture, store, and publish data from their 

mobile devices. The many situations that these sensor networks operate within can also create 

problems. Error and uncertainty undoubtedly exist, sometimes in unknown ways and quantities. 



Challenge: Develop new approaches for visualizing the quality and certainty of geospatial 

big data 

In Kinkeldey et al. (2014) the authors reviewed decades of efforts to find a way to 

communicate data quality information on maps, and have concluded that the task to retrieve 

quality values can still be achieved using traditional cartographic methods. However, analytical 

and exploratory tasks, such as those involved in analyzing big data, need dynamic approaches for 

application in real time. MacEachren (2015) presents a new and complementary perspective; 

claiming that the role of uncertainty in decision making, reasoning, and outcomes is often 

overlooked in the research of visual methods to represent uncertainty in maps. 

Use and interpretation caveats could become commonplace on maps based on geospatial 

big data to highlight aspects of uncertainty. Such a future approach might lead not to a single 

map but a set of maps, or an interactive component that reveals the extent of uncertainty. While 

mapping uncertainty is not new to academic cartography (MacEachren et al., 2005), representing 

it on maps in the public realm would be novel to many map readers who are used to seeing one 

map and considering one message. Engendering an ethos of caution through appreciating error 

and uncertainty could become a major goal for effective mapping of geospatial big data. 

Art and Geospatial Big Data 

The potential of art (including aesthetics and beauty) in the context of exploring spatial data has 

not been fully realised, despite calls for investigation into “non-conventional graphics” in earlier  

agendas (Fairbairn et al., 2001). Geospatial big data highlights the increased need for this 

investigation to take place. Art has always been present in the history of maps, assuming a major 

but decorative aspect early on (Casey, 2005), taking a background role in the 19th and 20th 

centuries (Cosgrove, 2005) before recent recognition within cartography that art is a powerful 



representation of the world that is different in kind to maps (Caquard & Fraser Taylor, 2005; 

Cartwright, Gartner, & Lehn, 2009). Furthermore, art is a key component of the ICA’s definition 

of cartography (Rystedt et al., 2003), described as the, “…discipline dealing with the art, science 

and technology of making and using maps.” 

There are many reasons to explore artistic approaches towards understanding big data. 

Artistic methods have the flexibility to represent multiple scales, dimensions, uncertainty and 

variety (Laney, 2001; MacEachren & Kraak, 2001) in a single representation. Cartwright (2004) 

uses the analogy of the soft pencil, for vague, impressionistic and artistic representations that 

foster exploration and makes serendipitous discoveries more likely. Art is also a natural 

representation for the narratives and stories implicit in big data, being able to convey underlying 

meaning, as well as representing process and phenomenon, potentially with emotional heft. The 

linkage between cartographic design principles to emotions and ideas has been considered, as 

well as the role of the map relative to mood (Buckley & Jenny, 2012). Here we focus on the 

potential of creative expression, artistic rendering methods and their generation, and linked 

artistic methods with conventional spatial and aspatial displays for big data analysis. 

Challenge: Encourage and maximize creative contributions for expressing geospatial big 

data 

There is an acknowledged overlap of fine art in particular with cartography, sharing aspects of 

form, composition, framing and perspective, as well as content selection, emphasis, line, colour, 

medium and symbolization aspects (Ehrensvärd, 1987). There has also been an increased number 

of artists using map content or mapping processes in their work, possibly because artists 

recognise that maps are very flexible (Watson, 2009). An example is the “flowing city maps” by 

Istvan (2015) which conveys their dynamic and chaotic essence by digitally extending flow lines 



from map features to artistic effect. In art, complex information can be represented in a readily 

consumed way, which makes it ideal for communicating the broad sense of geospatial big data. 

This shared basis must be built upon further, but how do we engage artists to visually address 

this new order of spatial data, quite unlike the geospatial subject matter that they have tackled up 

to now? And what can we learn from art’s attempts at geospatial expression and cartography so 

far? Examples include artworks with a realistic content (Priestnall & Hampson, 2008) to 

abstracted works, even those that are maps themselves (Patterson, 1992). 

Challenge: Build a library of artistic methods and techniques for representing geospatial 

big data 

Despite the observed commonalities in the respective technical methods and approaches of fine 

art and cartography (Ehrensvärd, 1987), there is large scope to exploit geometric and technical 

aspects that have not yet made it into map making, from common processes (e.g. generalization) 

to what would be completely new aspects for cartography (e.g. ‘messy maps’). To initiate this, 

we can learn from examples in recent visualization work which use types of artistic expression as 

a starting point for the development of new techniques (Etemad, Carpendale, & Samavati, 2014; 

McCurdy, Lein, Coles, & Meyer, 2016). Likewise, there are aspects of cinematic and aural art 

processes that also have great potential in the visualization of geospatial big data. We need to 

know the full scope of potential artistic methods and techniques, drawing from fine, illustrative, 

cinematic and music/audio that can be co-opted to represent geospatial big data. 

Challenge: Generate artistic renderings of geospatial big data 

The first challenge points to solutions that would have a heavy reliance on the output of artists, 

which is hardly a real-time solution, so it is not a good approach for the velocity aspect of big 



data (Laney, 2001). The second challenge at least would facilitate identification of artistic 

techniques for depicting big data, effectively packaging them for easy reuse computationally, 

which could enable real-time visualization. However, before this can happen, a solution needs to 

be found for the digital generation of artworks that are both meaningful wholes and are somehow 

a true representation of a big dataset. This is aesthetics as “the science of the beautiful in nature 

and art” (Merriam-Webster, 2014). Recent neurological research indicates that there is a 

systematic basis for our cognitive processing of art and its attributes, despite its apparent 

subjectivity and variability (Zeki, 2001), paving the way towards generation of artworks. For 

example, the aesthetic properties of beauty in art are processed by the same area of the brain, 

regardless of genre (landscape or portrait, for example) (Kawabata & Zeki, 2004) or medium 

(painting or music, for example) (Ishizu & Zeki, 2011). Given this, how can we semi-

automatically generate artistic renderings of big data? 

Challenge: Dynamically link artworks to conventional geospatial big data representations  

Artworks that have been created or generated from big data may be effective in isolation but are 

likely to realize a greater potential if put into a context that enables dynamic exploration. Such a 

connection could be effective for dealing with the dynamism of big data, adopting the standard 

overview, zoom and filter, details-on-demand visualization approach (Shneiderman, 1996) and 

coupling this with new artistic methods for cartographic design (Christophe & Hoarau, 2012). 

New artistic interfaces should be able to be manipulated visually in real time, connecting 

standard tools (choropleth maps, scatterplots, etc.) and non-conventional tools (abstracted and 

virtual representations) via linking and brushing. There is a clear challenge in engineering the 

linkages needed to build such an interface: how do we determine the meaningful linkages from 

created artworks and artistically rendered maps to ‘conventional’ spatial and non-spatial 



representations in a visual analytics context? 

Research Opportunities 

In the sections that follow, we highlight key research opportunities in the broad categories of 

visual, computational, and artistic methods (Figure 2). We distinguish opportunities from 

challenges based on our estimation that they can be solved in the near term, rather than long 

term. 

 

Figure 2: An overview of key research opportunities for cartography and geospatial big data. 

 



Visual Methods for Geospatial Big Data 

The common refrain of “…a picture is worth a thousand words” is only worthy when the picture 

in question is understandable. Bertin (1983) states that “the most efficient constructions are those 

in which any question, whatever its type or level, can be answered in a single instant of 

perception, in a single image.” MacEachren (1995) proposed that “maps that connote truth (or 

even reality) are likely to work better than those that do not.” While we propose a research 

agenda for creating and developing new visual methods for big data, we must not ignore lessons 

learned from these and other predecessors. 

Opportunity: Systematically evaluate the ability of existing visual methods in thematic 

cartography to support analysis of geospatial big data 

An overarching goal for cartographers is to develop techniques for processing and manipulating 

geospatial big data that make it possible to generalize and symbolize geographic results through 

graphics and visualizations that match or exceed quality we already achieve with smaller data 

sources and analytical methods. Rather than focusing solely on the development of new visual 

methods, we propose to first evaluate current thematic mapping solutions to characterize their 

strengths and limitations when it comes to their application with geospatial big data. To 

accomplish this goal we need to connect big data characteristics and the visual affordances of 

existing cartographic approaches. In addition to cartographic approaches, it is important to look 

at how allied fields have approached similar problems. Solutions for visualizing large data sets 

have been proposed in statistics, computer science, psychology, and related domains (Wills & 

Wilkinson, 2010). 



Opportunity: Adapt cartographic generalization principles and techniques to support 

visual analysis of geospatial big data 

Key considerations for visual designs include the number of the spatial phenomenon occurrences 

and the variation of their spatial density and accuracy; the variation of related dataset semantics, 

and the spatiotemporal dynamics of data streams. The core characteristics of geospatial big data 

can influence the level of generalization, both geometric and semantic, that may be possible. In 

terms of Bertin’s (1983) framework for graphics, the components that must be considered for 

map generalization are: invariant information and components; the organization of information 

components (qualitative, ordered, and quantitative); and the level of retinal variations 

(association, selection, order, and quantity). Additionally, decisions about generalizing geospatial 

big data must take into consideration the variation of data representations from discrete elements 

to continuous phenomena (MacEachren, 1992). This concern is also present for situations in 

which temporal resolution must be considered. 

Opportunity: Couple computational methods and cartographic representation best 

practices into an automated framework that suggests appropriate design decisions on-the-

fly for geospatial big data 

When the information component is quantitative, there are two well-known situations that have 

been studied in Cartography. One of them is when the data can be represented as choropleth 

maps or proportional symbol maps. The other is related to continuous phenomena that can be 

represented as a smoothed surface. For choropleth or proportional symbol representations, we 

propose the development of computational solutions to automatically evaluate the characteristics 

of the phenomenon, in terms of both spatial and semantic dimensions, in order to render 

decisions on the level of generalization, and the appropriateness of representing the data with 



these kinds of maps. For continuous surface representations the level of generalization also 

depends on the spatial density of samples, including the variation in quality within the study 

area. A computational solution could assess the variation of the spatial density of the data sample 

and calculate various levels of accuracy. Such a computational solution must also include the 

means to dynamically generate a surface as data streams change. 

When the information component is qualitative, the phenomenon is discrete and known at 

point locations, and the study region is large enough to be depicted on a scale that requires 

semantic generalization, the decisions about attribute classification can be based on the 

geographic relations between data attributes and key geographic features, and the maximum 

level of generalization possible. The qualitative level always involves two perceptual 

approaches: associative and dissociative. At a dissociative level, it is not possible to combine 

information components because they are different from each other. On the other hand, at the 

associative level, components can be grouped. 

There are some solutions in statistics that have attempted to automate design decisions 

for data graphics (Wills & Wilkinson, 2010). One potential way forward is to evaluate the 

applicability of Wilkinson's Grammar of Graphics (2005) for displaying geospatial big data. 

Opportunity: Leverage what we know about map animation and interactive cartography to 

construct visual solutions for dynamic sources of geospatial big data 

Conventional solutions for interactive mapping, animated mapping or geovisual analytics can be 

used for representing big data. However, because of the high velocity characteristic of big data it 

is necessary to develop solutions that can automate map design decisions to support interactive 

design solutions that respond (or potentially precede based on modelled outcomes) as the data 

changes. New mapping solutions could allow users to understand different aspects of phenomena 



by reviewing multiple alternative scenes from the same dataset. Animated mapping solutions 

could be developed specifically to target geospatial big data velocity, volume, variety, and 

veracity aspects. These approaches could be incorporated into dashboards and virtual 

environments to support new avenues for user engagement. Efficient interaction in such systems 

will of course depend on concomitant advances in computational methods to drive such tools. 

Computational Methods for Geospatial Big Data 

Maps appear to be a perfect means for showing things that are too big and/or too complex to 

readily perceive in raw form. As a result, maps and map metaphors have received significant 

attention in information visualization and visual analytics (Aggarwal, 2011; Andrienko & 

Andrienko, 2011; Chen, 2013; Dykes, Wood, & Slingsby, 2010; Guo, Chen, MacEachren, & 

Liao, 2006). However, in most analytical settings, maps must be combined with statistical 

methods or computational methods to explore or uncover underlying patterns or structure. 

Computational methods constitute the third scientific paradigm (Hey, Tansley, & Tolle, 2009), 

and in the field of geography, computational geography and geoinformatics have been well 

developed since the 1960s (Openshaw, 1998). Today, computational geography is data-driven 

(Miller & Goodchild, 2014) or data-intensive (Jiang, 2013b). In addition to volume concerns, 

there are other big data aspects to be addressed, including veracity and variety. The former is 

closely related to uncertainty modelling (Zhang & Goodchild, 2002), while the latter illustrates 

an underlying scaling pattern of far more small things than large ones. Big data is likely to 

include diversity and heterogeneity – highlighting the problem of spatial heterogeneity (Jiang, 

2014). Here we describe several key research opportunities focused on advances in computation 

to support cartography with geospatial big data. 



Opportunity: Leverage knowledge about patterns across scales in the development of new 

computational methods for geospatial big data 

Computational methods are particularly important for uncovering underlying patterns. One such 

universal pattern is the scaling or fractal pattern (Mandelbrot, 1982), in which a pattern repeats 

at every scale. In this regard, head/tail breaks (Jiang, 2013a) demonstrates an alternative 

approach to conventional clustering techniques such as k-means for showing underlying scaling 

patterns, and could be employed for cartographic visualization through recursively filtering out 

data in the tail (Jiang, 2015). Conventional clustering techniques, for example k-means or natural 

breaks, are based on the premise that variance within classes should be minimized, and variance 

between classes should be maximized. However, these assumptions do not necessarily make 

sense for big data, which often demonstrate a long tail distribution because of their diversity and 

heterogeneity. New efforts should be made to integrate computational and visual methods that 

can help develop new insights into geospatial big data (Endert, Chang, North, & Zhou, 2015). 

Opportunity: Use what we know about human dynamics to find patterns in geospatial big 

data 

It has been claimed that 95% of big data is unstructured (Gandomi & Haider, 2015). As more 

and more big data are becoming georeferenced and time stamped, geographic features such as 

cities and temporal rhythms become an implicit means for structuring the data. Because big data 

can be structured geographically and/or temporally, maps will play an important role in 

visualizing the underlying patterns and toward developing new insights. For example, the notion 

of natural cities has been applied to location based social media data to uncover how users 

aggregate spatially and temporally (Jiang, 2015). 



Opportunity: Connect concepts from complexity science to new visual analytics methods 

for geospatial big data 

Conventional science or Newtonian science is simple science focused on the correlation between 

two parameters, or causality, and represents a longstanding paradigm under which geography 

and cartography have been significantly influenced. Complexity science focuses on individual 

interactions from the bottom up, and is interested in emergence rather than simple correlation or 

causality (Balcan et al., 2010). Complexity science has developed a range of tools including 

discrete models such as cellular automata and agent-based modeling, complex networks such as 

small-world and scale-free networks, scaling hierarchies; e.g., Zipf’s law, fractal geometry, self-

organized criticality, and chaos theory. All of these approaches attempt to reveal underlying 

mechanisms, linking complex surface forms to underlying mechanisms (or deep simplicity) 

through agent-based simulations from the bottom up. To date relatively little has been 

accomplished to design cartographic solutions for representing phenomena through complexity 

science approaches. 

Adapting Artistic Methods for Geospatial Big Data 

Opportunity: Facilitate engagement of artists with geospatial big data and the creation of 

an artistic geospatial language 

There is a need for new work which introduces artists to geospatial big data as well as creating 

artworks that could be used as part of a geovisual analysis of a big dataset. One such 

investigation would be to simply ask artists to draw overviews for datasets that are quite well 

known already. These artwork overviews could then be examined for commonalities in how data 

characteristics are expressed; these common elements would become the start of a language 

which we could use in future investigations of big data. This language would be added to by 



mining geospatial concepts that are semantically depicted in existing “map” artworks. A similar 

process could be applied to sonic works, realising the potential of sound (Cartwright et al., 2001; 

Krygier, 1994). Art and science collaborations can be engineered through joint art shows, such as 

those featured at SIGGRAPH and IEEE VIS conferences. Digital creativity support tools 

(Shneiderman, 2007) or similar e.g. COSTART (Candy & Edmonds, 2000) could provide a 

platform for collaboration between artists and scientists. 

Opportunity: Co-opt artistic methods and techniques to represent geospatial big data 

We can look to fine art, cinema, and music and the techniques they employ to represent 

spatiotemporal data, compiling these techniques into a library through which geospatial big data 

can be expressed. A further step would be to organize this resource into a “grammar of artistic 

methods”, inspired by Wilkinson’s (2005) grammar of graphics. Prominent in such a library 

would be the methods of caricaturing in illustrative art, being analogous to cartographic 

generalization (Jones, 1997), an approach used by Döllner (2007) in non-photorealistic rendering 

of 3D objects. Simplicity in drawing makes for effective communication to a greater audience 

(McCloud, 1994), a powerful aspect for depicting big data whilst addressing its volume aspect. 

Alternatively, certain styles of modern art such as Jackson Pollock’s drip maps can be used to 

create ‘messy maps’ for revealing spatial and attribute veracity (Field, 2015). 

Another prime example is storyboarding, an essential visual planning tool in cinema 

(Caquard, 2013) and one that has seen previous use in various geospatial and HCI contexts 

(Cartwright, 1994; Dix, Finlay, Abowd, & Beale, 2004; Riedl, 2012). The goal here is to depict 

the spatiotemporal narratives that may be implicit in big data. Narratives can also be spatially 

vague (Caquard, 2013), speaking to the aspect of the veracity in big data. This is a continuation 

of the observed convergence of maps and narratives, manifesting itself as ‘story maps’, and 



enabled by technologies such as geoparsing (Caquard, 2013). The technique is also similar to 

comic strips (Moore, 2009), given knowledge of the narrative. Synthesized discoveries from the 

geovisual analytics process will also lend themselves to storyboarding. 

Opportunity: Generate artistic renderings of geospatial big data 

In fractal geometry we have a way of generating a complex artifact of an aesthetic, or even 

artistic value from simple global inputs. Jiang and Sui (2014) build upon this and Alexander’s 

living geometry (Alexander, 2002), stressing that fractals have structural beauty, presenting 

fifteen properties of beautiful representations across geographic scale. Therefore, fractals could 

be used to create artworks from geospatial big data. How we translate attributes of geospatial big 

data to fractal parameters is a particular research challenge. There have been projects to generate 

artworks from simple initial rules (Sundararajan, 2014) and artificial intelligence (Koch, 2015). 

Another potential method of artistic rendering is to adapt highly abstracted spatiotemporal 

representations (Bertin, 1981; Guo et al., 2006) with aesthetic qualities that have attractive 

geometries and/or colour schemes, such as those found in Adaptive Relative Motion (Moore & 

Rodda, 2015). 

Opportunity: Link artworks to conventional representations in a visual analytics context to 

leverage geospatial big data 

To identify meaningful linkages from artworks to typical spatial and aspatial representations as a 

path towards artistically-enabled geovisual analytics, we have a starting point with the map: anti-

map (i.e. art) category of art and cartography manifestations (Caquard & Fraser Taylor, 2005). 

This linkage between artwork and map (Moore, Marinescu, & Tenzer, 2011) can be built upon 

by establishing links from art to other graphical representations (e.g. scatterplots). 



Finally, agents should be a part of future research too. For example, agents could guide 

users through the bewildering amount of possible representations, setting their parameters, and 

managing possible combinations with other representations (Fairbairn et al., 2001). AutoVis, an 

automatic visualization system (Wills & Wilkinson, 2010) builds on Wilkinson’s grammar of 

graphics and has similar aims to what we propose here. Agents could also have a role in using 

geocomputation to uncover structure in complex representations (Gahegan, Wachowicz, 

Harrower, & Rhyne, 2001; MacGill & Openshaw, 1998). Cartwright (2004) proposes 

“engineered serendipity”, a combination of free exploration and engineered guidance to 

information that may have been missed. If the artwork, whether created or generated, and 

flexible links with other representations (Thudt et al. (2012) present an interface that encourages 

serendipity in discovering books) can foster serendipity, then agents can help direct attention to 

overlooked visual elements, representations, and linkages between them. 

Making Maps That Matter From Geospatial Big Data 

In this article we have presented a series of key research challenges and opportunities associated 

with mapping geospatial big data with the intention of spurring the next wave of forward-

thinking cartographic research. Cartographers in concert with experts in allied domains such as 

computer science, visual arts, human-computer interacting, and data mining have the ability to 

contribute new solutions to pressing problems that require novel approaches. In particular, 

cartographers have the ability to provide effective visual products that leverage what we know 

about how people see and make sense out of geographic information. In addition to the research 

imperatives we have outlined in this article, we call attention in this concluding section to the 

critical need for cartographic research on big data to focus on relevance to society, and we 

specifically suggest the development of close connections to the global goals set forth by the 



United Nations through their 2030 Agenda for Sustainable Development (General Assembly, 

2015). We also draw inspiration from earlier work to theorize visual analytics and connect its 

aims to key application areas (Keim, Mansmann, Schneidewind, Thomas, & Ziegler, 2008). 

For example, the United Nations 2030 Agenda includes Goal 6, which aims to “Ensure 

availability and sustainable management of water and sanitation for all.” A way to support this 

goal via future cartographic research would be to ground a project on geospatial big data 

veracity, for example, in the context of water modelling results under a range of potential climate 

change scenarios. Taken one step further, one could include an effort to explore artistic 

representations and their affordances for communicating such model results via maps. 

A concerted effort must take place to define potential linkages across research goals in 

cartography and tackle grand societal challenges. As the recognized international scientific body 

of cartography, we recommend that the International Cartographic Association (ICA) should 

coordinate and host workshops and web-based collaborative efforts to pursue these goals. We 

also suggest that the ICA should compile a repository of exemplary maps and visualizations that 

can be easily reproduced with other data, have demonstrated success in use and interpretation, 

and are well understood in terms of their effectiveness for explaining key dimensions of big data. 

In order to make progress on collecting, sharing, and promoting such things, we have to define 

what we mean by best practices for the cartography of big data as a community. 

We believe that solutions to the challenges and opportunities we present here will result 

in cartographic contributions to big data that will deliver maps that matter to society and the 

environment. To enact those solutions, cartographers will need to explore each key dimension of 

geospatial big data and develop clever solutions for overcoming their complexity and dynamism. 

The authors wish to thank Alan MacEachren and Gennady Andrienko for their feedback on an early 

version of this manuscript. 
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