41,585 research outputs found

    A Chemistry-Inspired Framework for Achieving Consensus in Wireless Sensor Networks

    Full text link
    The aim of this paper is to show how simple interaction mechanisms, inspired by chemical systems, can provide the basic tools to design and analyze a mathematical model for achieving consensus in wireless sensor networks, characterized by balanced directed graphs. The convergence and stability of the model are first proven by using new mathematical tools, which are borrowed directly from chemical theory, and then validated by means of simulation results, for different network topologies and number of sensors. The underlying chemical theory is also used to derive simple interaction rules that may account for practical issues, such as the estimation of the number of neighbors and the robustness against perturbations. Finally, the proposed chemical solution is validated under real-world conditions by means of a four-node hardware implementation where the exchange of information among nodes takes place in a distributed manner (with no need for any admission control and synchronism procedure), simply relying on the transmission of a pulse whose rate is proportional to the state of each sensor.Comment: 12 pages, 10 figures, submitted to IEEE Sensors Journa

    Cartographic Algorithms: Problems of Implementation and Evaluation and the Impact of Digitising Errors

    Get PDF
    Cartographic generalisation remains one of the outstanding challenges in digital cartography and Geographical Information Systems (GIS). It is generally assumed that computerisation will lead to the removal of spurious variability introduced by the subjective decisions of individual cartographers. This paper demonstrates through an in‐depth study of a line simplification algorithm that computerisation introduces its own sources of variability. The algorithm, referred to as the Douglas‐Peucker algorithm in cartographic literature, has been widely used in image processing, pattern recognition and GIS for some 20 years. An analysis of this algorithm and study of some implementations in wide use identify the presence of variability resulting from the subjective decisions of software implementors. Spurious variability in software complicates the processes of evaluation and comparison of alternative algorithms for cartographic tasks. No doubt, variability in implementation could be removed by rigorous study and specification of algorithms. Such future work must address the presence of digitising error in cartographic data. Our analysis suggests that it would be difficult to adapt the Douglas‐Peucker algorithm to cope with digitising error without altering the method. Copyright © 1991, Wiley Blackwell. All rights reserve

    Justifications-on-demand as a device to promote shifts of attention associated with relational thinking in elementary arithmetic

    Get PDF
    Student responses to arithmetical questions that can be solved by using arithmetical structure can serve to reveal the extent and nature of relational, as opposed to computational thinking. Here, student responses to probes which require them to justify-on-demand are analysed using a conceptual framework which highlights distinctions between different forms of attention. We analyse a number of actions observed in students in terms of forms of attention and shifts between them: in the short-term (in the moment), medium-term (over several tasks), and long-term (over a year). The main factors conditioning studentsÂŽ attention and its movement are identified and some didactical consequences are proposed
    • 

    corecore