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Cartographic Algorithms: Problems of Implementation and 
Evaluation and the Impact of Digitising Errors 

M. Visvalingam and J.D. Whyatt* 

Abstract 

Cartographic generalisation remains one of the outstanding 
challenges in digital cartography and Geographical Infor- 
mation Systems (GIS). It is generally assumed that compu- 
terisation will lead to the removal of spurious variability 
introduced by the subjective decisions of individual carto- 
graphers. This paper demonstrates through an in-depth 
study of a line simplification algorithm that computerisa- 
tion introduces its own sources of variability. The algo- 
rithm, referred to as the Douglas-Peucker algorithm in car- 
tographic literature, has been widely used in image process- 
ing, pattern recognition and GIS for some 20 years. An 
analysis of this algorithm and study of some implementa- 
tions in wide use identify the presence of variability result- 
ing from the subjective decisions of software implementors. 
Spurious variability in software complicates the processes 
of evaluation and comparison of alternative algorithms for 
cartographic tasks. No doubt, variability in implementation 
could be removed by rigorous study and specification of 
algorithms. Such future work must address the presence of 
digitising error in cartographic data. Our analysis suggests 
that it would be difficult to adapt the Douglas-Peucker 
algorithm to cope with digitising error without altering the 
method. 

1. Introduction 

One of the main benefits of automation in cartography is 
the scope that it offers for the removal of spurious variabil- 
ity introduced by the subjective decisions of individual car- 
tographers. Many of the benefits accredited to 
quantification are also attributed to computerisation. It is 
assumed that a tested program will produce objective, con- 
sistent and predictable results. However, it is a fallacy to 
assume that it would continue to produce the same results 
in a different computing environment. No doubt the relia- 
bility of a piece of software may be tested using bench- 
marks. However, this assumes that the benchmark has been 
rigorously formulated. This is no mean task. Forrest1 exam- 
ined some of the complexities involved in the implementa- 
tion of geometric algorithms, using detection and computa- 
tion of line intersections as examples. Forrest examined 
how inadequate consideration of special geometric cases 
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and of the precision, method and order of computation can 
yield incorrect or inconsistent results when primitives for 
line detection and intersection are used within point-in- 
polygon tests using the parity algorithm. In comparison, the 
specification of the Douglas-Peucker algorithm2 is some- 
what more complex and the incomplete description of the 
original algorithm provides ample scope for alternative 
interpretations and implementations. Also, the algorithm 
can produce variable results even when subjected to precise 
calculation because of the nature of digital cartographic 
data. 

The aim of this paper is to explore the potential scope 
for variability in the interpretation, implementation and 
evaluation of cartographic algorithms, using the Douglas- 
Peucker algorithm as an example. Unless the scope for 
variability is recognised, consciously identified through 
systematic testing procedures and standardised, it would be 
difficult for researchers in digital cartography to accept and 
utilize each other’s conclusions about cartographic general- 
ization with much confidence. This paper also identifies 
another major source of concern, namely the inadequate 
consideration of digitising errors in spatial data processing. 

2. Background 

The Douglas-Peucker algorithm enjoys special mention 
within cartographic literature and has been widely adopted 
within mapping software and GIS. It has been promoted as 
“mathematically and perceptually superior” to other line 
simplification algorithms by McMaster3. Although others 
have provided anecdotal evidence to the contrary (see 
review in Visvalingam and Whyatt4), leading researchers in 
cartography and GIS single out this algorithm for special 
mention. For example, Goodchild5 regarded it as one of the 
standard methods for spatial data analysis. The status of 
this algorithm has encouraged others such as Buttenfield6 

and Jones and Abraham7 to apply it outside the narrow 
problem of line simplification without prior independent 
evaluation. 

In the current still relatively low state-of-the-art of 
digital cartography it is necessary to retain a more critical 
frame of mind and pursue independent evaluations prior to 
adoption of algorithms and their implementations. Previous 
evaluations of the Douglas-Peucker algorithm, including 
those by McMaster, have tended to rely on perceptual and 
mathematical comparisons of the output line with the origi- 
nal input, i.e. on the use of black-box methods. Perceptual 
studies have relied on visual comparison of the original and 
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filtered lines whilst mathematical comparisons have been 
based on gross measures, such as of vector and areal dis- 
placement, which have been questioned elsewhere8. 
Visvalingam and Whyatt4 used visualization techniques for 
the evaluation of the algorithm. Instead of relying on a pas- 
sive visual assessment of simplified lines, i.e. the output, 
they used alternative visualizations of tag values associated 
with vertices and visual logic to pursue hypotheses and 
draw conclusions about the algorithm, its underlying 
assumptions and their implications. They made some criti- 
cal observations about the algorithm. This paper examines 
some of the problems facing the implementation of this 
algorithm as a computer program. 

3. Scope for Variability in Implementation 

One of the reasons for the popularity of the so-called 
Douglas-Peucker algorithm is its elegant formulation. The 
numerous published accounts of this algorithm have not 
exposed, let alone discussed, many awkward decisions 
involved in the expression of this algorithm as a computer 
program. Consequently, there exist different interpretations 
and implementations of the algorithm, producing different 
results. Further, not all implementors and users of carto- 
graphic software appear to be aware of the accuracy prob- 
lems involved in computation. Equally, no attention has 
been paid to the existence of digitising errors when formu- 
lating algorithms. It appears that such errors can only be 
dealt with in an ad-hoc manner when using this simple and 
elegant but perceptually inadequate procedure. 

3.1. Variability in Interpretation 

Since the original description of the Douglas-Peucker algo- 
rithm was unclear, others have offered their own descrip- 
tions; some of which appear to be erroneous. Our interpre- 
tation of this method is as follows: A base line, known as 
an anchor-floater line, is used to connect the first and last 
points of a line. Perpendicular offset values from this line 
are calculated for all intervening points. If the furthest point 
from the base line falls within some pre-defined tolerance, 
then it is assumed that the original line may be approxi- 
mated by a straight line segment. If the offset of the furthest 
point exceeds the tolerance, then the original line is subdi- 
vided at this point, and the two parts of the original line are 
treated as independent lines which are subjected to the 
same process for simplification or subdivision. Our 
interpretation corresponds to the method of iterative end- 
point fit described by Duda and Hart9, who stated (on p. 
373) that the method was first suggested by G. E. Forsen. 
The most detailed description of the algorithm was pro- 
vided by Ramer10, who described it as an iterative pro- 
cedure for approximating plane curves by a small number 
of vertices lying on the curve. His illustrations included a 
scale-related simplification of the coastline of Seward Pen- 
insula. 

3.2. Variations in Implementations 

Different implementations of the Douglas-Peucker algo- 
rithm produce different results since programmers have 
coped with exceptional geometric cases and numeric prob- 
lems in different ways. Some of these problems are 
described below and are illustrated using output from the 
programs of Douglas11, White12 (comments indicate that 
the program was written by McMaster) and Wade13. We 
also include observations on results produced by GIMMS14 

and examine the implications of Ramer's analysis of spe- 
cial cases. 

3.2.1. Special Geometric Conditions 

a) Increasing Offset Values 

Although offset values from the current anchor-floater line 
tend to decrease with progressive subdivision of lines, 
Peucker15 noted that it was possible for offset values to 
increase with segmentation of a line. For example in Figure 
la, the first offset C-C' is smaller than subsequent offsets 
D-D' and E-E'. Both Douglas and Peucker2 and Peucker15 

envisaged that a pre-defined tolerance value would ter- 
minate the selection and thus the further subdivision of a 
line. Consequently, in Figure la,  we would either retain or 
omit all of D, C and E. This provides a consistent, if not a 
desirable rule; for example, spikes are retained as a result. 
The latter could be removed through the decision to retain 
only those points whose offsets exceeded a given tolerance. 
For example, specifying a tolerance of 28 metres would 
result in the retention of points D and E only in Figure la. 
However, this rule would pose equally difficult problems in 
other circumstances; specifying a tolerance of 28 metres 
would result in the retention of point D without point C in 
Figure 1 b. The resulting simplification is inappropriate. 

The rule, implied by Douglas and Peucker, would be 
honoured if the algorithm was repeatedly applied each time 
a line had to be filtered; the programs by Douglas and 
White are used in this way. However, this is very wasteful 
of computing resources and it is more efficient to apply the 
algorithm just once to assign tag values (see below) to 
points. Subsequent filtering of lines would then rely on 
comparing these pre-computed tag values against a given 
threshold or tolerance. This idea was first used in 
GIMMS14 in the GENERAL command, which is used to 
specify up to nine tolerance values, corresponding to 
decreasing levels of generalisation. These values are used 
to tag codes, in the range 1 to 9, to each vertex on the line. 
The start and end points of the input line are assigned the 
code of 0. When GIMMS subdivides a line at its maximum 
offset, it compares this offset against the given set of toler- 
ance values, starting with the largest. If the offset exceeds 
this first tolerance value, then a code of 1 (first tolerance in 
list) is stored with the point. If the offset is less than the 
tolerance, it is tested against the second slightly smaller 
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Figure 1. The problem of offset values increasing on segmentation of a line, 

tolerance. The process repeats until the offset exceeds a 
tolerance value in the list; at which stage, the vertex is 
tagged with a number corresponding to the position in the 
list of this tolerance value. Note that by using this pro- 
cedure it is possible to retain D and E as in Figure la, 
without retaining C. We are not suggesting that this is int- 
rinsically wrong; we merely wish to point out that here is a 
case where different implementations can produce different 
results. 

Wade13 designed his implementation such that a line 
may be filtered at any scale at run time using any tolerance 
value. This requires that each vertex has associated with it a 
tag value which will normally correspond to the maximum 
perpendicular offset value which resulted in its selection. 
However, there is a need to ensure that the results produced 
are consistent with those produced by the original algo- 
rithm*. Wade’s  implementation therefore compares the 
offset value calculated for a given point with those for its 
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Figure 2. Illustration of increasing offset values along a section of coastline. 
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anchor and floater and records the smallest value as the tag 
value. Thus, in Figure la, points C, D and E would all have 
tag values of 25 metres. Whilst the possibility of this 
geometric case was noted by Peucker15, it has been ignored 
perhaps because of the assumption that it is somewhat 
infrequent and exceptional. Figure 2 ,  based on a section of 
the coastline of Carmarthen Bay in Wales, contradicts this 
assumption. This geometric case occurs fairly frequently 
along complex coastlines. For example, some 10% of the 
points on the coastline of Carmarthen Bay (Figure 2d) had 
their tag values adjusted. On randomly selected coastal sec- 
tions of Cornwall, Cumbria and Sussex, 15-20% of points 
had to be adjusted. 

Buttenfield6 attempted unsuccessfully to use a number 
of statistics based on the algorithm for identifying line 
types; i.e. for pattern recognition. Although she used test 
lines which would have exhibited this geometric condition 
and included offset values in her set of statistics, she did 
not consider this problem in her analysis. 

b) Overhangs 

Figure 3 shows another geometric case which is not dealt 
with in the literature. Here we have a situation where a part 
of the line overhangs the anchor-floater line A-B. If we 
stuck rigidly to the wording of the algorithm, we should 
select point C. The programs by Douglas, White and 
GIMMS would select D, namely the point furthest from the 
infinite line of which the anchor-floater forms a part. 
Wade's program would choose E, the point furthest from 
the finite line A-B and more specifically B in this case. The 
choice of this critical point can influence the selection of 
some subsequent points; yet the implementation details 
remain arbitrary and variable. 

c) Closed Loops 

Different implementations use different ad-hoc rules when 

dealing with closed loops. Only Ramer10 and Douglas and 
Peucker2 consider this special case. Ramer proposed that 
any two distinct vertices could be selected arbitrarily for 
the initial anchor and floater. He believed that the best 
choice would be two oppositely located extremal points 
since he believed that the algorithm would select these 
eventually anyway. In his algorithm he specified the choice 
of the highest left-most point and the lowest right-most 
point for these extremal points. Douglas and Peucker (p. 
117) specified that where there are closed loops, the max- 
imum perpendicular distance should be replaced with the 
maximum distance from that point. Wade's program takes 
this furthest point. White's program does not consider this 
case. The calculations, which assume an open line, would 
select the point furthest from the origin. 

Both Ramer and White used consistent but arbitrary 
rules for splitting a closed loop. Douglas and Wade used a 
rule related to the configuration of points to subdivide the 
loop but retained the original anchor-floater, which need 
not be a perceptually critical point. If this furthest point was 
used as the new anchor-floater in place of the digitised 
point, and if the furthest point from this was then used to 
subdivide the loop (see Figure 4), then the implementation 
would become less arbitrary and would conform more to 
the spirit of the algorithm. 

In Wade's program, the overhang and closed loop are 
treated as generically similar problems and are dealt with 
by one rule. The loop is a line which overhangs a point, a 
degenerate anchor-floater line. The selected point is tagged 
with the distance from this point. When the line overhangs 
the anchor-floater line, the maximum offset from the finite 
line is calculated where appropriate and the distance from 
either the anchor or the floater is used as the offset in the 
case of points which overhang this base line. The point 
with the largest offset is selected. Neither Ramer nor White 
considered overhangs and their methods are arbitrary. 

Figure 3. Lines overhanging the anchor-floater line (A-B). 
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Figure 4. The need to adjust the position of the initial anchor-floater in a closed loop. 

Douglas and Peucker have treated overhangs and closed 
loops as different problems, and have used different 
methods to cope with each case. 

Most published simplification programs are written in 
FORTRAN and use single precision REALS for offset dis- 
tances. Users of these programs should use compiler 

3.2.2. Numerical Problems 

a) Accuracy of Computation 

The FORTRAN programs by Douglas, White, and Wade 
use single precision REALS when computing offsets 
Whilst double precision accuracy may be attained through 
the use of compiler options, we are unsure whether previ- 
ous research has been based on programs compiled in this 
manner. Wade’s  program was so compiled for use in our 
previous evaluations4. Forrest1 stated that Ramshaw 
(1982) had to adopt carefully tuned double and single pre- 
cision floating point arithmetic to compute the intersection 
of line segments whose end points were defined as integers. 
Forrest’ exclaimed “This is an object lesson to us all: con- 
structing geometric objects defined on a grid of points, 
requiring ten bits for representation, can lead to double pre- 
cision floating point arithmetic!”. 

Table 1: The Precision of Calculations 
Most evaluative studies do not cite the co-ordinates in 

use. We do not know whether the published test lines were 
in original digitiser co-ordinates or whether they had been 
converted to geographic references. British National Grid 
co-ordinates for the administrative boundaries of England, 
Scotland and Wales (digitised by the Department of 
Environment (DoE) and Scottish Development Department 
(SDD)) are input to one metre accuracy and require seven 
decimal digits for representation if we include the northern 
islands of Scotland. At the South West Universities 
Regional Computer Centre these co-ordinates have been 
rounded to 10 metre resolution; even this requires six 
decimal digits. Seamless cartographic files at continental 
and global scales use much larger ranges of geographic co- 
ordinates. check the tabulated results. 

NOTES 

Offsets of points C and D from the anchor-floater line A-B 
as calculated using Wade’s program. Points A, B, C and D 
are shown in Figure 5. The British National Grid co- 
ordinates (in metres) of the points are as follows: 

Note that the above co-ordinates may be used in conjunc- 
tion with the expression presented in section 3.2.2a to 
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options for double precision arithmetic. The impact of 
using single precision arithmetic is demonstrated in Table 
1.  Even when compiled with the double precision option, 
the program by Douglas produces results which deviate 
significantly from those produced by others. The formula 
used to calculate the squares of offset values presented in 
Table 1 is as follows: 

In a recent debate on the accuracy of floating point calcula- 
tions, Huggins16 stated that the arbitrary-precision 
arithmetic language ‘bc’ could be used to obtain precise 
results. We used this UNIX utility to calculate offset values 
for points C and D. On the VAX 8200, SEQUENT SYM- 
METRY and SUN 3/60, bc returned identical values for 
these points: 

C: 28143.490838958534 D: 28143.490838958534 

Forrest1 (p, 721) pointed out the well known fact that float- 
ing point calculations are still very much machine depen- 
dent. Machine dependency exposed further problems, 
which could be treated as problems of implementation but 
which are arguably more conceptual in nature as explained 
in the following sections. 

b) Equidistant Points from the Anchor-Floater Line 

The algorithm is based on the assumption that lines may be 
subdivided in an unambiguous manner using the maximum 
perpendicular offset. To our knowledge, the problem of two 
or more points being equidistant from the anchor-floater 
line has never been considered. Indeed, we only became 
conscious of this possibility when the same program 
yielded different results on ICL 3980 and SUN 3/60 com- 
puters. A sample problem is illustrated in Figure 5. Points 
C and D are equidistant from the anchor-floater line A-B. 
The inexact representation of floating point numbers results 
in C being selected on SUN workstations and D being 
selected on the ICL computer by the same program. With 
double precision arithmetic, the errors are negligible but are 
nevertheless sufficient to generate different results since 
published programs tend to use either a “greater than” or 
“less than” condition. GIMMS and the programs by Doug- 
las and Wade select the first point from a set of identical 
offsets. White’s program selects the last. The results there- 
fore are variable and become dependent on the direction of 
digitising of lines. If, on the other hand, we select a point 
from this set at random, the procedure would become bla- 
tantly arbitrary. This problem poses other implications, 
which we will now examine in greater detail. 

Figure 5 .  The problem of points (C&D) which are equidis- 
tant from the anchor floater-line (A-B). 

3.3. Digitising Errors 

Like most cartographic algorithms, the Douglas-Peucker 
algorithm does not fully address the issue of digitising 
errors. When estimating truth values, it is usually assumed 
that the true line (in this case the analogue line) lies within 
the error band of the digitised line (see Blakemore17). This 
band is also known as the Perkal epsilon band18. In his 
review on issues relating to the accuracy of spatial data- 
bases, Goodchild5 indicated that researchers have proposed 
uniform, normal and even bimodal distributions of error 
across this band. This concept provides some basis for 
estimating the position of the true line at locations between 
digitised points. Here, we are merely concerned with the 
accuracy of digitised points. Whilst it is probable that 
operators digitise points along high curvatures more care- 
fully than at intermediate positions, there is at present no 
sound basis for modelling the distribution of error along the 
line. As in the Circular Map Accuracy Standard, it is usual 
to assume a bivariate normal distribution of error when 
estimating the position of the true point. In the context of 
line simplification, absolute positional accuracy is less 
important than the relative position of points describing the 
shape of features along the line. 

The DoE/SDD boundary data contain some gross 
digitising errors. For example, inlet X in Figure 2c does 
not feature on conventional Ordnance Survey 1:50 000 
maps of the area. The data are also not very accurate where 
coastlines are convoluted. Even if we ignore these and 
other gross errors, such as spikes, there will always be an 
element of random error in digitised data. It is reasonable to 
assume that points digitised from 1:50 000 source material 
may only be accurate to within +/- 5 metres. This algorithm 
does not lead to a substantial accumulation of rounding 
errors, hence the numerical errors discussed earlier tend to 
be very small compared with digitising errors. 

For the purposes of our argument, it is unnecessary to 
undertake an exhaustive evaluation of the consequences of 
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digitising errors on the output of the Douglas-Peucker algo- 
rithm. We only need to explore some consequences in order 
to further our discussion. The rule used for the iterative 
subdivision of lines is the maximum distance from the 
anchor-floater line. Digitising errors affect its reliability in 
two ways. Firstly, it can alter the orientation of the anchor- 
floater line since the end-points are subject to error. 
Secondly, these errors have some impact on the use of the 
maximum distance as an indicator of perceptually critical 
points. We consider both these issues in turn. 

Let us firstly reconsider the case of equidistant points. 
Some effects of digitising errors can be demonstrated using 
Figure 6a, in which points C, D and E are equidistant from 
line A-B. Digitising error implies that the orientation of the 
true line would deviate from the line A-B. Offset values 
from the true line would no longer be equal as shown in 
Figures 6b and 6c. Seen in this context, the selection of the 
first or the last equidistant point must be recognised as an 
arbitrary decision. 

Figure 6. The impact of digitising errors on the maximum offset value. 



The presence of digitising errors also implies that the 
point furthest from the anchor-floater line may also be 
regarded as distinctive if and only if it does not include 
other points within its error band as shown in Figure 6d. 
The difference between the offsets of C, D and E is spuri- 
ous. As pointed out by Ramer10, spurious concavities and 
convexities tend to be introduced during the process of 
digitising; psychomotor errors tend to cause the operator to 
oscillate from one side of the line to the other19. One of the 
objectives in line simplification is to remove these aberra- 
tions. Yet, the performance of this algorithm is adversely 
affected by the presence of such errors. Figure 7 shows all 
points whose offsets are within 5 and 10 metres respec- 
tively of the maximum offset (C) in various iterations of the 
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Figure 7. Critical points in the context of digitising errors. 

algorithm. These points, particularly those within 5 metres, 
should be regarded as statistically equidistant from the 
anchor-floater line. 

When dealing with line and polygon errors, research- 
ers have tended to measure the goodness of fit of digitised 
lines with true lines by measuring the total areal displace- 
ment of the former. McMaster20 used total areal displace- 
ment as an evaluative measure when comparing line 
simplification algorithms. Could this measure be used to 
establish whether the deviation between extreme outcomes, 
obtained by varying the point chosen from the set of 
equidistant points, is significant? This would involve a con- 
sideration of every single permutation of potential selec- 
tions. We have not pursued this approach for we agree with 
Muller8 that total areal displacement is a poor indicator of 
shape. Cartographic simplifications, like caricatures, are 
concerned with the preservation of distinctive shapes. 

It is impossible to prove conclusively that the pres- 
ence of digitising errors can be ignored since the results 
would be dependent upon the selected line configurations. 
We can however prove the converse, namely that digitising 
errors impair the performance of this algorithm. For exam- 
ple, in Figure 7a it can be seen that the algorithm selects 
point C as opposed to D. Since all points are subject to 
digitising error, point D lying within 5 metres of C is an 
equally valid but perceptually more significant point. In 
scale-related generalisations, which conceal the inadequa- 
cies of the algorithm to some extent, the rigid use of the 
maximum offset is acceptable only at the two extreme lev- 
els of generalisation. In minimal simplifications, there is a 
high probability that both points will be included. In very 
small scale displays, the absolute position of the point is 
irrelevant. At intermediate levels, the choice could matter, 
as point C once selected is retained at more detailed levels. 
The adverse implications of this were discussed elsewhere4. 
It is sufficient to re-state here that the retention of C leads 
to the non-selection of D even when 40% of points are 
retained. As a result, the algorithm can exhibit a known 
weakness of the N'th point method, namely a tendency for 
cutting perceptually important comers (Figure 8). Also as 
shown in Figure 7 ,  some candidates communicate very 
much less visual information and appear to be more 
dispensable than others. This makes the algorithm particu- 
larly unsuitable for scale-independent generalisation. 
Jenks21 was justified in being disappointed with the method 
although he thought that it might have been due to some 
peculiarity in his version (implementation) of the algo- 
rithm; he was probably right in both respects. 

The selection of relatively unimportant points on the 
basis of numerical distances not only prejudices the selec- 
tion of visually more important ones, but it also means that 
the algorithm is unnecessarily extravagant - it uses more 
points than necessary to represent lines. This property of 
the algorithm was noted by Ramer10, who was concerned 
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Figure 8. The consequence of spurious accuracy on the 
shape of the simplified line. 

with the approximation of arbitrary 2D curves by polygons. 
Researchers before him had pursued the ideal objective of 
representing lines and boundaries by polygons satisfying a 
given fit criterion, using a minimum number of vertices. 
Ramer observed that a fit criterion of the maximum dis- 
tance from the curve to the approximating polygon does not 
satisfy the ideal objective of locating a minimum number of 
vertices. 

Duda and Hart9 noted that this algorithm is strongly 
influenced by individual points and that a single ‘wild’ 
point can drastically change the final result. They stressed 
that many of the heuristics used in image processing and 
pattern recognition are not dignified by much supporting 
theory and that they must be used judiciously. They advised 
that the use of this particular heuristic should be restricted 
to data that are initially error free. Some researchers (Jones 
and Abraham’, and McMaster22) have incorrectly assumed 
that weeding and/or smoothing remove digitising errors. 
Weeding cannot make the retained points more accurate; 
and smoothing can blur the distinctive features of the line. 

4. Conclusion 

In this paper we used the widely known Douglas-Peucker 
algorithm to focus attention on the lack of rigour in the 
expression, interpretation, implementation and evaluation 
of cartographic software. We also demonstrated that meas- 
urement errors can adversely influence the intended effect 
of such simple algorithms, couched solely in geometric 
terms. No doubt all generalisations are inaccurate in some 
respects but this algorithm can never approximate the per- 
formance of skilled cartographers. Does this matter? This 
depends upon the purpose of research. Basic research seeks 
to develop knowledge and understanding. The discipline of 
cartography should seek to understand cartographic 
processes and the cartographer’s skills in meaningful and 
explicit terms so that we have a good grasp of the utility 
and limitations of our knowledge, techniques and data. The 
continued promotion of the Douglas-Peucker algorithm by 
leading researchers stifles innovation and creativity. What 
is more disconcerting is that this algorithm has already 
inspired and has become a primitive within secondary spa- 
tial analysis and the design of scale-independent databases. 
Further extensions to the algorithm are also advocated. For 
example, Goodchild5 after considering issues relating to the 
accuracy of spatial databases expressed in a separate 
section that many of the standard methods for planar spatial 
analysis, including the Douglas-Peucker line generalisation 
algorithm, have yet to be adapted to the spherical global 
context. Those inclined to do so should at least recognise 
the problems of implementation and resolve them in some 
rational manner. Even then, the Douglas-Peucker algorithm 
cannot provide more than a partial and shaky foundation 
for R & D in line generalisation for it is difficult to 
envisage how we could standardise the implementation of 
the algorithm in a meaningful and universally applicable 
manner. There is also a need to accommodate digitising 
errors in cartographically meaningful terms. 

Finally, we wish to consider the wider implications of 
this study. Our research has been greatly facilitated by the 
past practice of detailed publication of research methods; 
and access by other means not just to algorithms but also 
their implementations. No doubt those committed to the 
advancement of knowledge will continue to exchange 
details of their experimental design and observations (even 
if they are unable to provide input data provided by 
research sponsors) so that they can check each other’s rea- 
soning and conclusions to mutual benefit. Researchers in 
computational geometry have pointed out that much spatial 
software is erected on shaky foundations. Digital cartogra- 
phy builds on computational geometry and computer 
graphics; Geographical Information Systems in turn 
embody the academic output of these contributing discip- 
lines within their structures. We hope that this paper has 
demonstrated in a small way the need for maintaining open 
and public discussion of the knowledge, techniques and 
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data which underpin the development and use of modem 
information systems, such as GIS. 
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