400,180 research outputs found

    Towards the extraction of cross-sentence relations through event extraction and entity coreference

    Get PDF
    Cross-sentence relation extraction deals with the extraction of relations beyond the sentence boundary. This thesis focuses on two of the NLP tasks which are of importance to the successful extraction of cross-sentence relation mentions: event extraction and coreference resolution. The first part of the thesis focuses on addressing data sparsity issues in event extraction. We propose a self-training approach for obtaining additional labeled examples for the task. The process starts off with a Bi-LSTM event tagger trained on a small labeled data set which is used to discover new event instances in a large collection of unstructured text. The high confidence model predictions are selected to construct a data set of automatically-labeled training examples. We present several ways in which the resulting data set can be used for re-training the event tagger in conjunction with the initial labeled data. The best configuration achieves statistically significant improvement over the baseline on the ACE 2005 test set (macro-F1), as well as in a 10-fold cross validation (micro- and macro-F1) evaluation. Our error analysis reveals that the augmentation approach is especially beneficial for the classification of the most under-represented event types in the original data set. The second part of the thesis focuses on the problem of coreference resolution. While a certain level of precision can be reached by modeling surface information about entity mentions, their successful resolution often depends on semantic or world knowledge. This thesis investigates an unsupervised source of such knowledge, namely distributed word representations. We present several ways in which word embeddings can be utilized to extract features for a supervised coreference resolver. Our evaluation results and error analysis show that each of these features helps improve over the baseline coreference system’s performance, with a statistically significant improvement (CoNLL F1) achieved when the proposed features are used jointly. Moreover, all features lead to a reduction in the amount of precision errors in resolving references between common nouns, demonstrating that they successfully incorporate semantic information into the process

    Data mining based learning algorithms for semi-supervised object identification and tracking

    Get PDF
    Sensor exploitation (SE) is the crucial step in surveillance applications such as airport security and search and rescue operations. It allows localization and identification of movement in urban settings and can significantly boost knowledge gathering, interpretation and action. Data mining techniques offer the promise of precise and accurate knowledge acquisition techniques in high-dimensional data domains (and diminishing the “curse of dimensionality” prevalent in such datasets), coupled by algorithmic design in feature extraction, discriminative ranking, feature fusion and supervised learning (classification). Consequently, data mining techniques and algorithms can be used to refine and process captured data and to detect, recognize, classify, and track objects with predictable high degrees of specificity and sensitivity. Automatic object detection and tracking algorithms face several obstacles, such as large and incomplete datasets, ill-defined regions of interest (ROIs), variable scalability, lack of compactness, angular regions, partial occlusions, environmental variables, and unknown potential object classes, which work against their ability to achieve accurate real-time results. Methods must produce fast and accurate results by streamlining image processing, data compression and reduction, feature extraction, classification, and tracking algorithms. Data mining techniques can sufficiently address these challenges by implementing efficient and accurate dimensionality reduction with feature extraction to refine incomplete (ill-partitioning) data-space and addressing challenges related to object classification, intra-class variability, and inter-class dependencies. A series of methods have been developed to combat many of the challenges for the purpose of creating a sensor exploitation and tracking framework for real time image sensor inputs. The framework has been broken down into a series of sub-routines, which work in both series and parallel to accomplish tasks such as image pre-processing, data reduction, segmentation, object detection, tracking, and classification. These methods can be implemented either independently or together to form a synergistic solution to object detection and tracking. The main contributions to the SE field include novel feature extraction methods for highly discriminative object detection, classification, and tracking. Also, a new supervised classification scheme is presented for detecting objects in urban environments. This scheme incorporates both novel features and non-maximal suppression to reduce false alarms, which can be abundant in cluttered environments such as cities. Lastly, a performance evaluation of Graphical Processing Unit (GPU) implementations of the subtask algorithms is presented, which provides insight into speed-up gains throughout the SE framework to improve design for real time applications. The overall framework provides a comprehensive SE system, which can be tailored for integration into a layered sensing scheme to provide the war fighter with automated assistance and support. As more sensor technology and integration continues to advance, this SE framework can provide faster and more accurate decision support for both intelligence and civilian applications

    Knowledge Base Population using Semantic Label Propagation

    Get PDF
    A crucial aspect of a knowledge base population system that extracts new facts from text corpora, is the generation of training data for its relation extractors. In this paper, we present a method that maximizes the effectiveness of newly trained relation extractors at a minimal annotation cost. Manual labeling can be significantly reduced by Distant Supervision, which is a method to construct training data automatically by aligning a large text corpus with an existing knowledge base of known facts. For example, all sentences mentioning both 'Barack Obama' and 'US' may serve as positive training instances for the relation born_in(subject,object). However, distant supervision typically results in a highly noisy training set: many training sentences do not really express the intended relation. We propose to combine distant supervision with minimal manual supervision in a technique called feature labeling, to eliminate noise from the large and noisy initial training set, resulting in a significant increase of precision. We further improve on this approach by introducing the Semantic Label Propagation method, which uses the similarity between low-dimensional representations of candidate training instances, to extend the training set in order to increase recall while maintaining high precision. Our proposed strategy for generating training data is studied and evaluated on an established test collection designed for knowledge base population tasks. The experimental results show that the Semantic Label Propagation strategy leads to substantial performance gains when compared to existing approaches, while requiring an almost negligible manual annotation effort.Comment: Submitted to Knowledge Based Systems, special issue on Knowledge Bases for Natural Language Processin

    Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions

    Full text link
    Background. Drug-drug interaction (DDI) is a major cause of morbidity and mortality. [...] Biomedical literature mining can aid DDI research by extracting relevant DDI signals from either the published literature or large clinical databases. However, though drug interaction is an ideal area for translational research, the inclusion of literature mining methodologies in DDI workflows is still very preliminary. One area that can benefit from literature mining is the automatic identification of a large number of potential DDIs, whose pharmacological mechanisms and clinical significance can then be studied via in vitro pharmacology and in populo pharmaco-epidemiology. Experiments. We implemented a set of classifiers for identifying published articles relevant to experimental pharmacokinetic DDI evidence. These documents are important for identifying causal mechanisms behind putative drug-drug interactions, an important step in the extraction of large numbers of potential DDIs. We evaluate performance of several linear classifiers on PubMed abstracts, under different feature transformation and dimensionality reduction methods. In addition, we investigate the performance benefits of including various publicly-available named entity recognition features, as well as a set of internally-developed pharmacokinetic dictionaries. Results. We found that several classifiers performed well in distinguishing relevant and irrelevant abstracts. We found that the combination of unigram and bigram textual features gave better performance than unigram features alone, and also that normalization transforms that adjusted for feature frequency and document length improved classification. For some classifiers, such as linear discriminant analysis (LDA), proper dimensionality reduction had a large impact on performance. Finally, the inclusion of NER features and dictionaries was found not to help classification.Comment: Pacific Symposium on Biocomputing, 201

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented
    • …
    corecore