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Abstract

Cross-sentence relation extraction deals with the extraction of relations beyond
the sentence boundary. This thesis focuses on two of the NLP tasks which are of
importance to the successful extraction of cross-sentence relation mentions: event
extraction and coreference resolution.

The first part of the thesis focuses on addressing data sparsity issues in event
extraction. We propose a self-training approach for obtaining additional labeled
examples for the task. The process starts off with a Bi-LSTM event tagger trained
on a small labeled data set which is used to discover new event instances in a
large collection of unstructured text. The high confidence model predictions are
selected to construct a data set of automatically-labeled training examples. We
present several ways in which the resulting data set can be used for re-training the
event tagger in conjunction with the initial labeled data. The best configuration
achieves statistically significant improvement over the baseline on the ACE 2005
test set (macro-F1), as well as in a 10-fold cross validation (micro- and macro-F1)
evaluation. Our error analysis reveals that the augmentation approach is especially
beneficial for the classification of the most under-represented event types in the
original data set.

The second part of the thesis focuses on the problem of coreference resolution.
While a certain level of precision can be reached by modeling surface information
about entity mentions, their successful resolution often depends on semantic or
world knowledge. This thesis investigates an unsupervised source of such knowl-
edge, namely distributed word representations. We present several ways in which
word embeddings can be utilized to extract features for a supervised coreference
resolver. Our evaluation results and error analysis show that each of these features
helps improve over the baseline coreference system’s performance, with a statisti-
cally significant improvement (CoNLL F1) achieved when the proposed features
are used jointly. Moreover, all features lead to a reduction in the amount of pre-
cision errors in resolving references between common nouns, demonstrating that
they successfully incorporate semantic information into the process.



Ausführliche Zusammenfassung

Die ständig wachsenden Mengen an digitalen Daten, die in unstrukturierter Form
vorliegen, haben das Interesse an Technologien geweckt, die in der Lage sind, au-
tomatisch nützliche, in ihnen kodierte Informationen zu destillieren. Information-
sextraktion ist ein Bereich der natürlichen Sprachverarbeitung, der sich mit der
Entdeckung und Strukturierung solcher in natürlichsprachigem Text gefundenen
Informationen beschäftigt.

Die Informationen, die für die Informationsextraktion von Interesse sind, haben
typischerweise die Form von Fakten über Entitäten und Beziehungen zwischen
ihnen. Beispiele für solche Beziehungen sind die Verwandtschaftsbeziehungen (z.
B. Eltern, Geschwister, Ehepartner) zwischen zwei Entitäten des Typs “Person”,
die in biografischen Texten häufig vorkommen, oder die Beziehung zwischen zwei
Firmenentitäten, die besagt, dass die eine die andere übernommen hat. Das Erken-
nen von semantischen Beziehungen zwischen Entitäten aus unstrukturiertem Text
fällt in den Bereich der Aufgabe Relationsextraktion.

Das Thema Relationsextraktion ist die Hauptmotivation und der Ausgangspunkt
für die in dieser Arbeit vorgestellten Experimente. Genauer gesagt, geht es um die
Extraktion von Relationen mit unterschiedlichen Komplexitäten (definiert durch
die Anzahl ihrer Relationsargumente), die über mehrere Sätze hinweg ausgedrückt
werden, oder “cross-sentence” Relationsextraktion (Abschnitt 1.2). In dieser Ar-
beit wird der Standpunkt eingenommen, dass das Problem der satzübergreifenden
Relationsextraktion aus mehreren Bestandteilen besteht. Es muss eine Analyse
auf Dokumentenebene durchgeführt werden, die die beiden Hauptmechanismen
der Verbreitung beziehungsrelevanter Informationen adressiert, nähmlich wieder-
holte Verweise auf Ereignisse und auf Entitäten.

Unsere Untersuchung der satzübergreifenden Relationserwähnungen im cockrACE-
Korpus [Krause et al., 2014] ergab, dass 90,5% der Erwähnungen mindestens einen
anaphorischen Verweis auf Relationsargumente enthalten, die an einem anderen
Ort im Dokument realisiert werden. In solchen Fällen kann die Aufgabe der Ko-
referenzauflösung (coreference resolution), die sich auf die Zuordnung von Erwäh-
nungen gleicher Entitäten in Äquivalenzklassen konzentriert, die Extraktion der
fehlenden Informationen ermöglichen.
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Für den Zugriff auf beziehungsrelevante Informationen, die über ein Dokument
verstreut sind, schlagen [Krause et al., 2016], die Aufgabe der Ereignisverknüp-
fung zu nutzen. Ereignisse sind textuelle Beschreibungen von Ereignissen in der
realen Welt und deren Teilnehmern. Die Aufgabe der Ereignisextraktion besteht
darin, solche Erwähnungen zu erkennen und ihre Teilnehmer in Bezug auf die
Rolle zu klassifizieren, die sie im Ereignis spielen. Die Ereigniskoreferenz (oder
Ereignisverknüpfung) ist eine nachfolgende Aufgabe, die sich auf die Gruppierung
von Erwähnungen desselben Ereignisses konzentriert. Durch die Verknüpfung
von Erwähnungen desselben Ereignisses erhalten wir oft Zugang zu zusätzlichen
Ereignisteilnehmern für dieses Ereignis.

Die Ereigniskoreferenz allein ist nicht ausreichend, um auf alle Relationsargumente
zuzugreifen, da anaphorische Referenzen vorhanden sind. Daher ist die Auflö-
sung der Koreferenz ein integraler Bestandteil des Prozesses. Außerdem wird bei
der Durchführung von Ereignisverknüpfungen im Allgemeinen davon ausgegan-
gen, dass Ereigniserwähnungen als Voraussetzung erkannt werden. Die Ereigni-
sextraktion an sich ist jedoch keine triviale Aufgabe. Die Datenarmut stellt ein
Problem dar, welches den Einsatz von semi-überwachtem Lernen erfordert. In
dieser Arbeit konzentrieren wir uns genauer auf dieses Problem. Wir schlagen
vor, die Datenbeschränkungen durch den semi-überwachten Algorithmus “self-
training” [Abney, 2007] zu lösen. Im Gegensatz zu anderen häufig verwende-
ten semi-überwachten Ansätzen ist “self-training” nicht inhärent argumentzentri-
ert und kann daher Erwähnungen von Ereignissen unabhängig vom Vorhandensein
von Ereignisargumenten im selben Satz erkennen.

Der erste Teil der Arbeit befasst sich mit der Problematik der Datenarmut bei
der Ereignisextraktion. Neuronale Ansätze, die auf die Verfügbarkeit einer aus-
reichenden Menge an annotierten Ereignisdaten angewiesen sind, stellen den ak-
tuellsten Stand der Technik bezüglich Ereignisextraktion dar (Abschnitt 3.3.2).
Bestehende Korpora für diese Aufgabe sind in Bezug auf Größe und Abdeckung
der Ereignistypen begrenzt. Es hat sich gezeigt, dass das am weitesten verbreitete
Korpus, das ACE 2005 [Walker et al., 2006], eine Reihe von Problemen bezüglich
der Datenarmut aufweist (Abschnitt 3.2). Das Fehlen einer ausreichenden Menge
an Trainingsdaten und die Kosten, die mit dem Aufbau von menschlich annotierten
Korpora verbunden sind, haben mehrere Arbeiten dazu inspiriert, Methoden zur
automatischen Extraktion zusätzlicher vorklassifizierten Trainingsbeispiele zu er-
forschen (Abschnitt 3.4)
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Der erste Beitrag dieser Arbeit ist ein Ansatz für die automatische Extraktion
von zusätzlichen vorklassifizierten Daten für die Ereignisextraktion durch self-
training. Wir schlagen vor, die Aufgabe der Identifikation und Klassifikation von
Ereignisauslösern als ein Sequenz-Labeling-Problem zu betrachten und definieren
einen Baseline Bi-LSTM Ereignis-Tagger. Der Selbsttrainings-Prozess beginnt mit
dem Training dieses Ereignis-Taggers auf dem ACE 2005-Korpus und verwen-
det ihn, um aus einer großen Sammlung von unstrukturiertem Text neue gela-
belte Beispiele für die Aufgabe zu extrahieren. Die Modellvorhersagen mit hohem
Vertrauen werden ausgewählt, um einen Datensatz mit automatisch beschrifteten
Trainingsbeispielen zu erstellen.

Um die Fehler des Taggers so gering wie möglich zu halten, verwenden wir eine
Filterstrategie und behalten nur die Klassifizierungsentscheidungen bei, die einen
bestimmten Schwellenwert des Vertrauens überschreiten. Hohe Schwellenwerte
führen dazu, dass nur die vertrauenswürdigsten Modellentscheidungen beibehal-
ten werden. Diese entsprechen in der Regel den am häufigsten auftretenden
Ereignistypen in den ursprünglichen Trainingsdaten, führen aber oft dazu, dass
weniger häufige Ereignisbeispiele vollständig herausgefiltert werden. Um dies
abzumildern, verwenden wir einen dynamischen Schwellenwert: wir beginnen mit
den vertrauenswürdigsten Entscheidungen des Modells und gehen dann zu einem
niedrigeren Vertrauensschwellenwert zurück, bis wir die gewünschte Anzahl von
Beispielen für jeden Ereignistyp erreicht haben.

Wir stellen mehrere Möglichkeiten vor, wie der resultierende Datensatz in Verbind-
ung mit den ursprünglich vorklassifizierten Daten zum erneuten Training des
Event-Taggers verwendet werden kann. Beim ersten Augmentierungsansatz, aug-

concat, erhalten die neu extrahierten Beispiele die gleiche Wichtigkeit wie der ur-
sprüngliche Trainingsdatensatz, während die übrigen drei Strategien darauf abzie-
len, den Effekt der Augmentierungsdaten beim erneuten Training zu verringern.
Bei der gleichmäßigen Skalierungsparameter-Augmentation (auguniform) wird beim
Training auf dem Augmentationsdatensatz eine Skalierungskonstante von 0,1 ver-
wendet. Bei augweight wird der Verlust, der beim Training mit einem Stapel
aus überwiegend identischen Ereignissen entsteht, durch die Häufigkeit dieser
Ereignisse im Trainingssatz geteilt durch eine Konstante skaliert. In diesem Setup
werden häufig auftretende Ereignistypen stärker von ihren entsprechenden Aug-
mentationsbeispielen beeinflusst, mit der Annahme, dass sie aufgrund ihrer höheren
Häufigkeit zu qualitativ besseren Augmentationsdaten beitragen. Bei augrev.weight
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wird der gegenteilige Effekt angestrebt: häufige Ereignisse erhalten wenig Hilfe
von den Augmentationsdaten, da sie bereits im ursprünglichen Trainingssatz gut
vertreten sind, während seltene Ereignistypen beim Training einen höheren Aug-
mentationsschub erhalten.

Die Evaluation unserer Daten-Augmentierungsansätze auf dem Testset des ACE-
Korpus zeigt, dass die beste Augmentierungsstrategie “auguniform” ist. Diese Kon-
figuration erreicht eine statistisch signifikante Verbesserung gegenüber der Baseline
auf dem ACE 2005 Testset (Makro-F1), sowie in einer 10-fachen Kreuzvalidierung-
Evaluation (Mikro- und Makro-F1). Die Fehleranalyse zeigt, dass der Augmen-
tierungsansatz vor allem bei der Klassifikation der im ursprünglichen Datensatz
am stärksten unterrepräsentierten Ereignistypen von Vorteil ist.

Der zweite Teil der Arbeit beschäftigt sich mit dem Problem der Koreferenzau-
flösung. Die Auflösung von Referenzen ist eine herausfordernde Aufgabe, da ein
referenzierender Ausdruck oft mehrere konkurrierende Antezedenten-Kandidaten
hat, die ähnliche Oberflächeneigenschaften aufweisen, wie z.B. Übereinstimmung
in Zahl und Geschlecht. Während ein gewisses Maß an Präzision durch die Model-
lierung von Oberflächeninformationen über Entitätserwähnungen erreicht werden
kann, hängt deren erfolgreiche Auflösung oft von semantischem oder Weltwissen
ab.

Eine lange Reihe von Arbeiten widmet sich der Kodierung semantischer und en-
zyklopädischer Informationen in Form von Features für die überwachte Koreferen-
zauflösung (Abschnitt 5.5.2). Einige der untersuchten Quellen für solche Infor-
mationen sind die lexikalische Datenbank WordNet [Daumé III and Marcu, 2005;
Ponzetto and Strube, 2006; Bengtson and Roth, 2008], Wikipedia und verwandte
enzyklopädische Datenbanken [Strube and Ponzetto, 2006; Ratinov and Roth,
2012; Rahman and Ng, 2011] und das Mining unstrukturierter Daten [Haghighi
and Klein, 2009; Bansal and Klein, 2012]. Selektive Präferenzen und semantisches
Parsing wurden zur Pronomenauflösung eingesetzt [Ponzetto and Strube, 2006;
Rahman and Ng, 2011; Heinzerling et al., 2017]. Die in diesem Teil der Diplomar-
beit vorgestellten Experimente untersuchen eine alternative Quelle von semantis-
chem Wissen für die Auflösung von Koreferenzen, nämlich Worteinbettungen.

Worteinbettungen sind kontinuierliche, niedrigdimensionale Vektordarstellungen
von Wörtern, die aus großen, unbeschrifteten Korpora gelernt wurden (Abschnitt
2.3). ähnlich wie bei Ansätzen der distributiven Semantik, die sich auf die Idee
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stützen, dass der Sinn eines Wortes durch die Gesellschaft definiert werden kann,
in der es steht, wird die Worteinbettung eines Tokens aus seinen Kontextwörtern
gelernt. Dadurch werden Wörtern, die in ähnlichen Kontexten auftreten, ähn-
liche Repräsentationen zugewiesen. Die intrinsische Evaluation hat gezeigt, dass
Worteinbettungen syntaktische (z. B. Geschlecht) und semantische (z. B. Ver-
wandtschaft und Ähnlichkeit) Eigenschaften von Wörtern erfassen (Abschnitt 5.6).

Diese Arbeit bietet einige Einblicke, wie Worteinbettungen auf die Aufgabe der
Koreferenzauflösung angewendet werden können. Wir stellen drei verschiedene
Merkmale vor, die aus Worteinbettungen abgeleitet werden. Dazu gehören (1)
ein Embedding-Cluster-Merkmal, das einer semantischen Klasse gleicht, (2) eine
Umgebung, bei der jede Dimension des Embeddings ein separates numerisches
Merkmal ist, und (3) eine Reihe von Kosinus-Ähnlichkeitsmerkmalen, die kon-
textuelle Informationen einbeziehen. Das Einbettungs-Cluster-Merkmal kann für
die Auflösung von Koreferenzen von Vorteil sein, da es sicherstellen kann, dass zwei
koreferierende Erwähnungen semantisch kompatibel sind. Zum Beispiel wäre eine
Erwähnung, die ein Fahrzeug bezeichnet, nicht mit einem Referenten vom Typ
“Person” kompatibel. Eine einfache Möglichkeit, Worteinbettungen für die Ko-
referenzauflösung zu verwenden, ist die direkte Einbeziehung des Einbettungsvek-
tors. Jede Dimension kann als ein separat latentes Merkmal betrachtet werden,
das verschiedene syntaktische oder semantische Eigenschaften eines Wortes kodiert
[Turian et al., 2010]. Wir experimentieren auch mit kompakteren Repräsentatio-
nen des Worteinbettungsvektors, die durch die Hauptkomponentenanalyse gewon-
nen werden. Schließlich definieren wir Kosinus-ähnlichkeitsbasierte Merkmale, die
darauf abzielen, mehr vom Kontext des verweisenden Ausdrucks in den Entschei-
dungsprozess einzubeziehen. Dies zielt auf Fälle ab, in denen der betreffende ver-
weisende Ausdruck semantisch arm ist (z. B. ein Pronomen) und seine erfolgreiche
Disambiguierung daher auf der Erforschung seines Satzkontextes beruht.

Unsere Evaluierungsergebnisse und die Fehleranalyse zeigen, dass jedes dieser
Merkmale dazu beiträgt, die Leistung des Baseline-Koreferenzsystems zu verbessern.
Die Verbesserung des CoNLL-F1-Scores durch den gemeinsamen Einsatz aller
vorgeschlagenen Features war statistisch signifikant. Wir beobachteten eine Re-
duzierung der Gesamtzahl der Präzisionsfehler. Darüber hinaus führen alle Fea-
tures zu einer Reduktion der Präzisionsfehler bei der Auflösung von Referenzen
zwischen Substantiven. Diese Ergebnisse legen nahe, dass sie erfolgreich einige
semantische Informationen in den Prozess einbeziehen.
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Chapter 1

Introduction

The continuously growing volumes of digital data available in unstructured form
have prompted the interest in technologies capable of automatically distilling use-
ful pieces of information encoded within them. Information Extraction (IE) is a
field in Natural Language Processing (NLP) which focuses on the discovery and
structuring of such information found in natural language text. What is meant
by structuring is storing the extracted knowledge in a format which facilitates its
further analysis and processing by people or other applications, not unlike entries
in a data base. IE can assist higher-level NLP tasks dealing with natural language
understanding, such as text summarization, question answering, dialogue systems,
and more. It has been employed in the domains of business, law, medicine, finance
and others [Gupta et al., 2020; Ghoulam et al., 2015; Nasar et al., 2018; Zhong
et al., 2020]. Some examples sources of unstructured data for these domains in-
clude news reports, social media interactions, electronic patient records, and court
rulings.

The information of interest in IE typically takes the form of facts about entities
and relations between them. Entities can include mentions of persons, locations,
dates, or other predefined types of concepts relevant for the task at hand. In the
business domain, for instance, names of products might be of interest, while med-
ical domain applications might focus on names of diseases and treatments. Exam-
ples of relations include the kinship (e.g., parent, sibling) or spousal relationships
between two entities of type person, common in biographical text. Another ex-
ample is the relation between two company entities, denoting that one has taken
ownership of the other (the company acquisition relation). The extraction and

1



1. Introduction 2

classification of such information falls in the scope of the task Relation Extraction
(RE) (Section 1.1).

The topic of RE is a main motivation and starting point for the experiments pre-
sented in this thesis. More specifically, the extraction of relations of arbitrary
complexities (defined in terms of number of their relation arguments), which are
expressed across multiple sentences, or cross-sentence relation extraction (Sec-
tion 1.2). In this thesis, we adopt the view that the problem of cross-sentence
relation extraction is a composite one. Due to the complexity of this task, it is
difficult to address it via a one-size-fits-all solution. Rather, an analysis on the
document level has to be performed which addresses the two main mechanisms of
spreading relation relevant information: repeated references to events and entities.

1.1 Relation Extraction

Relation Extraction aims at discovering semantic relations between entities from
unstructured text. A relation can be represented as an ordered tuple of entities,
the relation arguments. For instance, the relation between an entity of type person
and an entity of type organisation which holds when a person is the founder of
an organisation can be represented as founder-of<Person, Organisation>1. In
practice, a relation is often defined in terms of a minimal set of at least two
obligatory relation arguments, while additional relation-relevant information is
treated as secondary or optional arguments which can be extracted if present in
the relation mention [Krause, 2018]. For instance, minimally two entities of type
person are necessary for expressing the spousal relation, but the starting and end
date of a marriage are valuable2 secondary arguments as they define the time
period for which the relation holds.

A relation may be expressed in natural language in a variety of ways. Figure 1.1
presents different ways of expressing the spousal relation. A mention of the mar-
riage event (1) expresses the relation, as it refers to the point in time from which
the relation holds. Similarly, the renewal of vows indicates they were exchanged as
part of a wedding ceremony in the first place (2). The divorce event (3) expresses

1A relation mention of a concrete instance of this relation, founder-of<Bill Gates, Microsoft>,
can be found in the sentence “Bill Gates founded the software company Microsoft Corporation
with his friend Paul Allen”.

2For instance, for downstream tasks such as question answering.
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(1) Peter and Mary tied the knot in 2000. (marriage event)
(2) Peter and Mary renewed their vows. (vow renewal event)
(3) Peter and Mary divorced in 2005. (divorce event)
(4) Peter ’s wife Mary attended the party.

Figure 1.1: Several different ways of expressing the spousal relation

the relation, as it entails that the two people were previously married. In (4),
the relation is expressed via a noun phrase referring to the state of being married.
Relations are often expressed through mentions of events: textual descriptions of
real-world events and their participants3.

The lack of labelled training data is a major challenge in RE. The target rela-
tions are usually dictated by the downstream application which RE serves: an
application in the business domain would call for the extraction of very different
relation types than those in the medical domain. Little to no training data may be
available for a relation of interest. However, the success of a machine learning RE
model is dependent on the availability of sufficient amounts of training examples
which cover the variety of ways of expressing the relation in natural language.
This has prompted research in approaches to RE which are more adaptable to
new domains and relation types. To circumvent the expensive process of corpora
annotation, these approaches typically employ a form of semi-supervised learn-
ing, such as bootstrapping [Brin, 1998; Agichtein and Gravano, 2000; Yangarber
et al., 2000; Xu et al., 2007; Fujiwara and Sekine, 2011] or distant supervision
[Mintz et al., 2009; Riedel et al., 2010; Krause et al., 2012b], which utilize small
quantities of domain-specific knowledge to discover mentions of relations in large
unlabeled corpora.

Bootstrapping is an iterative algorithm in which the knowledge acquired at every
step serves as input to subsequent iterations (Figure 1.2). The process starts off
with a small set of relation tuples referred to as seeds, which can be defined by
hand based on prior knowledge, or found in structured knowledge bases, provided
some exist. Next, occurrences of the seed are detected in a large collection of
unstructured text. It is assumed that if the seed relation arguments co-occur

3Xu et al. [2007] define n-ary relations as events. Our investigation of the spousal relation
mentions in the cockrACE corpus [Krause et al., 2014] confirmed that 94% of the relation men-
tions with more than two arguments are in fact events, as is the case with 61% of the binary
relations. We will come back to a more in-debt discussion of events and the similarities and
differences between event and relation extraction in Chapter 3.
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in close proximity (usually within the same sentence) then the text is likely to
expresses the given relation. The discovered candidate relation mentions are used
to generalize relation extraction rules or patterns, which are in turn applied to
extract previously unseen seeds. While the process relies on very little domain-
specific knowledge (the initial seeds), it is prone to error propagation and semantic
drift, and thus typically involves elaborate techniques for filtering the RE rules
prior to rule application. The end-product of the bootstrapping loop includes both
the extracted seeds and the learned RE rules. Bootstrapping RE rules are typically
string patterns or paths in a syntactic tree [Sudo et al., 2001, 2003; Xu et al., 2007],
such as the shortest path in a dependency parse of the sentence containing the
relation mention which links all relation arguments (Figure 1.2). Path-based RE
rules are meant to include the lexical items which express the relation of interest
(here: “win”, “prize”) with place-holders for the relation arguments, ignoring small
word order variations, and excluding what are considered less significant tokens
outside the shortest path. However, such methods have the disadvantage of relying
on possibly erroneous parses, and are limited to relations expressed within a single
sentence.

Distant supervision is another semi-supervised approach which utilizes a knowl-
edge base (e.g., Freebase [Bollacker et al., 2008]) as a source of supervision for
learning a relation classifier from otherwise unlabelled data. Unlike bootstrap-
ping, distant supervision is not iterative. The process typically starts off with a
large set of seeds, and follows the same assumption that if seed arguments co-occur
in the same sentence then the sentence is likely to express the seed relation. Any
sentence which contains the seed arguments is used to extract features for that
relation type, with a certain level of noise expected in the data [Mintz et al., 2009].

1.2 Cross-sentence Relation Extraction

When dealing with relations involving more than two arguments, the likelihood
that some of the information is distributed in a broader context than a single
sentence increases. A relation mention is cross- or inter-sentential if one would
have to look across the boundaries of a single sentence in order to collect the
complete information about the entities participating in it which is available in
the text.
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Mohamed el-Baradei won the 2005 Nobel Peace Prize on 
Friday for his  efforts to limit the spread of atomic weapons.

initial seed: <Mohamed el-Baradei, Nobel, Peace, 2005>

Gail Galloway Adams (1943- ) won the 1988 Flannery O’Connor 
Short Fiction Prize for her collection The Purchase of Order.
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Figure 1.2: An example of a bootstrapping loop employed in [Xu et al., 2007]
for a relation from the award winning domain with arguments <person, prize

name, prize area, year>.

Cross-sentence relation extraction is an underexplored problem in IE. The most
investigated domain (and associated relation types) for intra-sentential RE has
been news-wire corpora. The news-wire domain is characterized by a redundancy
of the reported facts, increasing the likelihood that a relation mention containing
all of the relevant relation arguments can be found within a single sentence in at
least one document. Going beyond the sentence boundary brings along complexity
and the added benefit of doing it may be difficult to showcase in this situation.
For certain more specialized domains which rely on less-redundant data, however,
focusing on cross-sentence mentions can be of much importance. Data sources
such as patient records, for instance, do not offer the luxury of repeated mentions
of the same relation, but rather may contain a single occurrences of a relation
instance, possibly spread across several sentences. In their work in the medical
domain, Quirk and Poon [2017] report that performing cross-sentence extraction
as opposed to single sentence extraction lead to a doubled yield of unique relations
describing drug–gene interactions.
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While existing labeled corpora for RE do contain inter-sentential relation men-
tions4, there is the need for a large-scale RE corpus devoted to studying this
problem5. The lack of such a data set poses another major challenge for devel-
oping solutions to the problem. Most of the existing works which perform semi-
supervised learning report performance on their own distantly supervised data
sets, which makes comparing them difficult.

Existing cross-sentence relation extraction approaches introduce extensions to tra-
ditional methods which enable the extraction of relations expressed over several
consecutive sentences [Melli et al., 2007; Swampillai and Stevenson, 2011; Quirk
and Poon, 2017; Peng et al., 2017]. A common trend is the construction of a
graph representation of the text span and utilizing a path in this graph to guide
the extraction process, inspired by the shortest path approach used in bootstrap-
ping. Quirk and Poon [2017] present a distant supervision approach targeting the
extraction of a binary relation expressing drug–gene interactions. If two entities of
the correct types co-occur in a window of up to three consecutive sentences and are
known to stand in the target relation according to a knowledge base, this text snip-
pet is selected as a positive training example, while co-occurring entity pairs not
present in the knowledge base and their contexts serve as negative examples. At
the core of their system is a graph-based representation, referred to as a document
graph. The edges of the graph incorporate the dependency parses of the adjacent
sentences. Connections between them are established by linking their root nodes,
adjacent tokens, as well as via discourse relations produced by a discourse parser,
and entity coreference links between anaphora and their antecedents. Features
consisting of paths in the graph connecting the two entities are extracted to train
the relation extraction model. In a subsequent work, Peng et al. [2017] extend this
approach to n-ary relations and utilize a graph long short-term memory (LSTM)
network for modelling the connections in the same underlying document graph.

The main drawback of the proposed approaches for detecting cross-sentence rela-
tion mentions is that they are limited to a fixed context size of several consecutive
sentences. In practice, relation arguments can be spread across arbitrarily large
contexts6. The adoption of this limitation is necessary due to the nature of the

4Swampillai and Stevenson [2010] estimate that 9.4% of the binary relation mentions in the
ACE 2003 corpus [Mitchell et al., 2004] are inter-sentential.

5This has been remedied post completion of the experiments in this thesis by the introduction
of the DocRED corpus [Yao et al., 2019]

6For instance, via entity coreference: the distance between an anaphor and its antecedent can
reach up to 30 sentences in extreme cases [Mitkov, 2002]
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Then, two years ago, he met [Bonny Bakley]1 at a club in Los Angeles. [..]

Born in Morristown, N.J., [Bakley]1 came from a middle-class background.

By [her]1 mid-20s [ she
spouse

]1 wasmarried to Paul Gawron
spouse

, now 51, who worked

as a laborer.

Figure 1.3: Cross-sentence mention of spousal relation with two arguments of
type person from the cockrACE corpus [Krause et al., 2014].

semi-supervised approach utilized for discovering relation instances. Distant su-
pervision relies on the assumption that when entities of specific types co-occur in
close proximity in an unstructured text, they likely participate in a given relation.
The process is error-prone. To get a sense of the amount of error which can be
expected in distantly-supervised data, Riedel et al. [2010] match Freebase relations
against the New York Times (NYT) corpus [Sandhaus, 2008] and Wikipedia. They
estimate that 38% of the sentences containing nationality seed matches, and 35%
of the sentences containing place-of-birth seed matches against the NYT corpus
do not in fact express the seed relation type, as is the case for 20% of the matches
for both seed relation types against Wikipedia. While distant supervision is not
inherently limited to relations expressed within a single sentence, increasing the
allowed context size for matching the seed relation arguments is likely to bring
substantial amounts of additional noise to the already noisy distantly supervised
training data.

Consider the examples of cross-sentence mentions of the spousal relation in Fig-
ures 1.3 and 1.4. In Figure 1.3, the relation is expressed in the last sentence (“mar-
ried”), but one of the relation arguments is only referenced locally. Extracting that
“Paul Gawron” and “she” are spouses would not be valuable for downstream tasks.
Moreover, a distant-supervision approach is likely to completely ignore this rela-
tion mention, as the process is guided by the presence of named entity relation
arguments in the same sentence. Here a noun phrase coreference chain exists which
links the referenced argument to its antecedent, the named entity “Bonny Bakley”,
carrying the full information on who the spouse is. Our investigation of the cross-
sentential relation mentions in the cockrACE corpus revealed that 90.5% of the
mentions contain at least one anaphoric reference to relation arguments realised in
somewhere else in the document. The task of noun phrase Coreference Resolution
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My wife and I were guests at a wedding on the Carnival Legend
location

on

New Years Eve 2003
date

. [..] The wedding took place in the afternoon
time

, be-

fore the ship set sail. Thus, the couple
spouse

was actually married by a justice of

the peace in the state of Florida
location

.

Figure 1.4: Three coreferring mentions of a marriage event from the ACE
2005 corpus [Walker et al., 2006]. Each mention introduces additional relevant

information via its event participants.

(CR), which focuses on assigning mentions of the same entities into equivalence
classes, can enable the extraction of the missing information from arbitrarily large
contexts in such cases.

Krause et al. [2016] propose event coreference as a way of extracting relation-
relevant information on the document level. The task of event extraction (EE)
deals with detecting such mentions and classifying their participants with respect
to the role they play in the event. Event coreference (or linking) is a subsequent
task which focuses on grouping mentions of the same event, similarly to how CR
groups mention of the same entity. By linking mentions of the same event, we
often gain access to additional event participants: Krause et al. [2016] found that
approximately 23% of the event mentions in the ACE 2005 corpus lack arguments
which are present in other mentions of the same event in the respective document.
Consider the example in Figure 1.4. Each of the sentences discusses the same
marriage ceremony. Successfully linking the three event mentions would tell us
the location, date and time of the wedding, information which none of the men-
tions delivers when considered in isolation. Similarly to entity coreference, event
coreference is performed on the document level, and thus no restrictions are placed
on the distance between different mentions of the same event.

In this thesis, we adopt the view that the problem of cross-sentence relation ex-
traction is a composite one. Due to the complexity of this task, it is difficult to
address it via a one-size-fits-all solution. Rather, an analysis on the document
level has to be performed which addresses the two main mechanisms of spreading
relation relevant information: event and entity coreference. Event coreference on
its own is not sufficient for accessing all relation arguments due to the presence
of anaphoric references. Thus, coreference resolution is an integral part of the
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process. Coreference resolution also benefits event coreference, as it can establish
a connection to other mentions of the same event through repeated reference to
their event participants.

The task of event linking assumes event mentions are detected as a prerequisite.
However, event extraction in itself is not a trivial task. It suffers from similar
data sparsity issues as relation extraction, and thus calls for the use of semi-
supervised approaches. In this thesis we focus more closely on this problem. We
propose to address the data limitations via a different semi-supervised algorithm:
self-training. Unlike bootstrapping and distant-supervision, self-training is not
inherently argument-centric and can thus be used to detect mentions of events
regardless of the presence of event arguments in the same sentence.

1.3 Thesis Contributions

This thesis focuses on two of the NLP tasks which are central to the successful
extraction of cross-sentence relation mentions, event extraction and coreference
resolution.

Existing event corpora are limited in size and coverage of event types, which can
be attributed to the domain specificity of the task. These limited resources in
turn impact the performance of supervised event extraction models, and hinder
their portability to new domains. The work described in the first part of the the-
sis demonstrates how the limited available resources can be used to enable the
automatic extraction of additional training examples from unstructured text. We
employ the technique self-training, in which a classifier trained on small amounts
of labeled examples is used to extract additional training examples from unstruc-
tured data. We further propose several ways in which the automatically extracted
examples can be utilized for augmenting the existing labeled data for the task.

Coreference resolution is another step crucial for enabling the extraction of infor-
mation about relation arguments not explicitly stated in the sentence containing
the relation triggers. A known challenge in coreference resolution is the need
for lexical semantic or world knowledge to determine the semantic compatibil-
ity between different mentions of the same entity. Previous works have explored
structured lexical semantic data bases and knowledge bases for the task, to mixed
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success. The second thesis contribution focuses on this issue in coreference resolu-
tion. The presented experiments aim to answer whether word embeddings, which
have been shown to encode certain semantic properties of words, can serve as a
source of relevant information for the task and improve the precision of a CR
model. We propose several ways of utilizing word embeddings in supervised coref-
erence resolution and explore their usefulness in a detailed evaluation and error
analysis.

1.4 Thesis Outline

The structure of the rest of the thesis is as follows:

Chapter 2 presents background in machine learning relevant for the experiments
discussed in the remainder of the thesis. It begins with an introduction of semi-
supervised learning and self-training. It then proceeds with a description of neural
network architectures, focusing on models applicable to sequence labelling tasks.
Both of these topics are of importance to the experiments described in Chapter 4.
The chapter concludes with an overview of word embedding models, also referred
to as distributed word representations. This topic is central to the experiments
described in Chapter 6.

Chapter 3 focuses on the background and related works in event extraction. The
chapter begins with a general introduction of events from a linguistic point of
view, followed by an overview of event corpora. The next sections present the task
of event extraction in greater detail, as well as state-of-the-art supervised event
extraction models. The remainder of the chapter is dedicated to related works
which employ semi-supervised approaches to the task.

Chapter 4 discusses our self-training approach to data augmentation for event ex-
traction. The chapter begins with a more explicit definition of the problem we are
focusing on, followed by a presentation of our baseline event tagger. The proce-
dure for extracting additional training examples as well as the ways of utilizing
these examples in conjunction with the existing training data are outlined next.
The chapter concludes with a report on our evaluation results and error analysis.

Chapter 5 presents the background and related works in coreference resolution.
It begins with a discussion of coreference as a linguistic phenomenon, outlining
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the challenges associated with resolving co-referent mentions. The chapter pro-
ceeds with a presentation of existing coreference corpora. Supervised coreference
resolution and the evaluation practices employed for the task are presented next,
followed by a discussion of commonly employed hand-crafted features. The final
sections state the importance of semantic knowledge for the task, and conclude
with a discussion of why word embeddings are a suitable source of such knowledge.

Chapter 6 discusses the findings of our experiments which explore utilizing word
embedding-based features for supervised coreference resolution. The chapter be-
gins with an introduction of the ways in which we formulate features from word
representations. A discussion of the experimental setup, including the coreference
resolution model and word embedding models, follows. The chapter concludes
with a presentation of the results and a detailed error analysis.

Chapter 7 concludes the thesis with a summary of the main contributions and
future directions.





Chapter 2

Machine Learning Background

2.1 Self-training in Computational Linguistics

The following section describes the semi-supervised machine learning technique
employed in the experiments described in Chapter 4. Section 2.1.1 provides a
brief introduction to semi-supervised learning, followed by a description of the
algorithm in Section 2.1.2, as well as some examples of its application in NLP.

2.1.1 Semi-supervised Learning

Machine learning algorithms can be broadly categorized as supervised, unsuper-
vised, and semi-supervised, with respect to the type of data they utilise when
learning to perform a specific task.

Supervised learning algorithms make use of labeled training examples, which con-
sists of pairs of inputs and target outputs or labels. During training, these algo-
rithms learn a mapping from inputs to outputs based on the properties of the data,
with the ultimate goal of being able to predict the labels for previously unseen
inputs at test time.

Supervised machine learning tasks include classification and regression. In the
former, the output space consists of a finite set of labels or classes. For instance,
assigning a “positive” or “negative” polarity label to a text snippet when performing
sentiment analysis is a form of classification. Regression tasks, on the other hand,
involve the prediction of continuous output values.

13
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Let X = {x1, .., xn} denote the input data consisting of n data points from a multi-
dimensional space, also known as the feature vectors, and Y = {y1, .., yn} denote
their corresponding output labels. At training time, the model learns to predict the
outputs associated with certain inputs in the training set Strain = {Xtrain, Ytrain},
by minimising some task-specific error measure Etrain. An example error measure
is the mean squared error (2.1), suitable for a regression task. It computes the
average squared difference between each predicted output value ŷ and the actual
output y.

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (2.1)

The performance of the model on unseen examples is evaluated on a disjoint test set
Stest, whereXtest and Ytest are drawn from the same input–output pair distribution.
The ability of the model to transfer performance from the training set to the test
set is referred to as generalization [Graves, 2012], and is measured by computing
the error measure Etest. Often an additional disjoint data set, Sdev, referred to as
validation or development set, is used for the optimization of some of the model
parameters during training, or to monitor the model for overfitting.

Overfitting occurs when the model has learned the training data so well, that is has
memorised it rather than learned to generalize from it. Every variation or noise
is construed as part of the underlying structure of the data and becomes part of
the model. Thus, overfitted models perform perfectly at training time (Etrain is
very low), but fail with examples different than those present in the training set
(Etest is high). On the opposite scale, underfitting can occur when the model is not
able to adequately capture the underlying structure of the data due to insufficient
parameters to model it, or insufficient training iterations to correctly adjust all
model parameters. Such models can be seen as under-trained, as they do not
manage to reach a sufficiently low Etrain [Goodfellow et al., 2016].

The acquisition of labeled or gold-standard data for a learning problem requires
expert knowledge. As this process is labor intensive and costly, such corpora are
usually limited in size. Thus, the performance of supervised algorithms is often
impacted by data sparsity issues.

In unsupervised learning tasks, the algorithms aim to build mathematical models
from data which contains only inputs, but has no available target output labels.
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Some examples of unsupervised learning include clustering or grouping of input
data points according to some commonalities they exhibit. Clustering can be seen
as the unsupervised equivalent of classification [Abney, 2007], however with several
crucial differences. Firstly, the optimal number of groupings is often not known in
advance, but is rather determined by the properties of the data itself, which is not
the case for classification, where the number of desired classes are fixed. Secondly,
even though clustering algorithms are able to create groupings of similar data
points, they are not able to assign labels to them. Unsupervised learning is thus
not directly applicable to solving the specific tasks of supervised learning guided
by expert-made labeled data, but draws its strength from the ability to harness
large quantities data available in an unannotated form. In addition to clustering,
it has been utilised for discovering properties of data, feature engineering, and
modelling probability densities of input data [Abney, 2007].

Semi-supervised algorithms are hybrid approaches aimed at overcoming the data
sparsity issues faced by supervised methods with the help of unsupervised tech-
niques. They learn from a mixture of labelled and unlabelled data. Typically
task-specific labeled data is used to provide the characterization of the desired
target output, while large quantities of unannotated data, which is cheaper to
obtain, is used to provide additional information for improving the quality of the
model.

Examples of semi-supervised learning include self-training and co-training, dis-
cussed in more detail in Section 2.1.2, and distant supervision, discussed in Sec-
tion 1.1. All of the these approaches aim at automatically generating a labeled
data set to be used later in a supervised learning setting, standalone or in addition
to gold-standard data, if such is available.

2.1.2 Self-training

Self-training is a form of semi-supervised learning which leverages a model’s own
predictions to obtain new labeled examples for training. Abney [2007] provides
the following general formulation of the algorithm:
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Algorithm 1 Self-training
Given a set of labeled training examples L, and a set of unlabeled
examples U

1: procedure selftrain(L, U)
2: c ←− train(L)
3: while stopping criterion is not met do
4: L ←− L + select(label(U , c))
5: c ←− train(L)
6: end while

7: end procedure

The process relies on the availability of some labeled data set for the task of inter-
est, L, which initially serves as training data for the model c. The resulting model
is used to provide predictions on an unlabeled data set U . The most confident pre-
dictions are selected to become part of an extended labeled data set for re-training
the model. This process can be repeated several times until a predefined stopping
criterion is met.

The predictions of the model, c(x), are usually in the form of a probability distri-
bution over all possible output classes for each unlabeled example x in U , rather
than hard labels. The probability of the most likely output label ŷ can be seen
as a measure of the confidence of the model’s decision, and be used to determine
whether the candidate is suitable for extending the labeled data set. In other
words, if P (ŷ|x) = max(c(x)) is higher than a predetermined confidence threshold
Θ, x can be selected for retraining with a pseudo-label ŷ = arg max c(x) [Ruder
and Plank, 2018].

Another possibility for the confidence measure is the ratio:

P (y1|x)

P (y2|x)
(2.2)

where y1 is the most probable label, and y2 is the second most probable label
according to the model prediction [Abney, 2007]. This measure targets excluding
cases where the classifier is hesitant between two predictions with close probability.
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The data extraction process can be run for a predefined number of iterations, or
stopped when the classifier and the extracted data set do not change anymore.
Alternatively, a gold-standard validation set can be utilised to evaluate the perfor-
mance of the classifier at each step and stop at an optimal configuration. However,
running the algorithm in multiple iterations has the disadvantage that errors in
the selection process can propagate and be amplified in subsequent iterations.

Abney [2007] presents two additional improvements to the selection process, name-
ly throttling and balancing. Throttling refers to limiting the number of instances
to be added to the labeled data at each iteration. Instead of accepting all instances
whose confidence exceeds the threshold Θ, only the top k examples are selected,
thus preventing a large influx of automatically labeled instances from overwhelm-
ing the influence of the existing labeled data. Balancing, on the other hand, makes
sure that the number of new instances per class remains equal. This is important
as the classifier’s most confident decisions may be in favor of one class over the
others, which, overtime can result in a more and more unbalanced data set as the
iterations of the algorithm progress.

One of the earliest adaptations of the self-training in computational linguistics was
by Yarowsky [1995], who focused on the task of word sense disambiguation. Self-
training was used as a bootstrapping technique, starting off with a small amount
of hand-picked training examples representative for the different senses of a poly-
semous word. The “one sense per discorse” property stating that the sense of word
is highly consistent within any given document, was employed to augment and
filter the list of candidates during selection, in addition to a confidence threshold.

Self-training has since been applied to a number of natural language processing
tasks with varying degrees of success.

Several works have investigated the use of self-training for improving constituent
parsing and for parser adaptation [McClosky et al., 2006b,a; Reichart and Rap-
poport, 2007].

McClosky et al. [2006a] utilise a two-phase parser-reranker system trained on the
Wall Street Journal (WSJ) corpus to extract additional training examples from
unannotated news articles. In their experiments they re-train the parser (but not
the re-ranker) once, rather than in several iterations. They utilise a weighting
scheme to give more importance to the original labeled data than the automati-
cally extracted examples during retraining, as well as a throttling threshold when
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selecting the amount of new examples. The best self-trained model achieves F-
score of 92.1% on the WSJ corpus, with an absolute improvement of 1.1% over
their baseline. In [McClosky et al., 2006b], the same approach is applied for parser
adaptation, which is aimed at adapting a parser trained on data from a specific
domain to another domain for which no labeled data is available. They achieve an
error reduction of 28% on the Brown corpus test set using the same parser-reranker
trained on WSJ.

Reichart and Rappoport [2007] also demonstrate the effectiveness of self-training
for parser adaptation, but in a setup where less data is initially available for train-
ing, and without the use of a re-ranker. Besides the effect of the size of the initial
training data (referred to as seed), they investigate the effect of the domains of the
seed data and the unlabelled corpus used during self-training (referred to as self-
training data). Rather than employing a confidence filter, the whole automatically
annotated self-training corpus is combined with the seed for retraining, which is
performed only once. When the seed data domain matches that of the test set
(both WSJ), their model achieves large gains in both precision and recall over the
baseline in all low-data conditions. If the self-training data is also in-domain, the
gain in performance is slightly bigger. For the out-of-domain scenarios (WSJ as
seed, Brown as test), the improvements in performance were in mainly in recall at
the expense of precision, regardless of the domain of the self-training data.

Clark et al. [2003] report limited success of self-training for bootstrapping a Part
Of Speech (POS) tagger. Another work in domain adaptation, [van der Goot
et al., 2017], attempts to adapt a general purpose POS tagger to the domain of
Twitter text, without performing any additional text normalization in the process.
This is a challenging task, as such text contains a high number of misspellings and
abbreviations which do not appear in standard corpora for POS tagging. The
addition of new automatically-labeled examples via self-training did not show any
consistent improvement.

Samad Zadeh Kaljahi [2010] employs self-training for the task of Semantic Role
Labeling (SRL). He explores the effects of the parameters balancing and pre-
selection. The former could be useful as the task is a multi-class classification
with an unbalanced distribution of classes. The latter can be applied together
with a modification of the self-training algorithm in which a subset (pool) of the
unlabeled data is used at each iteration rather than the whole corpus [Abney,
2007]. Pre-selection aims to include those unlabeled instances into the pool which
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can potentially be easier for the classifier to label correctly. Samad Zadeh Kal-
jahi [2010] selects examples based on a measure of simplicity of the sentence.
The experiments reveal the usefulness of the balancing setting, which consistently
improves over the baselines in different data conditions on both in-domain and
out-of-domain evaluation sets. Pre-selection, on the other hand, only achieves
marginal statistically insignificant improvements during evaluation.

Co-training [Blum and Mitchell, 1998] is another semi-supervised algorithm closely
related to self-training. Its goal is similarly the expansion of an existing labeled
data set via model predictions. Co-training, however, leverages two independent
views of the labeled data in the process. For instance, in [Blum and Mitchell,
1998], where the task of interest is classification of web pages, the two views of
the data are the words occurring on a page, and the words occurring in hyperlinks
that point to that page. Two separate classifiers are trained on each view of the
data, and then each model’s predictions are used to enlarge the training set of
the other. This strategy has the advantage that each classifier’s predictions could
potentially introduce valuable (and variable) new examples for training.

Algorithm 2 Co-training
Given a set of labeled training examples L, and a set of unlabeled
examples U

1: procedure cotrain(L, U)
2: while stopping criterion is not met do
3: c1 ←− train(view1(L))
4: c2 ←− train(view2(L))
5: L ←− L + select(label(U , c1)) +
6: select(label(U , c2))
7: end while

8: end procedure

Self-training can be seen as a special case of co-training with one classifier. Co-
training can be further extended to the multiple classifier scenario. This allows for
the use of voting strategies between the classifiers’ predictions during the selection
of candidates for re-training [Zhou and Li, 2005; Søgaard, 2010; Ruder and Plank,
2018].
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The availability of different complementary descriptions of the data of interest is
indispensable for the success of co-training. These can be induced by the use of
several classifiers employing disjoint sets of features. For certain NLP tasks, how-
ever, such natural feature splits might be hard to determine. Ng and Cardie [2003]
compare single-view (self-training) and multi-view (co-training) algorithms for the
task of coreference resolution. In their experiments, self-training outperformed
co-training under various parameter settings and was less sensitive to parameter
changes.

Another approach which has been utilised to obtain different views of the data is
training the same classifier several times on different sub-samples of the original
labeled data [Zhou and Li, 2005; Ruder and Plank, 2018], if the initial seed is large
enough to allow for sub-sampling. This strategy enables the voting between the
classifiers’ predictions, but it it unclear if this constitutes a real multi-view of the
data as was intended in classical co-training. In fact, Ng and Cardie [2003] refer
to this strategy as self-training with bagging.

2.2 Neural Sequence Labelling

This section is intended to provide some background in neural machine learning,
necessary for describing the experiments in Chapter 4 and Chapter 6.

2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the way
in which biological brains process information. Their building blocks are the ar-
tificial neurons, or the nodes of the network, which are connected to each other
via weighted edges. Information flows through the ANN similarly to how signals
are transmitted via the synapses in the brain: each neuron receives and processes
some input, and in turn passes its output to the neurons connected to it via out-
going edges. The weights of the edges, adjusted during the training of the model,
represent the strength of the connections between the neurons. For instance, low
weights correspond to weak synapses which would carry little of the signal over to
the next neuron. In practice, the signal transmitted through the network is some
real-valued representation of the input data.
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An alternative way to view an ANN is as a complex mathematical function f ,
which maps a set of input values x to a set of output values y such that y =

f(x;W ), where the values of the parameters W are chosen to result in the best
function approximation [Goodfellow et al., 2016]. The function f is formed by
composing many simpler functions, each of which provides its own representation
of the input. Thus ANNs are able to build complex representations of the data in
terms of simpler ones.

There exist a multitude of neural architectures which differ in terms of the ar-
rangement of their neurons and the connections between them. One classification
is with respect to cyclic connections: ANNs which do not allow for cycles are
referred to as feed-forward neural networks (FFNN), while those which do are
known as recurrent neural networks (RNN). The architecture employed in the ex-
periments described in Chapter 4 is an example of the latter, and is presented in
more detail in Section 2.2.4. We begin with a discussion of a simpler and widely
used feed-forward architecture, the multi-layer perceptron (MLP), as a way to pro-
vide a formal introduction to neural networks as well as the background necessary
for the discussion of the more complex architectures which follows.

2.2.2 Feed-forward Neural Networks

Figure 2.1 presents an example of a feed-forward network referred to as the multi-
layer perceptron (MLP). The neurons of a MLP are arranged in layers, with con-
nections transmitting the signal starting from the input layer, through one or more
hidden layers, and finally to the output layer.

MLPs are said to be fully-connected, as each neuron in a given layer is connected
to every neuron in the previous layer of the network. A neuron receives a linear
combination of the outputs of the previous layer’s nodes and the weights of their
connecting edges W , including an optional bias parameter b. This value serves as
input to a non-linear function φ, referred to as the activation or squashing1 func-
tion. Such functions enable the network to learn complex, non-linear classification
boundaries. ANNs are typically composed of multiple non-linear transformations
of the input x, contributing to their great expressive power.

1they squash an infinite input domain into a finite output range [Graves, 2012]
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Equation (2.3) summarizes the computation performed at each layer of a FFNN,
with l ∈ [1..L] denoting the index of the network layer, and · denoting the dot
product operation.

h(l) = φ(l)
(
W (l) · h(l−1) + b(l)

)
(2.3)

In the running example (Figure 2.1), the input layer h(0) = x is the vector repre-
sentation of the input data, h(1) denotes the single hidden layer of the network,
h(2) = ŷ is the output layer, and the bias parameters are omitted for simplicity.
Popular choices for the activation function at the hidden layer, φ(1), include tanh,
sigmoid, and relu.

The configuration of the network in terms of number of neurons and choice of
activation function at the output layer is determined by the task in question. A
convention for a classification task with K>2 classes is to have K output neurons
and use a softmax (Equation (2.4)) function to obtain a probability distribution
over the possible output labels [Graves, 2012]. On the other hand, binary classifi-
cation can be carried out with a single neuron in the output layer and a sigmoid
function, whose output can be interpreted as the probability of predicting one of
the classes.

softmax(z)i =
ezi
n∑
j=1

ezj
(2.4)

In the following lines we will focus more closely on the data representation and
computations performed when a MLP is applied to a multi-class classification
scenario.

Let the training set Strain consist of input–output pairs of vectors (x, y). Each
vector x constitutes some multi-dimensional real-valued representations of the in-
put. In a multi-class classification problem, y takes the form of a one-hot vector
representation of the output labels, where class k is encoded as a vector of size
K containing “1” in position k, and “0” everywhere else. Such a representation
not only serves the purpose of representing the categorical class variables, but is
convenient during the optimization of the network, as it can be interpreted as a
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Figure 2.1: An example feed-forward neural network with one hidden layer.
The color of the edges corresponds to the magnitudes of their associated weights.
To the right are popular choices for the activation function of the hidden layer.

probability distribution over the possible output labels. Furthermore, we will use
ŷ to denote the output vector predicted by the network.

The network depicted in Figure 2.1 is suitable for a classification task with K = 4

classes with φ(2) = softmax. At the output layer, the probability of class k as
predicted by the model corresponds to the kth output neuron and is computed via
Equation (2.5).

ŷk =
eW

(2)
k ·h

(1)

K∑
k′=1

eW
(2)

k′ ·h
(1)

(2.5)

The class assigned the highest probability is the final output of the network.

k̂ = arg max
k

ŷ (2.6)

The flow of information through the network described so far is referred to as the
forward pass of the network, and is performed to obtain the model prediction at
test and train time. The backward pass, on the other hand, is performed only
during training when the parameters of the network are being adjusted as follows.

When the predictions of a neural network are in the form of a probability distri-
bution over the possible output classes, the network parameters can be optimized
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with the use of the principle of maximum likelihood [Goodfellow et al., 2016]. The
goal of maximum likelihood estimation is to discover the parameter values W that
give the distribution which maximizes the probability of observing the training
data under the model.

The objective during training a neural network is to minimize a cost function by
adjusting the parameters of the model W . The cost function J can be defined
as the negative log-likelihood, or the cross-entropy between the true distribution
as defined by the training data and the predicted model distribution. Minimis-
ing the negative log-likelihood is equivalent to maximising the likelihood of the
training data, while using the logarithm function ensures numerical stability of
the computation.

Equation (2.7) summarizes the computation of the cost function for a training set
with K output labels, where ŷ contains the predicted probability distribution, and
y contains the desired distribution.

J(W ) =−
∑

(x,y)∈S

K∑
k=1

yk × log
(
ŷk

)
(2.7)

Minimizing the cost function can be achieved through the use of the gradient
descent algorithm, which finds the derivative of the cost function with respect
to each of the network parameters, and then adjusts the weights in the direction
of the negative slope. Back propagation is a technique which enables the efficient
calculation of the gradient descent via repeated application of chain rule for partial
derivatives [Graves, 2012].

MLPs have been successfully applied to a multitude of natural language processing
problems. Furthermore, the availability of good quality distributed word represen-
tations has rendered complex feature engineering obsolete for many tasks. Instead,
attention has been redirected towards the use of more complex neural models, bet-
ter adept at handling the specificities of natural language.

One drawback of FFNNs with respect to their application to NLP tasks is that
their predictions only depend on the current input to the network, but cannot be
conditioned on any past or future inputs. When dealing with natural language this
can be of a disadvantage due to its inherent sequential nature – tokens are produced
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Figure 2.2: An example of a recurrent neural network with one hidden layer.
To the left, a RNN in compact form, with a recurrent connection at the hidden
layer. To the right, the unfolded computational graph of the same network over

several time steps.

as parts of sentences, and sentences – as parts of larger discourse sequences, rather
than in isolation. While for some NLP tasks it might be sufficient to consider
n consecutive tokens as a way to introduce more contextual information when
employing a FFNN, a fixed size window is not always easy to determine or suitable.

In the following sections we will turn to neural architectures suitable for dealing
with sequential data.

2.2.3 Recurrent Neural Networks

Figure 2.2 provides an example of a Recurrent Neural Network (RNN) architecture
with a single hidden layer. The depiction to the left illustrates the cyclic connection
present in the network, namely an outgoing edge from the hidden layer pointing
back to itself. The one to the right presents the computational graph of the same
network when unfolded over a sequence of inputs.

The forward pass of an RNN is similar to that of an MLP with a single hidden
layer, except that the hidden layer ht is computed from the output of the hidden
layer from one step back, ht−1, in addition to the current external input vector xt
(Equation (2.8)).

ht = φ
(
U · ht−1 +W · xt

)
(2.8)

At each step the network may use the current hidden layer activations ht to produce
an output ŷ via Equation (2.9). For instance, in POS tagging each vector x would
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correspond to a real-valued representation of a token in the sentence, and each
vector ŷ would be a probability distribution over a set of POS tags. In other
tasks, however, it might be beneficial for the entire input sequence to be read
before a classification decision is made based on the final hidden layer state, hn.

ŷt = softmax
(
V · ht

)
(2.9)

There are two key distinctions between RNNs and FFNNs, namely the concept of
internal memory and parameter sharing.

RNNs are said to have an internal state or memory. The recurrence in the network
creates a mapping of an arbitrary length sequence to a fixed length vector ht, which
can be seen as a lossy summary of the past input up to time step t [Goodfellow
et al., 2016]. Thus, the predictions of the network are based on a history of previous
inputs preserved in the network’s hidden state. In comparison, an MLP can base
its decision only on the current input at any given time.

RNNs share parameters across time steps. The same parameters matrices W ,
U , and V , are involved when computing the network hidden state and output
prediction at any given time step. The model always has the same input size and
is not limited to sequences of specific lengths seen during training. The parameters
can be thought of as defining the transitions of the network from one state to
the next [Graves, 2012]. In addition, parameter sharing enables the network to
generalize better from fewer training examples [Goodfellow et al., 2016].

Training an RNN is performed via a form of back-propagation referred to as Back-
Propagation Through Time (BPTT). Similarly to the standard version of the
algorithm, BPTT consists of repeated applications of the chain rule for partial
derivatives. Due to the presence of a recurrent connection, however, the output
produced at time step t depends on the whole sequence of hidden activations and
inputs up to this point. The unfolded computational graph is utilised as an explicit
description of which computations to perform when adjusting each of the network
parameters.

For many tasks it could be beneficial to have access to future, as well as past
contexts. When dealing with natural text, for instance, the full input sequence is
usually available to the classifier in advance and a look-ahead could often prove
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Figure 2.3: An example of a Bi-directional Recurrent Neural Network. The
forward and backward RNN layer are denoted as hf and hb, respectively.

useful in guiding the classifier’s prediction. Bi-directional Recurrent Neural Net-
works (Bi-RNNs) are an extension to standard RNNs which take advantage of the
predictions of two recurrent layers: one which processes the input from beginning
to end, and another which goes through it in reverse (Figure 2.3). The hidden
layer activations of each layer are then concatenated (Equation (2.10)) to provide
a symmetrical past and future context to the output layer of the network.

hbi-rnn
t = [hft , h

b
t ] (2.10)

As discussed in the previous sections, the biggest advantage of RNNs over FFNNs
is their ability to utilise contextual information when mapping between input and
output sequences. In practice, however, the context stored in the network internal
state is limited. The network’s recurrent connections can result in very deep com-
putational graphs for long input sequences, which renders them susceptible to the
issues of vanishing or exploding gradient. The gradient refers to the magnitude
and direction in which each network weight is updated during training. The com-
putation of the gradient may involve repeated multiplication of very small or large
values, thus leading to exponential growth or decay in its value as the distance
between the weight being updated and the target output grows. When dealing
with long range dependencies, the gradient becomes more likely to reach values
very close to zero, thus preventing the network from further weight change and
consequently learning, or to blow up, making learning unstable [Goodfellow et al.,
2016]. The neural architecture discussed in Section 2.2.4 has been proposed as a
way to counter these effects.
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2.2.4 Long Short-term Memory Networks

Long short-term memory networks (LSTM) [Hochreiter and Schmidhuber, 1997]
are a type of RNN architectures which aim to explicitly control for the information
flow from and into the network’s memory via a system of gating units.

The LSTM layer is composed of an LSTM unit which contains an internal recur-
rent memory cell C, in addition to the outer unit recurrence present in standard
RNNs [Goodfellow et al., 2016]. The memory cell is intended to model the long-
term memory of the network. At each time step, the gates of the unit decide
which information to store, remove, or access from the cell. Figure 2.4 provides a
schematic representation of the internal structure of an LSTM unit over a sequence
of time steps.

The forward pass of an LSTM is similar to that of an RNN, with Equation (2.8)
replaced by the computations summarised below:
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ft = σ(U f · ht−1 +W f · xt) (2.11)

it = σ(U i · ht−1 +W i · xt) (2.12)

C ′t = tanh(U c · ht−1 +W c · xt) (2.13)

Ct = ft � Ct−1 + it � C ′t (2.14)

ot = σ(U o · ht−1 +W o · xt) (2.15)

ht = ot � tanh(Ct) (2.16)

A typical LSTM unit contains a forget gate, an input gate, and an output gate,
each of which has a similar basic structure. The behaviour of the gates is controlled
by several parameters adjusted during training. Each gate consists of a layer with
sigmoid activation σ, taking as input the hidden activation from the previous time
step, ht−1, and the current input, xt.

The forget gate, ft, is intended to learn to delete information from the memory cell
via element-wise multiplication (�) with the sigmoid activation, which produces
values ∈ (0, 1). Some of the information stored in the cell may thus be “forgotten”
when multiplied by values close 0, or retained otherwise. The input gate it is
similar to the forget gate, but is intended to learn which new information from a
candidate cell C ′ to add to the cell state. The updated cell state is obtained via
Equation (2.14). Finally, the output gate, ot, is intended to control for the extend
to which certain information from the memory state is involved in computing the
unit’s hidden activation, ht. The final hidden activation at time step t is obtained
via Equation (2.16).

Similarly to the RNN architecture described in Section 2.2.3, the LSTM layer can
be combined with an output layer to produce a prediction at each time step, or
after reading the complete input sequence (Equation (2.9)). Furthermore, a Bi-
directional Long Short-Term Memory network (Bi-LSTM) can be defined to take
advantage of future, as well as past context (Figure 2.3).

Training an RNN is performed with the BPTT algorithm mentioned in Sec-
tion 2.2.3. LSTM networks have been shown to be better adept at learning
long-range dependencies than vanilla RNNs [Goodfellow et al., 2016] and are less
susceptible to the vanishing gradient problem [Graves, 2012].
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2.3 Distributed Word Representations

This section offers an overview of word embedding models. Word embeddings have
become a standard way of representing natural language text in machine and deep
learning models. In this work they are utilized in two ways. The Bi-LSTM event
detection model discussed in Chapter 4 relies on contextualized word embeddings
(see Section 2.3.3) for its input representation. They are central to the experiments
described in Chapter 6, which investigate whether classic word embedding models
such as word2vec and glove (Section 2.3.2) can serve as a source of semantic
knowledge for the task of coreference resolution.

2.3.1 Definition

Word embeddings are real-valued vector representations of words. While the term
is typically used to denote word representations obtained as a byproduct of training
a probabilistic language model [Bengio et al., 2003; Collobert and Weston, 2008;
Mikolov et al., 2013a,b], a long line of work in distributional semantics has been
devoted to the construction of vector representations from word co-occurrence
statistics [Erk, 2012; Turney and Pantel, 2010]. The former set of methods are
also referred to as predictive, and the latter as count-based [Baroni et al., 2014].
What both of these approaches have in common is that they aim to approximate
a word’s semantics from its use in context. The idea can be summarized by
the distributional hypothesis [Harris, 1954], stating that words which occur in
similar contexts tend to have similar meaning. The relationship between a word’s
meaning and its distributional characteristics could thus be exploited in order to
approximate the former from the latter. Moreover, the availability of large volumes
of written text makes it possible to generalize over a multitude of contexts per
word, without the need for costly manual annotation.

In this work, the focus lies on predictive models, which formulate the relationship
between a word and its context as a prediction task with a language modelling
objective. We distinguish between non-contextualized approaches which assign a
single fixed word representation per token from the vocabulary (Section 2.3.2), and
those which assign separate context-dependent representations to each instance of
a word (Section 2.3.3).
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Figure 2.5: Continuous bag-of-words (CBOW) and skip-gram word2vec archi-
tectures [Mikolov et al., 2013a].

2.3.2 Non-contextualized Word Embeddings

One of the first predictive approaches proposed by Bengio et al. [2003] lays the
foundation for the majority of the subsequent methods for learning distributed
word representations [Collobert and Weston, 2008; Mikolov et al., 2013b,a]. Bengio
et al. [2003] employ a single-layer FFNN n-gram language model. An n-gram
language model breaks down the computation of the probability of a sequence
of tokens, P (w1, .., wn), into the product of the conditional probability of each
token given its immediate preceding context of size n, P (wt|wt−n+1, ..wt−1). At
any given time step, the model aims to predict the most likely continuation of
the n-gram sequence. Context words are fed into the network in the form of one-
hot-vectors and projected to the hidden layer with matrix W , followed by a non-
linear activation. In the output layer, a softmax is used to estimate a probability
distribution over all tokens in the vocabulary, from which the most likely target
word is predicted. The rows in the learned weight matrix W correspond to the
word embeddings of the tokens in the vocabulary.

The word2vec model [Mikolov et al., 2013a,b] comes in two flavors which differ in
the formulation of their language modelling training task, namely continuous bag
of words (CBOW) and skip-gram (Figure 2.5). CBOW’s training objective more
closely resembles that of previous work, but allows the model to simultaneously
consider both past and future contexts when predicting a word in the sequence.
The context of token wt is defined as a symmetrical window of c tokens preceding
and following the target word, wt−c..wt−1, wt+1..wt+c. The training objective is to



2. Machine Learning Background 32

maximize the average conditional log probability of each word given its context,
as summarized in Equation (2.17).

J =
1

T

T∑
t

logP (wt|wt−c..wt−1, wt+1..wt+c) (2.17)

The skip-gram version of the model focuses on the reversed scenario where the
target word is used to predict the tokens from its context. The model aims to
maximize the sum of the log probability of each context word given the target
word, averaged over all words in the training data (Equation (2.18)).

J =
1

T

T∑
t

∑
−c≤j≤c
j 6=0

logP (wt+j|wt) (2.18)

A key to the success of word2vec is its ability to efficiently leverage large amounts
of training data. This is accomplished via several modifications aimed at reducing
the complexity of training a FFNN language model similar to the one employed
in [Bengio et al., 2003]. For instance, the non-linearity of the hidden network
layer is omitted, sacrificing some of the expressiveness of the model in favor of
boosting its efficiency [Mikolov et al., 2013a]. The main computational bottleneck
stems from the use of the softmax function at the output layer [Bengio et al.,
2003]. At each training step, the softmax computes a probability distribution over
all tokens in the vocabulary. When dealing with a large corpus, the vocabulary
size can reach billions, rendering this operation extremely expensive. Mikolov
et al. [2013a,b] propose two alternatives for circumventing the use of the softmax,
namely hierarchical softmax and negative sampling.

Hierarchical softmax is a technique for approximating the softmax operation. The
network output is organised into a binary tree, with leaf nodes corresponding to
the tokens in the vocabulary. Rather than predicting a probability distribution
over all possible outputs, the network performs a number of binary classifications
which predicts a path from the root to the leaf of the tree corresponding to the
desired output. A good choice for a binary tree structure is the Huffman tree,
where shorter paths are assigned to more frequent tokens, and vice versa. The
probability of a certain prediction can be reconstructed via the sigmoid outputs
produced while traversing the path, but is not necessary for training the model.
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Negative sampling is a slight reformulation of the original objective of the model.
Rather than predicting an output word based on a given input word, the model
predicts whether a pair of words are co-occurring or not. For each pair drawn
from the corpus, a set of k negative examples are randomly sampled by selecting
alternative tokens from the vocabulary to serve as context words. Thus, the model
performs k+1 logistic regressions at each training iteration.

Mikolov et al. [2013b] introduce two further improvements to the word2vec models,
namely subsampling and embedding of phrases. Subsampling addresses the word
frequency imbalance in the training data. As highly frequent tokens such as deter-
miners and prepositions co-occur with most other words, they do not contribute
much valuable information to their word embeddings. Discarding very frequent
words improves training speed and the quality of the word representations of less
frequent words. The other modification of the model is aimed at improving the
embeddings of multiword expressions. A simple data-driven approach is used to
identify such expressions (e.g., New York) so that they can be treated as single
units during training, accounting for their non-compositional meaning.

Levy and Goldberg [2014] propose an extension of the skip-gram word2vec model
which utilizes non-linear contexts. Instead of including the words immediately
preceding or following the target word in a window of a predefined size, the context
is defined by following a path in the dependency parse tree from the target word.
By picking out only the head and dependent tokens, this approach allows for the
inclusion of relevant words which are further away from the target word and might
have been otherwise missed by the linear context, as well as for the exclusion of
less-relevant but closely situated tokens.

Levy and Goldberg [2014] argue that the resulting word representations encode
different semantic information, exhibiting less-topical and more functional simi-
larity of a co-hyponym nature. For example, the top 5 most similar words to
“Florida” according to the original model were counties and cities within the area,
while the syntactic context provided other state names. Levy and Goldberg [2014]
summarize the distinction as words which “associate with the target word” and
words which “behave like the target word”. This tendency is further demonstrated
in a quantitative evaluation on Agirre et al. [2009]’s split of the WordSim353 data
set [Finkelstein et al., 2001], which differentiates between word relatedness (topical
similarity), and similarity (functional similarity). This property of the syntactic
word embeddings can be of interest for tasks such as named entity recognition and
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coreference resolution, where such information is usually provided via fixed lists
of entity names [Daumé III and Marcu, 2005].

Pennington et al. [2014] propose glove, or global vectors, an alternative approach
for obtaining word representations which brings together ideas from count-based
and predictive models. Similarly to word2vec, glove predicts the embedding of
a given word by observing words from its local context. However, rather than
focusing on a single word–context pair at a time during training, glove operates
on a word-word co-occurrence matrix, which holds a global view of all of the
contexts a given word has been observed in.

Let XV×V be a co-occurrence matrix where Xij contains the number of times a
target word i was observed together with a context word j, and V denotes the
vocabulary size. A word’s context can be obtained by employing a symmetrical
or asymmetrical sliding window of a fixed size over the corpus. The weight with
which a context word contributes to the count stored in Xij is determined by its
distance from the target word, such that a distance of d words contributes a weight
of 1/d.

The probability of a word co-occurring with a context word is maximized by per-
forming a log-bilinear regression with a weighted least-squares objective function
(Equation (2.19)). The model aims to obtain word and context vectors wi and w̃j
such that the sum of their dot product and the bias terms bi and bj equals to the
logarithm of the co-occurrence counts for that pair, Xij. The weighting function f
(Equation (2.20)) is intended to minimize the effect of very infrequently occurring
noisy contexts, as well as very frequent co-occurrences such as those involving stop
words.

J(W, W̃ ) =
V∑

i,j=1

f(Xij)(w
T
i · w̃j + bi + bj − logXij)

2 (2.19)

f(x) =

(x/xmax)
α if x < xmax

1 otherwise
(2.20)

The training process results in two sets of word embeddings, W and W̃ , which
in the case of a symmetric context are roughly equivalent, save for their initial
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random initialization. Pennington et al. [2014] propose to use the sum of the two
matrices to obtain the final vector representation of each token.

A shortcoming of the word representation methods discussed so far is their inabil-
ity to adequately represent out-of-vocabulary words in downstream tasks. One
commonly used heuristic is treating low-frequency words in the training data as
unknown and replacing them with a reserved token (UNK) in order to obtain a
default embedding for such cases. This strategy is less than ideal, as it assigns the
same representation to unrelated low-frequency words. It is especially problematic
for languages with rich morphology which have very large vocabularies and thus
many word forms may not be observed during training.

Bojanowski et al. [2017] propose fasttext, an extension of the skip-gram word2vec
model which enriches word representations with sub-word information, making the
model better adept at handling out-of-vocabulary words. The proposed strategy
assigns word representations to character n-grams, in addition to complete words.
Words are broken down into character n-grams, with special symbols marking their
beginning and end. During training, a word is used to predict each of its context
words in the same way as in the original skip-gram model with negative sampling,
but the representation of the word is the sum of each of its constituent character n-
grams. Summing over the resulting character embeddings can be performed in an
analogous way post training to generate word representations for out-of-vocabulary
words.

2.3.3 Contextualized Word Embeddings

Classic word embedding approaches such as word2vec and glove provide a single
fixed representation for each token in the vocabulary, which offers a conflated view
of all contexts in which the token was observed. When the token in question is
polysemous or a homonym, however, the resulting embedding can be thought of
as representing the average or predominant sense of that token found in the data
set. This is undesirable as it can lead to imprecise representations built from
unrelated word contexts. For example, the context in which “crane” would be
observed would vary drastically when the word is used to denote a type of bird
and when it is referring to an industrial machine used for lifting. Furthermore, the
representations of unrelated words (e.g., “trap” and “computer”) which co-occur
frequently with an ambiguous word (“mouse”) would be pulled towards each other
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in the semantic space [Camacho-Collados and Pilehvar, 2018]. All of this can in
turn negatively impact the performance of downstream applications relying on
semantic information.

A number of works have attempted to tackle this issue by leveraging word sense in-
formation. Such representations, referred to as sense embeddings, assign a separate
embedding to the different senses of each word. Unsupervised methods perform
clustering of word contexts to induce word senses [Van de Cruys et al., 2011; Liu
et al., 2015]. Multilingual data can also be exploited to determine the semantic
classes of words from their translations in another language [Šuster et al., 2016].
Existing knowledge resources such as WordNet [Miller, 1995] can also be leveraged
to obtain the sense inventory2. A common shortfall of these approaches is the need
to perform an additional word sense induction or disambiguation step in order to
use the obtained sense embeddings in a downstream task.

More recently, another class of methods for obtaining word representations dubbed
contextualised word embeddings has gained popularity and has lead to advance-
ments in the state of the art for a number of NLP tasks. Contextualised word
embeddings differ from the models discussed so far in that they represent each
token as a function of the entire input sentence. In providing a separate, context-
aware representation for every occurrence of a token, they are by design less sus-
ceptible to the issue of adequately representing polysemous words. The success
of these approaches can be further attributed to their use of deep neural network
architectures. Last but not least, they incorporate techniques for handling out-of-
vocabulary words through modelling sub-word information, thus tackling another
limitation of the majority of classic approaches.

Peters et al. [2018] present elmo, or embeddings from language models. As the
name suggests, elmo belongs to the class of predictive approaches which obtain
word representations jointly with training a language model. The architecture
of elmo consists of multi-layer forward and backward LSTMs with residual con-
nections between each layer. The input to the network are context-independent
representation of each token obtained by convolutional filters over character n-
grams followed by highway layers [Srivastava et al., 2015].

2For a comprehensive review of sense embedding methods we refer the reader to [Camacho-
Collados and Pilehvar, 2018]
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The recurrent architecture enables the prediction of a token from its context with-
out the need to limit the decision to a local window of fixed size. Instead, the
probability of word tk can be conditioned on the entire input sequence, with the for-
ward layers basing the prediction on t1, ..tk−1, and the backward layers on tk+1..tn.
Equation (2.21) summarizes the training objective of the model. The parameters
for the input embeddings (Θx) and softmax layer (Θs) are tied during training,
while the forward and backward language model parameters (

−→
ΘLSTM ,

←−
ΘLSTM)

are kept separate.

J =
n∑
k=1

(
logP (tk|t1, ..tk−1; Θx,

−→
ΘLSTM ,Θs)+

logP (tk|tk+1, ..tn; Θx,
←−
ΘLSTM ,Θs)

) (2.21)

Peters et al. [2018] employ a 2-layer LSTM in each direction, and concatenate the
resulting hidden states for the two at each layer. More generally, given L layers,
the model obtains the following representations for token tk:

Rk = {hLMk,j |j = 0, .., L} (2.22)

where hLMk,0 corresponds to the character-based input embedding of tk, and hLMk,j =

[
−→
h LM
k,j ,
←−
h LM
k,j ] for j > 0.

The multi-layer token representation Rk is collapsed into a single vector for inclu-
sion in downstream tasks. Rather than taking only the top-most layer, however,
Peters et al. [2018] propose to learn a linear combination of all of the layers, deter-
mined by the specific task at hand. The motivation behind this is that different
NLP tasks might benefit more from the levels of abstraction provided by certain
network layers. Intrinsic evaluation has shown that lower-level representations
are more suitable for syntactic tasks such as POS tagging, while higher-level ones
are better for semantic tasks such as word sense disambiguation. The final elmo
representation for token tk is estimated via Equation (2.23), where stask denotes
the task-specific softmax-normalized weights for each layer, and ytask is a scalar
parameter of the task model which allows for the scaling of the entire elmo vector.
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elmotaskk = ytask
L∑
j=0

staskj hLMk,j (2.23)

Bert [Devlin et al., 2019] obtains contextualized word embeddings with the help of
a transformer architecture. Transformers were first introduced in [Vaswani et al.,
2017] for the task of machine translation. The original model consists of two parts:
an encoder, which creates a representation of the source language sentence, and a
decoder, which utilizes this representation together with any partially translated
output to generate a sentence in the target language. Bert makes use of the
encoder part of the architecture to create sentence representations, from which
context-dependent token representations can be extracted, similarly to Elmo.

Central to the transformer model is the mechanism of self-attention [Vaswani et al.,
2017]. At any given position in the sequence, self-attention allows the model to
take into account (pay attention to) any relevant part of the whole sequence,
regardless of the distance between the two. It can be thought of as enriching the
input embedding of each token tk with information from the whole sequence of
tokens, t1..tn. Vaswani et al. [2017] describe attention as “a mapping between a
query and a set of key-value pairs to an output, where the query, keys, values, and
output are all vectors”. To illustrate the concepts, consider the example sequence
“the bank of the river”. If the target token is “bank”, the attention mechanism
might learn that the token “river” carries relevant information. The target token
is the query (Q) against which all tokens (keys, K) in the sentence are evaluated
for relevancy. Finally, a new representation of the target token is created which
incorporates different degrees of information from every token (values, V) in the
sequence.

The computation of self-attention is summarized in Equation (2.24) [Vaswani et al.,
2017]. The query Q would be the input embedding of the token “bank” in the
running example, while the set of keys and values would be the embeddings of all
tokens in the sequence. The dot product between the query and the matrix of keys
is used to estimate a weight for scoring the importance of each key to the query.
Intuitively, the dot product between “bank” and “river” might be a high, as the
input embeddings of the two would share similarities across multiple dimensions.
The obtained weights are dividing by a scaling factor3 and normalized using the

3√dk, where dk represents the dimension of the input embedding.
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softmax function. The new representation of the token “bank” would be a weighted
sum of all input embeddings (V).

attention(Q,K, V ) = softmax(
Q ·KT

√
dk

)V (2.24)

The transformer architecture involves multiple applications of the self-attention
mechanism, also called attention head. In multi-head attention, the queries, keys,
and values are linearly projected several times with separate parameters. The
output of each head is concatenated and fed into a final linear layer. Furthermore,
multiple layers of multi-head attention are stacked together, so that the output of
one layer serves as input to the next. For instance, the pre-trained model Bertlarge
contains 24 layers with 16-head attention, resulting in 340M parameters [Devlin
et al., 2019].

The input sequence is broken down into sub-word units and embedded with Word-
Piece [Wu et al., 2016]. Two additional learned embeddings are added to these
input embeddins, one which encodes the position of the token in the sequence, and
one which indicates whether the token belongs to the first or second sentence in
the sequence. These positional embeddings are helpful as the transformer has no
notion of word order.

Bert is trained on two tasks, next sentence prediction and masked language model,
also known as Cloze task. The former is a binary classification aiming to predict
whether two sentences appear consecutively in the corpus. This training scenario
is meant support the use of Bert in downstream tasks which rely on understanding
the relationship between two sentences, such as question answering, or language
inference. The masked language model predicts hidden tokens chosen at random.
This scenario allows the model to be truly bidirectional, taking into account future
and past contexts for the prediction. In comparison, Elmo obtains a pseudo-
bidirectional prediction through a combination of separate left-to-right and right-
to-left language models. The problem with applying a bidirectional architecture
such as a Bi-LSTM directly to a standard conditional language modelling problem
is that when predicting token tk in the sequence, the decision would be based on
the hidden state hk−1 = [

−→
h k−2,

←−
h k] from the previous prediction step, where

←−
h k

has already seen token tk. Thus, the correct prediction of the target word becomes
trivial.
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Once trained, Bert can be utilized in downstream tasks in two ways. It can be used
to represent the tokens in a sentence as (static) features, similarly to other word
embeddings discussed so far. Alternatively, the model can be used as a starting
point for fine-tuning on a downstream task operating on the sentence or token level.
In this scenario, the model is initialized with the parameters obtained during the
initial training on unlabelled data, and all model parameters are fine-tuned using
labeled data for the downstream task.

A number of works have proposed extensions and modifications to Bert, aiming to
improve the model’s performance and speed. XLNnet [Yang et al., 2019], roberta
[Liu et al., 2019] and albert [Lan et al., 2020] introduce changes to the training
methodology of the original model, as well as utilize more training data in the
process. Distilbert [Sanh et al., 2019] offers an approximation of the original
model with less parameters.



Chapter 3

Background and Related Work in

Event Extraction

3.1 Events

Events can be thought of as occurrences which differ from material objects in their
relationship to space and time: objects are said to exist, while events are said to
occur or happen or take place [Hacker, 1982]; objects have rather clear spatial
boundaries, and vague temporal boundaries, while events are considered to have
vague spatial boundaries and crisp temporal boundaries [Casati and Varzi, 2015].
Henceforth we will focus on linguistic events, or the natural language descriptions
of real-world events.

A long line of work in theoretical linguistics has focused on defining events and
event ontologies. Lexical aspect (Aktionsart) enables the sub-categorization of
events based on the temporal properties of the verbs and phrases used to describe
them, such as whether they extend in time, involve a change, and have a natural
endpoint [Mani et al., 2005].

In his classical work, Vendler [1957] proposes a four-way classification of verbs
based on their aspectual features. He distinguishes between states, activities, ac-
complishments, and achievements. States can be thought of as being non-dynamic,
extended in time or permanent (“He knows the answer”, “She is smart”). Activi-
ties are also extended in time, but involve change. They have no natural endpoint
or goal (“I’m running in the park”). Accomplishments and achievements, on the

41
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“Rudolph Giuliani will wed his companion, Judith Nathan, on May 24 in the
ex-mayor’s old home.”

• TRIGGER: wed

• ARGUMENTS:

– person: Rudolph Giuliani

– person: his companion

– time-within: May 24

– place: the ex-mayor’s old home

• PROPERTIES:

– modality: asserted

– polarity: positive

– genericity: specific

– tense: future

Figure 3.1: ACE event mention of type Life.Marry

other hand, have an endpoint and entail an underlying process. Achievements are
conceived of as instantaneous (“He reached the bus stop”), while accomplishments
involve an extended processes (“She painted a picture”). The term event encom-
passes all non-states, but in some works it is used more narrowly to refer to events
with a terminus or delimitation, i.e. accomplishments and achievements [Rosen,
1999]. Furthermore, event is a property of the verb together with its modifiers and
arguments, whose characteristics contribute to the event type of the entire clause
[Rosen, 1999].

3.2 Events in Corpora

The Automatic Content Extraction (ACE) 2005 [Walker et al., 2006] data set con-
tains annotations for entities and entity coreference, relations, events, and event
coreference. The corpus was utilized in the ACE challenges focusing on three
general areas: Entity Detection and Tracking, Relation Detection and Charac-
terization, and Event Detection and Characterization. The data set consists of
599 documents from newswire, broadcast news, broadcast conversation, web log,
discussion forums, and conversational telephone speech.

According to the annotation guidelines, an event is “a specific occurrence involving
participants”, which “can frequently be described as a change of state”. An event
annotation in ACE includes the span of text encompassing the event mention, the
word which most clearly expresses the event – the event trigger, as well as zero



3. Background and Related Work in Event Extraction 43

or more event participants, or arguments, together with the role they play in the
event. Figure 3.1 presents an example of a sentence containing an event mention
and all of its annotated components and properties.

ACE is a closed-domain event corpus, focusing on a predefined event ontology of
interest. It includes annotations for 8 general types of events with 33 sub-types.
The frequency of events varies greatly across types, with a few predominant ones,
such as Conflict.Attack, and a high number of infrequent ones, as depicted in
Figure 3.2. For three of the event types there are less than ten examples [Chen
et al., 2017], while the median number of positive examples per type is only 65
[Ferguson et al., 2018].

The majority of the event mentions in ACE are triggered by verbs (60%) [Chen
et al., 2017]. Other possible event trigger types include nouns (“The wedding took
place in the afternoon”) and adjectives (“The happily married couple”) derived
from verbs. The trigger is usually a single token, with the exception of phrasal
verbs (“take out”, “turn down”), some named entities (“War World II”) and other
Multi-Word Expressions (MWEs) (“tie the knot”, “air strike”).

Event annotations include several properties indicating the speaker’s attitude to-
wards the veracity of the discussed event and whether it occurred or not. For
example, an event’s polarity is negative if the text states that the event did not
take place, as in “They are not being sued ” (nevertheless considered of type Jus-
tice.Sue). An event’s tense can be future, as in “Many small businesses will have
to close down”(Business.End-Org). Unless an event can be interpreted as a sin-
gular occurrence at a specific place and time, it is annotated as generic: “The
group specialized in transporting illegal weapons.” (Movement.Transport). If the
mention refers to a believed or hypothetical event, this is reflected in the modal-
ity property field as not asserted : “Rumors of arrests circulated in Vancouver”
(Justice.Arrest-Jail). Special care needs to be taken when handling the mentions
exhibiting some of these properties for NLP tasks where the factuality of events
plays a role. Event extraction (Section 3.3) typically leaves such fine-grained anal-
ysis for a later stage and focuses on detecting event mentions regardless of whether
or not they are expressed as corresponding to real-world events which have taken
place.

The TAC-KBP data set is a more recently introduced closed-domain event corpus
utilized in the Text Analysis Conference (TAC) Knowledge Base Population (KBP)
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Figure 3.2: Distribution of events per type in ACE 2005, sorted by mention
frequency.

tracks. The 20151 version of the corpus, consisting of 158 training documents and
202 test documents, is similar to the ACE 2005 data set in several respects. It
includes annotations for 9 event types with 38 sub-types, which have a substantial
overlap with those present in ACE. Furthermore, the source of the documents is
similarly newswire and discussion forums. The main difference between the two
data sets is that event triggers in TAC-KBP can be assigned more than one event
type, referred to as double tagging [Mitamura et al., 2015]. For example, the
trigger murder (“the murder of John”) is assigned both a Conflict.Attack and a
Life.Die label, as opposed to only Life.Die in ACE.

Two examples of open-domain event corpora include EventCorefBank (ECB) [Be-
jan and Harabagiu, 2010] and its extension EventCorefBank+ (ECB+) [Cybulska
and Vossen, 2014], which contain within- and cross-document event and entity
coreference annotations.

The corpus ProcessBank [Berant et al., 2014] offers entity and event annotations
in the medical domain. The data set includes 200 paragraphs about biological

1https://tac.nist.gov/2015/KBP/Event/

https://tac.nist.gov/2015/KBP/Event/
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processes, taken from a biology textbook. While no domain event types are anno-
tated, the corpus includes information about event coreference and event causal
relations.

3.3 Event Extraction

Information extraction (IE) is a broad term encompassing a number of natural lan-
guage processing tasks aimed at the automatic extraction of structured information
from text. It has gained popularity due to the growing amounts of information
available in unstructured form. Relation Extraction and Event Extraction are two
closely related IE tasks.

Event extraction deals with the detection of event mentions in text, as well as
determining the entities participating in the event, if any. Events are typically
viewed as occurrences involving participants which happen at a specific time and
place. In the context of IE, it aims to answer what happened where, when, and to
whom. Such information is valuable for a number of NLP tasks dealing with text
understanding, such as question answering, and text summarization.

Event extraction encompasses several sub-tasks, namely trigger identification, trig-
ger classification, argument identification, and argument role classification:

1. trigger identification – determine whether or not a word or a MWE triggers
an event of interest.

2. trigger classification – determine the event type of the trigger (e.g., Con-
flict.Attack, Life.Die, etc.).

3. argument identification – determine which entities correspond to event par-
ticipants.

4. argument role classification – assign role labels to the event participants (e.g.,
Attacker, Target of a Conflict.Attack event, etc.)

Trigger identification and classification are frequently performed in one step and
are collectively referred to as event detection [Feng et al., 2016]. This task is
challenging as the same event can be expressed through multiple different triggers,
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Figure 3.3: Event trigger frequency distribution for the three most frequent
event types in ACE 2005. In all cases, there are a small number of predominant
triggers (e.g., “war” appears 379 times as a trigger of Conflict.Attack), while the

majority of trigger types appear only once.

and in some cases the same token can trigger several different events. For instance,
the token “seize” can be used in the context of an attack event (Conflict.Attack),
as well as to denote the change of ownership of a company (Transaction.Transfer-
Ownership) or the change of a position of a person (Personnel.Start-Position).
The frequency of trigger types varies in the training data, with (typically) a small
number of frequently occurring triggers, and a large number of triggers which
appear only once (Figure 3.3). Finally, an added challenge to the task is the
detection of multiword triggers, where the correct span of the trigger needs to be
determined as well.

Argument identification and classification are typically performed after event de-
tection. A prerequisite for the tasks is determining the spans and types of entities
(e.g., Person, Location, Weapon, Vehicle, etc.) present in the sentence2. The
following steps include predicting whether an entity participates in a previously
detected event, and what role it plays in that event. While a trigger can introduce
a single event in a given context, an entity frequently participates in more than one
event with different roles. For instance, in the following sentence, the cameraman
is the Victim of a Life.Die event (“died”), as well as the Target of a Conflict.Attack
event (“fired”) [Nguyen et al., 2016]:

2Some of this information would be provided by a named entity tagger in a real-world scenario.
As the process is error prone, authors often chose to use the gold-standard entity annotations
available in ACE and focus on determining if an entity is an event argument.
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In Baghdad, a cameraman died when an American tank fired on the
Palestine hotel.

Event Linking or event coreference is a subsequent task of event extraction which
deals with grouping all mentions of the same event found in one or across several
documents.

Relation Extraction involves discovering semantic relations between entities from
text. The end goal of the task is typically the automatic knowledge base creation
or population. A relation can be seen as an ordered tuple of entities or relation
arguments. For instance, the relation indicating that two people are spouses can
be represented as spouse<person1, person2 >.

While event extraction can be seen as a sub-task of relation extraction, there are
several differences between the two. A relation mention is defined by the presence
of a minimal set of obligatory relation arguments [Krause, 2018]. Event mentions,
on the other hand, may not involve any arguments beyond the event trigger, as
is the case for approximately 15% of all mentions in ACE. Furthermore, relations
represent facts. Event mentions can be non-asserted or negative (Section 3.2).
Thus, only a subset of event mentions are of interest to relation extraction.

Nonetheless, there is a considerable overlap between the two tasks. Both face
similar data sparsity issues, as they are highly domain specific – a corpus containing
certain event or relation annotations cannot be employed to learn about any other
type of event or relation. Thus, both tasks are often addressed by semi-supervised
learning approaches.

The rest of this chapter is organised as follows: Section 3.3.1 presents the eval-
uation methodology employed in event extraction; Section 3.3.2 introduces the
state-of-the-art approaches to supervised event extraction; Section 3.4 summa-
rizes semi-supervised methods which have been employed for the extraction of
additional labeled examples of events.

3.3.1 Evaluation

Each of the sub-tasks involved in event extraction is evaluated using the standard
metrics precision (P), recall (R), and f-measure (F1), defined as follows:
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P =
true positives

true positives + false positives
(3.1)

R =
true positives

true positives + false negatives
(3.2)

F1 = 2 · P ·R
P +R

(3.3)

We will use event detection as an example, but the argument role identification
and classification are evaluated similarly.

An event is detected correctly (true positive) if and only if the correct token span of
the event trigger, as well as the correct event type, were predicted by the model.
False positives include cases where the model prediction of an event does not
correspond to an event mention in the reference corpus. Finally, false negatives
are event mentions missed by the model. The metrics precision and recall provide
estimations of the correctness and coverage of the model’s decisions, respectively.
F1 score is defined as the harmonic mean between precision and recall.

There exist two variants of the f-measure, the micro- and macro-averaged F1
scores. In the former, precision and recall are computed for all predictions of the
model, regardless of the type of event being evaluated. The latter is an average
of the F1 scores computed separately for each event type (e.g., F1Conflict.Attack,
F1Business.End-Org, etc.). In this setup every event type contributes equally to the
final score, regardless of the number of mentions of that event present in the data
set.

3.3.2 Supervised Event Extraction

A long line of work in event extraction has employed machine learning frameworks
utilizing rich sets of features [Ji and Grishman, 2008; Liao and Grishman, 2010;
Hong et al., 2011; Li et al., 2013; Yang and Mitchell, 2016; Ferguson et al., 2016].

Features for the task can be broadly categorised as local or global. The former
aim to model the local (within-sentence or smaller) contexts of triggers and ar-
guments, while global features target the interdependencies between event types
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within or across documents, or between event participants and event types in a
larger context.

Examples of local features include token and POS tag n-grams, lemmas, NER types
or entity types present in the sentence, synonyms, Brown clusters [Brown et al.,
1992], head and dependent information extracted from a dependency analysis of
the sentence, dependency path between an argument candidate and a trigger, and
others [Li et al., 2013; Ferguson et al., 2016].

Global event features take a variety of forms. Ji and Grishman [2008] identity event
triggers and arguments within each sentence and apply heuristic rules to ensure
that the classifiers’ predictions satisfy some document-wide event consistency con-
straints. Liao and Grishman [2010] note that local context is often not sufficient for
resolving ambiguities when distinguishing between particular types of events. For
instance, it can be challenging even for a human reader to determine if the sentence
“He left the company” expresses that the person left their job (Personnel.End-
Position), or physically left the company’s grounds (Movement.Transport). In
such cases, information from a wider scope, such as co-occurring event types, can
serve to resolve the ambiguity. Hong et al. [2011] further note that entities of
specific types frequently participate in specific events, and propose to use entity-
type consistency as a feature to predict event mentions. Yang and Mitchell [2016]
propose a joint inference model over entities, triggers, and arguments across a
document to facilitate context-aware predictions.

Creating feature-rich event classifiers requires some expert knowledge and depends
on the availability of a range of NLP tools and resources, which may not be
applicable to many languages. Furthermore, the performance of such models can
be negatively impacted by erroneous preprocessing.

The current state-of-the-art systems for event extraction employ neural architec-
tures.

Nguyen et al. [2016] propose a joint framework for event trigger and argument iden-
tification and classification. Similarly to previous work employing a joint classifier
[Li et al., 2013], they aim to model both local features relevant for the individual
tasks, as well as global features to target the dependencies between them. An
RNN architecture is employed in order to learn abstract sentence representations,
which are in turn used together with additional features, to predict event triggers
and argument roles.
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The input to the model are sentences consisting of sequences of tokens w1, .., wn,
as well as the gold-standard ACE entity mentions e1, .., ek, found in each sentence.
After the model predicts the event trigger type of token wi, it goes through each
entity ej present in the sentence and determines the role it plays in that event, if
any.

The neural architecture employed to encode the sentence is a bi-directional Gated
Recurrent Unit (GRU). The input to the network at a specific time step consists
of the word embedding of the token, a real-valued embedding of the entity type,
and a binary vector encoding the edges of the token in the dependency parse of
the sentence.

The task inter-dependencies are modeled via memory vectors and matrices which
store the predictions during the course of labeling the sentences so that past de-
cisions about triggers and argument roles can be directly used in each prediction
of the model. These include: vector Gtrg

i , which indicates which event types have
been recognized before time step i; matrix Garg

i , which summarizes the argument
roles that the entity mentions have played with some event in the past, and matrix
G
arg/trg
i , which specifies which entity mentions have been identified as arguments

for which event types so far.

The input for performing trigger classification of token wi includes: hi, local fea-
tures consisting of a concatenation of the word embeddings of neighboring tokens,
as well as the memory vector Gtrg

i . A softmax layer is employed to obtain the fi-
nal classification decision. The input for argument classification of entity ej given
trigger wi includes: hi and hj, the local contexts of the two, as well as the two
memory matrices, Garg

i and Garg/trg
i . Similarly, the argument role is obtained via a

softmax layer. The network is trained by minimizing a joint negative log-likelihood
function for triggers and argument roles.

The evaluation reveals that Garg/trg
i improves the performance of argument label-

ing, while the dependencies between trigger types Gtrg
i and argument roles Garg

i

are not strong enough to be helpful for the joint model. Furthermore, when eval-
uated only on sentences containing more than one event, the proposed approach
outperformed all the other related methods with large margins.

Feng et al. [2016] focus on the task of event detection. A hybrid neural network
consisting of a Bi-LSTM and a Convolutional Neural Network (CNN) is employed
to learn representations of each word in the sentence and predict its event type.
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The Bi-LSTM is meant to encode the semantics of each word with its preceding
and following context, while the CNN is meant to capture structural information
from the local contexts. Unlike [Nguyen et al., 2016], no hand-crafted features or
additional information besides the word embedding of every token are employed
in the process.

Feng et al. [2016] use two convolutional filters (widths of 2 and 3) to produce local
context representations from the sentence, combined with max pooling layers to
obtain output vectors with fixed size. The final representation of each token is a
concatenation of the forward and backward Bi-LSTM layers, and the two CNN
output vectors. This combined representation serves as input to a softmax layer,
producing the final classification decision.

This work has reported the best results for the tasks trigger identification and
classification on the English portion of ACE 2005. Unfortunately several key
details about the network parameters and training setup are omitted, which makes
the exact reproduction of the result challenging.

3.4 Semi-supervised Approaches to Data Augmen-

tation for Event Extraction

Labeled training data for event extraction and linking are limited in size and
coverage of event types. Bootstrapping, distant supervision, and related methods
have been employed to generate additional training data [Liao and Grishman,
2011; Chen et al., 2017; Ferguson et al., 2018].

Ferguson et al. [2018] extract clusters of coreferring event mentions from newswire
articles. A major difference between this and other related approaches is that
no knowledge base is employed in the process. Instead, simply the presence of
matching entities in multiple articles published on the same date is considered
an indicator that the articles discuss the same event. Their approach can be
summarized in the following steps: (1) clustering of articles, (2) labeling of clusters,
and (3) event trigger identification.

The goal of the first step is to identify and groups articles containing coreferring
event mentions by finding rare entities mentioned frequently on a specific date.
Pairs of articles are scored based on this intuition, and candidate clusters formed.
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(1) LSU fires head coach Les Miles after 12 seasons.

(2) On Sunday morning, LSU athletic director Joe Alleva told Les
Miles that the coach would no longer represent Louisiana State.

Figure 3.4: An example of two coreferring event mentions of different com-
plexities from [Ferguson et al., 2018]

A drawback of this approach is that the position of events within the document is
not taken into account. Thus, mentions involving entities participating in multiple
events around the same time period (e.g. in elections) can be incorrectly assigned
into the same cluster.

The resulting clusters are usually composed of mentions of different complexity
(Figure 3.4). Some mentions which use a simpler language can be easily labeled
with a supervised system. In order to predict the event type of each cluster,
Ferguson et al. [2018] train a supervised system on the available labeled training
data. A label is assigned to a cluster if it contains at least n events of a specific
type.

Since existing supervised event extraction systems require event trigger annota-
tions for training, the last step comprises the identification of the most likely
trigger word for each sentence. The trigger is determined by computing the simi-
larity between the embedding of each token from an event mention and the average
of the embeddings of all triggers for this event type from the labeled data.

To evaluate the usefulness of the approach, Ferguson et al. [2018] augment two
gold-standard event data sets, ACE 2005 and TAC-KBP 2015, with different
amounts of the automatically extracted data, and use them to train a supervised
event extraction system. They select a uniform number of examples per event type
for the 19 most frequent event types in ACE. A micro-averaged F1 score over all
events is reported for the identification of event triggers, computed using test sam-
ples from the original gold data sets. Event argument identification is not carried
out and evaluated. The evaluation shows an improvement of 1.1 (TAC-KBP) and
1.3 (ACE 05) F1 score, compared to the respective baselines. The error analysis
of 100 bootstrapped examples reveals that errors occurred mainly in steps (2) and
(3).
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Liao and Grishman [2011] present a bootstrapping approach to event extraction
based on self-training which can be used to enrich existing labeled data sets for
the task. Similarly to [Ferguson et al., 2018], this method relies on the intuition
that event mentions found in a cluster of related documents can be tagged with
higher confidence.

At the core of the extraction process are several maximum entropy-based classifiers
for argument identification, argument role classification, and trigger classification,
initially trained on the ACE’05 data set. These classifiers extract and label only
high confidence mentions, which are in turn appended to the existing data, result-
ing in a larger corpus for retraining. This procedure is repeated several times.

Furthermore, two strategies are employed to ensure the quality of the extracted
mentions: (1) extraction from clusters of related documents, to minimize error
propagation during bootstrapping, and (2) cross-document inference, to encourage
the extraction of examples of higher variability. An information retrieval system
is employed in order to identify texts related to the ones already present in the
gold data. Gold event arguments (names and nominals), together with their corre-
sponding triggers, serve as queries for this system. The top n retrieved documents
are selected to construct the document clusters used as input to the classifiers.

Liao and Grishman [2011] observe that the newly discovered examples tend to re-
semble the majority of examples already present in the labeled data set, and little
novelty is introduced during bootstrapping. A likely explanation for this is that
exactly these predominant gold examples are responsible for the high confidence
classifier decisions. The issue is addressed via a global inference process which col-
lects information about triggers and arguments from all coreferent event mentions
in a document cluster, as opposed to a single one. Within- and cross-document
entity coreference are employed in addition to expand the argument candidate
information. In this way, a trigger or an argument can be added to the training
data, even if its local context confidence is low, which in turn can result in a more
varied data set.

Chen et al. [2017] utilise world and linguistic knowledge for the automatic labeling
of event mentions. The proposed distant-supervision approach enables the ex-
traction of event triggers, as well as event arguments, and is inspired by methods
employed in relation extraction.
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The source of world knowledge is the collaborative knowledge base Freebase [Bol-
lacker et al., 2008]. It contains n-tuples of entities participating in various relations.
The following is an example entry from the people.marriage category:

<spouse: Barack Obama, spouse: Michelle Obama, ceremony location:

Trinity Church of Christ, from date: 10/03/1992, to date: –>

Finding text snippets in which these arguments co-occur is a reliable indicator of
the presence of a marriage event mention. However, an inspection of the distri-
bution of arguments in Wikipedia revealed that the cases in which all arguments
of a Freebase event can be found in the same sentence are only 2% [Chen et al.,
2017]. The knowledge base is therefore first used to select representative argument
roles for each event type. In the above example, the two spouses are treated as
such arguments for the marriage event, while the date and ceremony location are
considered optional. The list of key arguments is employed to detect sentences
containing candidate event mentions in Wikipedia text for the purpose of trigger
extraction.

The next step involves the generation of trigger word lists for each event type. The
strength of association between each verb from the previously extracted sentences
and their corresponding Freebase event type is measured in order to select an
initial list of verb trigger candidates. Since the list is noisy, and only contains verb
triggers, FrameNet is employed to further filter the candidates and extend the list
with noun triggers. For this purpose, a mapping is established between Freebase
events and FrameNet frames with the help of a word embedding-based similarity
score.

Finally, sentences containing at least one Freebase argument and a trigger from
the filtered trigger list are extracted from Wikipedia via distant supervision. This
results in over 70K automatically labeled examples for 21 Freebase event types,
with the largest being People.Marriage (over 26K sentences).

Very high precision is reported for trigger labeling (88.9) and argument labeling
(85.4), according to a manual evaluation of the extracted examples. An addi-
tional automatic evaluation is carried out by augmenting ACE events with corre-
sponding automatically extracted examples, such as People.Marriage and ACE’s
Life.Marry. This data is used to train a CNN event extraction system [Chen et al.,
2015], while a gold portion of ACE is reserved for evaluation.
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The evaluation reveals an improvement of 0.8 F1 score for trigger identification,
1.4 F1 increase for trigger identification and classification, 4.2 for argument iden-
tification, and 2.2 F1 improvement in argument role identification, compared to
the same system trained on ACE data exclusively. Furthermore, a model trained
only using the automatically extracted and labeled data achieves a competitive
performance.

The lack of sufficient amount of training data is often singled out as the main reason
for the low accuracy of supervised event extraction systems. Both Chen et al.
[2017] and Ferguson et al. [2018] present approaches for the automatic extraction
of large quantities of additional data for the task. For instance, the number of
People.Marriage event mentions extracted by Chen et al. [2017] exceeds 26K, while
the corresponding ACE event Life.Marry contains only 83 mentions. However,
despite the impressive size of the extended data sets, the performance of event
extraction systems trained on them does not exceed that of their corresponding
baseline models by a large margin.

A possible explanation for this is that the newly acquired data is not complemen-
tary enough to the event annotations in existing corpora. Since the evaluation
is always carried out on a gold sample of ACE, the additional data has to tar-
get enhancing the existing data in terms of variety of training examples, and not
merely quantity. The additional training data, despite being of good quality, might
fail to provide enough examples of specific cases, problematic for event extraction
systems.

Unfortunately, both works lack sufficient error analysis to support or refute this
hypothesis. There is insufficient discussion of the kinds of examples present in the
extended data sets as well. It would be interesting to know what the distribution
of events in terms of number and type of arguments is, compared to the original
data. The approach proposed by Liao and Grishman [2011] is especially interesting
because it identifies and tries to tackle the lack of variability in automatically
extracted corpora, an issue rarely discussed in related literature.

One evident difference between the automatically generated data and ACE is in
terms of number of event arguments. 15% of all ACE mentions contain zero
arguments, and this varies depending on the type of event. For instance, out of
the 1543 mentions of Conflict.Attack events, 423 contain no arguments at all, as
is the case with 25 out of the 83 Life.Marry mentions. The automatic detection
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of these mentions can prove more problematic for existing systems compared to
those with multiple arguments. Still, all of the aforementioned approaches for data
generation are argument-based and cannot extract such examples. Having a large
quantity of examples with multiple arguments in the augmented training data
leads to an imbalance, which may further diminish the importance of detecting
zero argument mentions when training an automatic event extraction system.



Chapter 4

A Self-training Approach to Data

Augmentation for Event Extraction

4.1 Introduction

The state-of-the-art in event extraction (Section 3.3.2) are neural approaches which
rely on the availability of sufficient amounts of annotated event data. Existing
corpora for the task are limited in terms of size and coverage of event types. The
most widely-used corpus, the ACE 2005 data set, has been shown to exhibit a
number of data sparsity issues (Section 3.2).

The lack of sufficient amount of training data and the cost associated with building
human-annotated corpora have inspired several works to investigate methods for
the automatic extraction of additional labeled examples (Section 3.4). A variety
of approaches including bootstrapping, distant supervision, and related methods,
have been employed. These rely to different extends on the availability of some
resources for the task, such as corpora or knowledge bases. Despite the fact that
several of these works manage to extract large quantities of additional examples,
the performance of EE systems trained on the extended data sets typically does
not exceed that of their corresponding baseline models by a large margin.

The work presented in this chapter investigates an approach for the automatic
extraction of additional training examples via self-training. We start off with a
Bi-LSTM event tagger trained on an existing gold standard event corpus. This
tagger is used to extract new labeled examples from a large collection of text. We
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Figure 4.1: BIO tag representation of a sentence containing the multi-word
event trigger “swept out of power” (PE:Personnel.End-Position).

employ a confidence filtering strategy to encourage the extraction of good quality
examples. The resulting data set is in turn used to augment the existing gold
corpus in a number of ways for re-training.

4.2 Task Definition

We focus on the task of event detection, which involves detecting event triggers
and classifying them into one of several event categories. In the case of the ACE
corpus employed in the current work, these include the 33 event types listed in
Table 4.1.

What is understood under an event trigger is the word which most clearly expresses
the event in the sentence, with the condition that a single trigger may not denote
more than one event in a given context. However, a trigger word may be a multi-
word expression, which is the case for approximately 14% of all trigger types
in ACE. For this reason we have chosen to mark the spans of event triggers with
begin-inside-outside (BIO) tags and view the task as a sequence labelling problem.

Figure 4.1 presents an example BIO encoding of a sentence. The first token of the
trigger “swept out of power” is marked with the begin (B) tag, and each consecutive
token with the inside (I) tag corresponding to the event type of the trigger. Every
token which is not part of an event trigger is marked with the outside (O) tag.
Event detection involves correctly determining of the full span of the trigger “swept
out of power ”, as well as predicting that it introduces a Personnel.End-Position
event.

Given a sequence of tokens w1, .., wN , we would like to predict the corresponding
sequence of event tags, t1, .., tN , which encodes the correct event trigger spans
and types, where N equals to the number of tokens in the input sentence.
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4.3 Event Detection Model

The event detection model employed in this work is a Bi-LSTM sequence tagger
[Plank et al., 2016; Plank and Agić, 2018; Ma and Hovy, 2016].

Throughout this section we will use the notation x and y to refer to the network in-
put and output, respectively. Vector x = (x1, .., xN) corresponds to the real-valued
representations of the tokens in the input sentence, while vector y = (y1, .., yK)

corresponds to the numerical representation of the set of K possible event tags.
In the current experiments, K = 67 classes, which include the B- and I- tags for
each ACE event type and the O tag for non-triggers.

The Bi-LSTM network produces two hidden representations of each sentence, by
traversing the input sequence x from beginning to end and in reverse. The repre-
sentation of a token at time step i, hi, is obtained by concatenating the forward
and backward hidden layers of the network up to this point, and thus incorporates
both the preceding and following sentential context of the token:

hforward
i = lstm(hforward

i−1 , xi) (4.1)

hbackward
i = lstm(hbackward

i+1 , xi) (4.2)

hi = [hforward
i , hbackward

i ] (4.3)

where LSTM denotes the computations performed at each LSTM cell (see Equa-
tions (2.11) to (2.16)).

Finally, the network predicts a probability distribution over the different BIO event
tags. For each position i this involves computing the K-dimensional vector yi.

yi = softmax(V · hi + b) (4.4)

where V is a parameter matrix, and b is a bias term.

The value yik can be interpreted as the probability of predicting event tag k given
the input sequence x, or P (ti = k | x).
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Figure 4.2: Precision-Recall trade-off for different values of the confidence
parameter Θ, computed on the ACE development set.

4.4 Augmentation Data Extraction

We employ a self-training approach in order to extract additional labeled data
for trigger identification and classification. Starting off with our baseline model,
originally trained on the limited amount of available data in ACE, we label a
large text collection. A confidence filtering strategy is utilised to retain only the
most confident model decisions. The newly labeled examples are in turn used
to augment the existing gold standard corpus, resulting in a larger corpus for
re-training the model.

The approach to data augmentation for event detection proposed in the current
work most closely resembles that of Liao and Grishman [2011] in its self-training
nature. However, we perform re-training only once rather than in several itera-
tions, motivated by the fact that re-training in multiple iterations can result in
error propagation and amplification [Krause et al., 2012a]. In addition, we em-
ploy a balancing strategy (Section 2.1.2) in order to ensure that the number of
new instances per class remains uniform, which has been shown to be beneficial
in multi-class classification scenarios [Samad Zadeh Kaljahi, 2010]. Our data aug-
mentation approach does not rely on any external resources for the task, besides
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the data which is already available in ACE, pre-trained word embeddings, and a
large collection of unlabelled data.

We run our event tagger on a subset of 5 million sentences from the Gigaword
corpus [Parker et al., 2011], and apply a filtering strategy on the system’s decisions
in order to minimize errors as much as possible. To do so, we retain only those
sentences in which all words were tagged with high confidence, i.e. where for some
fixed Θ we can find BIO tags k1, . . . , kN such that P (ti = ki | x) ≥ Θ for all i.

The Θ confidence threshold offers a way to boost the precision of the model at the
expense of its recall. Figure 4.2 presents the effect of several values of the parameter
on the performance of the tagger when evaluated on the ACE development set.

Using this strategy we obtained a large collection of new examples from the unan-
notated data. Table 4.1 presents the distribution of event types for different values
of the filtering threshold in the resulting data set. Note that if a sentence contains
a rejected tagger decision, it is discarded from the data set for this specific Θ value,
as opposed to replacing the predicted tag with an O-tag. In doing so we aim to
avoid the introduction of a possible false negative.

High Θ values lead to preserving only the most confident model decisions, which
generally correspond to the most frequently occurring event types in the original
ACE training data, but often result in the complete filtering out of less-frequent
event examples. For instance, no Justice.Pardon events were tagged with confi-
dence exceeding 0.995, and only 2 examples reached Θ ≥ 0.9. In order to preserve
all event types in our augmentation data set, we utilize a dynamic Θ strategy:
starting off with the most confident decisions of the model, we back off to a lower
Θ until we reach the desired number of examples per event type.

The values of the variable Θ threshold we employed equal those depicted in Ta-
ble 4.1, namely 0.9995 (most confident decisions), 0.995, 0.9, and 0.0 (no confidence
filtering).

For our final augmentation data set, we selected a subset of the newly labeled
examples of up to one thousand mentions per event type. This is a form of the
throttling strategy mentioned in Section 2.1.2. We set on selecting a subset of
the data in order to avoid overpowering the gold standard annotations during
re-training.
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Event Type countace Θ = 0.0 Θ = 0.9 Θ = 0.995 Θ = 0.9995
Business.Declare-Bankruptcy 40 3378 2181 1159 430
Business.End-Org 31 1883 291 14 1
Business.Merge-Org 14 2270 900 0 0
Business.Start-Org 29 13245 4947 578 50
Conflict.Attack 1273 402590 257956 121948 49255
Conflict.Demonstrate 65 42125 25089 10089 2830
Contact.Meet 200 145310 97935 47215 18201
Contact.Phone-Write 112 11618 3964 484 64
Justice.Acquit 5 577 22 0 0
Justice.Appeal 30 5710 3420 1362 487
Justice.Arrest-Jail 78 36698 23556 12219 5884
Justice.Charge-Indict 96 24827 12507 4444 1591
Justice.Convict 64 7046 3389 1163 133
Justice.Execute 14 3028 1361 151 0
Justice.Extradite 6 343 3 0 0
Justice.Fine 22 3703 2047 609 71
Justice.Pardon 2 96 2 0 0
Justice.Release-Parole 46 7364 3426 570 9
Justice.Sentence 84 11682 6158 1832 607
Justice.Sue 60 7194 5028 2816 1045
Justice.Trial-Hearing 103 19801 12070 5730 2632
Life.Be-Born 47 5130 3334 940 110
Life.Die 524 138966 90475 43491 17368
Life.Divorce 20 830 610 208 13
Life.Injure 127 44808 26979 10474 2181
Life.Marry 73 4930 3514 2043 925
Movement.Transport 611 200880 115211 46537 17487
Personnel.Elect 162 40411 22420 8217 2469
Personnel.End-Position 159 38154 19331 7463 2897
Personnel.Nominate 11 2249 712 65 0
Personnel.Start-Position 92 26976 10487 2571 572
Transaction.Transfer-Money 128 18285 6911 1352 235
Transaction.Transfer-Ownership 92 14639 6579 1713 396

Table 4.1: Distribution of event mentions per event type in the ACE 2005
training set (countace), and in our automatically labeled data set for different

values of the confidence threshold Θ.

To avoid influencing too much the likelihood of an event occurring in a sentence,
we also add a thousand negative examples consisting of sentences which do not
contain any detected event mentions. Due to the abundance of such sentences in
our automatically labeled data, these are filtered with the highest Θ threshold to
avoid false negatives as best as possible.
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4.5 Augmentation Approach

We experimented with several strategies for enhancing the existing training data
with the newly extracted examples:

• augconcat: the augmentation data is appended to the training set.

• auguniform: the loss when training on the augmentation data set (Laug) is
computed separately from the loss when training on the gold corpus (Lace).
A loss scaling constant (λ) is applied to Laug. The total loss is computed as:

Ltotal = Lace + λ · Laug (4.5)

• augweight: similar to the above setup, but the scaling constant varies per
event type e, proportionally to the frequency of the event in the ACE training
set, countace(e)1:

freqe = max(25, countace(e)) (4.6)

λe =
freqe

10000
(4.7)

• augrev.weight: similarly to the above setup, the scaling constant varies per
event type. However, the magnitude of weights is reversed so that lower
weights are assigned to the more frequent ACE event types and vice versa:

freqe = max(countace(ê))−

countace(e) + 25
(4.8)

λe =
freqe

10000
(4.9)

In the first augmentation approach, augconcat, the newly extracted examples
receive the same importance as the original training set, while the remaining
three strategies are meant to lessen the effect of the augmentation data during
re-training. In the uniform scaling parameter augmentation (auguniform), we em-
ploy a scaling constant equal to 0.1 when training on the augmentation data set.

1We assume that each event was observed at least 25 times, to account for very infrequent
events such as Justice.Pardon.
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In augweight, the loss while training on a batch predominantly containing an event
of a certain type e is scaled by the frequency of that event in the training set di-
vided by a constant. In this setup, frequently occurring event types are impacted
more by their corresponding augmentation examples, with the intuition that, due
to their higher frequency, they contributed to better quality augmentation data.
In augrev.weight we aim for the opposite effect: frequent events receive little help
from the augmentation data, as they already are well represented in the origi-
nal training set, while infrequent event types receive a higher augmentation boost
during training.

4.6 Experimental Setup

This section provides more details on the setup of the re-training experiments
performed in order to evaluate the data extraction and augmentation approaches
proposed in this chapter. Section 4.6.1 discusses some data choices beyond the
ACE corpus. Section 4.6.2 presents some details about the evaluation setup of our
experiments. Section 4.6.3 provides details on the implementation and training of
our event tagger.

4.6.1 Data

The input to the Bi-LSTM tagger are sentences encoded with Elmo contextualized
word embeddings [Peters et al., 2018] (Section 2.3.3). Elmo embeddings are ob-
tained via a Bi-LSTM network trained with a language modelling objective, and
assign a representation to each token which is a function of its sentential context.
Thus, unlike classic distributed representations, they are not limited to providing
a single embedding vector per token expressing its average or predominant sense.
We expect this to be helpful for the current task, as trigger words can be am-
biguous with respect to different event types (Section 3.3). Contextualized word
embeddings better model such subtle variations of the word sense, and could thus
provide valuable information to the tagger.

In order to investigate the effect of the domain of the augmentation data, we
explored several sources of unlabelled examples, including a web crawl of RSS
feeds [Ferguson et al., 2018], WaCkypedia [Baroni et al., 2009], and Gigaword.
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The latter most closely resembles the domain of the ACE corpus. While all three
led to comparable results, the Gigaword model was slightly better, in line with a
previous finding where the best self-training gains were achieved when the domains
of the unlabeled corpus and the seed corpus matched [Reichart and Rappoport,
2007]. Unless indicated otherwise, the results reported in the following chapters
were obtained with augmentation examples originating from Gigaword.

In order to establish a comparison with a related approach for the extraction of
labeled examples, we performed an additional experiment in which our augmenta-
tion strategy is used in combination with a different augmentation data set. The
data, provided to us by Ferguson et al. [2018], was obtained through the clustering
of coreferring event mentions from a news web-crawl. The approach is described
in more detail in Section 3.4. Besides the source of unlabeled examples, the data
also differs from our augmentation set in size, providing less than one thousand
examples for more than half of all ACE event classes.

The only preprocessing of the augmentation and gold-standard corpora we perform
is tokenization with the corenlp toolkit [Manning et al., 2014].

4.6.2 Evaluation Setup

To evaluate our data augmentation approach we make use of same train/test/dev
split2 of the ACE corpus employed in previous works [Nguyen et al., 2016; Feng
et al., 2016; Ferguson et al., 2018]. In addition, we report on the outcome of
a 10-fold cross validation experiment, in which the ACE data is split into 10
parts of roughly the same size by randomly selecting entire documents from the
original data set. This setup is meant to demonstrate the robustness of the data
augmentation approach on data sets with different event distributions.

We report the metrics precision (P), recall (R) and micro- and macro-averaged
F1 scores, presented in Section 3.3.1. As every event type contributes equally
to the latter, regardless of the number of examples present in the data set, the
macro-averaged F1 score can better demonstrate the effect of the augmentation
procedure on less frequent event types.

2As this is not a data split provided by ACE, but rather established in related works on event
extraction, we provide the exact list of files used in each data set in Table A.1
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“Starbucks is taking over the location in [..]”
Business.Start-Org

O O B-bs I-bs O O O → 1tp, 5tn

O O B-bs O O O O → 1fn, 1fp, 5tn

Figure 4.3: Event detection evaluation example listing the number of true
positives (tp), false positive (fp), and true negatives (tn), for two predictions.

An event mention prediction is considered correct if and only if both the token span
and event type of the mention correspond to an ACE event mention. Figure 4.3
provides an example of what constitutes a true positive in two alternative BIO tag
sequence predictions.

All results presented in the following chapters are obtained by doing 5 runs of
the model with different random sub-samples of augmentation data and random
initialization of the model parameters. Different model parameter initializations
typically result in fluctuations of the performance of the model. In order to mini-
mize the effect of this factor we report the average f-scores for five runs, together
with their corresponding standard deviations σF1. In addition, we chose to sub-
sample the augmentation data set every time, in order to account for the effect a
particular choice of augmentation examples might have on the final score.

Statistical significance testing was performed with a pairwise t-test with Bonferroni
correction. Statistically significant (p<0.05) improvements in F1 over the baseline
are marked (†) in each table.

4.6.3 Implementation Details

Our event tagger was implemented with the flair3 framework, which was designed
to facilitate the creation of state-of-the-art sequence labeling, text classification
and language models [Akbik et al., 2018, 2019]. Flair builds on top of the pytorch

library [Paszke et al., 2017], and offers support for a variety of contextualized and
non-contextualized word and document embeddings and combinations of them, as

3https://github.com/flairNLP/flair/

https://github.com/flairNLP/flair/
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well as a model training and hyper-parameter selection routines. We make use
of the sequence labeling Bi-LSTM model. The framework offers a version of the
model with a conditional random field (CRF) loss, which has been successful for
other sequence labeling tasks, such as named entity recognition [Lample et al.,
2016].

The Bi-LSTM model consists of a single layer with hidden size of 256. We used
stochastic gradient descent (SGD) optimization. The best training configuration
was determined empirically on the ACE development set, and includes a dropout
value of 0.05, learning rate of 0.1, 200 epochs, and mini-batch size of 32. We exper-
imented with the following pre-trained input embeddings: fasttext [Bojanowski
et al., 2017], elmo [Peters et al., 2018] (sizes original and large4), bert [Devlin
et al., 2019] (sizes base and large, trained on cased text). We do not perform
fine-tuning of the input embeddings when used in conjunction with the Bi-LSTM
model.

We compare the performance of the Bi-LSTM event tagger against a bert model
which was fine-tuned for the task at hand (Section 2.3.3). For this purpose, we
adapted the Token Classification architecture available in the huggingface5 li-
brary. The optimal number of fine-tuning iterations was determined on the de-
velopment set. We experimented with 3 (recommended for NER [Devlin et al.,
2019]) to 20 epochs. The bert-base-cased model was used as a starting point. The
fine-tuning of bert-large-cased failed due to high memory requirements.

4.7 Results

Table 4.2 presents an overview of our best baseline model configurations trained
solely on the data available in the ACE corpus.

The first four lines of the table present different configurations of our Bi-LSTM
event tagger. The results reveal the advantage of using contextualized input em-
beddings over the non-contextualized alternative, fasttext. The second line of
the table includes the best Bi-LSTM model with a CRF output layer. Despite
being beneficial for other sequence labelling tasks, the CRF decoder did not prove

4original refers to the model presented in [Peters et al., 2018], while large refers to a model
trained on a data set of 5.5B tokens, see https://allennlp.org/elmo.

5https://github.com/huggingface/transformers

https://allennlp.org/elmo
https://github.com/huggingface/transformers
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Trigger Identification & Classification

Model P R F1micro (σF1) F1macro (σF1)

B
i-L

ST
M

baselinefastText 63.3 67.5 65.3 (0.4) 60.9 (1.5)

baselineelmo,CRF 66.8 71.0 68.8 (1.1) 65.3 (2.0)

baselinebert 68.7 69.8 69.1 (0.9) 61.8 (2.2)

baselineelmo 69.0 70.0 69.5 (0.6) 67.7 (2.7)

baselinebert,fine-tune 66.3 70.4 68.3 (0.2) 65.4 (2.5)

crf [Ferguson et al., 2018] 62.9 70.0 66.3 n/a

jrnn [Nguyen et al., 2016] 66.0 73.0 69.3 n/a

hnn [Feng et al., 2016] 84.6 64.9 73.4 n/a

Table 4.2: Performance of different configurations of our baseline event tag-
ger on the test set of ACE 2005. The best baseline performance per metric
is marked in bold. For comparison, we include the scores reported for other

state-of-the-art event detection models (Section 3.3.2).

useful for our purposes. The third line presents the best Bi-LSTM model in con-
junction with a bert input embedding. For comparison, we include a fine-tuned
bert model (baselinebert,fine-tune), which does not utilize a Bi-LSTM architecture.

The best micro- and macro-F1 scores were achieved by the model which em-
ploys elmo input embeddings (size original, see Section 4.6.3). In terms of micro-
averaged F1 score, the model is comparable to JRNN [Nguyen et al., 2016], albeit
employing a much simpler architecture (Section 3.3.2), and outperforms the CRF
model of [Ferguson et al., 2018]. baselineelmo is used as our baseline for further
comparisons throughout the rest of this chapter.

Table 4.3 presents the evaluation of our data augmentation approaches (Sec-
tion 4.5) on the test set of the ACE corpus.

Introducing a loss scaling parameter led to better performance of the model over
simply concatenating the augmentation and training data (augconcat).

All augmentation strategies led to an improvement in the recall of the model,
but affected its precision negatively. This is somewhat to be expected, as we are
adding a large amount of new examples for each event type – for half of the event
types in ACE we increase the amount of training examples 15 fold or more. At
the same time, the process is bound to introduce some errors, as we rely on an
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Trigger Identification & Classification

Model P R F1micro (σF1) F1macro (σF1)

B
i-L

ST
M

baselineelmo 69.0 70.0 69.5 (0.6) 67.7 (2.7)

augconcat 65.3 74.3 69.5 (0.2) 70.0 (1.2)

auguniform, λ=0.1 66.9 73.6 70.1 (0.3) 71.8† (0.7)
augweight 68.8 71.7 70.2 (0.9) 71.0 (1.2)

augrev.weight 66.6 73.6 69.9 (0.3) 70.5 (1.1)

Fergusonuniform 67.7 59.7 63.4 (0.6) 53.2 (1.6)

trained on aug.data 68.6 66.5 67.5 (0.8) 64.0 (1.5)

Table 4.3: Augmentation results on the test set of ACE 2005. Improvements
over the baseline metrics are marked on bold. Statistically significant improve-

ments over the baseline are marked with †.

event extraction system trained on few examples to obtain the augmentation data
in the first place.

The data augmentation strategy with uniform loss scaling (auguniform) was most
successful out of the augmentation approaches. It achieved a statistically sig-
nificant improvement over the baseline in terms of macro-averaged F1 score. It
improves over the baseline by 4.1 percent with a lower σF1 compared to the other
augmentation approaches. This illustrates that our augmentation model works
especially well on low-frequency events. A more detailed breakdown is shown in
the two rightmost columns of Table 4.5.

The evaluation setup Fergusonuniform presents the performance of our model when
the best augmentation strategy (auguniform) is employed together with the aug-
mentation data set from [Ferguson et al., 2018]. This experiment aims to provide
some form of a comparison between the two approaches for the extraction of addi-
tional labeled examples, our self-training and their clustering of co-referring event
mentions in news articles. Utilizing Ferguson et al. [2018]’s data lead to degrada-
tion in performance of the event tagger compared to the baseline, suggesting that
their data set introduces a higher number of errors.

The last row of our Bi-LSTM model variants presents the outcome of an exper-
iment in which only augmentation data was used to train our event tagger. We
constructed a pseudo training set by randomly including a similar number of men-
tions per event type as in the original ACE training set (Table 4.1). The model
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Trigger Identification & Classification

Model P R F1micro (σF1) F1macro (σF1)

baselineelmo 71.4 66.8 69.0 (1.6) 58.1 (5.2)

auguniform, λ=0.1 70.8 69.3 70.0† (1.7) 61.1† (4.6)

Table 4.4: 10-fold cross validation result. Statistically significant improve-
ments over the baseline are marked with †.

performs nearly as good as the baseline trained on the gold data set in terms of
micro-averaged F1 score, which suggests that our augmentation data is of very
good quality.

We carried out an additional experiment aiming to evaluate our best augmentation
strategy on data sets with different event distributions. For this we generated
10 random splits of the ACE corpus, and performed 10 separate experiments in
which each split served as a test set once. Furthermore, we used one split as a
development set, and the remaining 8 as the training set, so that the sizes of all
three sets remained comparable to those of the original ACE split. The complete
augmentation data extraction process (Sections 4.4 to 4.5) was repeated for every
fold, with an event tagger trained on the training set corresponding to that fold.

Table 4.4 summarizes the outcome of the 10-fold cross-validation experiment. We
compare the performance of our best baseline model and augmentation strategy
from Table 4.3. The scores achieved for each of the 10 runs of the model have
higher variance in terms of macro-averaged F1 score, due to the differences in
event distributions in each fold. Despite these differences, the model performance
remains robust. Our best results on the ACE data is achieved in this setting, with
1 and 3 percent statistically significant improvement in micro- and macro-averaged
F1, respectively.

4.7.1 Error Analysis

Figure 4.4 presents an analysis of the errors made by our baseline and best aug-
mentation model on the ACE test set, focusing on the 8 general ACE event types.
In order to enable this comparison we have selected the model predictions from
the best run out of the five averaged in Table 4.3 for each model configuration6.

6These correspond to 70.6 micro-F1 and 71.7 macro-F1 for the best auguniform model, and
70.2 micro-F1 and 67.5 macro-F1 for the best baselineelmo model.
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Figure 4.4: Error distribution with respect to the general ACE event cate-
gories. The density of color denotes the frequency of error, ranging from light
gray (fewer errors) to black (a high number of errors). The counts are in the log
space in order to account for the disparity of number of instances of each class.

The figure makes evident that the highest number of false positives and false
negatives for both models were due to misclassifications of the None class (O-tag).
The augmentation model, however, achieved a reduction of the misclassifications
between the other classes (for Movement, Justice, Contact, and Conflict events).

In line with the increased recall of the augmentation model, it performed worse
in terms of false positives (+19), but led to a reduction of the number of false
negatives (−14) compared to the baseline. It outperformed the baseline in terms
of true positives and true negatives by 13 decisions each.

The F1 scores achieved by both models on the fine-grained ACE event types are
presented in Table 4.5. Surprisingly, the augmentation data was beneficial for the
two most frequent ACE event types, Conflict.Attack and Movement.Transport. As
for the infrequent event types, the augmentation approach improved the perfor-
mance on 6 of the events with less than 50 examples in the original training data
(Business.End-Org, Business.Start-Org, Justice.Appeal, Justice.Extradite, Life.Be-
Born, Personnel.Nominate). The performance for the remaining 7 remained un-
changed, while in only one case we observe a decrease in F1 score (Life.Divorce).
This goes to show that our augmentation approach is beneficial for supporting the
underrepresented event types in ACE.
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Event Type ace.train ace.test F1base F1aug
Business.Declare-Bankruptcy 40 2 100 100
Business.End-Org 31 5 57.1 76.9
Business.Merge-Org 14 0 – –
Business.Start-Org 29 18 40 43.8
Conflict.Attack 1273 93 78.5 81.3
Conflict.Demonstrate 65 7 66.7 58.8
Contact.Meet 200 50 69.9 69.4
Contact.Phone-Write 112 8 40 36.4
Justice.Acquit 5 1 0 0
Justice.Appeal 30 6 80 83.3
Justice.Arrest-Jail 78 6 100 100
Justice.Charge-Indict 96 8 93.3 88.9
Justice.Convict 64 6 90.9 90.9
Justice.Execute 14 2 66.7 66.7
Justice.Extradite 6 1 0 100
Justice.Fine 22 6 92.3 92.3
Justice.Pardon 2 0 – –
Justice.Release-Parole 46 1 100 100
Justice.Sentence 84 11 85.7 90
Justice.Sue 60 4 57.1 57.1
Justice.Trial-Hearing 103 5 90.9 83.3
Life.Be-Born 47 3 80 100
Life.Die 524 17 85.7 83.3
Life.Divorce 20 9 88.9 84.2
Life.Injure 127 1 100 66.7
Life.Marry 73 10 100 87
Movement.Transport 611 48 64.7 66
Personnel.Elect 162 16 81.1 68.2
Personnel.End-Position 159 22 55.3 57.8
Personnel.Nominate 11 1 0 50
Personnel.Start-Position 92 13 46.2 53.8
Transaction.Transfer-Money 128 14 34.8 40
Transaction.Transfer-Ownership 92 30 46.2 47.3

Table 4.5: Event types distribution in ACE 2005 training and test data. The
last two columns present a comparison between the performance of the models

baselineelmo and auguniform.

4.8 Conclusion

This chapter presents an approach for the automatic extraction of additional la-
beled data for the task of event extraction through self-training. A Bi-LSTM event
tagger trained on the ACE 2005 corpus is used to perform event trigger identifi-
cation and classification in a large unlabeled data set. In order to keep the tagger
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errors to a minimum, we employ a filtering strategy and retain only those classifi-
cation decisions which exceed a certain threshold of confidence. The resulting data
set is used to enhance the existing gold data in several ways. Our best strategy
involves reducing the effect of the augmentation data during re-training through
a loss scaling parameter.

Our best augmentation model achieved a statistically significant improvement over
the baseline on the ACE test set (macro-F1), as well as in a 10-fold cross validation
(micro- and macro-F1) evaluation. Our error analysis revealed that the augmen-
tation approach is especially beneficial for the classification of less frequent event
types.

A possible future direction for this work involves the experimentation with different
approaches to selecting which of the automatically labeled examples should be
assigned to the augmentation data set. In the current set of experiments, the
selection is done by randomly sub-sampling instances labeled with high levels of
confidence by our event tagger. However, a number of more advanced strategies
are possible.

Chen et al. [2018] propose a deep reinforcement learning model which automat-
ically learns an instance selection strategy for self-training. The selection or re-
jection of an automatically-labeled instance is represented as a decision process
which is rewarded based on the performance of a model trained on data including
this instance, evaluated on a development set. The decision process takes into
account the characteristics of the given instance (its sentence representation), as
well as the original model’s confidence estimate.

Hedderich and Klakow [2018] present an approach for learning from noisy data
(e.g., produced by distant supervision), which can be applied to low-resource sce-
narios. We face a data sparsity issue as well, as many of the ACE event types are
under-represented in the corpus. The proposed architecture aims to learn infor-
mation about the confusion between clean and noisy labels during training with
a mixture of a small amount of clean data and larger amounts of possibly noisy
data. This is accomplished via a dedicated noise layer added to the neural network
architecture.

Rather than attempting to learn from noisy data, another strategy involves detect-
ing and possibly removing noisy instances in a separate step. For our purposes,
this can be done prior to selecting examples for retraining. Wang et al. [2019]
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propose to estimate a confidence score for each instance in a training set and train
on a re-weighed version of the data, similarly to how we manipulate the training
loss when training on the augmentation data set. In order to estimate these con-
fidence scores, they train multiple instances of their model in a cross-validation
manner, and employ a voting strategy on the decisions of these models to estimate
the likelihood of an example from the test fold being erroneous.

Another possible future direction for this work involves the discovery of event
instances with higher variability. A known drawback of self-training is that the
automatically labeled instances may be very similar to those already present in
the original data set used for training the model [Liao and Grishman, 2011]. This
is likely to be the case especially for the model’s most confident predictions. Thus,
confidence alone may not be the best indicator for selecting examples for the
augmentation data set. One way in which more variability can be introduced is
to extract the augmentation data from clusters of documents which discuss the
same events. For instance, Ferguson et al. [2018] extract clusters of coreferring
event mentions from news-wire articles published on the same date which involve
the same named entity participants. The resulting clusters likely contain different
ways of expressing the same event. High confidence event tagger decisions for some
of the mentions in a cluster can prompt the incorporation of the complete set of
event mentions from that cluster into the augmentation data set, thus introducing
more variability.



Chapter 5

Background and Related Work in

Coreference Resolution

5.1 Resolving Reference

When people communicate in spoken or written form, they produce utterances
which form a unified whole, rather than a collection of isolated sentences. Each
consecutive sentence is semantically linked to its preceding context, and its in-
terpretation often depends on that context. The mechanisms which enable this
connectedness are collectively referred to as cohesion [Halliday and Hasan, 1976].
Mitkov [2002] notes that cohesion involves the use of abbreviated or alternative
linguistic forms which refer to or replace previously mentioned items in the dis-
course, but can nonetheless be easily recognised and understood by the hearer or
reader.

Consider the example sentences in Figure 5.1 which form a cohesive text. Each
consecutive sentence relies on its preceding context for interpretation. Sentence
(b) cannot be completely understood if considered in isolation from (a). The
tokens “it” and “one” serve as placeholders or abbreviations referring to something
introduced previously. The same applies to sentence (c), whose interpretation is
dependent on both (a) and (b) – the reader needs to take into account the previous
sentences in order to infer who “they” are. Reference is one of the main mechanisms
of cohesion identified by Halliday and Hasan [1976], and will be the focus of this
chapter.

75
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(a) John likes the red car.

(b) Mary also likes it, but prefers the green one.

(c) While it was not their first choice, the yellow hatchback was all they
could afford.

Figure 5.1: Example of cohesive text.

5.1.1 Anaphora

The sample text in Figure 5.1 contains a form of reference known as anaphora,
which can be defined as a “cohesion which points back” [Halliday and Hasan, 1976].
The expression which points to a previously mentioned item is called an anaphor,
while the expression which the anaphor points back to is known as an antecedent.
For instance, the antecedent of the anaphor “it” in (b) is “the red car” in (a), while
the anaphor “one” has as an antecedent the token “car”.

John likes the red car. Mary also likes it , but prefers the blue one.

Pronoun anaphors are part of the more general category of nominal anaphora,
along with proper names, nominal descriptions, and demonstratives. Nominal
anaphora is the most abundant and widely studied type of reference [Mitkov,
2002]. Verbs and adverbs are among the other common grammatical categories of
anaphors.

Zero anaphora occurs when an anaphor is not explicitly present in the text, but
is nonetheless understood by the reader and relies on an antecedent expression for
recovering its meaning. Mitkov [2002] notes that this type of anaphor enhances
the coherence of a sentence, and is the most concise or abbreviated linguistic form
anaphors can take. In (b), it is understood that Mary is the one who prefers the
blue car.

Mary also likes it, but ∅ prefers the blue one.

When an expression points to something mentioned later in the discourse as op-
posed to previously, it is known as a cataphor. An example for this is present
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in sentence (c), where the pronoun “it” occurs before its antecedent “the yellow
hatchback”.

While it was not their first choice, the yellow hatchback was all they
could afford.

In some cases the antecedent of an anaphor may consist of several, non-consecutive
expressions, known as split antecedent. For instance, the anaphoric pronouns
“their” and “they” in (c) refer to the group consisting of John and Mary.

John likes the red car. Mary also likes it, but prefers the blue one.

While it was not their first choice, the yellow hatchback was all they
could afford.

Anaphora resolution in NLP is the process of automatically determining the an-
tecedents of each anaphor (and cataphor) in a text. Anaphoricity detection is
sometimes performed as an additional step prior to anaphora resolution. The aim
of this task is to identify and filter non-anaphoric noun phrases, such as the non-
anaphoric uses of the pronoun it – pleonastic it (“It is raining”), clefts (“It was
John who loved Mary”), etc., as well as some generic, underspecified, and abstract
expressions.

5.1.2 Coreference

When the anaphor and its antecedent refer to the same object, person, organi-
sation, or other real-world entity, they are said to corefer. The expression which
is utilised to refer to this entity is called a referring expression, while the entity
itself is known as the referent. A set of expressions with a common referent forms
a coreference chain.

The referent is not to be confused with the antecedent. The antecedent is a
previous textual mention, upon which the anaphor relies for its interpretation,
while the referent is the actual entity in the world which is being discussed. The
antecedent of “it” (b) is “the red car” (a), while the referent of both is the actual red
car entity in the world. Thus, this anaphor and its antecedent are also referring
expressions, and are said to exhibit the identity of reference relation [Mitkov, 2002].
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However, not every anaphor and antecedent pair are coreferential. Certain types
of anaphors denote an entity of a similar description, rather than one of the same
identity. This is known as identity of sense anaphora [Mitkov, 2002]. The anaphor
“one” (b), for instance, is not coreferential with its antecedent “car” (a) – the
red car and the blue car denote two different entities in the world. Just as not
every anaphor is coreferential, not every coreferential expression is anaphoric. Two
mentions which appear in separate documents can still be coreferential, when they
have the same referent1. Anaphora, on the other hand, is always limited to the
current discourse context.

Coreference resolution is an NLP task aimed at the automatic detection and group-
ing of textual mentions of real world entities. The task is sometimes referred to
as noun phrase coreference resolution, as it primarily focuses on nominal refer-
ring expressions. Verbal coreference occurs when two or more expressions refer to
the same event. Verbal coreference resolution is more frequently denoted as event
coreference, or event linking (see Chapter 3).

The coreference resolution output corresponding to the example in Figure 5.1
would include the following three2 coreference chains: {“the red car ”, “it”}, {“it”,
“the yellow hatchback ”}, and {“their ”, “they”}.

Anaphora and coreference resolution are two closely related tasks – despite the
aforementioned differences between the two phenomena, the large majority of re-
ferring expressions are also anaphoric. Coreference resolution systems have drawn
inspiration from classical works in anaphora resolution. This is visible in rule-
based approaches to the task [Lee et al., 2011], as well as the choice of features for
supervised machine learning models (e.g., agreement, syntactic constraints, etc.).
Anaphoricity detection has also been successfully applied to coreference resolution
[Ng and Cardie, 2002a; Ng, 2004]. A distinction between the two tasks is that
anaphora resolution is typically performed in terms of pairwise decisions on can-
didate 〈anaphor – antecedent〉 pairs. Coreference resolution, on the other hand,
involves assigning a much larger set of entities into coreference chains, resulting in
an explosion of possible combinations. In addition, the repeated reference to the
same entity can often result in long-distance dependencies, further complicating
the task (see Section 5.1.3).

1Identifying such expressions falls under the task of cross-document coreference resolution.
2Due to its complexity, zero anaphora resolution is usually considered as a separate task and

beyond the scope of coreference resolution.
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Another task related to coreference resolution is entity linking. While the for-
mer focuses on identifying and grouping all textual mentions of the same entity,
the latter goes a step further in that it aims to identify the referent of those
entity mentions. Determining the identity of the referent constitutes in tagging
entity mentions with unique identifiers which link them to a knowledge base. For
instance, the textual mention Madonna could be linked to the Wikipedia page
dedicated to the singer, or to the one describing the biblical figure, in order to
identify its referent. Entity linking primarily focuses on named entities, and does
not aim to identify all mentions of these entities in the text.

5.1.3 Referring Expressions

Spoken and written communication usually involves the repeated reference to the
same discourse entities. While equivalent in terms of their referent, the referring
expressions employed in this process are typically not equivalent amongst each
other in terms of generality and amount of information about the referent which
they encode.

Consider the text snippet in Figure 5.2, where all the mentions referring to a
company are marked. The resulting coreference chain contains a wide range of
expressions – proper noun phrases, definite noun phrases, and pronouns. The
pronoun it provides little information about the referenced entity, namely that it
is neuter and singular. The noun phrase the company, on the other hand, tells
the reader about the category of the entity being discussed, in addition to its
number and gender. Full forms of proper names, such as Elco Industries Inc., are
considered among the most specific forms referring expressions can take [Ariel,
1990; Almor, 1999]. Even though some referential expressions, such as pronouns,
are very general and are thus applicable to a wide range of entities, the reader
is typically able to pick out the correct referent without difficulty. The repeated
use of the most specific referring expression form available to point to an entity,
such as a proper name, would virtually eliminate any ambiguity in its resolution.
Nonetheless, such expressions seem to be reserved for specific places in the dis-
course. The factors which guide the choice of referential form have been of interest
not only from a theoretical perspective, but also for the design of computational
models for coreference and anaphora resolution.
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Elco Industries Inc. said it expects net income in the year ending June

30, 1990, to fall below a recent analyst’s estimate of $1.65 a share.

The Rockford, Ill., maker of fasteners also said it expects to post sales in

the current fiscal year that are “slightly above” fiscal 1989 sales of $155 mil-

lion. The company said its industrial unit continues to face margin pressures

and lower demand. In fiscal 1989, Elco earned $7.8 million, or $1.65 a share.

Figure 5.2: Example of different types of co-referring mentions of an entity
from the OntoNotes corpus [Hovy et al., 2006].

Discourse salience is among the main factors which are considered to influence the
choice of referential form [Almor, 1999]. Entities which are more salient or promi-
nent in the discourse tend to be referenced by shorter, more general forms such
as pronouns, while definite descriptions and proper names are usually reserved for
reintroducing less salient entities. Almor [1999] traces this to the cooperative prin-
ciples for effective communication [Grice, 1975] – a referring expression should be
as informative as necessary in the given context in order to enable the successful
identification of the referent by the reader, but not more informative than neces-
sary. An exception to this can occur if the expression serves the additional purpose
of introducing new information about the referent. For instance, The Rockford,
Ill., maker of fasteners (Figure 5.2) tells us about the location and product of-
fered by the company, while being utilized to refer to a very salient entity. This
contrasts with the antecedent–anaphor relationship discussed previously, which
suggests that the anaphor is a more abbreviated form compared to its antecedent.

Ariel [1990] puts forward the view that referential expressions serve the function
of accessibility markers, instructing the reader or listener on how much effort is
needed to retrieve from memory who the referent is. The less accessible the refer-
ent, the more elaborate the referential marker would be used to point to it, and
vice versa. A number of factors are considered to influence the degree of accessi-
bility of an entity in addition to its salience. The larger the distance separating
different mentions of the same entity, the lower the degree of accessibility if its
mental representation, which could be attributed to the decay of information in
working memory [Almor, 1999]. If the two expressions are located within the
same textual or discourse unit (e.g., a paragraph), they are considered to exhibit a
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higher degree of cohesion and hence accessibility. Finally, competition refers to the
number of competitors on the role of antecedent – the more potential antecedents
there are, the lower the degree of accessibility each would have.

It becomes evident that the distribution of referential forms is not arbitrary, but
follows specific patterns which could be attributed to a multitude of factors. A
general tendency seems to be that in cases when the identity of the referent cannot
be established unambiguously (e.g., due to competing referents, distance, etc.), the
speaker or writer might choose a more specific referential form in order to rein-
troduce the referent into the discourse. In contrast, when the referent is easy
to infer, the chosen expression can be abbreviated to a pronoun, or even a zero
anaphor, following the principles of effective communication. Beyond a means for
identifying the referent, however, a referring expression can be utilised to enrich
the mental representation of the referenced entity by introducing additional infor-
mation about it. Such cases pose exceptions to the aforementioned generalisation
about referential form usage.

5.2 Coreference Corpora

The OntoNotes corpus [Hovy et al., 2006; Weischedel et al., 2011] is the largest and
most widely used coreference data set for English. It was central to the CoNLL
2011 and 2012 [Pradhan et al., 2011, 2012] shared tasks on modelling unrestricted
coreference, which established an evaluation protocol serving as the standard for
comparing coreference resolution models to this day. The English portion of the
OntoNotes corpus comprises roughly 1.5 million words of news-wire, magazine
articles, broadcast news, broadcast conversations, web data, conversational speech
data, and biblical text.

According to the annotation guidelines of OntoNotes, coreference involves linking
“all the specific mentions in a text that point (refer) to the same entities and
events”. The following lines summarize some of the specificities of the coreference
annotations of the corpus.

Entity mentions usually take the form of pronouns, noun phrases, or proper nouns.
All personal and possessive pronouns and demonstratives are linked to their an-
tecedents with the exception of expletive or pleonastic pronouns and the generic
you. Noun phrase mentions typically consist of, but are not limited to, definite
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train dev test

category count % count % count %

noun phrase 61.8K 39.46 9.7K 45.57 9.2K 42.97

pronoun 66.7K 42.61 7.8K 36.66 8.2K 38.69

proper noun 18.1K 11.60 2.2K 10.66 2.3K 10.96

other noun 2.636 1.68 546 2.55 500 2.33

verb 2.522 1.61 299 1.40 342 1.60

other 4.761 3.04 676 3.16 738 3.45

Table 5.1: Distribution of mentions in the training, development, and test
splits of the English portion of OntoNotes by their syntactic category, as pre-

sented in [Pradhan et al., 2012].

descriptions. In complex nested noun phrases such as the example below, the
longest logical span participates in coreference with other mentions of the same
entity:

There’s already word of 〈〈〈a possible Israeli-Palestinian summit〉 in

Egypt〉 in the next several days〉1. 〈The summit〉1 will [..]

Generic, abstract, or underspecified nominal mentions can be linked with refer-
ring pronouns and other definite mentions, but not with other generic nominal
mentions:

〈Meetings〉1 are most productive when 〈they〉1 are held in the morning.

However, 〈meetings〉2 can have low attendance if 〈they〉2 are held too
early.

Coreference between event mentions is also marked. The heads of verb phrases
can be coreferent with a noun phrase in cases of nominalizations (e.g., grow and
growth), or with another verb. Event mentions are marked only if they participate
in event coreference. Unlike the ACE 2005 corpus (Section 3.2), event arguments
and event types are not annotated. Table 5.1 summarizes the distribution of
mentions in the corpus with respect to their syntactic category.

OntoNotes makes a distinction between identity coreference and appositive ref-
erence. Appositive constructions involve a different form of reference – between



5. Background and Related Work in Coreference Resolution 83

the head of the appositive and the remaining noun phrases in the construction,
which function as attributes of the head. Appositive attributes cannot partici-
pate in identity coreference on their own and are not coreferent with the head.
The longest span rule applies here as well when linking appositives with other
coreferent entity mentions:

〈〈John〉head, 〈a linguist I know〉attribute,〉1 is coming to dinner. 〈He〉1
will [..]

Copular constructions and small clauses are also considered to introduce attributes
rather than mentions of the same entity. For instance, the predicate of the copula,
“a linguist I know”, does not participate in a coreference chain with the subject
“John” in the following example:

〈John〉1 is a linguist I know. 〈He〉1 is coming to dinner.

Other coreference resolution corpora include the Message Understanding Confer-
ence (MUC) data sets, MUC6 [Chinchor and Sundheim, 2003] and MUC7 [Chin-
chor, 2001], and the ACE (2000-2005) data sets. The MUC corpora contain an-
notations for unrestricted noun phrase coreference, but have the disadvantage of
being relatively small in size – roughly 25K words for MUC6, and 40k for MUC7
[Pradhan et al., 2012].

The ACE corpora were used in the Entity Detection and Tracking tasks of the
ACE Program. While the corpora is larger in size, the annotations are limited to
coreference for a set of seven entity types: person, organization, location, weapon,
vehicle, facility, and geopolitical entity. Unlike MUC and OntoNotes, the ACE
corpus contains annotations for singletons, or entities mentioned only once.

In addition to their limitations in terms of size and coverage of entity types, the
annotation decisions made in the two data sets have been criticised as being incon-
sistent with linguistic theory of coreference. The definition of coreference adopted
in MUC has been deemed unclear, mixing elements of anaphora and predication
[van Deemter and Kibble, 2000]. Nominal predicates in copula constructions are
treated as coreferring with the subject in both MUC and ACE. Similarly, the at-
tributes of appositives are deemed coreferent with the head of the construction.
Thus, both corpora would consider “John” and “a linguist I know” in the two
previous examples to be separate mentions of the same entity.
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5.3 Coreference Evaluation

A number of metrics have been proposed for the evaluation of coreference resolu-
tion. The list includes, among others, MUC [Vilain et al., 1995], B3 [Bagga and
Baldwin, 1998], CEAFm, CEAFe [Luo, 2005], BLANC [Recasens and Hovy, 2011],
and LEA [Moosavi and Strube, 2016].

Despite the variety of available metrics, there is not a single widely agreed-upon
measure employed in the community. Coreference evaluation has proven to be
a non-trivial problem. A suitable metric should be intuitive and interpretable,
discriminative, and capable of penalising mismatches due to erroneous mention
identification in addition to erroneous coreference decisions. The majority of the
proposed metrics have been shown to lack in one or more of these desired properties
[Stoyanov et al., 2009; Holen, 2013; Moosavi and Strube, 2016].

Due to the lack of a single accepted measure, the CoNLL 2011 and 2012 shared
tasks [Pradhan et al., 2011, 2012] have ranked participating systems with an aver-
age of the F1 scores produced by three metrics, MUC, B3, and CEAFe. Moosavi
and Strube [2016] rightfully note that taking the average of three unreliable met-
rics does not produce a reliable one. Furthermore, the use of an average score
makes it difficult to compare competing models in terms of precision and recall.
Nonetheless, the CoNLL F1 score has since become the standard in coreference
evaluation, while the provided scorer implementation [Pradhan et al., 2014] has
helped to establish a much needed basis for comparison across existing coreference
models. The following lines summarize the component metrics of the CoNLL F1
score, which was also used for the experiments described in Chapter 6.

MUC [Vilain et al., 1995] is one of the earliest metrics proposed for coreference
resolution evaluation. It represents coreference decisions in terms of links between
coreferring mentions. Precision and recall are estimated as the number of links
which need to be added or removed from a system prediction, or the response,
in order to obtain the gold-standard set of coreference chains, or the key. Let
K = {k1, .., kn} denote the set of key coreference chains, and R = {r1, .., rn} be
the set of response chains. MUC recall is computed via Equation (5.1)3, where
p(ki) are the partitions obtained by intersecting ki with R. Precision is computed
in the same way, but by switching the role of the response and key.

3We use the notation of [Moosavi and Strube, 2016] for all metrics.
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Recallmuc =

∑
ki∈K(|ki| − |p(ki)|)∑

ki∈K(|ki| − 1)
(5.1)

MUC has been criticised for its poor discriminative abilities, as it ranks all mistakes
equally regardless of the impact they might have on the overall performance [Bagga
and Baldwin, 1998]. For instance, it would not distinguish between an erroneous
link which merges two singletons, and one which merges the two most prominent
entities of the text, which would be much more problematic [Moosavi and Strube,
2016]. Furthermore, being link-based, MUC cannot handle singletons and is thus
not suitable for some corpora.

B3 or BCUB [Bagga and Baldwin, 1998] was proposed as a solution to the afore-
mentioned shortcomings of MUC. It is a mention-based metric which assigns a
score to each mention in the key equal to the number of correct mentions in the
response entity containing that mention, over the size of the key entity to which
the mention belongs. The final recall score (Equation (5.2)) is the normalized
sum of the scores for each mention. Precision is computed by reversing the role of
response and key.

Recallb3 =

∑
ki∈K

∑
rj∈R

|ki∩rj |2
|ki|∑

ki∈K |ki|
(5.2)

B3 can produce unintuitive results in some borderline cases [Luo, 2005]. Moosavi
and Strube [2016] suggest that the issue stems from the fact that coreference is
evaluated in terms of the presence or absence of key mentions in response entities.
As a result, a key mention which exists in any of the response entities would
receive some credit, even when it is not truly coreferent with any of the remaining
mentions in that entity.

The CEAF metric [Luo, 2005] first finds the best one-to-one alignment between key
and response entities according to a similarity measure. The optimal alignment
(the one which maximizes the total entity similarity) is obtained through the use
of the Kuhn-Munkres algorithm. There are two variants of the CEAF metric
depending on the similarity measure employed in the process. CEAFm computes
the similarity as the number of common mentions in two entities. The similarity
measure employed in CEAFe is shown in Equation (5.3). Recall is computed



5. Background and Related Work in Coreference Resolution 86

via Equation (5.4), where K∗ denotes the set of key entities participating in the
optimal one-to-one mapping g∗.

φ(ki, rj) =
2× |ki ∩ rj|
|ki|+ |ri|

(5.3)

Recallceafe =

∑
ki∈K∗ φ(ki, g

∗(ki))∑
ki∈K φ(ki, ki)

(5.4)

One of the main criticisms of CEAF is that is does not take into account any
correct coreference decisions present in the unaligned response entities [Moosavi
and Strube, 2016]. Furthermore, all entities are weighed equally, regardless of their
impact on the overall performance as determined by their size [Stoyanov et al.,
2009].

The CoNLL F1 score [Pradhan et al., 2014] is obtained by averaging the F1 scores
of the MUC, B3, and CEAFe metrics (Equation (5.5)).

F1conll =
1

3
× (F1muc + F1b3 + F1ceafe) (5.5)

The BLANC measure [Recasens and Hovy, 2011] is a variation of the Rand index
for clustering evaluation applied to the coreference task. BLANC is the only
measure of the ones discussed so far which directly rewards correct coreference
as well as non-coreference decisions. Each mention is considered as linked to
every other mention in the data by either a “coreferent” or “non-coreferent” link.
Separate Precision, Recall and F1 values are computed for the two types of links
when contrasting a system’s predictions against the gold standard. The final
BLANC score is the average of the F1 measures for the two.

5.4 Supervised Coreference Resolution

5.4.1 Model Architectures

One of the most widely used coreference resolution architectures is the mention-
pair model [McCarthy and Lehnert, 1995; Aone and William, 1995; Soon et al.,
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2001]. It breaks down the task of coreference resolution into binary classification
decisions on pairs of mentions. Subsequently, a clustering algorithm is employed
to build coreference chains from those predictions.

The need for clustering stems from the fact the model’s predictions alone might not
be sufficient to form coreference chains. For instance, it might predict that mention
A is coreferent with mention B, and that mention B is coreferent with mention C,
but fail to classify A and C as coreferent [Ng, 2010]. In such cases, clustering is
needed to enforce the transitivity property of coreference. The two most popular
clustering approaches are closest-first clustering [Soon et al., 2001] and best-first
clustering [Ng and Cardie, 2002b]. In the former, a mention is grouped with its
closest predicted antecedent, while the latter selects the antecedent deemed most
probable by the model.

Another challenge for the mention pair model is the creation of training instances
[Ng, 2010]. As the majority of mentions do not stand in a coreference relation,
simply pairing any two would lead to a highly skewed class distribution with mostly
negative examples. One popular strategy to cope with this issue is to create a
positive training instance by pairing a mention mi and its closest antecedent mk,
and a negative one by pairing mention mi with any intervening non-coreferent
mention mj (k < j < i) [Soon et al., 2001].

A commonly cited weakness of the mention-pair model is that decisions on pairs
of mentions are taken in isolation and cannot benefit from previous predictions
or influence future ones. Furthermore, the lack of sufficient evidence to make an
informed classification decision for certain pairs can lead to errors.

The entity-mention model [Yang et al., 2004; Luo et al., 2004] has been proposed as
a way to improve on the expressiveness limitations of the mention-pair model. For
each mention, the model decides on whether it should be assigned to an existing
partially-formed mention cluster, or start a new cluster. Working with a mention
cluster allows for the model to base its classification decisions on information
from multiple mentions as opposed to a single candidate antecedent. Cluster-level
features can be defined in order to make sure that all mentions in cluster comply
to specific constraints, such as agreement in number and gender. Despite the
improved expressiveness, the entity-mention model has not lead to significantly
improved performance in comparison with the simpler mention-pair model [Ng,
2010].
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A, B C D

mention-pair mention-ranking cluster-ranking

?

D→   arg max    φ(X ,D)
           X∈ {A,B,C ,none}

D→     arg max      φ(X ,D)
           X∈{{A,B} ,{C},{}}

D→A
D→B
D→C

entity-mention

D→{A,B}
D→{C}

Figure 5.3: An example of the decisions each coreference model would take to
determine the antecedent of mention D among the candidates A, B, C, or none.

The mention-ranking model [Denis and Baldridge, 2007, 2008] offers an alternative
approach to coreference resolution. Rather than viewing the task as a classification
problem, it computes a ranking of all possible candidate antecedents with respect
to the current mention. The mention is then linked to the most probable an-
tecedent. The ranking model has the advantage that it directly captures the com-
petition among potential antecedents, rather than considering them in isolation.
This model architecture has been shown to consistently outperform the mention-
pair model [Ng, 2010]. Similarly to the way in which the entity-mention model
improves on the expressiveness of the mention-pair model, the cluster-ranking
model proposed by Rahman and Ng [2009] extends on the mention-raking model
by enabling the use of cluster-level features and the competition among partially
formed clusters with respect to the mention under consideration.

Figure 5.3 presents a comparison between the coreference architectures discussed
previously. The figure exemplifies how each model would predict the antecedent
of mention D among the candidate antecedents A,B, C, or none (D is the first
mention of a new entity). The mention-pair and entity-ranking models perform
several binary classifications, while the mention-ranking and cluster-ranking mod-
els compute a ranking φ over the candidate antecedents, subsequently selecting
the highest scoring option among them.

5.4.2 Learning Algorithms

A variety of machine learning algorithm have been employed for the task of super-
vised coreference resolution. Popular methods include: decision trees [McCarthy
and Lehnert, 1995; Soon et al., 2001; Ng and Cardie, 2002b; Yang et al., 2004],
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conditional random fields [McCallum and Wellner, 2005], maximum entropy clas-
sifiers [Luo et al., 2004; Culotta et al., 2007; Denis and Baldridge, 2008; Björkelund
and Farkas, 2012], support vector machines [Finley and Joachims, 2005; Uryupina,
2010], averaged perceptron [Bengtson and Roth, 2008], structured conditional ran-
dom fields [Durrett and Klein, 2014], and structured perceptron [Björkelund and
Kuhn, 2014; Martschat et al., 2015], among others.

More recently, deep learning-based approaches to coreference resolution have gain-
ed popularity [Lee et al., 2017, 2018; Kantor and Globerson, 2019; Peters et al.,
2018; Fei et al., 2019; Joshi et al., 2019].

For a more detailed overview of supervised coreference resolution learning algo-
rithms we refer the reader to [Ng, 2010], [Zheng et al., 2011] and [Stylianou and
Vlahavas, 2019].

5.5 Features for Supervised Coreference Resolu-

tion

A coreference resolver typically considers each noun phrase in a given text as a
prospective referring expression candidate, and each preceding noun phrase or sets
of noun phrases as possible antecedents to that expression. A number of features
which aim to determine the compatibility between candidate co-referring mentions
have been proposed for the task [Bengtson and Roth, 2008; Recasens and Hovy,
2009; Ng, 2010; Zheng et al., 2011; Durrett and Klein, 2013]. These include unary
features modelling the properties of individual mentions, and pairwise features
comparing against a single candidate antecedent (mention-pair, mention-ranking
model), or against the mentions in partially-formed coreference chains (entity-
mention, cluster ranking model). In the latter scenario, the features compute the
compatibility with all, most, or any of the members of the chain under considera-
tion.

Section 5.5.1 offers an overview of the most commonly used features in supervised
coreference resolution. Section 5.5.2 focuses on the use of semantic knowledge for
the task.



5. Background and Related Work in Coreference Resolution 90

5.5.1 Surface Features

Mentions of the same entity typically agree in number, gender, and person . The
gender of person names can be determined by a lookup in dedicated name lists
[Bergsma and Lin, 2006], or through other heuristics (e.g., title matching), but can
prove challenging for common noun phrases and out-of-vocabulary or ambiguous
names (e.g., “Clinton won the debate”). In addition, special care needs to be
taken in the presence of indirect speech, which can introduce exceptions to the
agreement rule. In the example below, the correct grouping is between “she”
and “I ”, regardless of the mismatch in person, and not between “she” and ‘ ‘her”,
despite the agreement in both person and gender.

“〈I〉1 gave 〈the book〉2 to 〈her〉3 yesterday.”, 〈she〉1 said.

Some distance-based features have been proposed as well. Such features indicate
the distance in number of tokens, sentences, or even number of intervening noun
phrases (other potential antecedents) between a referring expression and its candi-
date antecedent. Empirical evidence suggests that the distance between anaphors
and their antecedents varies depending on the type of expressions involved [Mitkov,
2002]. Pronouns, for instance, tend to be situated close to their antecedents, and
can usually be resolved within the same or the preceding sentence. Proper names
and definite descriptions, on the other hand, are usually further away from their
antecedents. In some extreme cases, the distance has been reported to reach 30
sentences or more [Ariel, 1990; Mitkov, 2002].

A multitude of string matching features have been shown to be particularly ef-
fective for named entity and noun phrase mentions [Ng, 2010]. Such features
determine if two mentions are an exact or partial string match, which would be
helpful in establishing a link between “Elco” and “Elco Industries Inc.” in the ex-
ample in Figure 5.2. Beyond surface string match, other related features include
edit distance and acronym matching.

Salience seems to play a major role in the choice of referring expression (Sec-
tion 5.1.3). Certain types of referring expressions (e.g., pronouns) are more likely
to point to very salient entities and would rarely be used to refer to non-salient
ones, while others (e.g., names, definite descriptions) are typically used to intro-
duce new entities, or re-introduce less-salient entities. Attempt have been made
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towards modelling the salience of entities to serve as feature for supervised corefer-
ence resolution. Antecedents which appear in a prominent grammatical role (e.g.,
in the subject position) or have been mentioned recently, are considered more
salient [Ng, 2010]. Repetition can be used as an indicator that an entity is the
topic of the document. Iida et al. [2009] employ a dedicated salience ranker model.

Somewhat related are features indicating the type of the referring expressions, with
values typically including proper name, definite/indefinite noun phrase, demon-
strative, possessive, or other. Besides its usefulness in conjunction with other
features, this value can pertain to the typical order of referential expressions in a
coreference chain. For instance, a pronoun is not likely to be the first mention of
an entity.

5.5.2 Semantic Features

Surface-level features such as the ones described so far do not always provide suffi-
cient information for the successful disambiguation between antecedent candidates.
In practice, a text often describes the interactions between multiple referents with
similar characteristics (e.g., multiple inanimate objects, persons, etc.). In order
to infer the identity of the referents being discussed, the reader relies on their
understanding of the semantics of language and their knowledge of the state of
the world.

Co-referring mentions may not share any surface string similarity but rather ex-
hibit some form of semantic relatedness. Lexical semantic relations such as syn-
onymy and hyponymy/hypernymy, are commonly used to establish a link to previ-
ous mentions of the same entity. For instance, consider the co-referring expressions
in the following passage:

〈Laika〉1 became one of the first animals in space. 〈The stray mongrel

from the streets of Moscow〉1 was selected to be the occupant of the So-

viet spacecraft Sputnik 2. 〈The dog〉1 was launched into outer space
on 3 November 1957.
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The dog breed “mongrel ” constitutes a (class) hyponym of “dog”, while “Laika” is
an instance hyponym4 of both. Another example is present in Figure 5.2: “Inc.”
(incorporated) and “maker of fasteners” can both be considered hyponyms of
“company”, while “Elco” and “Elco Indusitries Inc.” are synonyms and instances
of the latter.

In certain cases it may not be sufficient to consider the candidate referring expres-
sions in isolation. Instead, a broader sentential context may need to be taken into
account to make the correct prediction. Consider the example below, which offers
two continuations of the sentence “My dog Sparky hates the mailman”:

(1) 〈My dog Sparky〉1 hates 〈the mailman〉2. 〈He〉1 tried to bite 〈him〉2 on mul-
tiple occasions.

(2) 〈My dog Sparky〉1 hates 〈the mailman〉2. 〈He〉2 tried to kick 〈him〉1 on mul-
tiple occasions.

Sparky and the mailman are both plausible antecedent candidates for “He” and
“him” in each consecutive sentence, as they exhibit no surface disagreement and
match in number, person and gender with the two referents. The key to the
successful disambiguation of the referents lies in determining the selectional pref-
erences of the verb predicates in the second sentence. As dogs are more likely to
bite humans than the other way around, we can deduce with some certainty who
tried to bite whom in (1). Analogously we can determine who tried to kick whom
(2), as a dog’s preferred form of attack typically does not involve kicking.

Consider a different example from [Ponzetto and Strube, 2006] which further il-
lustrates the importance of contextual semantic information:

A state commission of inquiry into the sinking of the Kursk will convene
in Moscow on Wednesday, 〈the Interfax news agency〉1 reported. 〈It〉1
said that the diving operation will be completed by the end of next
week.

4Class hyponymy refers to the relationship between common nouns, which can be seen as
labels of classes (e.g., folk singer is a hyponym of singer). Instance hyponymy describes the
relationship between a class and a specific entity (or instance) of that class (e.g., Johny Cash is
an instance of singer) [Miller and Hristea, 2006].
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There are multiple candidate antecedents for the pronoun “It”: the comission, the
sinking, the Kursk, Moscow, the news agency. Agreement and surface features
fail to provide sufficient discriminative information for its disambiguation. Fur-
thermore, both the commission and Moscow5 could be considered good candidates
according to the selectional preferences of its predicate “said”. The correct link to
the antecedent “the Interfax news agency” can be established by inferring that the
two expressions are agents of the semantically-related predicates report and say
[Ponzetto and Strube, 2006].

In certain cases the cues for the resolution of referring expressions are extra-
linguistic. When selecting a referring expression, the reader or speaker may rely
on common knowledge about prominent entities, such as the fact that the singer
Madonna is also known as the “Queen of pop”, or that “Emerald Isle” is the poetic
name for Ireland. Consider the example from [Mitkov, 2002]:

〈Tony Blair〉1 met 〈President Yeltsin〉2. 〈The old man〉2 had just re-
covered from a heart attack.

The correct resolution of “The old man” is dependent on the information that one
of the two candidate referents is older compared to the other. It is unlikely that
this information has been explicitly noted in the text, however, as it was common
knowledge for the intended audience at the time of writing.

A long line of work has been devoted to the incorporation of semantic and world
knowledge into coreference resolution. Some of the investigated sources of such
information include lexical databases (WordNet [Miller, 1995], FrameNet [Baker
et al., 1998], VerbNet [Schuler and Palmer, 2005], PropBank [Palmer et al., 2005]),
structured and semi-structured encyclopedic resources (Wikipedia, Yago [Suchanek
et al., 2007], DBPedia [Auer et al., 2007], FreeBase [Bollacker et al., 2008]), and
semantic knowledge extracted automatically from unstructured data.

WordNet is a popular source of lexical semantic information for the task, in par-
ticular for the resolution of common nouns [Vieira and Poesio, 2000; Soon et al.,
2001; Harabagiu et al., 2001; Ng and Cardie, 2002b; Markert and Nissim, 2005;
Daumé III and Marcu, 2005; Ponzetto and Strube, 2006; Bengtson and Roth, 2008;
Zhiheng et al., 2009]. The WordNet taxonomy is used to assign coarse-grained se-
mantic classes to common noun referring expressions (e.g., “person”, “object”, etc.),

5when used as a metonym to refer to the government of the country.
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which can be used alongside the class assigned to proper nouns by a named en-
tity tagger. The WordNet semantic class feature is obtained by traversing the
taxonomy tree via the hypernymy relation. An alternative use case is to directly
determine if two expressions are related via synonymy or hypernymy [Vieira and
Poesio, 2000; Bengtson and Roth, 2008]. The lexical data base can also be used
to compute similarity measures based on the distance between two nouns in the
taxonomy tree [Daumé III and Marcu, 2005; Ponzetto and Strube, 2006].

A challenge in the application of WordNet to the task is the need to determine
the correct synset a token belongs to prior to querying the taxonomy tree. The
word sense disambiguation step is frequently circumvented by only considering
the first (i.e., most frequent) sense of a token [Soon et al., 2001; Ng and Cardie,
2002b], or by using information from all of the synsets [Ponzetto and Strube, 2006].
For instance, Bengtson and Roth [2008] check whether any sense of a mention’s
head noun phrase is a synonym, antonym, or hypernym of any sense of the other
mention’s head.

Another drawback of using WordNet for coreference resolution is its limited cover-
age of named entities and specialized concepts [Strube and Ponzetto, 2006; Vers-
ley Y., 2016]. WordNet distinguishes between class and instance hyponymy [Miller
and Hristea, 2006]. Both relationships are of interest to coreference resolution,
however only the former is well represented in the data base. For instance, only
48 instances of country and 32 instances of singer are included. The lack of good
coverage of named entities and specialized terms has prompted the exploration of
encyclopedic resources for the task.

Wikipedia offers a very large collection of encyclopedic knowledge from various
domains. Due to its collaborative nature, its content is kept up to date and con-
tinuously extended to incorporate emerging entities. For these reasons, Wikipedia
constitutes an attractive source of knowledge for coreference resolution [Strube
and Ponzetto, 2006; Ponzetto and Strube, 2006; Bryl et al., 2010b; Uryupina
et al., 2011; Ratinov and Roth, 2012]. Similarly to WordNet, Wikipedia pro-
vides a taxonomy-like structure by means of its category tree, a hierarchy of the
categories assigned to articles. It also offers structured information in the form
of info-boxes, tables, and list pages containing pointers to entries of a particular
category (e.g., a list of folk musicians). Strube and Ponzetto [2006]; Ponzetto and
Strube [2006] make use of the category tree for computing semantic relatedness
measures for the task. [Ratinov and Roth, 2012] utilize the category label directly
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to derive a semantic class feature, along with other attributes (e.g., nationality,
gender, etc.). Uryupina et al. [2011] link mentions to Wikipedia pages for the
purpose of extracting alias information.

Yago [Suchanek et al., 2007] is an ontology combining information from Wikipedia
and WordNet. It contains more than 1 million entities organised into a hierar-
chy, and 5 million facts about them (e.g., AlbertEinstein bornInYear 1879). The
type and means relations have been utilized for coreference resolution [Bryl et al.,
2010b,a; Uryupina et al., 2011; Rahman and Ng, 2011]. The former denotes the
class an entity belongs to (e.g., AlbertEinstein type physicist), while the latter
constitutes a mapping from a name to all of the entities it might refer to. For
instance, “Einstein” might point to the the physicist Albert Einstein (“Einstein”
means AlbertEinstein) or the musicologist Alfred Einstein (“Einstein” means Al-
fredEinstein).

Similarly to WordNet, the direct application of Wikipedia and related resources
to coreference resolution is not always possible due to the presence of ambiguity.
A mechanism for establishing a reliable link between a referring expression such as
Einstein and its corresponding Wikipedia entry is necessary in order to fully take
advantage of the category tree or the information stored in the info-box associated
with this entity. This issue similarly affects the application of ontological data
bases. Two referring expressions could be considered aliases of each other if at
least one Yago means relation is found which holds between them. One cannot,
however, reliably use the type relation to determine the semantic class of an entity
without disambiguating it first. Bryl et al. [2010b] propose to address this problem
in a word sense disambiguation step. The training data and sense inventory for
this is provided by Wikipedia, thus allowing for a mention to be directly linked
to its Wikipedia article6 upon disambiguation. Another possibility is to use a
dedicated entity linking tool [Uryupina et al., 2011; Ratinov and Roth, 2012].

A number of works have proposed to explore unannotated data as a source of
semantic knowledge for coreference resolution. A widely-used strategy involves
determining semantic relatedness of two expressions through lexico-syntactic pat-
terns [Bean and Riloff, 2004; Daumé III and Marcu, 2005; Garera and Yarowsky,
2006; Ng, 2007; Yang and Su, 2007; Haghighi and Klein, 2009; Bansal and Klein,
2012]. Examples of such pattern include “〈NPx〉 such as 〈NPy〉”, and “〈NPy〉

6Linking to Wikipedia consequently provides access to other structured resources derived
from the encyclopedia, such as DBPedia and the Yago ontology.
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and other 〈NPx〉”, which are likely to express the hyponymy relation between
NPy and NPx [Hearst, 1992]. Semantic relatedness cues can also be derived from
patterns matching predicate-nominative (e.g., “〈NPy〉 is a 〈NPx〉”) and apposi-
tive constructions (e.g., “〈NPy〉, 〈NPx, 〉,” as in 〈Einstein〉, 〈a musicologist from
Munich〉,) [Daumé III and Marcu, 2005; Ng, 2007; Haghighi and Klein, 2009], or
name–nominal pairs (〈musicologist〉 〈Alfred Einstein〉) [Fleischman et al., 2003;
Rahman and Ng, 2011].

The patterns can be defined manually, or learned automatically. Yang and Su
[2007] use the set of coreferential expressions from the training data as seeds, and
find occurrences of these expressions in Wikipedia. The context words between the
matched expressions are extracted as pattern candidates, which are subsequently
filtered based on their frequency and association with other seed pairs. Ng [2007];
Rahman and Ng [2011] propose to learn such patterns directly from the coreference
annotated corpus.

The obtained patterns can be utilized for coreference in several ways. They can
be applied to a large unannotated data set in order to extract semantically-related
pairs of nouns to serve as a knowledge base for the task [Fleischman et al., 2003;
Daumé III and Marcu, 2005; Haghighi and Klein, 2009]. Alternatively, they can
be used on the fly: if a pair of candidate co-referring expressions match one or
more patterns in the current text or in a large unannotated corpus, this can be
considered an indicator that they are semantically related. Bansal and Klein [2012]
utilize Hearst patterns [Hearst, 1992] in order to obtain in-context co-occurrence
counts of the head words of two mentions from the Google n-gram corpus [Brants
and Franz., 2006].

Selectional preferences learned automatically from unannotated data have also
been explored for the task, in particular for pronoun resolution [Hobbs, 1986; Da-
gan and Itai, 1990; Bergsma et al., 2008; Versley Y., 2016; Heinzerling et al., 2017].
The learning process involves collecting co-occurrence statistics of predicate–argu-
ment pairs, such as 〈dog subj bite〉 or 〈drink obj milk〉 from a large corpus. The
extracted information can be further generalized by abstracting over word classes
(e.g., 〈animal subj bite〉, 〈ingest obj liquid〉) [Resnik, 1993; Agirre and Martinez,
2001]. The learned preferences can be used to disambiguate between plausible an-
tecedents of a referring expression by estimating how likely each antecedent is to
fill the predicate role taken on by the referring expression in its local context. This
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can be particularly beneficial for the resolution of short or semantically empty re-
ferring expressions, such as pronouns, where other commonly used features might
fail to produce sufficient discriminative information.

Another related source of knowledge for the task is the output of a semantic
parser [Ponzetto and Strube, 2006; Rahman and Ng, 2011]. Ponzetto and Strube
[2006] identify verb predicates together and their arguments using a PropBank-
style semantic role labelling tool, and include the argument role and predicate
of each mention’s head word as features. [Rahman and Ng, 2011] additionally
introduce a feature indicating whether the predicates of the two mentions are part
of the same FrameNet semantic frame.

The use of semantic features for coreference resolution has lead to mixed results.
The comparison and analysis of the contribution of different types of semantic
features is challenging due to mismatches in the reported evaluation metrics and
the used corpora, as well as differences in the implementation and baseline set of
features utilized in the experiments.

Some works report significant improvements in the coreference evaluation metrics
(Section 5.3) as a result of introducing semantic and world knowledge to a baseline
coreference resolver [Ponzetto and Strube, 2006; Ng, 2007; Rahman and Ng, 2011;
Bansal and Klein, 2012; Recasens et al., 2013]. Rahman and Ng [2011] compare
the effect of several semantic features extracted from YAGO, FrameNet, annotated
coreference data and unstructured text. All features lead to improvements in B3

and CEAF scores on both the ACE’04 and OntoNotes corpora. While the gains
brought by the features in isolation were modest, a combination of them lead to
a substantial increase of approx. 3% for each score and data set. Recasens et al.
[2013] extract coreferential pairs from comparable corpora, and use them as a
source of semantic knowledge for the task. Their approach lead to 1% improvement
on the OntoNotes corpus according to six different evaluation metrics, including
the CoNLL F1 score. Bansal and Klein [2012] report improvements on the ACE’04
and ACE’05 data set as a result of their semantic web n-gram features (1.6% MUC,
1.2% B3 and 2.1% MUC, 1.9% B3 for ACE’04 and ACE’05, respectively).

Others works report little to no improvement over a semantically-poor baseline
model [Uryupina et al., 2011; Durrett and Klein, 2013; Heinzerling et al., 2017].
Uryupina et al. [2011]’s semantic compatibility and aliasing features from Wikipe-
dia and Yago brought no improvement over the baseline until a more complex
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feature design strategy involving disambiguation and pruning of the knowledge re-
sources was introduced. The updated feature extraction lead to an improvement of
1.6% MUC and CEAF (ACE’02). Heinzerling et al. [2017]’s selectional preference
feature lead to only a minor improvement in CoNLL F1 (OntoNotes). Durrett and
Klein [2013] utilize a number of semantic features including WordNet hypernymy
and synonymy and clustering information, resulting in an improvement of 0.36%
CoNLL F1 (OntoNotes) when all semantic features were included. Interestingly,
the same set of features brought significant improvements when gold coreference
mention spans were provided to the coreference system. While this greatly simpli-
fies the task of automatic coreference resolution [Versley Y., 2016], it indicates that
the provided semantic information was not a strong enough factor for establishing
coreference links between the the large number of candidate mentions extracted
by the coreference system.

The incorporation of semantic information to coreference resolution, while neces-
sary, remains an uphill battle [Durrett and Klein, 2013]. The performance gains
brought on by semantic features are limited due to the difficulty in accurately
computing them given the available language technologies [Ng, 2007], as well as
limitations in the coverage of the available resources (e.g., WordNet). To take
full advantage of the available lexical semantic and encyclopedic knowledge, it is
necessary to perform some form of disambiguation of mentions [Versley Y., 2016].
Entity linking is necessary in order to utilize Wikipedia and related knowledge
bases for the task [Bryl et al., 2010b; Uryupina et al., 2011; Ratinov and Roth,
2012], while word sense disambiguation is needed for extracting reliable semantic
information for common nouns from WordNet.

5.6 Word Embeddings as a Source of Semantic

Knowledge

The creation of structured semantic resources is a costly and time-consuming pro-
cess requiring expert knowledge. As a result, it is unsurprising that existing knowl-
edge bases such as WordNet have been shown to exhibit certain limitations in
coverage and are only available for a select number of languages.
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Due to their ability to capture semantic and syntactic properties of words, word
embeddings (Section 2.3) have become an essential building block in NLP appli-
cations. They carry the advantage of being obtained in an unsupervised manner,
making them an accessible resource. While a typical use-case for word embeddings
is representing textual input to deep learning models, the question arises whether
and to what extend they can also serve as an alternative to structured resources
for extracting semantic features for downstream tasks.

The methods used for evaluating the quality of word representations can offer some
insights into the types of semantic information captured by them. Schnabel et al.
[2015] describe a good word vector representation as one in which the relationship
between two vectors reflects the linguistic relationships between the words they
represent. Intrinsic evaluation techniques aim to measure this desired property
directly using various data sets containing semantically-related words. Popular
evaluation benchmarks include predicting semantic relatedness, synonymy, selec-
tional preferences, analogy, and clustering concepts [Baroni et al., 2014].

Semantic relatedness data sets (e.g., WordSim353 [Finkelstein et al., 2001]) contain
human judgements quantifying the degree to which the relatedness or similarity
between pairs of words holds. Relatedness refers to the lexical semantic rela-
tions meronymy/ holonymy and broader topical similarity (e.g., student – school),
while similarity encompasses synonymy/antonymy, hyponymy/hypernymy, and
co-hyponymy (e.g., king – queen) [Baroni et al., 2014; Agirre et al., 2009]. The
quality of the embeddings is judged based on the correlation of the human rating
and the cosine similarity between the vector representations of the word pairs.

A common synonym detection data set is the TOEFL corpus [Landauer and Du-
mais, 1997]. Instead of ratings, this data set contains multiple-choice questions
offering four synonym candidates per target term to choose from. The solution
can be provided by selecting the answer with the highest cosine similarity to the
target.

Concept categorization utilizes data sets of concepts organized into categories,
such as vehicles or mammals [Baroni et al., 2014]. The evaluation process involves
clustering of the vector representations of the given concepts into a predefined
number of categories, and measuring the purity of the resulting clusters according
to the gold standard groupings.
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Selectional preference data sets contain verb–noun pairs, together with human
judgements on how likely the noun is to serve as a subject or object of that verb.
For instance, 〈people subj eat〉 would receive a high rating, while 〈eat obj people〉
would be ranked low. The task involves utilizing word representations to predict
the selectional preference scores associated with the pairs.

The analogy task involves answering questions such as “man is to father as woman
is to 〈?〉” (semantic analogy), or “acceptable is to unacceptable as likely is to 〈?〉”
(syntactic analogy) [Mikolov et al., 2013a]. Mikolov et al. [2013a] propose to solve
analogy via simple algebraic operations on word vector representations. Given an
example pair of words which exhibit a certain relationship (father, man), and a
query word (woman), the word which stands in a similar relationship to the query
needs to be provided (mother). Subtracting the representation of “man” from the
representation of “father” and adding the representation of “woman” should result
in a vector which is close to that of “mother”.

In order to gain an insight into how well predictive word embeddings (Section 2.3.2)
fare in each of the tasks, we provide a brief summary of the findings of [Baroni
et al., 2014]. Baroni et al. [2014] experimented with word2vec CBOW models
with different hyper-parameters settings (e.g., context window size, dimension-
ality, optimization approach, etc.). On average across three data sets, the word
relatedness task was solved with a correlation score of 80. The best achieved scores
on the WordSim353 similarity and relatedness subsets were 80 and 70 Spearman
correlation, respectively. On the synonymy prediction task (TOEFL), the best
model achieved accuracy of 91%. The purity of the clusters obtained for concept
categorization was 75%, 86%, and 99% on three separate data sets. Selectional
preference prediction proved more challenging, with the best models achieving 28
and 41 Spearman correlation on two data sets. Finally, analogy prediction was
evaluated on three data sets, resulting in accuracy values of 68, 71, and 66.

The results reveal that word embedding achieve reasonable precision in predicting
semantic relations and categorizing concepts. This type of semantic information
can prove valuable in a number of NLP tasks, including coreference resolution.

Previous works aimed to determine the usefulness of word embedding-based fea-
tures for NLP tasks have focused on NER and chunking [Turian et al., 2010; Yu
et al., 2013; Guo et al., 2014].
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Turian et al. [2010] utilize word embeddings as additional token-level features
for NER and chunking. The authors compare the unsupervised word representa-
tion models of [Collobert and Weston, 2008] and [Mnih and Hinton, 2008] against
Brown clusters [Brown et al., 1992]. The former are included as multiple numer-
ical features, where each dimension represents one feature. The latter constitute
cluster labels of tokens, and are obtained via hierarchical clustering maximizing
the mutual information of token bi-grams. Turian et al. [2010] found that each
of the three sets of features lead to improvements over the baseline systems, with
Brown clusters faring better compared to the other alternatives, in particular in
the presence of rare words. Combining the three types of features lead to cumu-
lative improvements for both tasks.

Yu et al. [2013] explore an alternative way of employing word embeddings for
the two tasks at a lower computational cost. They argue that discrete word
embedding-based features are better suited for use with linear models, as they
result in better linear separability of the prediction classes. The proposed alterna-
tive is obtained by performing k-means clustering of vector representations, and
assigning the resulting cluster labels as token-level features. More specifically, they
utilize compound cluster features, described as conjunctive features of neighbor-
ing words. The underlying vector representations were obtained by the model of
[Bengio et al., 2003]. The compound cluster features achieved better performance
compared to Brown clusters and to using the word representations as numeric
features, at much lower computational cost compared to the latter.

In [Guo et al., 2014], word embedding-based features are explored for the task of
NER. The authors propose several different ways of deriving features from vector
representations: 1) by creating a binarized version of the embedding to consider
features with strong opinions on each dimension, 2) by clustering of the embedding
via k-means and including the cluster label as a feature, and 3) as a distributional
prototype feature. In the latter, a few prototypical examples are automatically
selected to represent each type of named entity (Person, Organization, etc.). The
prototype feature is activated if the cosine similarity between the embeddings of
the word in question and any of the prototypes for a specific class is larger than a
predefined threshold. The word representations utilized in the experiments were
obtained with the skip-gram word2vec model. All word embedding-based features
brought improvements to the baseline, and over the direct use of the embedding,
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with the best performance achieved by the prototype feature. Moreover, a com-
bination of the features led to a greater improvement in performance, indicating
that the knowledge represented by them is not overlapping completely.

The work presented in the following chapter investigates the usefulness of word
embedding-based features for supervised coreference resolution.



Chapter 6

Word Embeddings as Features for

Supervised Coreference Resolution

6.1 Introduction

Coreference resolution involves automatically identifying and grouping expressions
which refer to the same real-world entities (Section 5.1.2). It can provide valuable
information to downstream NLP tasks which rely on language understanding, such
as machine translation, text summarization, and question answering. Information
extraction can also greatly benefit from coreference information. Grouping differ-
ent mentions of the same entity can paint a more complete picture of the discourse
participants involved in events and relations, and establish links between mentions
of the same events through their arguments, aiding event linking.

Resolving reference is a non-trivial task (see Section 5.5.2). A referring expression
often has multiple competing candidate antecedents. These may exhibit similar
surface characteristics, such as agreement in number and gender. If the refer-
ring expression in question is semantically-poor (e.g., a pronoun), its successful
disambiguation relies on exploring its sentential context.

Some form of semantic or world knowledge is often necessary in order to reli-
ably determine the compatibility between different mentions of the same entity.
Co-referring expressions might be linked via lexical semantic relations such as syn-
onymy and hyperonymy (e.g., a capital is a city), world knowledge (e.g., Paris is
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Paris is an attractive tourist destination. The capital of France has 

an area of 105 km2 and a population of over 2,2 million in 2013 within its 

administrative limits. The city was visited by 13.4 million tourists in 2016.

ca
pitals have administrative

lim
its

Paris is a city a capital is a city

Figure 6.1: Lexical and encyclopedic knowledge can be helpful to determine
the semantic compatibility between co-referring entity mentions: synonyms, hy-

pernyms/hyponyms, world knowledge, referential attributes

the capital of France), and even attributive knowledge (e.g., cities have areas and
population) (Figure 6.1).

A long line of work has been devoted to encoding semantic and encyclopedic infor-
mation in the form of features for supervised coreference resolution (Section 5.5.2).
Some of the investigated sources of such information include the lexical database
WordNet [Daumé III and Marcu, 2005; Ponzetto and Strube, 2006; Bengtson and
Roth, 2008], Wikipedia and related encyclopedic data bases [Strube and Ponzetto,
2006; Ratinov and Roth, 2012; Rahman and Ng, 2011] and mining unstructured
data [Haghighi and Klein, 2009; Bansal and Klein, 2012]. Selectional preferences
and semantic parsing have been employed for pronoun resolution [Ponzetto and
Strube, 2006; Rahman and Ng, 2011; Heinzerling et al., 2017]. The experiments
presented in this chapter investigate an alternative source of semantic knowledge
for coreference resolution, namely distributed word representations.

Word embeddings are continuous, low-dimensional vector representations of words
learned from large unlabeled corpora (Section 2.3). Predictive word representa-
tions are obtained as a byproduct of training a probabilistic language model. Sim-
ilarly to distributional semantics approaches centered around the idea that the
sense of a word can be defined by the company it keeps, the word embedding of
a token is learned from its context words. As a result, similar representations
are assigned to words which appear in similar contexts. Intrinsic evaluation has
shown that word embeddings capture syntactic (e.g., gender) and semantic (e.g.,
relatedness and similarity) properties of words (Section 5.6). Being obtained in an
unsupervised manner, they could also help address data sparsity issues in labeled
training data at a small cost. For these reasons, word embeddings are an attractive
source of semantic knowledge which be beneficial in multiple ways in a supervised
learning task.
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In this chapter we investigate whether and to what extend features derived from
word embeddings can aid supervised coreference resolution. We experiment with
several general purpose word embedding models, and several different types of
embedding-based features, including embedding cluster and cosine similarity-based
features. The inclusion of semantic features lead to improvements in the perfor-
mance of a supervised coreference system. The work discussed in the rest of this
chapter was published in [Simova and Uszkoreit, 2017].

6.2 Features Derived from Word Embeddings

Previous work has explored different ways of utilizing word embeddings as features
for supervised learning NLP tasks (Section 5.6). Similarly to [Yu et al., 2013;
Guo et al., 2014], we investigate the usefulness of a word embedding cluster label
feature for coreference resolution (Section 6.2.1). Besides directly including the
word embedding in the form of multiple numerical features as in [Turian et al.,
2010], we experiment with more compact representations of it obtained through
Principal Component Analysis (PCA) (Section 6.2.2). Finally, we define cosine
similarity-based features, targeted at incorporating more of the context of the
referring expression into the decision process (Section 6.2.3).

6.2.1 Embedding Cluster

The embedding cluster feature can be thought of as an approximation of the
commonly-employed semantic class feature (Section 5.5.2). The latter is typically
computed by traversing WordNet’s taxonomy or Wikipedia’s category tree. A
semantic class feature can be beneficial for coreference resolution in that it can
ensure that two candidate co-referring mentions are semantically compatible. For
instance, a mention denoting a vehicle would not be compatible with a referent of
type person.

We perform clustering of word embeddings with spherical k-means1 [Dhillon and
Modha, 2001]. Spherical k-means is similar to standard k-means, but utilizes
cosine similarity (Equation (6.1)) as a distance metric, rendering it a suitable
choice for comparing word embeddings. During clustering, each word embedding

1https://github.com/clara-labs/spherecluster

https://github.com/clara-labs/spherecluster
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vector is treated as a single instance. The resulting clusters contain the words with
the most similar embeddings according to the distance metric. We experiment with
several different number of clusters in order to determine what granularity is most
suitable for the task. The values include 50, 100, 500 for less fine-grained clusters,
and 1k to 10k in steps of 2.5k, for more fine-grained ones.

The cluster labels are utilized for coreference in the following way: each mention’s
head word is equipped with a categorical feature denoting the label of the cluster
this token was assigned to. Unsupervised cluster information has been previously
utilized for coreference in [Durrett et al., 2013; Durrett and Klein, 2013]. To the
best of our knowledge, this work is the first to explore word embedding-based
clusters for the task.

We expect the embedding cluster feature to be useful in several ways. Coarse-
grained cluster labels can directly ensure the semantic compatibility between dif-
ferent mentions of the same entity. The coreference resolver can learn compatible
and incompatible anaphor–antecedent cluster combinations from the training data
in the case of fine-grained cluster labels. We expect this feature to help improve
generalization and thus tackle data sparsity issues of the training data. A draw-
back of utilizing word embeddings in this way is that each token is assigned to a
single cluster. Word vectors encode different degrees of similarities between related
words [Mikolov et al., 2013a], a property which is not exploited in this setup.

6.2.2 Dense Embedding Features

A straightforward way of utilizing word embeddings for coreference resolution is
by directly including the embedding vector. In this setting, each dimension of the
vector of a mention’s head word is a separate numeric feature. The motivation
behind this is that each dimension can be considered as a separate latent feature,
encoding different syntactic or semantic properties of a word [Turian et al., 2010].
The model can learn which of these dimensions carry relevant information for the
task.

One consideration here is that by including the whole vector we increase the
amount of features substantially. Therefore we also experimented with more com-
pact versions of the original vectors obtained through PCA2. PCA examines the

2package sklearn.decomposition.PCA
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correlation between different dimensions in the word embedding vector, and identi-
fies a smaller number of variables that preserve the variation in the original vector
as best as possible. The vectors were reduced to retain different amounts of vari-
ability present in the original data, which may address over-fitting and lead to
lower computational cost associated with training the model. We experiment with
variance levels of 10% to 100% in steps of 10%.

6.2.3 Cosine Similarity Features

The third set of word embedding features is based on cosine similarity. Cosine
similarity computes the cosine of the angle between two vectors q and d (Equa-
tion (6.1)). In the context of vector representations, cosine similarity has been
used as a measure of the similarity and relatedness between words (Section 5.6).

cos(q, d) =

∑n
i=1 qidi√∑n

i=1 q
2
i

√∑n
i=1 d

2
i

(6.1)

For each pair of candidate co-referring expressions, we compute four cosine simi-
larity based features. We estimate the similarity between the head words of the
anaphor (ana) and antecedent (ante), as well as between their governing words
(govana, govante) extracted from the dependency parse of the sentence, and the
combinations ana–govante and ante–govana.

The first similarity measure is meant to encourage the semantic compatibility be-
tween two mentions of the same entity, similarly to the embedding cluster feature.
It is, however, a numeric feature rather than a categorical one.

As govana and govante are usually verbs, the second measure could prove useful in
determining whether coreferring mentions carry out related actions (e.g., “During
an interview he said [..] He further reported that [..]”). It can be thought of an
approximation of the semantic parsing feature utilized in [Rahman and Ng, 2011],
which indicates whether the predicates of the head words of two mentions are part
of the same FrameNet semantic frame.

The last two similarity measures are meant as an approximation of selectional
preferences. This features could prove useful in cases of pronoun resolution, where
the context of the pronoun referring expression is a deciding factor. Consider the
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If   the baby   does   not   thrive   on   raw milk,   boil   it 

nsubj nmod

dobj

cossim (GOV ana ,GOV ante)

cossim (GOV ana , ANTE)

cossim (ANA , ANTE )

cossim(GOV ante , ANA )

cossim (boil , thrive)

cossim ( boil ,milk )

cossim (it ,milk)

cossim(thrive , it )

cossim(boil , thrive)

cossim ( boil , baby )

cossim(it , baby )

cossim (thrive , it )

?

it  the baby:→it  raw milk:→

Figure 6.2: An example of the cosine similarity (cossim) features which would
be used in determining the antecedent of the pronoun “it”.

example from [Jespersen, 1949], “If the baby does not thrive on raw milk, boil
it.”, where the pronoun it has two candidate antecedents: the baby and raw milk
(Figure 6.2). The cosine similarity between the governing word of the anaphor,
boil, and the second antecedent candidate, milk, is very high, as opposed to the
alternative pairing which leads to an undesirable sentence interpretation.

When calculating the cosine similarity between two tokens, we experimented with
the original word embedding vectors, as well as their PCA-reduced versions.

6.3 Experimental Setup

This section provides more details on the setup of the experiments investigating
the usefulness of the word embedding-based features. Section 6.3.1 presents the
coreference resolution toolkit used throughout the experiments. Section 6.3.2 dis-
cusses the selected word embedding models and data sets for training and testing
the coreference models. Section 6.3.3 provides details on the error analysis and
evaluation methodology.

6.3.1 Coreference Resolver

The coreference resolution toolkit cort3 [Martschat and Strube, 2015; Martschat
et al., 2015] was used to obtain the baseline and extended models throughout our

3https://github.com/smartschat/cort

https://github.com/smartschat/cort
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Feature Description

fine_type(m) name, definite/indefinite NP, demonstrative, verb, etc.
gender(m) masculine, feminine, neuter, plural
number(m) singular, plural
semantic_class(m) person, object, numeric, unknown
deprel(m) relation between NP head of m and dependency head of m
head_ner(m) named entity tag of NP head of m
length(m) num. tokens spanning m

head(m) NP head of m
first(m) first token of m
last(m) last token of m
preceding_token(m) token preceding m

next_token(m) token following m

governor(m) dependency head of the NP head of m
ancestry(m) dep. head and grandparent POS tags and arc directions
exact_match(m1, m2) m1 and m2 are exact string matches
head_match(m1, m2) NP heads of m1 and m2 are exact string matches
same_speaker(m1, m2) m1 and m2’s speakers match (indirect speech))
alias(m1, m2) m1 is an alias of m2 or vice versa
sentence_distance(m1, m2) distance between m1 and m2 (num. sentences)
embedding(m1, m2) m1 spans over m2 or vice versa
modifier(m1, m2) agreement between modifiers of m1 and m2

tokens_contained(m1, m2) m1 is a substring of m2 or vice versa
head_contained(m1, m2) NP head of m1 is a substring of NP head of m2 or vice versa
token_distance(m1, m2) distance between m1 and m2 (num. tokens)

Table 6.1: Coreference resolution features employed in cort [Martschat and
Strube, 2015, 2014]. The mention-pair model operates on a pair of mentions m1

and m2, combining unary features of each mention, and pairwise features defined
over both. For more information see https://github.com/smartschat/cort.

experiments. The system offers implementations of popular coreference resolu-
tion architectures, as well as a module for visualizing and comparing coreference
resolution outputs. In this work we employ a mention-pair model with best-first
clustering (Section 5.4.1). This model breaks down the task of coreference reso-
lution into pairwise coreference decisions. The construction of coreference chains
is subsequently enabled via the clustering step. The parameters of the model are
learned via a structured latent perceptron with cost-augmented inference and av-
eraging [Martschat and Strube, 2015]. Candidate coreference mention boundaries
are determined automatically.

https://github.com/smartschat/cort


6. Word Embeddings as Features for Supervised Coreference Resolution 110

The baseline employs a standard set of features, including: number, gender, var-
ious string matching and distance features, fine type (name, definite/indefinite
noun phrase, etc.), and others (see Table 6.1 for a complete list). The baseline
set of features include a semantic class, which can take on the values “person”,
“object”, or “numeric”. As this class is very coarse grained, we chose to keep it and
incorporate the word embedding-based features features alongside it. Section 6.5
offers a comparison of the effect of this feature and the embedding cluster feature
on the model performance.

6.3.2 Data

The coreference data set used throughout our experiments is the OntoNotes corpus
[Hovy et al., 2006; Weischedel et al., 2011]. We use the data splits employed in the
CoNLL 2011 and 2012 shared tasks on modelling unrestricted coreference [Pradhan
et al., 2011, 2012]. Following previous work [Martschat and Strube, 2015], all of
our models were trained and tested on the version of the corpus with automatic
preprocessing, mimicking a real-world coreference prediction scenario.

There is a fairly big selection of available pre-trained general purpose word embed-
ding models. As a first step towards designing word embedding-based features, we
selected three widely used models with varying properties:

• w2v – word2vec skip-gram with negative sampling embeddings4 [Mikolov
et al., 2013a]. These representations were trained on part of the Google
News dataset, and have a vocabulary of 3 million words and phrases (e.g.,
New_York), and dimension of 300.

• glove – the GloVe embeddings5 [Pennington et al., 2014] were trained on
Wikipedia and Gigaword 5 [Parker et al., 2011], and have a vocabulary of
400K words, and dimension of 300.

• deps - the dependency-based word embeddings6 [Levy and Goldberg, 2014]
trained on part of Wikipedia, with a vocabulary size of about 180K words,
and dimension of 300.

4https://code.google.com/archive/p/word2vec/
5https://nlp.stanford.edu/projects/glove/
6https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
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Our aim is not to provide a direct comparison of these models, but rather inves-
tigate whether some of them with their specific characteristics would prove par-
ticularly useful for the task. For instance, the w2v model is trained on data from
the news domain, which coincides with the majority of the data in the OntoNotes
coreference corpus, and has the largest vocabulary of the three. This model is
also the only one to include representations of multi-word expressions. The glove
model incorporates the encyclopedic data of Wikipedia in addition to the news
data present in Gigaword. The deps embeddings differs from the previous two in
that they takes a different perspective on which words in the context of a word are
important for determining its sense. The model makes use of dependency analysis
to select meaningful contexts. The resulting embeddings have been shown to ex-
hibit more functional similarity [Levy and Goldberg, 2014], which can be beneficial
for coreference resolution.

6.3.3 Evaluation and Analysis

The CoNLL F1 score, average of MUC, B3, and CEAFe (see Section 5.3), is the
main metric used to judge the quality of the models in the automatic evaluation.
A paired bootstrap test7 was selected for determining whether the improvements
in the evaluation scores are statistically significant compared to the baseline, in
accordance with the guidelines provided in [Dror et al., 2018]. We compare the
evaluation scores assigned to each document section in the test corpus. The evalu-
ation metrics were computed using the official coreference scorer8 [Pradhan et al.,
2014] of the CoNLL-2011/2012 task.

In addition, we perform error analysis of the results, using the methodology pro-
posed in [Martschat and Strube, 2014]. In this study, coreference chains are viewed
as complete one directional graphs, following the order in which mentions occur in
the text. Error analysis is performed by comparing the system and gold-standard
graphs in terms of their edges. A system’s output is transformed into a maximum
spanning tree, using a notion from accessibility theory [Ariel, 1990] to select the
most likely missing links needed to reach the reference graph. If an edge in the
resulting graph is missing from the reference entity, this is considered a recall er-
ror. The precision errors are extracted in analogous way. The advantage of this

7The test was carried out with the function boot.t.test() of the R library MKinfer (v0.5),
see: https://rdrr.io/cran/MKinfer/man/boot.t.test.html.

8https://github.com/conll/reference-coreference-scorers (v8.01).

https://rdrr.io/cran/MKinfer/man/boot.t.test.html
https://github.com/conll/reference-coreference-scorers
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Feature Set F1conll

baseline 59.19
+ecw2v,2.5k 59.56
+csglove,pca-20 59.49
+weglove,pca-50 59.67
+ecglove,2.5k +csglove,pca-20 59.68
+csdeps,pca-60 +weglove,pca-50 59.66
+ecglove,2.5k +weglove,pca-50 59.66
+ecglove,5k +csdeps,pca-90 +weglove 59.72†

Table 6.2: Automatic evaluation of the performance of the coreference system
with different sets of features. The best model configurations were selected ac-
cording to the CoNLL F1 score. The semantic features include: embedding clus-
ter (EC) label, cosine similarity (CS), and word embedding (WE) (Section 6.2).

Statistically significant improvements over the baseline are marked with †.

representation is that it allows for the recall and precision errors to be categorized
in terms of type of anaphor and antecedent.

6.4 Results

6.4.1 Automatic Evaluation

The automatic evaluation results investigate the effect of each individual feature
and combinations of them on the performance of the model. Several configurations
of the embedding cluster (EC), word embedding (WE), and cosine similarity (CS)
features were explored. These include three word embedding models (w2v, glove,
deps), PCA-reduced versions of them retaining different amounts of variability of
the original vectors (10%–100%), and different number of clusters determining the
granularity of the EC feature (50, 100,500,1K, 2.5K, 5K, 7.5K,10K). Table 6.2
contains the best results achieved by the coreference resolution models for each
feature and feature combination, according to the CoNLL F1 score.

The best configuration for the embedding cluster feature was the w2v embedding
and 2.5K number of clusters. The same number of clusters lead to the best results
in conjunction with the other two embedding models (not shown). We observed
a worsening of the performance compared to the baseline when the number of
clusters exceeded 7.5K, regardless of the choice of word embedding.
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Feature Set muc bcub ceafm ceafe blanc F1conll

baseline 69.44 56.32 59.88 51.81 57.24 59.19
+ec 69.80 56.65 60.06 52.24 57.14 59.56
+cs 69.67 56.56 59.87 52.23 56.92 59.49
+we 69.91† 56.80 60.08 52.29 57.35 59.67
+ec+cs+we 69.90 56.82† 60.24 52.45 57.23 59.72†

Table 6.3: Detailed automatic evaluation results including various coreference
metrics (see Section 5.3 for an overview). Statistically significant improvements

over the baseline are marked with †.

For the cosine similarity set of features, the best performance was achieved by
glove with explained variance of 20%. Using the original word embedding vectors
to compute this feature lead to a drop in CoNLL F1 for deps and glove compared
to the baseline, and small improvement for w2v.

The best individual feature contribution was achieved by the word embedding
feature with glove and variance of 50%. Similarly to the cosine feature, we ob-
served that when the original embeddings were used, the performance was worse
compared to the PCA-reduced versions of the vectors.

The second part of Table 6.2 shows the best pairwise combinations of features. Our
goal was to determine if the knowledge they encode is complementary. We did not
observe any gains in performance over the use of the best individual feature. The
best result was achieved by the combination of the embedding cluster and cosine
similarity features.

Using the three features in conjunction lead to the best result of 59.72 F1. The
improvement in score compared to the baseline, albeit modest, is statistically
significant according to the bootstrapped paired t-test (p-value=0.036, mean of
the differences=0.41). Utilizing the best individual feature configurations did not
lead to the best combination of the three features.

A detailed summary of the automatic evaluation scores for the baseline model,
individual feature contributions, and best combination, is presented in Table 6.3.
The semantic features lead to better or comparable results according to all eval-
uation scores with the exception of BLANC, which decreased for the EC and CS
models. The WE model achieved a statistically-signifficant improvement in MUC
score, while the combination model resulted in a statistically better BCUB score
in addition to the CoNLL F1 score.
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Feature Set coref. links non-coref. links total
P R F1 P R F1 P R F1

baseline 58.5 57.2 57.8 58.8 54.7 56.7 58.6 55.9 57.2
+ec 56.8 58.0 57.4 59.4 54.5 56.9 58.1 56.3 57.1
+cs 56.7 57.1 56.9 59.8 54.4 57.0 58.2 55.7 56.9
+we 58.9 56.8 57.8 60.2 53.9 56.9 59.5 55.4 57.4
+ec+cs+we 58.8 56.2 57.4 59.7 54.6 57.0 59.3 55.4 57.2

Table 6.4: Detailed BLANC precision, recall and F1 scores for coreferent and
non-coreferent links and combined results.

Table 6.4 provides the detailed BLANC results for coreferent and non-coreferent
links and the total scores. The EC and CS models lead to a drop in precision for
coref. links, while the CS also lead to a drop in recall, which accounts for the worse
overall performance of these models according to the average BLANC score. Both
models lead to an improvement in precision for non-coref. links, however. The
WE and combination models lead to an improvement in precision at the expense
of recall for both coref. and non-coref. links.

6.4.2 Error Analysis

The error analysis presented in this section offers a better insight into where the
word embedding feature models differ with respect to the baseline model and each
other. We utilize the methodology proposed by [Martschat and Strube, 2014] to
extract and categorize the errors made by each model.

Figure 6.3 presents the distribution of errors with respect to the type of referring
expression. The figure shows the absolute number of precision and recall errors
in the resolution of pronouns (PRO), named entities (NAM), nominals (NOM),
and demonstratives (DEM). To put these numbers in perspective, the total num-
ber of nominal mentions in the test set is approx. 9.2K (43%), the number of
pronouns is approx. 8.2K (39%), 2.3K (11%) are names, and about 500 (2%) are
demonstratives.

All word embedding models lead to a reduction of errors in pronoun resolution
compared to the baseline. The best performance was achieved by the combination
model, which resulted in the lowest number of both precision and recall errors.
The WE model was second best in terms of precision, and third with respect to
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Figure 6.3: Distribution of precision and recall errors per type of referring
expression: pronouns (PRO), named entities (NAM), nominals (NOM), and

demonstratives (DEM).

recall. Despite being specifically intended for assisting pronoun resolution, the CS
model landed third with respect to precision, and achieved comparable recall to
the baseline system. Finally, the EC model lead to comparable precision to the
baseline, but was second best in terms of recall.

The lowest number of precision errors in the resolution of names was achieved by
the WE model, followed by the CS and combination models. The EC feature lead
to a degradation in precision compared to the baseline. In terms of recall, the
WE and combination systems were worse than the baseline, while the remaining
models achieved comparable results.

All word embedding models achieved a reduction in the number of precision errors
for the resolution of nominal mentions. The WE model was best in terms of
precision, but lead to a degradation in recall compared to the baseline. The
combination model was second best in both precision and recall. The EC model
achieved the best recall of the five models.

The number of precision and recall errors in the resolution of demonstratives is
comparable across models. The WE model was the best in terms of precision
errors, while the combination model obtained the lowest number of recall errors.

Table 6.5 and Table 6.6 offer a more detailed breakdown of the errors made by
each model. The values provided in each table represent the number of errors (raw
counts) per type of anaphor–antecedent link, focusing on the three most common
mention types: names, nominals, and pronouns. For instance, the baseline system
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Precision Errors
Error Type Feature Set
ana⇒ante baseline +ec +cs +we +ec+cs+we common
pro⇒pro 1565 1554 15664 1562 1520 1103
pro⇒nam 217 2314 2394 215 213 124
pro⇒nom 346 342 311 283 316 166
nam⇒pro 70 794 774 63 57 28
nam⇒nam 997 9994 982 984 10014 732
nam⇒nom 61 754 60 54 654 36
nom⇒pro 49 594 544 31 43 14
nom⇒nam 77 61 71 69 71 26
nom⇒nom 1285 1205 1180 1148 1187 785

total 4758 4712 4638 4500 4565 3014

Table 6.5: Precision error analysis. The values represent the number of errors
(raw counts) per type of anaphor–antecedent link. A decrease in the amount of

errors is marked in bold, and an increase: with the symbol 4.

made 1565 precision errors when resolving a link between a pronoun anaphor and
a pronoun antecedent (pro⇒pro) out of 4758 errors in total. In bold we mark
all cases where a reduction of the amount of errors is visible when comparing to
the baseline system, while an increase in the amount of errors is marked with the
symbol 4. The last column provides the number of errors common to all models.

All of the models achieved a reduction in the total number of precision errors
compared to the baseline system. The word embedding model comes first with
258 fewer errors, followed by the best combination model with 193 fewer errors.
In addition, all models improved in the following categories: nom⇒nom (best:
WE, 137 fewer errors), nom⇒nam (best: EC, 16 fewer errors), and pro⇒nom

(best: WE, 63 fewer errors). It is encouraging that all of the models improve
over the baseline in two of the categories involving nominal anaphors, while the
combination and WE models improve in all three, showcasing the influence of the
semantic knowledge introduced by the word embedding features.

Our initial hypothesis that the cosine similarity model would be especially useful
for pronoun resolution was not supported by the precision error analysis. For the
category pro⇒nam, it even introduced 22 additional errors. The combination
and WE models improved pronoun resolution for all categories.
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Recall Errors
Error Type Feature Set
ana⇒ante baseline +ec +cs +we +ec+cs+we common
pro⇒pro 348 348 3584 3544 348 279
pro⇒nam 475 463 469 464 462 394
pro⇒nom 824 817 820 818 815 702
nam⇒pro 63 60 60 654 654 54
nam⇒nam 850 8574 8544 8644 8674 800
nam⇒nom 169 166 168 1724 1724 160
nom⇒pro 27 26 284 26 27 25
nom⇒nam 442 429 440 4494 441 406
nom⇒nom 1013 1003 10224 1013 1012 919

total 4844 4800 48534 48614 4835 3739

Table 6.6: Recall error analysis. The values represent the number of errors
(raw counts) per type of anaphor–antecedent link. A decrease in the amount of

errors is marked in bold, and an increase: with the symbol 4.

The WE model stands out in terms of precision compared to all other models,
leading to a reduction of errors in each category.

While the EC model improved in some categories, it resulted in the highest total
number of precision errors of all word embedding feature models. The EC model
did, however, achieve the lowest number of recall errors (44 fewer), improving in
all but two categories compared to the baseline (Table 6.6). The only other model
which achieved a reduction in the total number of recall errors was the combination
model (9 fewer). The reduction in precision errors achieved by the WE model came
at the expense of recall, leading to an increase in the total number of recall errors
by 17. All models improved recall in the categories pro⇒nam (best: combination
model, 13 fewer errors), and pro⇒nom (best: combination model, 9 fewer errors).

In terms of common errors, 77% of the recall errors made by the baseline are
shared with the remaining models, while only 63% of the precision errors are
common to all. The categories with most common recall errors compared to the
baseline are nam⇒nam (94%), and nam⇒nom (95%), while for precision they
are pro⇒pro (71%), and nom⇒nom (61%). On the other hand, the categories
with least overlap compared to the baseline were pro⇒pro (80%) and pro⇒nam

(83%) for recall, and nom⇒pro (29%) and nom⇒nam (34%) for precision.
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The errors analysis reveals that biggest challenge for all models was the resolution
of names. The total number of name mentions in the test set is approx. 2300.
Common to all models were 1020 recall and 796 precision errors associated with
this type of expression. For comparison, there are approximately 8200 pronoun
anaphors in the test set, while the total number of common errors were 1469
(recall), and 1412 (precision). With respect to the 9200 nominal mentions, the
models made 1462 recall errors and 825 precision errors.

6.5 Discussion

On the topic of selecting a word embedding model, we made several observations.
In the automatic evaluation and error analysis for most of our experiments, includ-
ing ones not reported here, the glove word embedding proved to be most useful out
of the three (Table 6.2). The best embedding cluster configuration was achieved
with the w2v model, which could perhaps be attributed to the fact that it has the
largest vocabulary of the three. The deps model stood out in conjunction with the
cosine similarity feature. Given that it has the smallest vocabulary of the three,
it would be interesting so see how this type of embedding performs for the task
when trained on a bigger data set. This would also allow us to fairly compare
the former models, encoding both topical and functional similarity, and the latter
with more functional similarity [Levy and Goldberg, 2014].

The embedding cluster feature was the most cost-effective way of providing word
embedding information to the coreference tool. Unlike the findings of previous
works [Yu et al., 2013; Guo et al., 2014], however, it did not lead to better perfor-
mance over the direct use of the word embedding. The word embedding feature did
lead to longer training and testing times, but using the PCA reduction technique
improved on both running time and F1 measure.

Additional complexity is added to the coreference model when attempting to com-
bine several of the word embedding features. Moreover, it is not trivial to find
a good combination - selecting the features configurations which perform best in
isolation did not lead to the most successful combination.

We performed an additional study of the effect of the newly introduced word
embedding features when some of the original features had been removed. The
goal of this experiment was to investigate to what extend the knowledge encoded
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Feature Set F1 ∆F1
baseline 59.19
+ecw2v,2.5k 59.56 +0.37
+weglove,pca-50 59.67 +0.48
-gender 59.10 -0.09
-gender +ecw2v,2.5k 59.18 -0.01
-gender +weglove,pca-50 59.34 +0.15
-number 59.39 +0.20
-number +ecw2v,2.5k 59.33 +0.14
-number +weglove,pca-50 59.43 +0.24
-head 59.19 +0.00
-head +ecw2v,2.5k 59.28 +0.09
-head +weglove,pca-50 59.29 +0.10
-head_ner 59.14 -0.05
-head_ner +ecw2v,2.5k 59.34 +0.15
-head_ner +weglove,pca-50 59.34 +0.15
-semantic_class 59.23 +0.04
-semantic_class +ecw2v,2.5k 59.44 +0.25
-semantic_class +weglove,pca-50 59.46 +0.27
-fine_type 55.50 -3.69
-fine_type +ecw2v,2.5k 55.98 -3.21
-fine_type +weglove,pca-50 55.74 -3.45

Table 6.7: Interaction of some of the original and newly introduced features.
∆F1 denotes the difference in the performance of a model compared to the

baseline.

by these features overlaps with some of the syntactic and semantic information
already present in the original ones, and whether they might be better alternatives
to them. These include: gender and number information, head word and Named
Entity (NE) tag of the head word, and semantic class and fine type of the mention.
Table 6.7 presents a summary of the results.

None of the new features seem to completely cover the information encoded by
the original ones. Rather, they work best in the setting where they interact with
each other.

The WE features encode more of the number and gender information, compared
to the embedding cluster feature. This is to be expected as certain dimensions
of the embeddings likely encode these properties, while the information is lost
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after performing clustering. It was surprising that simply removing the number
feature lead to an improvement in F1 score. This is possibly due to errors in the
computation of this feature, but a more detailed analysis is needed to confirm this
hypothesis.

Both of the newly introduced features perform similarly in the absence of the head
word, NE tag, and semantic class features. The removal of the semantic class
feature lead to a slight improvement in F1 score. This feature can be difficult
to compute correctly, as it requires access to a knowledge base for extracting the
category of common nouns. In the case of the fine type feature, the EC slightly
outperforms the WE feature, but neither manage to cover much of the information
encoded in the original feature.

6.6 Conclusion

This work offers some insights on how word embeddings can be applied to the task
of coreference resolution. We present three different features derived from word
embeddings, and show that they influence the coreference resolution process in
different ways. These include a setting in which each dimension of the embedding
is a separate numeric feature, an embedding cluster which approximates a semantic
class, and a set of cosine similarity features, which incorporate some contextual
information.

Our evaluation results and error analysis show that each of these features helps to
improve over the baseline coreference system’s performance. The improvement in
CoNLL F1 score brought on by utilizing all of the proposed features in conjunction
was statistically significant. We observed a reduction in the total number of pre-
cision errors. Moreover, all features lead to a reduction in the amount of precision
errors in resolving references between common nouns. These results suggest that
they successfully incorporate some semantic information into the process.

The word embedding models explored in this work have certain limitations with
respect to their handling of out-of-vocabulary terms and polysemous words (Sec-
tion 2.3). Furthermore, only one of them attempts to represent multiword units,
which are common among named entity anaphors. These shortcomings can impact
the usefulness of the models for the task, similarly to the way in which the lack of
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word sense disambiguation has influenced the utilization of structured knowledge
bases as a source of semantic knowledge in previous works (Section 5.5.2).

A plausible future direction for this experiment is the exploration of the more
recently introduced class of word representations referred to as contextualized word
embeddings (Section 2.3.3). Contextualized word embeddings are better adept at
representing polysemous words, and mitigate the effect of out-of-vocabulary words
via the use of sub-word information. As these representations are functions of the
entire sentential context of a token, they are also a better choice in the presence
of multi-word expressions.

In recent years, the previously widely-used models for CR with hand-crafted fea-
tures have been largely replaced with deep neural network-based models (Sec-
tion 5.4.2). While these models have lead to advancements in the resolution of
coreference, their success is dependent on the availability of sufficient amounts
of labelled training data, only available for English and a select number of lan-
guages. In lower-resource scenarios, models with hand-crafted features can be
advantageous, as they encode much of the expert knowledge relevant for the task
explicitly. Being obtained in an unsupervised manner, word embeddings can be
an attractive and accessible source of semantic information for such models.





Chapter 7

Conclusion

This thesis presents research on two NLP tasks with relevance to the topic of cross-
sentence Relation Extraction, namely event extraction and coreference resolution.

7.1 Thesis Summary

The first part of the thesis presents a semi-supervised method for obtaining labeled
examples for the task of event extraction. The approach is based on self-training,
and relies on the availability of a small number of labeled examples to train an
initial model for event detection. This model is subsequently used to discover
new event instances in a large collection of unstructured text. Only the high
confidence model decisions are taken into account when selecting automatically-
labeled examples to construct what we refer to as an augmentation data set. This
data set can subsequently be used for re-training the event tagger, in conjunction
with the original corpus.

We propose a strategy for utilizing the automatically extracted data alongside
the existing gold-standard corpus which yield superior performance compared to
simply concatenating the two data sets. The proposed approaches dampens the
effect of the augmentation data through a scaling parameter applied to the loss
during training of the model with the possibly noisy new examples. In the con-
clusion of Chapter 4 we outline several alternatives to this approach which would
be interesting to investigate in future work.
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Another contribution of this work is the comparison between different architec-
tures for sequence labeling applied to event detection. We experimented with
several deep learning architectures, including a Bi-LSTM, a Bi-LSTM with a CRF
decoder, and a transformer. We also tested the effect of different contextualized
and non-contextualized word embedding models for representing the input to the
model.

The second part of the thesis focuses on the problem of coreference resolution.
While certain level of performance in supervised CR can be reached with mod-
eling surface information about entity mentions, their successful resolution often
depends on semantic or world knowledge. A large amount of work has been de-
voted to the creation of semantic features from structured knowledge sources. This
thesis investigates an unsupervised source of such knowledge, namely distributed
word representations.

We present several ways in which word embeddings can be utilized to extract
features for a supervised coreference resolver. These include: a clustering fea-
ture approximating a semantic class, numeric features obtained by reducing the
dimensionality of the vector representation, and cosine similarity-based features
which incorporate additional contextual information. We experimented with sev-
eral widely-used non-contextualized word embedding models. We conclude with
a detailed automatic evaluation and error analysis showcasing the contribution of
the word embedding features.

7.2 Outlook

The central motivation behind the experiments described in this thesis was en-
abling the extraction of relation mentions which are expressed in larger context
than a single sentence. We observed that the two main reasons for spreading of
this information are event and entity coreference, and focused on the sub-problems
of coreference resolution and event extraction.

While coreference resolution is a very well studied problem in NLP, it remains
a challenging one. Around the time the work on this thesis began, the per-
formance of state-of-the-art coreference resolvers was averaging 62% ConLL F1
score (OntoNotes), achieved by supervised models utilizing hand crafted features
[Björkelund and Kuhn, 2014; Martschat and Strube, 2015]. The first deep learning
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approaches introduced soon thereafter pushed this limit to about 65% [Wiseman
et al., 2016; Clark and Manning, 2016a,b]. This performance is well below levels
acceptable for real-world applications in a domain such as IE, where the aim is
to extract factual information. This prompted our interest in the incorporation
of semantic features for the task with the aim of improving the reliability of CR
technology.

Recent advances in deep learning have lead to considerable improvements in the
performance of CR models, reaching 80% CoNLL F1 score [Xu and Choi, 2020].
These advances bring the technology one step closer to its successful application in
downstream tasks such as relation extraction, event extraction, and event linking,
among others. We expect CR will remain an active area of research in the years
to come. To the best of our knowledge, the question whether the lack of semantic
information remains a problem in CR with the current deep learning approaches
has not been substantially explored. Future work should investigate this to shed
light on the issues which remain unsolved in CR.

We proposed a method for obtaining automatically-labeled examples of events
through self-training. While self-training is not novel in NLP, it is under-investigat-
ed for event and relation extraction in comparison to other semi-supervised ap-
proaches, such as distant supervision. We consider self-training particularly well
suited for the discovery of event instances and the discovery of cross-sentential
relations because the process is not limited to extracting event mentions which
contain a certain number of named entity arguments within the same sentence. In
many cases, the arguments of an event may be referenced in a sentence containing
event triggers, but be fully realized somewhere else in the document. Krause [2018]
estimates that this affects 77% of the event mentions in ACE 2005. Such event
mentions would not be detected by distant supervision unless a larger text span
is considered, which would also increase the likelihood of false positives. Since
self-training is not guided by arguments but rather by the event triggers observed
in a small number of labeled examples, it is able to detect event mentions without
imposing a restriction on the number or type of event participants mentioned in
close proximity. A combination of a supervised model for event extraction and
a reliable coreference resolver can put together the missing pieces of information
found in cross-sentential mentions. Thus, self-training might be the better semi-
supervised method for the discovery of cross-sentential relations in unstructured
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data. We are not aware of any work focusing on cross-sentence RE which explores
this approach, and would be interested to see it in future work.
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Tables

Table A.1: ACE 2005 Data Set Split

test set
nw AFP_ENG_20030504.0248 AFP_ENG_20030617.0846

AFP_ENG_20030401.0476 AFP_ENG_20030508.0118 AFP_ENG_20030625.0057

AFP_ENG_20030413.0098 AFP_ENG_20030508.0357 AFP_ENG_20030630.0271

AFP_ENG_20030415.0734 AFP_ENG_20030509.0345 APW_ENG_20030304.0555

AFP_ENG_20030417.0004 AFP_ENG_20030514.0706 APW_ENG_20030306.0191

AFP_ENG_20030417.0307 AFP_ENG_20030519.0049 APW_ENG_20030308.0314

AFP_ENG_20030417.0764 AFP_ENG_20030519.0372 APW_ENG_20030310.0719

AFP_ENG_20030418.0556 AFP_ENG_20030522.0878 APW_ENG_20030311.0775

AFP_ENG_20030425.0408 AFP_ENG_20030527.0616 APW_ENG_20030318.0689

AFP_ENG_20030427.0118 AFP_ENG_20030528.0561 APW_ENG_20030319.0545

AFP_ENG_20030428.0720 AFP_ENG_20030530.0132 APW_ENG_20030322.0119

AFP_ENG_20030429.0007 AFP_ENG_20030601.0262 APW_ENG_20030324.0768

AFP_ENG_20030430.0075 AFP_ENG_20030607.0030 APW_ENG_20030325.0786

AFP_ENG_20030502.0614 AFP_ENG_20030616.0715

dev set
nw CNN_IP_20030402.1600.00-1 un
AFP_ENG_20030304.0250 CNN_IP_20030405.1600.01-1 marcellapr_20050228.2219

AFP_ENG_20030305.0918 CNN_IP_20030409.1600.02 rec.games.chess.politics_20041216.1047

AFP_ENG_20030311.0491 rec.games.chess.politics_20041217.2111

AFP_ENG_20030314.0238 bn soc.org.nonprofit_20050218.1902

AFP_ENG_20030319.0879 CNNHL_ENG_20030304_142751.10

AFP_ENG_20030320.0722 CNNHL_ENG_20030424_123502.25 wl
AFP_ENG_20030327.0022 CNNHL_ENG_20030513_220910.32 FLOPPINGACES_20050217.1237.014

AFP_ENG_20030327.0224 CNN_ENG_20030304_173120.16 AGGRESSIVEVOICEDAILY_20041116.1347

CNN_ENG_20030328_150609.10 FLOPPINGACES_20041117.2002.024

bc CNN_ENG_20030424_070008.15 FLOPPINGACES_20050203.1953.038

CNN_CF_20030303.1900.02 CNN_ENG_20030512_170454.13 TTRACY_20050223.1049

CNN_IP_20030329.1600.00-2 CNN_ENG_20030620_085840.7

train set
nw CNN_ENG_20030403_183513.1 CNNHL_ENG_20030523_221118.14

APW_ENG_20030326.0190 CNN_ENG_20030404_073033.4 CNNHL_ENG_20030526_221156.39

APW_ENG_20030327.0376 CNN_ENG_20030404_163526.10 CNNHL_ENG_20030603_230307.3

APW_ENG_20030331.0410 CNN_ENG_20030407_080037.12 CNNHL_ENG_20030604_230238.5

APW_ENG_20030403.0862 CNN_ENG_20030407_130604.10 CNNHL_ENG_20030609_133335.37

127
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APW_ENG_20030404.0439 CNN_ENG_20030407_170605.7 CNNHL_ENG_20030610_133347.6

APW_ENG_20030406.0191 CNN_ENG_20030408_083034.11 CNNHL_ENG_20030610_230438.14

APW_ENG_20030407.0030 CNN_ENG_20030408_123613.0 CNNHL_ENG_20030611_133445.24

APW_ENG_20030408.0090 CNN_ENG_20030408_153616.9 CNNHL_ENG_20030616_230155.28

APW_ENG_20030409.0013 CNN_ENG_20030408_200618.14 CNNHL_ENG_20030616_230155.7

APW_ENG_20030410.0906 CNN_ENG_20030409_180633.8 CNNHL_ENG_20030618_230303.36

APW_ENG_20030411.0304 CNN_ENG_20030410_183644.8 CNNHL_ENG_20030618_230303.6

APW_ENG_20030412.0531 CNN_ENG_20030411_193701.3 CNNHL_ENG_20030624_133331.33

APW_ENG_20030414.0392 CNN_ENG_20030411_233701.11 CNNHL_ENG_20030624_230338.34

APW_ENG_20030415.0742 CNN_ENG_20030414_130735.7 CNNHL_ENG_20030625_193346.7

APW_ENG_20030416.0581 CNN_ENG_20030415_103039.0 CNNHL_ENG_20030625_230351.4

APW_ENG_20030417.0555 CNN_ENG_20030415_173752.0 CNNHL_ENG_20030410_193626.13

APW_ENG_20030418.0084 CNN_ENG_20030415_180754.5

APW_ENG_20030419.0358 CNN_ENG_20030415_183752.14 wl
APW_ENG_20030422.0469 CNN_ENG_20030416_100042.7 AGGRESSIVEVOICEDAILY_20041101.1144

APW_ENG_20030422.0485 CNN_ENG_20030416_160804.4 AGGRESSIVEVOICEDAILY_20041101.1806

APW_ENG_20030423.0079 CNN_ENG_20030416_180808.15 AGGRESSIVEVOICEDAILY_20041201.2313

APW_ENG_20030424.0532 CNN_ENG_20030416_190806.4 AGGRESSIVEVOICEDAILY_20041203.1959

APW_ENG_20030424.0698 CNN_ENG_20030417_063039.0 AGGRESSIVEVOICEDAILY_20041208.2133

APW_ENG_20030502.0470 CNN_ENG_20030417_073039.2 AGGRESSIVEVOICEDAILY_20041215.2302

APW_ENG_20030502.0686 CNN_ENG_20030418_063040.1 AGGRESSIVEVOICEDAILY_20041218.0146

APW_ENG_20030508.0772 CNN_ENG_20030418_083040.11 AGGRESSIVEVOICEDAILY_20041218.1004

APW_ENG_20030510.0228 CNN_ENG_20030418_130831.5 AGGRESSIVEVOICEDAILY_20041223.1449

APW_ENG_20030513.0139 CNN_ENG_20030418_163834.14 AGGRESSIVEVOICEDAILY_20041226.1712

APW_ENG_20030519.0367 CNN_ENG_20030421_090007.11 AGGRESSIVEVOICEDAILY_20050105.1344

APW_ENG_20030519.0548 CNN_ENG_20030421_120508.13 AGGRESSIVEVOICEDAILY_20050106.1310

APW_ENG_20030520.0081 CNN_ENG_20030421_120508.17 AGGRESSIVEVOICEDAILY_20050107.2012

APW_ENG_20030520.0757 CNN_ENG_20030421_133510.6 AGGRESSIVEVOICEDAILY_20050109.1627

APW_ENG_20030527.0232 CNN_ENG_20030422_083005.10 AGGRESSIVEVOICEDAILY_20050113.1400

APW_ENG_20030602.0037 CNN_ENG_20030422_213527.4 AGGRESSIVEVOICEDAILY_20050114.1922

APW_ENG_20030603.0303 CNN_ENG_20030423_180539.2 AGGRESSIVEVOICEDAILY_20050116.2149

APW_ENG_20030610.0010 CNN_ENG_20030424_073006.4 AGGRESSIVEVOICEDAILY_20050124.1354

APW_ENG_20030610.0554 CNN_ENG_20030424_113549.11 AGGRESSIVEVOICEDAILY_20050125.0136

APW_ENG_20030619.0383 CNN_ENG_20030424_173553.8 AGGRESSIVEVOICEDAILY_20050203.1356

NYT_ENG_20030403.0008 CNN_ENG_20030424_183556.7 AGGRESSIVEVOICEDAILY_20050205.1954

NYT_ENG_20030602.0074 CNN_ENG_20030425_063006.5 AGGRESSIVEVOICEDAILY_20050208.1142

NYT_ENG_20030630.0079 CNN_ENG_20030425_133605.6 AGGRESSIVEVOICEDAILY_20050213.2123

XIN_ENG_20030314.0208 CNN_ENG_20030426_160621.0 AGGRESSIVEVOICEDAILY_20050224.1207

XIN_ENG_20030317.0177 CNN_ENG_20030428_130651.4 AGGRESSIVEVOICEDAILY_20050224.2252

XIN_ENG_20030324.0191 CNN_ENG_20030428_173654.13 BACONSREBELLION_20050123.1639

XIN_ENG_20030327.0202 CNN_ENG_20030428_193655.2 BACONSREBELLION_20050125.1108

XIN_ENG_20030408.0341 CNN_ENG_20030429_083016.5 BACONSREBELLION_20050127.1017

XIN_ENG_20030415.0379 CNN_ENG_20030429_110706.7 BACONSREBELLION_20050204.1326

XIN_ENG_20030423.0011 CNN_ENG_20030429_143706.14 BACONSREBELLION_20050205.1919

XIN_ENG_20030425.0184 CNN_ENG_20030429_170710.4 BACONSREBELLION_20050206.1345

XIN_ENG_20030509.0137 CNN_ENG_20030429_190711.14 BACONSREBELLION_20050209.0721

XIN_ENG_20030513.0002 CNN_ENG_20030430_063016.14 BACONSREBELLION_20050210.0728

XIN_ENG_20030523.0202 CNN_ENG_20030430_093016.0 BACONSREBELLION_20050214.0944

XIN_ENG_20030609.0118 CNN_ENG_20030430_160723.6 BACONSREBELLION_20050216.1536

XIN_ENG_20030610.0299 CNN_ENG_20030501_063017.15 BACONSREBELLION_20050216.1618

XIN_ENG_20030616.0274 CNN_ENG_20030501_160459.0 BACONSREBELLION_20050216.1632

XIN_ENG_20030624.0085 CNN_ENG_20030502_080020.7 BACONSREBELLION_20050217.0744

AFP_ENG_20030330.0211 CNN_ENG_20030502_093018.6 BACONSREBELLION_20050218.0848

AFP_ENG_20030323.0020 CNN_ENG_20030505_090022.1 BACONSREBELLION_20050218.1214

CNN_ENG_20030506_053020.14 BACONSREBELLION_20050222.1348

cts CNN_ENG_20030506_160524.18 BACONSREBELLION_20050227.1238

fsh_29097 CNN_ENG_20030506_163523.22 BACONSREBELLION_20050222.0817

fsh_29105 CNN_ENG_20030507_060023.1 BACONSREBELLION_20050226.1317

fsh_29121 CNN_ENG_20030507_160538.15 FLOPPINGACES_20041113.1528.042

fsh_29138 CNN_ENG_20030507_170539.0 FLOPPINGACES_20041114.1240.039

fsh_29139 CNN_ENG_20030508_170552.18 FLOPPINGACES_20041115.1613.032

fsh_29141 CNN_ENG_20030508_210555.5 FLOPPINGACES_20041116.0833.027
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fsh_29171 CNN_ENG_20030509_090025.5 FLOPPINGACES_20041228.0927.010

fsh_29187 CNN_ENG_20030509_123601.13 FLOPPINGACES_20041230.1844.003

fsh_29191 CNN_ENG_20030512_190454.7 FLOPPINGACES_20050101.2244.048

fsh_29192 CNN_ENG_20030513_080020.2 GETTINGPOLITICAL_20050105.0127.001

fsh_29195 CNN_ENG_20030513_113501.6 OIADVANTAGE_20041224.1007

fsh_29226 CNN_ENG_20030513_160506.16 OIADVANTAGE_20050103.0944

fsh_29272 CNN_ENG_20030514_130518.5 OIADVANTAGE_20050105.0922

fsh_29302 CNN_ENG_20030515_063019.6 OIADVANTAGE_20050108.1323

fsh_29303 CNN_ENG_20030515_073019.7 OIADVANTAGE_20050109.1947

fsh_29326 CNN_ENG_20030515_193533.6 OIADVANTAGE_20050110.1009

fsh_29336 CNN_ENG_20030516_090022.7 OIADVANTAGE_20050203.1000

fsh_29344 CNN_ENG_20030516_123543.8 OIADVANTAGE_20050203.2102

fsh_29348 CNN_ENG_20030524_143511.4 OIADVANTAGE_20050204.1155

fsh_29350 CNN_ENG_20030525_143522.8 HEALINGIRAQ_20041108.1942.05

fsh_29361 CNN_ENG_20030525_160525.13 MARKBACKER_20041103.1300

fsh_29388 CNN_ENG_20030526_133535.4 MARKBACKER_20041108.1507

fsh_29395 CNN_ENG_20030526_180540.6 MARKBACKER_20041112.0707

fsh_29505 CNN_ENG_20030526_183538.3 MARKBACKER_20041117.0723

fsh_29520 CNN_ENG_20030527_195948.3 MARKBACKER_20041117.1107

fsh_29521 CNN_ENG_20030527_215946.12 MARKBACKER_20041119.1002

fsh_29526 CNN_ENG_20030528_082823.9 MARKBACKER_20041128.1641

fsh_29581_1 CNN_ENG_20030528_125956.8 MARKBACKER_20041202.0711

fsh_29586 CNN_ENG_20030528_165958.16 MARKBACKER_20041206.0733

fsh_29592 CNN_ENG_20030528_172957.18 MARKBACKER_20041216.0656

fsh_29601 CNN_ENG_20030528_195959.20 MARKBACKER_20041217.1639

fsh_29622 CNN_ENG_20030529_085826.10 MARKBACKER_20041220.0919

fsh_29628 CNN_ENG_20030529_130011.6 MARKBACKER_20050103.0829

fsh_29630 CNN_ENG_20030530_130025.12 MARKBACKER_20050105.1526

fsh_29770 CNN_ENG_20030602_072826.1 MARKBACKER_20050105.1632

fsh_29774 CNN_ENG_20030602_102826.13 MARKBACKER_20050217.0647

fsh_29782_2 CNN_ENG_20030602_105829.2 MARKETVIEW_20041209.1401

fsh_29783 CNN_ENG_20030602_133012.9 MARKETVIEW_20041211.1845

fsh_29786 CNN_ENG_20030603_095830.17 MARKETVIEW_20041212.1447

CNN_ENG_20030603_133025.7 MARKETVIEW_20041213.0722

bc CNN_ENG_20030604_092828.7 MARKETVIEW_20041215.2128

CNN_CF_20030303.1900.00 CNN_ENG_20030604_102828.6 MARKETVIEW_20041217.0801

CNN_CF_20030303.1900.05 CNN_ENG_20030605_065831.18 MARKETVIEW_20041219.1509

CNN_CF_20030303.1900.06-1 CNN_ENG_20030605_085831.13 MARKETVIEW_20041220.1537

CNN_CF_20030303.1900.06-2 CNN_ENG_20030605_105831.11 MARKETVIEW_20050105.1901

CNN_CF_20030304.1900.02 CNN_ENG_20030605_193002.8 MARKETVIEW_20050120.1641

CNN_CF_20030304.1900.04 CNN_ENG_20030605_223004.4 MARKETVIEW_20050126.0711

CNN_CF_20030304.1900.06-2 CNN_ENG_20030607_170312.6 MARKETVIEW_20050127.0716

CNN_CF_20030305.1900.00-1 CNN_ENG_20030607_173310.4 MARKETVIEW_20050201.0748

CNN_CF_20030305.1900.00-2 CNN_ENG_20030610_085833.10 MARKETVIEW_20050204.1322

CNN_CF_20030305.1900.00-3 CNN_ENG_20030610_095857.4 MARKETVIEW_20050204.1337

CNN_CF_20030305.1900.02 CNN_ENG_20030610_105832.1 MARKETVIEW_20050204.1736

CNN_CF_20030305.1900.06-1 CNN_ENG_20030610_123040.9 MARKETVIEW_20050205.1358

CNN_CF_20030305.1900.06-2 CNN_ENG_20030610_130042.17 MARKETVIEW_20050206.1951

CNN_IP_20030328.1600.07 CNN_ENG_20030610_133041.17 MARKETVIEW_20050206.2009

CNN_IP_20030329.1600.00-3 CNN_ENG_20030611_102832.3 MARKETVIEW_20050207.0746

CNN_IP_20030329.1600.00-4 CNN_ENG_20030611_102832.4 MARKETVIEW_20050208.2033

CNN_IP_20030329.1600.00-5 CNN_ENG_20030611_175950.5 MARKETVIEW_20050208.2059

CNN_IP_20030329.1600.00-6 CNN_ENG_20030612_072835.2 MARKETVIEW_20050209.1923

CNN_IP_20030329.1600.01-1 CNN_ENG_20030612_160005.13 MARKETVIEW_20050210.2138

CNN_IP_20030329.1600.01-3 CNN_ENG_20030612_173004.10 MARKETVIEW_20050212.1607

CNN_IP_20030329.1600.02 CNN_ENG_20030612_173004.2 MARKETVIEW_20050212.1717

CNN_IP_20030330.1600.05-2 CNN_ENG_20030614_173123.4 MARKETVIEW_20050214.2115

CNN_IP_20030330.1600.06 CNN_ENG_20030616_130059.25 MARKETVIEW_20050215.1858

CNN_IP_20030402.1600.00-2 CNN_ENG_20030617_065838.21 MARKETVIEW_20050216.2120

CNN_IP_20030402.1600.00-3 CNN_ENG_20030617_105836.4 MARKETVIEW_20050217.2115

CNN_IP_20030402.1600.00-4 CNN_ENG_20030617_112838.4 MARKETVIEW_20050222.0729

CNN_IP_20030402.1600.02-1 CNN_ENG_20030617_173115.14 MARKETVIEW_20050222.1919
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CNN_IP_20030402.1600.02-2 CNN_ENG_20030617_173115.22 MARKETVIEW_20050225.0541

CNN_IP_20030403.1600.00-1 CNN_ENG_20030617_193116.10 MARKETVIEW_20050226.1307

CNN_IP_20030403.1600.00-2 CNN_ENG_20030618_065839.11 MARKETVIEW_20050226.1444

CNN_IP_20030403.1600.00-3 CNN_ENG_20030618_150128.5 MARKETVIEW_20050228.2211

CNN_IP_20030403.1600.00-4 CNN_ENG_20030618_150128.6

CNN_IP_20030404.1600.00-1 CNN_ENG_20030618_193127.17 un
CNN_IP_20030404.1600.00-2 CNN_ENG_20030619_115954.10 Austin-Grad-Community_20050212.2454

CNN_IP_20030405.1600.00-2 CNN_ENG_20030619_115954.4 Integritas-Group-Community-Forum_20050110.0557

CNN_IP_20030405.1600.00-3 CNN_ENG_20030619_125955.10 alt.atheism_20041104.2428

CNN_IP_20030405.1600.01-2 CNN_ENG_20030620_095840.4 alt.books.tom-clancy_20050130.1848

CNN_IP_20030405.1600.01-3 CNN_ENG_20030620_170011.14 alt.collecting.autographs_20050224.2438

CNN_IP_20030405.1600.02 CNN_ENG_20030621_115841.16 alt.corel_20041228.0503

CNN_IP_20030406.1600.03 CNN_ENG_20030621_160254.25 alt.gossip.celebrities_20041118.2331

CNN_IP_20030407.1600.05 CNN_ENG_20030622_173306.9 alt.gossip.celebrities_20050218.0826

CNN_IP_20030408.1600.03 CNN_ENG_20030624_065843.24 alt.obituaries_20041121.1339

CNN_IP_20030408.1600.04 CNN_ENG_20030624_082841.12 alt.politics.economics_20041206.1835

CNN_IP_20030409.1600.04 CNN_ENG_20030624_140104.22 alt.politics_20050124.0640

CNN_IP_20030410.1600.03-1 CNN_ENG_20030624_153103.16 alt.religion.mormon_20050103.0854

CNN_IP_20030410.1600.03-2 CNN_ENG_20030624_153103.17 alt.support.divorce_20050113.2451

CNN_IP_20030412.1600.03 CNN_ENG_20030625_210122.0 alt.sys.pc-clone.dell_20050226.2350

CNN_IP_20030412.1600.05 CNN_ENG_20030625_220123.3 alt.vacation.las-vegas_20050109.0133

CNN_IP_20030414.1600.04 CNN_ENG_20030626_193133.8 aus.cars_20041206.0903

CNN_IP_20030417.1600.06 CNN_ENG_20030627_065846.3 misc.invest.marketplace_20050208.2406

CNN_IP_20030422.1600.05 CNN_ENG_20030627_130145.6 misc.kids.pregnancy_20050120.0404

CNN_LE_20030504.1200.01 CNN_ENG_20030630_075848.7 misc.legal.moderated_20041202.1648

CNN_LE_20030504.1200.02-1 CNN_ENG_20030630_085848.18 misc.legal.moderated_20050129.2225

CNN_LE_20030504.1200.02-2 CNN_ENG_20030626_203133.11 misc.survivalism_20050210.0232

CNN_CF_20030304.1900.01 CNN_ENG_20030605_153000.9 misc.taxes_20050218.1250

CNN_ENG_20030411_070039.21 rec.arts.mystery_20050219.1126

bn CNNHL_ENG_20030312_150218.13 rec.arts.sf.written.robert-jordan_20050208.1350

CNN_ENG_20030305_170125.1 CNNHL_ENG_20030331_193419.9 rec.boats_20050130.1006

CNN_ENG_20030306_070606.18 CNNHL_ENG_20030402_133449.22 rec.music.makers.guitar.acoustic_20041228.1628

CNN_ENG_20030306_083604.6 CNNHL_ENG_20030402_193443.5 rec.music.phish_20041215.1554

CNN_ENG_20030312_083725.3 CNNHL_ENG_20030403_133453.21 rec.music.phish_20050217.1804

CNN_ENG_20030312_223733.14 CNNHL_ENG_20030403_193455.30 rec.parks.theme_20050217.2019

CNN_ENG_20030313_083739.0 CNNHL_ENG_20030407_193547.5 rec.sport.disc_20050209.2202

CNN_ENG_20030318_140851.8 CNNHL_ENG_20030411_230640.38 rec.travel.cruises_20050216.1636

CNN_ENG_20030320_153434.7 CNNHL_ENG_20030415_193729.5 rec.travel.cruises_20050222.0313

CNN_ENG_20030325_150531.10 CNNHL_ENG_20030416_133739.13 rec.travel.europe_20050101.1800

CNN_ENG_20030325_220534.6 CNNHL_ENG_20030416_133739.9 rec.travel.usa-canada_20050128.0121

CNN_ENG_20030327_163556.20 CNNHL_ENG_20030416_193742.26 seattle.politics_20050122.2412

CNN_ENG_20030329_170349.7 CNNHL_ENG_20030416_193742.7 soc.culture.china_20050203.0639

CNN_ENG_20030331_123648.4 CNNHL_ENG_20030416_230741.33 soc.culture.hmong_20050210.1130

CNN_ENG_20030331_193655.14 CNNHL_ENG_20030425_183518.12 soc.culture.indian_20041104.2348

CNN_ENG_20030401_073033.14 CNNHL_ENG_20030428_123600.14 soc.culture.iraq_20050211.0445

CNN_ENG_20030401_233449.5 CNNHL_ENG_20030429_220618.15 soc.culture.jewish_20050130.2105

CNN_ENG_20030402_190500.11 CNNHL_ENG_20030430_220712.37 soc.history.war.world-war-ii_20050127.2403

CNN_ENG_20030403_060032.0 CNNHL_ENG_20030505_220734.25 soc.history.what-if_20050129.1404

CNN_ENG_20030403_080032.9 CNNHL_ENG_20030513_183907.5 talk.politics.misc_20050216.1337

CNN_ENG_20030403_090032.1 CNNHL_ENG_20030513_220910.11 uk.gay-lesbian-bi_20050127.0311

CNN_ENG_20030403_180511.16 CNNHL_ENG_20030519_124020.23 marcellapr_20050211.2013

Table A.1: Data splits of ACE 2005 as used in [Ferguson et al., 2018; Nguyen
et al., 2016; Feng et al., 2016] and other related works in event extraction.
The file names refer to the versions located in the “timex2norm” corpus sub-

directories.
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Table A.2: Event Distribution in the ACE 2005 Data Splits

Event Type ace.train ace.test ace.dev
Business.Declare-Bankruptcy 40 2 1
Business.End-Org 31 5 1
Business.Merge-Org 14 0 0
Business.Start-Org 29 18 0
Conflict.Attack 1273 93 177
Conflict.Demonstrate 65 7 9
Contact.Meet 200 50 30
Contact.Phone-Write 112 8 3
Justice.Acquit 5 1 0
Justice.Appeal 30 6 7
Justice.Arrest-Jail 78 6 4
Justice.Charge-Indict 96 8 2
Justice.Convict 64 6 6
Justice.Execute 14 2 5
Justice.Extradite 6 1 0
Justice.Fine 22 6 0
Justice.Pardon 2 0 0
Justice.Release-Parole 46 1 0
Justice.Sentence 84 11 4
Justice.Sue 60 4 12
Justice.Trial-Hearing 103 5 1
Life.Be-Born 47 3 0
Life.Die 524 17 57
Life.Divorce 20 9 0
Life.Injure 127 1 14
Life.Marry 73 10 0
Movement.Transport 611 48 62
Personnel.Elect 162 16 5
Personnel.End-Position 159 22 31
Personnel.Nominate 11 1 0
Personnel.Start-Position 92 13 13
Transaction.Transfer-Money 128 14 56
Transaction.Transfer-Ownership 92 30 5

Table A.2: Event distribution in the ACE 2005 train, test, and development
set splits used in [Ferguson et al., 2018; Nguyen et al., 2016; Feng et al., 2016] and
other related works in event extraction. The development set does not contain

any mentions for 11 out of the 33 ACE event types.
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