
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2011

Data mining based learning algorithms for semi-
supervised object identification and tracking
Michael P. Dessauer

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons, and the Other Computer Engineering Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.latech.edu%2Fdissertations%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA MINING BASED LEARNING ALGORITHMS FOR

SEMI-SUPERVISED OBJECT IDENTIFICATION AND

TRACKING

by

Michael P. Dessauer, B.S., M.S.

A Dissertation Presented in the Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

February 2011

UMI Number: 3451089

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 3451089
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

November 3, 2010

by.

Date

We hereby recommend that the thesis prepared under our supervision

Michael P. Dessauer

entitled

Data Mining based Learning Algorithms for Semi-supervised Object Identification and Tracking

be accepted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Computational Analysis and Modeling

lead of Department
Computational Analysis and Modeling

Department

Recommendation concurred in:

?^f(/^7^9^Cr ' /ef/\-Q

Approved:

Advisory Committee

Approved

H-—
Director of Graduate Studies

^fa Jo.
Dean of the Colle

GSForm 13
(6/07)

ABSTRACT

Sensor exploitation (SE) is the crucial step in surveillance applications such as airport

security and search and rescue operations. It allows localization and identification of

movement in urban settings and can significantly boost knowledge gathering,

interpretation and action. Data mining techniques offer the promise of precise and

accurate knowledge acquisition techniques in high-dimensional data domains (and

diminishing the "curse of dimensionality" prevalent in such datasets), coupled by

algorithmic design in feature extraction, discriminative ranking, feature fusion and

supervised learning (classification). Consequently, data mining techniques and

algorithms can be used to refine and process captured data and to detect, recognize,

classify, and track objects with predictable high degrees of specificity and sensitivity.

Automatic object detection and tracking algorithms face several obstacles, such as

large and incomplete datasets, ill-defined regions of interest (ROIs), variable scalability,

lack of compactness, angular regions, partial occlusions, environmental variables, and

unknown potential object classes, which work against their ability to achieve accurate

real-time results. Methods must produce fast and accurate results by streamlining image

processing, data compression and reduction, feature extraction, classification, and

tracking algorithms. Data mining techniques can sufficiently address these challenges by

implementing efficient and accurate dimensionality reduction with feature extraction to

iii

refine incomplete (ill-partitioning) data-space and addressing challenges related to object

classification, intra-class variability, and inter-class dependencies.

A series of methods have been developed to combat many of the challenges for the

purpose of creating a sensor exploitation and tracking framework for real time image

sensor inputs. The framework has been broken down into a series of sub-routines, which

work in both series and parallel to accomplish tasks such as image pre-processing, data

reduction, segmentation, object detection, tracking, and classification. These methods

can be implemented either independently or together to form a synergistic solution to

object detection and tracking.

The main contributions to the SE field include novel feature extraction methods for

highly discriminative object detection, classification, and tracking. Also, a new

supervised classification scheme is presented for detecting objects in urban environments,

which incorporates both novel features and non-maximal suppression to reduce false

alarms, which can be abundant in cluttered environments such as cities. Lastly, a

performance evaluation of Graphical Processing Unit (GPU) implementations of the

subtask algorithms is presented, which provides insight into speed-up gains throughout

the SE framework to improve design for real time applications.

The overall framework provides a comprehensive SE system, which can be tailored

for integration into a layered sensing scheme to provide the war fighter with automated

assistance and support. As more sensor technology and integration continues to advance,

this SE framework can provide faster and more accurate decision support for both

intelligence and civilian applications.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author Michael P. Dessauer

Date 11/03/2010

GS Form 14
(5/03)

TABLE OF CONTENTS

ABSTRACT ii

LIST OF TABLES ix

LIST OF FIGURES x

ACKNOWLEDGEMENTS xiv

CHAPTER 1 - INTRODUCTION 1

1.1 What is Object Recognition? 1

1.2 Data Mining and the Knowledge Discovery Process 4

1.3 Data Mining Based SE Method 6

1.4 Dissertation Outline 8

CHAPTER 2 - SENSOR EXPLOITATION FRAMEWORK 10

2.1 SE Framework Introduction 10

2.2 Image Preprocessing 11

2.3 Object Detection 14

2.4 Feature Extraction and Classification 16

2.5 Object Tracking 19

2.6 SE Framework Description Conclusion 21

CHAPTER 3 - IMAGE PREPROCESSING 22

3.1 Image Preprocessing Introduction 22

3.2 The Wiener Filter 24

iv

V

3.3 Histogram Specification 25

3.4 Wavelet Decomposition 27

3.5 Gaussian Smoothing 29

CHAPTER 4 - OBJECT DETECTION 32

4.1 Object Detection Introduction 32

4.2 Motion Detection Using Optical Flow 33

4.2.1 Lucas and Kanade Method 33

4.2.2 Pyramid Implementation of Lucas and Kanade 35

4.2.3 Phase Based Optical Flow 36

4.2.4 Optical Flow Evaluation Conclusions 41

4.3 Object Detection Using Hierarchical Graph Segmentation 41

4.3.1 Graph Initialization 43

4.3.2 Node Energy Function 43

4.3.3 Graph Coarsening 44

4.3.4 Higher-level Node Statistics 46

4.3.5 Object Candidate Selection 48

4.3.6 Segmentation Evaluation and Results 49

4.3.7 Conclusion 51

4.4 Data-Mining Based Moving Object Detection 51

4.4.1 Motion Detection 52

4.4.2 Flow Gradient Intersect Features 53

4.4.3 Edge Intersect Features 54

4.4.4 Hierarchical Graph Segmentation 55

vi

4.4.5 Object Candidate Selection 57

4.4.6 Supervised Classification Object Detection 58

4.4.7 Multi Frame Object Matching 59

4.4.8 Object Non Maximal Suppression 60

4.4.9 Object Detection Testing Data 61

4.4.10 Object Detection Evaluation 61

4.4.11 Conclusion 63

4.5 Object Detection Conclusion 64

CHAPTER 5 - FEATURE EXTRACTION AND CLASSIFICATION 65

5.1 Feature Extraction and Classification Introduction 65

5.2 Dense and Reduced Speed-up Robust Features (DRSURF) 66

5.2.1 DRSURF Interest Point Detection 66

5.2.2 DRSURF Orientation Assignment 68

5.2.3 DRSURF Feature Descriptor Calculation 68

5.3 Invariant Moment Descriptors 70

5.4 Edge Histograms 72

5.5 Texture Statistics 74

5.6 Classification Methods Using Feature Descriptors 76

5.6.1 Bayesian Classification 76

5.6.2 Neural Networks 77

5.6.3 Support Vector Machines 77

5.6.4 Association Rule Mining 78

5.6.5 KSTAR Classification 78

vii

5.7 Feature Descriptor and Classification Evaluation 78

5.7.1 Columbus Large Image Format (CLIF) 79

5.7.2 Army Research Lab CEGR Infrared Dataset 80

5.7.3 Army Research Lab I1CO Visible Dataset 84

5.8 Feature Extraction and Classification Conclusion 87

CHAPTER 6 - TRACKING FOR SE 89

6.1 Object Tracking Introduction 89

6.2 Optical Flow Object Tracking 90

6.3 DRSURF Feature Tracking , 92

6.3.1 DRSURF Feature Tracking Implementation 92

6.3.2 Feature Tracking Evaluation and Results 93

6.3.3 DRSURF Feature Tracking Conclusion 95

6.4 Object Tracking Conclusion , 96

CHAPTER 7 - GPU IMPLEMENTATION OF THE SE FRAMEWORK 97

7.1 GPU Introduction 97

7.2 GPU-Based SE Framework Implementations 98

7.2.1 GPU for Image Preprocessing 98

7.2.2 GPU for Object Detection 100

7.2.3 GPU for Feature Extraction 106

7.2.4 GPU for Object Tracking 113

7.2.5 GPU for Implementation Summary 117

7.3 GPU-Based SE Framework Conclusion 118

CHAPTER 8 - CONCLUSIONS 120

viii

8.1 Contributions to Object Detection 120

8.2 Contributions to Feature Extraction and Classification 121

8.3 Contributions to Object Tracking 122

REFERENCES 124

LIST OF TABLES

Table 7.1 Algorithm GPU Speed-Up for SE 118

Table 7.2 Iterative GPU Speed-Up for SE 118

IX

LIST OF FIGURES

Figure 1.1 SE System Step Diagram 2

Figure 1.2 Knowledge Discovery Steps In Data Mining 5

Figure 1.3 Data Mining For SE Steps 6

Figure 2.1 SE Framework Tasks and Methodologies 11

Figure 3.1 Image Processing Stage in SE Framework 22

Figure 3.2 Matrix Representation of an 2-D Image and Obj ect Chips 23

Figure 3.3 Raw Image Object Chip in Grayscale and Jet Colormap, and Object Chip

after Wiener Filter 25

Figure 3.4 Histogram Specification to Reduce Illumination Effects 26

Figure 3.5 {Top) Visible Aerial Object Chip Wavelet Decomposition Approximation
Coefficients Levels 0-3 and {Bottom) Levels 1-6 on an IR Chip 29

Figure 3.6 {Top) 2-D Gaussian Filtering With Changes in Histogram, {Bottom)
Original Object Chip, its Level 2 Wavelet Approximation, and Post
Gaussian Filter Output 31

Figure 4.1 Object Detection in The SE Framework 32

Figure 4.2 {Top left to right) Image Frame With Multiple Object Motions and
Wavelet ApproximationN=0...3, (2nd from top) Lucas and Kanade
Optical Flow for Each Wavelet Level, (3rd from top) Lucas and Kanade
Pyramid Optical Flow for Each Wavelet Level, and {Bottom) Phase-
Based Optical Flow Method 39

Figure 4.3 Computation Time at Each Wavelet Approximation Level N=0,1,2,3 40

Figure 4.4 Detection Accuracy Results for Each Optical Flow at Wavelet Levels
#=0,1,2,3 41

Figure 4.5 Diagram of the Multi-Scale Graph Segmentation Algorithm [41] 42

x

XI

Figure 4.6 {Left) Multi-Scale Segmentation of Level 1 Approximation Image (from
Figure 2) at Levels g — 4,7,10, {right) Interpolation Matrices {Pg -» {g +
1)) For Levels g = 0,3,6,9 45

Figure 4.7 Multiscale Graph Segmentations of a SAR Object Chip 46

Figure 4.8 Graph Segmentation Detection Accuracy of Objects in CLIF Dataset 50

Figure 4.9 Graph Segmentation of CLIF Objects Computation Time 50

Figure 4.10 {Top left) Original Image and (top right) its 2-Level 2-D Wavelet
Approximation Coefficients {bottom left) Overlaid with Optical Flow
Field. The Corresponding Flow Gradient Image is Shown {bottom left),
and The Final Image after a 2-D Gaussian Filter is Applied
{bottom right) 53

Figure 4.11 Edge Gradient Flow Process 55

Figure 4.12 Hierarchical Node Agglomeration Using Multi-Cue 57

Figure 4.13 Binary Classification and Non-Maximal Suppression Results of Object

Candidates 61

Figure 4.14 Object Detections in CLIF Data Sequences 61

Figure 4.15 ROC Curves of Binary Object Classification 62

Figure 4.16 Classifier Execution Speeds for Varying Object Candidate Sizes 63

Figure 5.1 Feature Extraction and Classification in the SE Framework 65

Figure 5.2 DRSURF Interest Point Location and Feature Window 67

Figure 5.3 DRSURF Grid Over Multiple Orientation 68

Figure 5.4 Scaled and Rotated Images and their Corresponding Invariant Moments.... 72

Figure 5.5 Canny Filtered Objects at Varying Wavelet Levels 73

Figure 5.6 Edge Bin Histogram of an Object Image 74

Figure 5.7 Steps in Texture Calculation 75

Figure 5.8 CLIF Object Detection Accuracy Using Edge Histograms 80

Figure 5.9 CEGR Classification Results Using Moment Invariants 82

xii

Figure 5.10 CEGR Classification Results Using Edge Histogram. 82

Figure 5.11 CEGR Classification Results Using Texture Statistics 83

Figure 5.12 CEGR Classification Results Using Invariant Moments, Edge

Histograms, and Texture Statistics 83

Figure 5.13 I1CO Classification Results Using Moment Invariants 85

Figure 5.14 I ICO Classification Results Using Edge Histogram Statistics 86

Figure 5.15 II CO Classification Results Using Texture Statistics 86

Figure 5.16 I ICO Classification Results Using Invariant Moments, Edge Histograms,

and Texture Statistics at Wavelet Levels N = 0,1,2,3,4,5, ALL 87

Figure 6.1 Object Tracking in SE Framework 89

Figure 6.2 Object Tracking Accuracy Results for Each Optical Flow at Wavelet

Levels 7^=0,1,2,3 91

Figure 6.3 DRSURF Feature Tracking Accuracy for Varying Feature Lengths 94

Figure 6.4 DRSURF Feature Tracking Execution Time for Varying Feature Lengths.. 94

Figure 6.5 Tracking Accuracy Results for DRSURF and Other Methods at Different

Optical Flow Thresholds 95

Figure 7.1 GPU-CPU Execution Times for 2-D Gaussian Convolutions 99

Figure 7.2 Speed-Up Gains Using GPU for Gaussian 2-D Convolutions 100

Figure 7.3 GPU-CPU Execution Times for Gabor Filter Bank.... 101

Figure 7.4 GPU-CPU Speed Up for Gabor Filter Bank 101

Figure 7.5 GPU-CPU Execution Times for Graph Edge Weighting 102

Figure 7.6 GPU-CPU Speed Up for Graph Edge Weighting 103

Figure 7.7 GPU-CPU Execution Times for Graph Cuts (no loops) 104

Figure 7.8 GPU-CPU Speed-Up for Graph Cuts (no loops) 104

Figure 7.9 GPU-CPU Execution Times for Graph Cuts (small loops) 105

xiii

Figure 7.10 GPU-CPU Speed-Up for Graph Cuts (small loops) 105

Figure 7.11 GPU-CPU Execution Times for Graph Cuts (large loops) 106

Figure 7.12 GPU-CPU Speed-Up for Graph Cuts (Large loops) 106

Figure 7.13 GPU-CPU Execution Time for Histogram (no loops) 107

Figure 7.14 GPU-CPU Speed-Up for Histogram (no loops) 108

Figure 7.15 GPU-CPU Execution Time for Histogram (small loops) 108

Figure 7.16 GPU-CPU Speed-Up for Histogram (small loops) 109

Figure 7.17 GPU-CPU Execution Time for Histogram (large loops) 109

Figure 7.18 GPU-CPU Speed-Up for Histogram (large loops) 110

Figure 7.19 GPU-CPU Execution Time for Invariant Moments (no loops) 111

Figure 7.20 GPU-CPU Speed-Up for Invariant Moments (no loops) 111

Figure 7.21 GPU-CPU Execution Time for Invariant Moments (small loops) 112

Figure 7.22 GPU-CPU Speed-Up for Invariant Moments (small loops) 112

Figure 7.23 GPU-CPU Execution Time for Invariant Moments (large loops) 113

Figure 7.24 GPU-CPU Speed-Up for Invariant Moments (large loops) 113

Figure 7.25 GPU-CPU Execution Time for Normalized Cross Correlation (no loops) .114

Figure 7.26 GPU-CPU Speed-Up for Normalized Cross Correlation (no loops) 115

Figure 7.27 GPU-CPU Execution Time for Normalized Cross Correlation (small

loops) 115

Figure 7.28 GPU-CPU Speed-Up for Normalized Cross Correlation (small loops) 116

Figure 7.29 GPU-CPU Execution Time for Normalized Cross Correlation (large
loops) 116

Figure 7.30 GPU-CPU Speed-Up for Normalized Cross Correlation (large loops) 117

ACKNOWLEDGEMENTS

I would like first like to thank my advisor, Dr. Sumeet Dua, for his guidance, insight,

and patience throughout my years as a graduate student. I would also like to

acknowledge the Clarkson Aerospace and the Air Force Research Laboratory, especially

Olga Mendoza-Schrock and Greg Arnold, for their support of the research.

I would also like to acknowledge the members of the Louisiana Tech Data Mining

Research Laboratory, especially Harry, Brandy, Pradeep, Xian, Justin, and Connor for

their daily assistance and friendship. I would also like to thank my parents, Brenda and

Steve, for their love and support (not just financial) throughout the years of my graduate

studies. Also, I want to thank my brothers, Stephen and Kevin, and friends for always

being there despite my sometimes long absence from their daily lives. Finally, I want to

thank Brandie for her love, patience, and support throughout the past years of the degree

completion. I love you, Sweetie.

xiv

CHAPTER 1

INTRODUCTION

1.1 What is Object Recognition?

Over the past several decades, many industries have invested greatly into research

and implementation of performing autonomous surveillance with increasing complexity.

The reasoning behind moving towards automation in systems is three-fold: reducing

human casualties, human error, and reducing the financial cost of human operation. A

particular field of surveillance that can benefit from automation is in sensor exploitation

(SE), which outputs a knowledge layer using sensor data as input.

An SE system effectively removes man from the process of the acquisition,

classification, and tracking objects of interest. As object-mounted sensor technologies

exponentially increase coverage areas, coupled with booming available computational

resources, human-run objecting systems can no longer keep up with potential object

acquisitions in real time scenarios. Multiple sensor modalities exist concurrently on

objects, along with other data such as GPS and satellite imagery to provide a rich, layered

sensing stack that a single human operator cannot manage unassisted. SE provides the

required assistance to aid human operators in utilizing the sensing capabilities currently

available in the specific platform.

1

In its most basic form, SE acquires (detects), classifies, and tracks objects by

processing a sequences of images [1]. This process can be broken down into a series of

sub-tasks, which take the output from a previous step as input into the current step.

Figure 1.1 describes the typical algorithm subtask sequence in an SE application, each of

which will be described in further detail.

1 Sensor f " > ^

Off /

•w Image

Pre-
process • *

online

| Object Knowledge |

^ ^ Chip

Feature
Extractor

Feature*

Object Recognition

Features

y.,,.!!)!,,...... *»
| Discriminator ^ " " " " ^ ^

»«

Decision
Rule

"N

1
"rank"

j Decision

1 Parameter 1
1 Settings \

Figure 1.1 SE System Step Diagram

The SE method begins with sensor input data at the top left, termed "Sensor," which

is typically one or several images. The input images are then fed into the SE system as

follow:

1. Pre-screener: This initial stage conditions the input image into a form acceptable

for feature extraction methods. Typically, subtasks such as image denoising, data

reduction, and initial non-object filtering are performed to both enhance speed and

accuracy of later stages. A set of potential object "chips" is outputted from this

3

stage, where each chip represents a location (bounding box or boundary) from the

input image(s).

2. Feature Extractor: This stage takes a potential object chip and calculates a

single or set of values that can discriminate a member of an object library from

non-objects (confusers). Feature extraction methods are domain-specific, due to

the specific requirements of invariance to object changes (rotational, translation,

scale, partial occlusion, illumination, etc.)

3. Discriminator: This step uses either an online or offline training system and

features from the previous step to attain an object "likeliness" score, which can

either be binary or probability based. The likeliness score for each object chip is

then passed to the decision rule stage.

4. Decision Rule: This final stage uses likeliness scores and parameter settings to

discretely label potential object chips as either "non-object" or "object" in a

binary detection system, or a particular object in a multi-object detection. Both

online information .neighboring likeliness scores) and offline (user-defined

thresholds of likeliness) are used to enhance accuracy, and adjust the false-alarm

and false-dismissal ratios.

SE suffers from a lack of robust solutions due to several clear challenges in the

problem space. Such challenges include a large range of potential input sensor data,

changing operating conditions (OCs), cluttered environments, object signature non-

repeatability, limited or incomplete testing data, and real-time execution [1]. Many of

these issues also occur in problems in data mining, which is the driving force for

choosing a data mining-based solution to the SE problems.

4

1.2 Data Mining and the Knowledge Discovery Process

The diverse applications of data mining and general knowledge discovery in

databases (KDD) causes a lack of agreement on the basic definitions of the field [2].

Although it is unclear whether KDD and data mining are one in the same, or merely a

step in the KDD process. As with SE, knowledge discovery can be described as a series

of sequential steps:

1. Data Processing (Cleaning): Raw data will contain noisy and missing entries

which must be resolved to decrease potential misclassification. This stage

typically involves several processing steps that resolve particular irregularities

present in the data domain.

2. Data Reduction: Data dimensionality size can inhibit mining methods by both

shear computational burden and reduce accuracy from redundant, meaningless

data. Reduction methods are employed to retain only useful information through

compression or filtering methods.

3. Data Transformation: Processed, reduced data is then transformed using

mathematical techniques for exposing discriminative characteristics of the data.

The transformations are chosen based on input structure requirements for the

classification or decision making stage.

4. Data Mining: In this crucial step, discriminative patterns from training data are

used with statistical classification schemes to generate relationships, anomalies,

trends, and patterns using the transformed data.

5. Pattern Verification and Evaluation: This final stage evaluates data mining

methods by comparing predictions based on testing and training data used to

5

design the model for higher-level pattern detection and classification. This step

provides visual representation of the accuracy and effectiveness of the data

mining method.

Figure 1.2 is a diagram of the KDD process, which shows the typical algorithmic

workflow. The SE and KDD processes have significant overlap in the overall

methodologies, both beginning with large data that contains a significantly smaller set of

desired information (object data). Ideas from both methods are combined in the

framework, presenting an SE framework that includes ideas and workflow from the KDD

process.

Figure 1.2 Knowledge Discovery Steps in Data Mining

1.3 Data Mining-Based SE Method

As previously described, the KDD and SE steps require similar sequence of subtasks,

due to the strong coherence in their problem space. Figure 1.3 contains the data mining

steps for SE that contains both critical stages in a comprehensive SE and KDD process.

This approach to solving the SE problems provides the guidance to develop the SE

framework described in Figure 1.3.

Process Image
Sequence

£|$tf .̂ E—sN Transform
"** r^l « I Image

Data Mining Steps for Object Recognition and
Tracking

Detect
Objects

Extract
Features

Prior Target Data
Textur«
riv.tun..s
tTFii,TF12,
•>13...!
(IFJVIF22,
-F23....!
|TF51.TF«,
TF3J,...)
(TF41.TF42,
rs.15....)

Shape Gfdd.e-ff.
h;,HLrt;!; £*.\]tUH>b
jSFi i ,sr i2,(CF: i ,Gri2,
SFU....J GFli...)
(SF21.Sf-«.(CiMl,GfM,
SF23,...) GF23....I
[SF31,SF32.(t5F3l,<3FS2.
SF33,...(GF33,...)
{5F41,SF42,<GF41,GF42.
SF43....J GM1....I

] J i Classification

llms Tsund

Sj***- 3 mimm

^•T^tel

Figure 1.3 Data Mining for SE Steps

Image Sequence Processing: Raw images acquired from either ground or

moving sensors will frequently contain noise generated from both the acquisition

process (camera or transmission) and also from OCs such as non-uniform

illumination and natural phenomena. Denoising operations are performed on the

7

input data to reduce these irregularities in aims to diminish further propagations

throughout the process, resulting in inaccuracies. Non-transform data reductions

can also be applied in this stage for filtering out obvious non-object locations.

2. Data Transformation: This next stage transforms cleaned and filtered image

data into a form that can then be used to extract discriminative information for

accurate detection and classification. This stage can also reduce data

dimensionality through compression transformations, eradicating redundant

information and increasing computation time.

3. Object Detection: This critical SE stage discriminates objects from non-objects

using a wide array of possible methods. This method in itself can be broken down

into a data mining process when a detection is the ultimate SE aim. This stage

can also be considered an initial detection stage but retains false alarms (filtering),

which are then reduced in classification stages. Object detection is the focus of

several chapters of this dissertation, and several multiple approaches to object

detection are presented.

4. Feature Extraction: This step describes the variety of statistical calculations

used to compactly represent a region of interest (ROI), which in turn is passed to a

classification or decision rule algorithm for object discrimination. Feature

extraction methods must take account for the domain-specific intra-class and

inter-class variations that can potentially arise, requiring invariant features to best

represent these changing characteristics.

5. Classification: Taking feature sets and training data (object priors) as input, this

stage uses both supervised machine learning methods or statistical analysis to

8

determine the ultimate class or label of a particular region of interest. Common

classes can be binary, such as "object" or "non-object," or can consist of an object

library where multiple object classes exist.

6. Tracking: This final stage of SE updates the position of a correctly classified

object (detected). Changes in object orientation and scale, along with partial

occlusions requires a tracker to be robust to changes in object appearance.

Although some trackers can be considered "detection" algorithms in that the

object is re-detected and associated to itself at different time intervals, the

tracking stage is considered independent from object detection.

These stages lay the groundwork for the SE framework presented in this paper, some

of which demand multi-stage algorithms within each particular step. Although data

mining steps can describe the entire SE system, steps 3,4, and 6 can each be considered

an independent data mining problem, in cases where other stages are not required.

1.4 Dissertation Outline

In Chapter 2, the SE framework that solves each of the SE problems is discussed in

the introduction, along with background on current methods employed. In Chapter 3, the

initial image processing and data transformation methods used to condition the data for

further use in subsequent steps are described. Next, Chapter 4 will detail the object

detection methods used for both moving and non-moving object recognition, using phase-

based optical flow and hierarchical graph segmentation with supervised classification.

These two methods are then combined with machine classification for detecting moving

objects through multiple frames. In Chapter 5, novel feature extraction methods used for

binary and multiclass object classification are presented, and compared to several

9

machine-learning methods. In Chapter 6, a novel feature tracking method that employs

existing features (from previous steps) for real-time tracking results is employed. In

Chapter 7, the GPU implementations of the algorithms described in Chapters 3-7 are

presented and discuss execution time gains. Finally, the conclusions and potential future

research directions are presented in Chapter 8.

CHAPTER 2

SENSOR EXPLOITATION FRAMEWORK

2.1 SE Framework Introduction

The SE framework can be conceptualized as a series of necessary computer vision

tasks that uses both supervised and unsupervised learning methods to detect, classify and

track both moving and non-moving objects throughout an image sequence. The

algorithm is based on the sequence design on the data mining-based SE diagram

described in Section 1.3, creating and implementing a set of specific sub-tasks for each

step.

Figure 2.1 provides a flow chart-style diagram of the required tasks and the methods

employed to accomplish them. Most of these tasks have been outlined in Chapter 1, with

additional sub-tasks specific to the image-based SE challenges. These methods are used

to reduce false alarms and speed completion time, increasing performance at each

downstream step. In this chapter, the background research performed to accomplish the

tasks is outlined in Figure 2.1, and a brief introduction into each of the methods

developed for solving the particular task is discussed. Each major task depicted in a blue

box is a main topic in subsequent chapters.

10

11

Input Image

Image Preprocessing

Image de-
noising

>
Inter-frame

statistic matchiag

^
Dimensionality

reduction

i

later •bjeetnrtaatt
ndadan

Wcincr filter

'
Histogram

specification

>
Wavelet

decomposition

f

Gaussian filter

Processed

Image

Object Detection

Optical Phase-based
Flow Optical Flow

Image MaUscategnBft
ScgmnUtionf (ê eataOM

ROI locations

Feature Extraction

S S I DRSURF

Invariant
statistics

Hu
moments

Boundary
Data

Texture
features

Edge
histogram j

GLCMA
tatare

M « i l l

ROI Feature Sets

Classification

Target
TyP6 MLP

Feature Tracking

Target
Location

Vector
Correlation

Figure 2.1 SE Framework Tasks and Methodologies

2.2 Image Preprocessing

An initial stage within most higher-level computer vision processes are one or more

image preprocessing steps to condition image pixel values for increased robustness and

accuracy. Typical preprocessing steps include image denoising, background elimination,

contrast enhancement, and dimensionality reduction. Several tasks and their

accompanying methods that are necessary for generating accurate detection, tracking, and

classification results are described.

1. Image denoising (smoothing) describes the set of processes that attempts to

remove degradations from image data caused by instrument imperfections, data

12

acquisition, interfering natural phenomena, transmission errors and compression

[3]. Image denoising techniques can be broken up into two basic approaches:

spatial filtering methods and transfer domain methods. Spatial filters can use both

linear and nonlinear low-pass kernels, which convolve with an image to smooth

or blur, at the cost of reducing object boundary contrast. Nonlinear methods such

as weighted median [4] and relaxed median filtering [5] help combat this

drawback. Transform domain filtering methods include spatial-frequency filters

such as Fast Ftheier Transform (FFT), wavelet transform, independent component

analysis. FFT methods first transform the data into the frequency domain, then

uses a frequency domain filter and adaptive cut-off frequency [6]. Wavelet

methods create a set of multi-resolution coefficients which are then used for linear

[7] and non-linear [8][9] filtering, coefficient modeling [10][11], and non-

orthogonal transform methods[12][13]. Independent component analysis (ICA)

assumes a signal is non-gaussian, but requires a higher computational cost [14].

A two-dimensional linear spatial filter, the Weiner filter, is implemented. This

filter provides denoising at low computational cost and minimal boundary

contrast reduction. At the end of the preprocessing step, a second linear

smoothing step is also performed. This step uses a Gaussian kernel to blur

processed images to homogenize intra-object values for increased detection

accuracy.

2. Inter-frame statistical matching helps eliminate illumination changes when

performing tasks that require multiple image region matching and comparisons,

such as object tracking and motion estimation. Histogram transformation

13

methods treat image intensity distribution as a probability density function (pdf),

which is then used to fit a specific distribution [15]. Histogram equalization both

increases contrast and normalizes an image sequence through matching the

intensity histogram to equal-depth bins [16]. Histogram specification uses a

reference model histogram to transform an image's histogram to match that of the

model most closely [15]. Specification is used to retain denoised image statistics

and most closely match global statistics from previous images in a sequence.

3. Dimensionality reduction methods decrease image size to retain only

informative data for further processes, as well as minimizing computation time.

Methods that can achieve this task include data transformations such as principal

component analysis (PCA) [17], fast Fourier transform (FFT) [18], and wavelet

transformation [19]. PCA is an orthogonal linear transformation, which reduces a

set of variables by calculating eigenvalues from a covariance matrix, retaining

values with most contrast (information). FFT coefficients can be thresholded by

frequency to reduce high frequency data. Wavelet transform allows for a

multiscale depiction of the image. Unlike Fourier descriptors, wavelet

coefficients retain spatial information because their basis functions (or wavelets)

are localized in the image, where a Fourier basis function spans the entire image.

Wavelet approximation (low-pass) coefficients are used to represent images in

reduced dimensions. Different scales are used throughout the process but are all

calculated efficiently in this step.

4. Inter-object variance reduction is required to take into account differences in

intra-object variations between objects within a single class. An example of such

14

a case is the boundaries that occur between a light colored object and its

windshield, which is absent for darker colored objects. This additional smoothing

step creates a local blurring to reduce these sharp contrasts. Background

modeling has been proposed which can reduce contrast [20] over a localized area.

A simple 2-D Gaussian kernel function, as described in [15], is used due to its

computational speed and effectiveness in reducing the overall quality of results.

2.3 Object Detection

An important process in the SE framework, the object detection strategy uses multiple

techniques to both detect moving and non-moving regions of interest which conform to

predefined size, shape, and motion characteristics. The methods output regions of

interest locations that are then used as input for feature extraction, tracking, and

classification methods.

1. Optical Flow computes an approximation of the 2-D motion field from

spatiotemporal patterns of image intensities, which is a projection of the 3-D

velocities of surface points into the image surface [21]. Motion estimation in

image sequences via optical flow methods was first introduced by Horn and

Schunk in 1980-81 [22]. Since this introduction, new techniques have been

developed that calculate 2-D velocity fields using a variety of approaches. In the

survey paper from Barron [23], the author selects a local intensity-based method

by Lucas and Kanade [24] and a phase-based approach by Fleet and Jepson [25]

as providing results with the highest accuracy and density. After evaluating these

methods, a phase-based approach for motion estimation using wavelet

approximation is performed.

15

2. Image Segmentation of non-trivial images is one of the most difficult tasks in

image processing. Accurate segmentation typically leads to the success or failure

of the analysis process [15]. Although the amount of image segmentation

methods and research is immense, most methods can be divided into detecting

discontinuities and similarities in an image region. Discontinuity detection is

typical for methods that find edges in images through kernel operations [26],

which are then followed with morphological operations to create connected

component regions [27]. To segment regions that display edge occlusion, edge

detection and linkage methods will fail in many scenarios. Similarity measures,

on the other hand, are robust to occlusion because they tend to search over a local

region for image statistics that display similar values. Simple methods that use

similarity are intensity and color thresholding, with more advanced methods using

histogram statistics in local regions for better discrimination [28]. Region-based

methods can employ both pixel intensity similarities and discontinuities for

segmentation such as watersheds [29] or region-growing methods that use seed

points [30]. Graph-theory is a popular method for creating partitions and

connections between similar pixels, forming regions. The normalized cuts [31]

method uses similarity measures to "cut" graph node connections while keeping

strong connections together, while other methods use shape information to create

segments from the graph [32][33]. Multi-scale segmentation has proven

successful in finding relationships between intra-segment statistics at different

scales. Such methods include model-based approaches [34] and probabilistic

linking [35]. Many methods employ wavelet decompositions for segmentation,

16

such as using a multi-scale hidden Markov tree [36] and neural-networks [37]. A

novel implementation of the multi-scale graph theoretic segmentation using

wavelet coefficients for object detection is used.

3. Track-before-detect is a popular detection method that when applied to high

frame rate data, provides high detection accuracy over multiple image frames

[38]. The method uses a similar approach in terms of requiring matching of

multiple instances of a detected object to reduce false alarms, but instead of using

a dynamic state space model technique such as [39] and [40], object matching and

non-maximal suppression are employed to discriminate object candidates in the

subsequent frame. Both optical flow and graph segmentation methods are

employed to acquire the short tracks to validate detected objects. These acquired

motion features are then combined with intensity and edge features to form a

multi-cue energy function in a hierarchical graph segmentation algorithm inspired

by [41].

2.4 Feature Extraction and Classification

In many domains that require data mining methods for classification, proper feature

set selection is a critical step in attaining accurate results. For SE, robust feature

selection is especially difficult due to the many scale, rotation, illumination, and

environmental variations that occur within a single image sequence. Several classes of

feature extraction techniques are surveyed and novel extensions of them that have

produced accurate classification results are created.

1. Gradient feature descriptors are a general class of features describes some of

the most recent and highly celebrated methods to date. These methods use first

17

and second order derivatives to identify unique local areas that can best be

differentiated using matching algorithms in subsequent frames or in object

libraries. Corner point detection methods, such as Harris corner points [42] and

differential invariants [43], provide a means to find locations for calculating

descriptors that can be tracked through a series of frames. Mikolajczyk and

Schmid [44] provide a thorough evaluation of local descriptors for image

matching (object tracking), observing SIFT (Scale Invariant Feature Transform)

[45], and speed-up robust features (SURF) [46] and GLOH (Gradient Location

and Orientation Histogram) methods as ranking highest in performance.

Histogram and gradients (HOG) are used in the classification stage [47].

Steerable filters can also provide rotational invariance by "steering" in a particular

direction based on the highest gradient [48].

2. Boundary and shape descriptors use an object silhouette, or outer boundary, to

describe the object for discrimination. Typically a boundary detection method,

like [26], must be employed at some part in the feature extraction process, which

uses contrast with the background to detect discontinuities. Log-polar shape

descriptors are presented in [49] to detect aerial objects. Belongie et al introduce

"shape contexts" for matching similar shapes to one another [50]. Non-linear

shape statistics have also been used for segmentation and tracking by using a

density estimation method [51]. Boundary information typically lacks rotational

invariance, thus, a feature set is created that both maintains shape discrimination

and invariance to rotation.

18

3. Invariant descriptors is a large research area that handles the multiple variations

that occur in SE is a primary challenge. Invariant feature extraction is a large

research area, which includes some very common methods such as histograms

[52] and invariant moments [53], which provide invariant feature sets to rotation,

translation, and scaling changes. Recent extensions include the geometric

histogram [54] and scale-invariant descriptors [55]. Both invariant features and

several types of histograms for classification are used. These forms of

classification can help to detect objects with high variations due to rotations and

partial occlusions.

4. Texture-based descriptors belong to a class that uses the internal statistics of an

object for classification, referred to as "texture." Such methods include

calculating gray-level co-occurrence matrices [15], then generating the celebrated

Haralick features [56]. Some methods use filters such as the Gabor transform

[57] and wavelets [58] to generate a set of texture classifiers. Due to the large

variations within classes of objects, a very limited set of texture features are used,

although the feature set is very important in other image recognition fields.

In the methodology, many of the calculated feature sets are used as inputs into

supervised classification algorithms. Previous image classification and SE research is

dominated by supervised classification schemes. In [59], spatial and texture features are

calculated and used in a two-stage classification algorithm, which uses both rule-based

classification for object detection, then linear discriminate analysis (LDA) and quadratic

discriminate analysis to (QDA) to further classify objects types. Cao et al. [60] employ

support vector machines and wavelet moment invariants to classify SAR images into a 3-

19

class object classification system. Neural-networks directed Bayes-decision rules creates

conditional probabilities for classification, using object motion characteristics as the

primary features [61].

2.5 Object Tracking

In this final stage of the SE framework, previous knowledge derived from the

detection and classification stages is used to provide a feature tracking scheme that

generates a probability of a current object location. Object tracking is determining the

trajectory of an object throughout a 2-D or 3-D surface. This undertaking is challenging

due to: loss of information due to 2-D projection of a 3-D scene, image noise, complex

motion, non-rigid objects, partial or full occlusions, complex shapes, environmental

conditions, and real-time processing requirements [62]. The object tracking research is

rich in methods that employ supervised classification, dynamic state space models,

feature matching, and iterative detections. The background of each of these methods will

be described in more detail.

1. Tracking by classification uses online training of classifiers to track through an

image sequence by labeling a location as an "object" class and all non-object

locations as "non-objects." Avidan uses support vector machines (SVM) with an

optical flow algorithm to maximize a classification score to update the object

location [63]. Williams et al. use full probabilistic relevance vector machine

(RVM) to generate observation with Gaussian distributions to track by

determining the displacement of the object [64]. Bayesian networks have also

been successfully implemented for object tracking [65].

20

2. Dynamic state models use ideas from control theory, dynamic state modeling for

object tracking is a very popular method with current object tracking research.

The dynamic state of the changing position is governed by the dynamic equation,

which includes previous states and noise. Methods based on classical dynamic

modeling, such as Kalman filters [66] [67] and particle filters [68][69] are used for

their robustness to changing operating conditions. These methods can retain

object tracks over partial and full occlusions, although they can suffer from issues

of drifting.

3. Feature matching is a successful class of tracking algorithms which locate

unique features associated with spatial areas over multiple frames. Methods such

as the KLT tracker use features discussed in Section 2.4 to match similar feature

sets to generate similarity scores [70]. Cross-correlation is a basic method for

determining the similarity between two sets of image descriptors, which is used as

a similarity metric in Chapter 6. Distance measures are another means to

determine the matching measurement, with low distances equating to strong

matches. Multiple tracking methods use the Mahalanobis distance metric, while

other tracking methods have used covariance matrices, homography estimations,

and Euclidean distances [42]. These distance measures can affect tracking results

through feature sensitivity, as discussed in the methods section.

4. Iterative detection (detect-before-track) performs a detection using a clustering

or segmentation to determine object presence, which is associated with a

particular track. Such methods include using optical flow and segmentation

(described in Section 2.3), with the additional detection and tracking methods

21

such as mean-shift [71] and Track-and-cut [72]. These detect-before-track

methods can suffer from heavier computation, but can benefit from performing

independent segmentation tasks in parallel.

Background into each of the classes of object tracking methodologies is discussed,

and the vast areas of research exploration within each of these areas are identified.

Although a feature matching-based method (described in Chapter 6) is currently used,

several ideas are derived from other tracking methods throughout the SE framework.

2.6 SE Framework Description Conclusion

This chapter serves as a brief introduction into each of the SE framework stages,

providing the reader with a glimpse into the wide range of research areas involved in

creating solutions to the challenges that SE design faces. Each of these stages can easily

garner investigation and exploration that could produce dissertation-level research. The

main aims of this dissertation are to demonstrate how each of these areas of research can

be combined into a working set of algorithms to achieve the entire set of SE challenges in

a single framework. Each of the algorithms and SE challenges is described in detail

throughout the next several chapters.

CHAPTER 3

IMAGE PREPROCESSING

3.1 Introduction

As discussed in Chapter 2, an initial stage of the series of tasks are performed to

condition an input image or images prior to higher-level operations. In Figure 3.1, the

subroutines highlighted in red display the sequential image processing stage.

Input
Image(s)

Processed
I mage (s)

1
Object Detection

Motion
detection

Phase-based
Optical Flow

linage
Sepneutatlon \

htollisrato graph he-

ROI locations

Feature Extraction

&££ I DRSl,RF!
Invariant
statistics moments

Boundary
Data

rex Hue
features

Edge :
histogram •

r. ;
GtXM.e

tesfaremomniti

ROI Feature Sets

Classification

Till get Type | MLP
Feature Tracking
Target

Location
Vector

Correlation

Figure 3.1 Image Processing Stage in SE Framework

22

23

First, the digital sensor image representation is described as a discrete function,

f(x, y), of pixel size MxN. For this description, the discussion will be limited to

grayscale, or intensity images, represented as:

/ (x ,y) = /(x,y). (3.1)

For each (x, y) location {note in matrix form, x refers to rows andy refers to

columns). These intensities make up a two-dimensional matrix, with ranges for 8-bit

images between [0, 255], or if normalized between [0,1]. These intensities can also be

thought of as magnitudes at a particular location (Figure 3.2), allowing to more easily

visualize many of the computational methods discussed in the rest of the chapters. Also

shown in Figure 3.2 are typical image sensor data in visible and infrared spectrums.

lm;ige/(.Y,t'/

! • '

Figure 3.2 Matrix Representation of an 2-D Image and Object Chips

As explained in both Chapters 1 and 2, raw input data must be conditioned for

successful information exploitation. Image sequence exploitation is no different, with

sensor data series requiring denoising, data reduction and filtering techniques to provide

higher order algorithms with appropriately "cleaned" input data to produce accurate

results.

24

Several methods have been employed in the SE framework, each of which serves a

unique purpose down the chain of algorithms. Although these methods are not the only

ones capable of denoising, reducing, transforming, and filtering data sets for SE, they

have been selected for both their specific use for the data sets of interest and because they

can easily be augmented for data sets with differing properties.

3.2 The Wiener Filter

The Weiner filter is applied to adaptively reduce noise artifacts. Using a local

neighborhood of size m x n, an average of the local estimated variances, v, is used to

create a pixel-wise filter:

; a y) = M + £ ^ ! a a ;) - M) , (3.2)

where u is the local mean, o the local standard deviation, and I(i,j) is the image pixel

value at location (ij). In the implementation, the local neighborhood is set to n = m = 3,

but can easily be automated by using prior knowledge of object dimensions. Figure 3.3,

shows the original raw intensity object chip of an aerial object in grayscale (left), then

display the same object chip in the center using jet colormap (middle) for better

visualization. The last image is the output after performing a 2-D Wiener filter with the

mean calculated over a 5 x 5 window.

25

Figure 3.3 Raw Image Object Chip in Grayscale and Jet Colormap, and Object Chip after
Wiener Filter

The Wiener filtering reduces small, local variations that can mislead edge detection

and gradient feature extraction methods. Notice how both background and object local

areas smoothen within its segment, with little to no blurring of boundary areas. This

function is first performed so that noisy signals do not propagate into forms that cannot

be easily cleaned, such as after data reduction steps.

3.3 Histogram Specification

Now that local noise has be reduced through Wiener filtering, additional image

irregularities can occur which cannot be solved through calculations of localized areas,

such as environmental changes due to illumination. To combat such issues, The next

preprocessing step is to perform histogram specification [15] between the subsequent

images used for the input. Histogram specification approximately matches the intensity

histogram from image lt to the histogram from image / £ + d t by creating a transform

function which maps the probability density function (pdf) from the histogram It to the

histogram It+dt.

26

For discrete pixel values, the probability of occurrence of intensity level r* in an

image is approximated by:

Pr(rk)=^ * = 0,1,2 L-l, (3.4)

where n is the total pixel count of the entire image, nk is the count of pixels that have

intensity rk, and L is the range of intensity values (0-255 for 8-bit images). The

histogram equalization transform function is then:

sk = Hrk)= Zf=o Pr(r;) (3.5)

= l J = o ^ k = 0,1,2 L-l

Each image pixel rk is mapped to sk through transform T, resulting in forming an

image with a histogram that is much more evenly spread out across the range [0...L-1] of

pixel intensities. This step is performed to reduce false optical flow values from

illumination changes between image frames. In Figure 3.4, you can see the subtle

changes in the histogram, which performs an important role of reducing illumination

effects that result in poor motion estimation.

Figure 3.4 Histogram Specification to Reduce Illumination Effects

27

3.4 Wavelet Decomposition

Wavelet decomposition has been employed for the purpose of dimensionality and

data redundancy reduction, providing a multiscale solution-space for detection scale-

specific motion within an image frame [74]. Before implementing the detection

algorithms, a 2-D discrete wavelet transform of the processed image is performed to

create a multiscale representation of the image frame. The 2-D discrete wavelet

transform uses a wavelet function, T/;(X, y) , and a scaling function, q)(x,y) to correctly

position the function before convolving with the image of size M x Abusing the following

formula:

<Pj,m.n(x, y) = 2}/2<p(2jx - m, Vy - n) , (3.6)

rl>i
Jim.n(.x,y) = 2J^(2h-m,2Jy-n), i = {H,V,D} (3.7)

The 2-D discrete wavelet transform of the function / (x , y) of an image of size M x TV is

formalized as [19]:

Wv(/o.m, n) = -j=I,x=o £y=o /(*,y)(pjo,m.n(x, y), (3.8)

W\Q, m, n) = ^ = 2 ^ ZJkJ/C*, yWj>m.n{x, y) i = {H, V, D] , (3.9)

where j 0 is the starting scale, which is typically set to j 0 = 0, then set to N = M = 2J

and j = 0,1,2,... J - 1 and m,n = 0,1,2,...,2 j - 1, and {H,V,D} yield the 2-D

combination to get if)1 for a horizontal (H), vertical (V), and diagonal (D) direction.

Daubechies-3 and Haar wavelets are used, as they have evidenced to offer high degrees

of detection and tracking accuracy in previous studies [75]. The generated wavelet

approximation coefficients, Wv, are used as input into the optical flow algorithm

28

described in Chapter 4. Due to the 2J scaling relationship between pixel locations, optical

flow fields can be easily interpolated to find flow at original image locations. The first

three levels of wavelet approximation coefficients are found, with higher scales detecting

larger motions. The notation WL to refer to a wavelet approximation of an image, /, at

level L is used.

In Figure 3.5, the approximation coefficients of wavelet decompositions are shown on

visible and IR sensor data. As can be seen from Figure 3.5, object data sizes are reduced

but characteristics can still be retained at lower wavelet levels. Based on the resolution of

the image, high scale approximations lose any resemblence to the object chip it

represents, which in most cases is an indication the coefficients cannot be used to

sucessfully discriminate the object from the background.

29

Figure 3.5 (Top) Visible Aerial Object Chip Wavelet Decomposition Approximation
Coefficients Levels 0-3 and (bottom) Levels 1 -6 on an IR Chip

3.5 Gaussian Smoothing

Gaussian smoothing was implemented in the final stage of preprocessing. Intra-

object non-uniform pixel variations can make image segmentation difficult because areas

that contain sub-segments of the same object may differ too significantly to merge

together. This second noise reduction filter also assists motion detection by decreasing

discontinuities that do not appear in subsequent frames due to occlusion. The size of the

kernel was chosen to be roughly Vi the size of the smallest object to both retain object

edge information and sufficiently smooth intra-object pixel intensities.

The Gaussian kernel is a member of a class of spatial filters; spatial filters are used in

preprocessing stages to reduce noise and help connect edge and object regions through

30

combining neighborhood pixels to transform a central pixel intensity or color value. The

Gaussian kernel g(x,y) is formalized as:

g(x,y) = ^e~y^) , (3.10)

where o determines the width of the kernel. A smoothing mask or kernel is a matrix of

coefficients (usually rectangular or circular) which is convolved with an image. The

coefficients increase toward the center of the kernel to give larger weight to pixel

locations closest to the central pixel of the passing image window. Figure 3.6 show the

changes to an object that occur after a Gaussian filter is applied. Take note that some

boundary information is lost through this smoothing process, unlike the Wiener filter.

This loss in boundary localization is acceptable in cases where large intra-class variations

are significantly reduced.

31

Figure 3.6 {Top) 2-D Gaussian Filtering With Changes in Histogram, {bottom) Original
Object Chip, its Level 2 Wavelet Approximation, and Post Gaussian Filter Output

3.6 Conclusion

The image preprocessing methodology that was performed to condition the data for

the subsequent SE stages follows. Image preprocessing methods are very data-specific,

with this particular set of methods providing acceptable results in the evaluation. It

would be advantageous to experiment with several preprocessing methods when

attempting to perform SE on a dataset of sensor data that does not conform to the

characteristics of previous tested data.

CHAPTER 4

OBJECT DETECTION

4.1 Introduction

Now that image data has been conditioned using the methods described in the

previous chapter, the critical stage of object detection takes the processed data as

input, then performs multiple algorithms that detect motion and segments images to

then determine potential object locations (Figure 4.1 highlighted in red).

Input
Image(s)

£
Image Preprocessing

linage de-noising W e i n e r filter

Inwfnunr I Histogram
statistic in jidiUit I sjiecMc-.itloii

DiiiiMmioitaUty
reduction

Wavelet
decomposition

Image
Smoothing Gaussian Alter

\r

Processed
l m a § e (s)

L

ROI locations

Feature Extraction
Gradient
Features

Invariant
statistics

DRSVRF :

Hli

moments

Boundary | Edge
Data ' | histogram

Texture CICM*

ROI Feature Sets

Classification

Target Type 1 M L P

: ! Feature Tracking
Target
Loratlon

Vector
Correlation

1
i~

.*

Figure 4.1 Object Detection in the SE Framework

32

33

This process requires sophisticated algorithms that demand potential object prior data,

due to the myriad of possible ways to break down even a simple real image into discrete

parts. In the subsequent sections of this chapter, the use of exploit sensor data to detect

object motion is explained, then create a hierarchical segmentation of the scene to extract

only segments which match domain knowledge of object candidates are explained. A full

object detection methodology that reduces false alarms by employing a track-before-

detect system is presented. Evaluations of each of the methods are also presented and

discussed.

4.2 Motion Detection Using Optical Flow

As discussed in Chapter 2, two optical flow calculation methods, one intensity-based

and one phase-based, have been chosen to evaluate wavelet approximations of image

scenes for object detection and tracking. In the following sections, each method is

described, along with an explanation about how they differ in calculating the optical flow

values.

4.2.1 Lucas and Kanade Method

In the Lucas and Kanade optical flow method, an iterative approach is used to find

velocity components for images A = I(t) and B = I(t + dt). The image velocity,

v = \vx vy\ , can be defined as the vector that minimizes the residual function s defined

at image position p = \px py\ as [76]:

e(y) = e(vxi vy) = ^ ^ \ W * (y) - B{x + vxy + vy)f. (4.1)

34

An integration window, co, is chosen to have a size both large enough to find large object

motions and small enough to retain local accuracy. Using prior domain knowledge of

object velocity can allow for the automatic selection of co to the smallest window that can

contain maximum object motion. An optimum optical flow calculation will give:

de(v)
dv

= [0 0]. (4.2)
v=vopt

After expanding Equation (4.2) from Equation (4.1):

After substituting B(x + vxy + vy) by its first order Taylor expansion for the point

v = [0 0]T, it can be seen that the (A(x, y) — B(x, y)) is the image gradient between the

two images, with the image gradient vector written as:

VI = ̂ = A(Xly)-BCx,y). (4.4)

The derivative images Ix and Iy can be found from image A only through the use of a

central difference operator. Equation (4.3) can then be rewritten using the difference

images as:

I Idem7 _ yPx+a>x yPy+Uy (\ ll lxly\ _ \SI Ix]\
II to \ ^ ^x=Px-^x^y=Py-ay\^IxIy 7 2 J V [SI Iy])' ^ ^

Denote

r2
r ^ yPx+^x yPy+Uy !x lx^y
U L,x=px-oix Ly=v -u, \r , , 2

Vxy y

u j . yPx+Ux yPy+^y \ S l lx\ ,. _.
" ^x=px-oix^y=Py-ojy\Slly\- V*-')

35

Now, Equation 4.2 can be rewritten as:

ipg*|T««-5. (4.8)

The optimum optical flow vector is then:

vopt * G-^b. (4.9)

This equation is only a valid result when G is invertible, which occurs when the

gradients in image A are nonzero in both the x and y directions. This method is used

iteratively through a Newton-Raphson method to find larger pixel displacements. The

algorithm will perform k iterations before stopping. These k iterations improve optical

flow accuracy, but require additional computation time. This algorithm is implemented

using multiple levels (N = 0,1,2,3) of wavelet approximations as inputs and set the

iterations to k = 3.

4.2.2 Pyramid Implementation of Lucas and Kanade

This multi-scale approach to the Lucas and Kanade optical flow calculation is

motivated by the possibility of calculating motion at both large and small scales by

recursively reducing the image size while keeping the window size constant. The

pyramidal representation of the input image I of size M x TV will be denoted as 7°, or the

zeroth level of the image with dimensions m° = M and n° = N. The pyramid is then

recursively constructed using a Taylor series expansion around the each point

IL~1(2x, 2y) to get IL. This expansion is possible due to the coordinate relationship

between levels in L as:

{*,y)i=^. (4.io)

36

The image at I1'1 is defined as follows (through Taylor series expansion):

lL{x,y)=-IL-\2x,2y)

+ -[IL~1(2x - l,2y) + IL~1(2x + l,2y) + /L"1(2x, 2y - 1)
o

+ /L _ 1(2x,2y+1)]

1
+ — [/L_1(2x - l,2y - 1) + /L_1(2x + l,2y + 1)

16

+ ll~\2x - l,2y + 1) + IL~1(2x + l,2y - 1)].

Similar to wavelet approximation coefficients, the image pyramid-level height is

typically Lmax = 2,3,4, because the large reduction in size makes levels >3 useless for

determining local motion. The pyramidal Lucas Kanade using the same parameters as

from Section 4.2.1. is then implemented, setting the additional pyramid parameter level to

3 to ensure multi-scale optical flow calculations.

4.2.3 Phase-Based Optical Flow

For a third estimate of motion, a phase-based optical flow method from Gautama and

Van Hulle, which uses spatial Gabor filters for velocity estimation [77], is used. This

method, similar to that Fleet and Jepson [25], tracks contours of constant phase over time,

which have been proven to be more robust to illumination changes and non-translation

motions than contours of constant amplitude. This method is divided into three stages.

This method begins by filtering the image multiple times using quadrature pairs of

Gabor filters, where a temporal phase gradient is computed. Each filter is characterized

by its center frequency, (fx, fy), and the width, a, of the Gaussian curve which produces a

complex-valued phase response, with a phase component 0(x, t). As Fleet and Jepson

state, the temporal changes of a constant phase can approximate motion, which is

37

represented as contours that satisfy 0(x, t) = c. This equation is differentiated with

respect to t, which gives us the temporal phase gradient, V 0(x, t):

V0(x,t)-Vx = V(Kx,t)-(v,l) , (4.11)

where v is the velocity vector. The temporal phase gradient can then be written in the

following manner:

<t>t = - (v - 4>x) = -Il0*llproj0n(v), (4.12)

where 0£ is the normalized (f>x. The component velocity in the direction normal to the

filter orientation can now be computed as:

vc = proj«(v)fl? = 1^T)(fx,fy). (4.13)

In the second stage of the algorithm, the reliability of the component velocities is

measured, due to inaccurate velocities computed at phase singularities. The linearity of

the component velocities are measured by performing a linear least squares regression on

the phase component pairs, taking the mean square error divided by the gradient to yield

phase nonlinearity. High non-linearity values above a defined threshold are rejected.

The linearity threshold is then chosen as, threshUn = .05, as suggested by the authors to

reject phases between [-150, 150], which begins producing unreliable results.

The final stage of the algorithm is the combination of reliable component velocities

into a single velocity measure at each location in the x and y directions. The following

equation is used to create the full velocity using a constraint line, Lit yielding the full

velocity at the point where several constraint lines intersect. Guatama and Van Hulle use

a goal programming method that uses amplifiers to converge to a solution for a full

velocity, v = (u, v~) from component velocities by minimizing the distances between

38

constraint lines. An iteration step of the goal programming network is written as

[78]:

v*« = v>- As£?=1 veJL (^ f - | |vc, | |), (4.14)

where N is the number of constraint lines and As is the time interval between state

updates. This algorithm is implemented using a Gabor filter bank of size 11 filter pairs

using /? = 1 to get a Gaussian width, a, using the following equation:

a = j . (4.15)

The minimum number of constraint lines was set to N = 5 for all of the

implementations. The next stage of the algorithm processes and reshapes optical flow

calculations to match original image sequence dimensions. The optical flow for each

wavelet approximation level,/, will have the dimension size relationship of My x Nj =

/ 2 ; x Inp w ' m a n interpolation necessary to map values to the original image size.

The wavelet scaling function is used to interpolate the optical flow values to mimic the

compression of the image (Section 3.3). The values of the rescaled optical flow are then

multiplied at each location by 2 ; to account for the increase in pixel distances. Figure 4.2

provides typical optical flow results for wavelet approximation levels N — 0,1,2,3 for

each of the three methods described in Sections 4.2.1-4.2.3.

39

Figure 4.2 {Top left to right) Image Frame With Multiple Object Motions and Wavelet
Approximation N=0...3, (2nd from top) Lucas and Kanade Optical Flow for Each
Wavelet Level, (3rd from top) Lucas and Kanade Pyramid Optical Flow for Each Wavelet
Level, and {bottom) Phase-Based Optical Flow Method.

4.2.4 Evaluation and Results

For evaluating the optical flow calculations, a subset of the camera 1 Columbus Large

Image Format (CLIF) sequence [79] has been chosen. This camera captures an aerial

view of an urban area at a two frame/sec rate. Because the image sequence dimensions

are too large for complete processing (9733 x 8033), sub-image sequences of varying

sizes between 700 x 700 and 214 x 529 have been created. In total, six sequences were

used ranging between 20 and 38 frames in each and containing 16 object ground truth

data. The optical flow calculations were computed using Matlab R2009a release on an

40

Intel® Core i7 920 @ 2.67 GHz processor with 12 GB of RAM. The completion time for

each wavelet level and optical flow technique is provided in Figure 4.3.

Optical Flow Calculation Time

1 2

Wavelet Approximation Level

Lucas-Kanade

Phase-based

LK-pyramid

Figure 4.3 Computation Time at Each Wavelet Approximation Level N=0,1,2,3-

Object detection at a specific pixel location is based on pixel locations where

\^targ nmax | > threshv, with the threshold chosen for each optical flow method based on

prior knowledge of minimum optical flow values from a moving object. The results are

provided in Figure 4.4, which shows object detection accuracy and overall detection area.

Optimum performance gives high detection accuracy with low detection area.

41

Detection Accuracy and Coverage Area

<u
u

a

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

•Lucas-Kanade detection

•Phase-based detection

•LK-pyramid detection

•Lucas-Kanade Area

•Phase-based Area

•LK-pyramid Area

L
I

Wavelet Approximation Level

Figure 4.4 Detection Accuracy Results for Each Optical Flow at Wavelet Levels
7V=0,1,2,3.

4.2.5 Optical Flow Evaluation Conclusions

Although all three optical flow methods were successful in detecting object motion,

the phase-based method achieved superior object tracking accuracy (91.05% at level-0),

possibly due to the illumination invariance that phase-based methods achieve. Wavelet

approximations provide an exponential decrease in computational time, which was

expected due to the dimensionality reduction. Detection accuracy and specificity are

reduced with the increase in wavelet decomposition levels, and the best compromise is

the phase-based method at level 1 (87% accuracy). Although computational time is still

too large for use in a real-time analysis, lower-level language implementation coupled

with parallel programming can reduce this computation time significantly.

4.3 Object Detection Using Hierarchical Graph Segmentation

This method uses the concept of multi-scale graph segmentation for the bottom-up

aggregation of nodes, allowing image areas to merge together at different scales, similar

42

to methods described in [80][41]. As outlined in Figure 4.5, the method begins with a

construction of a level 0 graph using intensity contrast as weights for edges. An iterative

graph coarsening method is then used to aggregate nodes at a new scale. This step is

repeated until a predetermined minimum amount of nodes has been reached. Higher-

level weighting functions are used to augment weights, which use node statistics to

change node couplings. After the algorithm completes, the graphs are scanned for

segments similar to desired object shape and size.

Construct fine-level graph: assign coupling weights between neighboring
pixels according to intensity contrast

~ i .
Create coarse-level graph:

• Select representative nodes as seeds

• Aggregate other pixels around seeds, based on their couplings

• Calculate aggregate (segment) properties
• Derive coarse-level couplings from fine-level couplings and

modify by similarity in aggregate properties

I "
Determine boundaries of salient segments by a top-down process

Figure 4.5 Diagram of the Multi-Scale Graph Segmentation Algorithm [41]

The multi-scale graph-theoretic segmentation algorithm is divided into its constituent

parts and discuss its implementation. The algorithm subsections include: (Section 4.3.1)

graph initialization, (Section 4.3.2) energy function for node selection, (Section 4.3.3)

graph coarsening, (Section 4.3.4) inter-node weighting using node statistics, and (Section

4.3.5) object segmentation candidate selection.

Repeat
while

number of
nodes >1

43

4.3.1 Graph Initialization

In the initial stage (level 0) of the graph segmentation algorithm, each pixel in image /

of size Mx N is considered as a node in a graph, with an edge connecting each 4-

connected neighbor. An inclusion matrix, Ug, (g is graph scale) is created which is used

to find pixel membership (U>0) at a particular level. The initial membership matrix U0

of size (Mx N) x (Mx N) has a value of:

Uod.j) = {0 | f • ~ Jj for ij = 1,2,... M * N, (4.16)

so that each row in U0 has only one member at location i = j , creating an identity matrix.

A weight matrix, W0, of the same size as U0, is also created and populated with values

from edge couplings. This edge (connection) strength is initially dependent solely on

pixel intensity similarities, with high similarity creating stronger edge strength. The

function to determine the initial edge is written as [80]:

WtJ = e-«\ii-h\, (4.17)

where / andj are nodes in a graph representing 4-connected neighboring pixels, / is image

intensity value, and a is a global parameter set to 0.25 to best segment targets of desired

size. The a list of edges (W0 > 0) and node locations (U0 > 0) are then used to create a

Laplacian matrix, L0, which is used in the energy equation in Section 4.3.2.

4.3.2 Node Energy Function

To decide which nodes are chosen to be representative nodes in the next scale,

(g = 1), an energy function, T(u), is calculated using the Laplacian matrix, weight

matrix, and inclusion matrix. Sharon et al. concluded that when solving the generalized

eigen problem Lu = XWu with minimal positive eigenvalue X, salient nodes are found

44

where T(u) is minimal. The following equation is then used to generate energy values

for each node in the inclusion matrix [41]:

r f r) = * W « « - " j) 2
 = ^ (4.i8)

I.i>jWijUiUj -UTWU

The median value of T is chosen as the threshold in determining which nodes are

selected as node locations at the next coarsest level. As nodes grow in size, an additional

size constant, /?, is introduced to reduce the tendency of larger nodes to be selected,

changing Equation (4.18) as follows:

r(ii) = - ^ L y . (4.19)
(-uTWu)

Setting 1 > /? > .5 will increase the tendency for larger nodes to be chosen as new

coarse nodes, where . 5 > /? > 0 will cause smaller node selection to increase. /? — .5

eliminates any size bias in the node selection. Depending on the dimensions of the image

frame compared with the desired object dimension, /? can be automatically selected to

create nodes of a size similar to prior object dimensions.

4.3.3 Graph Coarsening

Candidate nodes are selected using the T function described above as all nodes that

satisfy T(u) < median(T). The number of selected nodes is typically - in size. The

N i
inclusion matrix, for the new level Ug+1 is created with an approximate size Ng x s'/ y,

where Ng is the number of nodes of the graph at level g. After the nodes with minimum

energy are selected, an interpolation matrix, Pg^g+1^ is created. This new interpolation

matrix uses weights from Wg to associate non-candidate nodes to candidate nodes. After

45

Pfl_>(5+1) is populated with weight values from non-candidate nodes, the nodes at level g

are scanned again to find any nodes that were not selected as candidates and did not have

connections to candidate nodes. Nodes in this pass are defined as size Ng+1. These

"orphaned" nodes are appended to Pg_>^g+1^) and Ug+1, as additional candidate node

locations. The interpolation matrix is then normalized so that:

l S i + 1 Pik = 1 for all k > Ng+1, (4.20)

which gives a normalized weighted relationship for all nodes not selected as coarse level

nodes. Using the interpolation matrix, the weights are determined at the node scale level

g + 1 as:

% + i = Jj-*to+i)W& Vfe+D- (4-21)

Figure 4.6 (Left) Multi-Scale Segmentation of Level 1 Approximation Image at Levels
g = 4,7,10, (right) Interpolation Matrices (Pg^g+1y) For Levels g = 0,3,6,9.

46

4.3.4 Higher-level Node Statistics

After initial weights (Section 4.3.1) and interpolation matrices (Section 4.3.3)

augment the edge weights connecting nodes at levels g > 0, additional statistics are

calculated, and their similarity measure is used to reduce or increase node weights. For

most of these calculations, the original pixel membership in current node scale must be

found. This membership can be found by multiplying interpolation matrices from the

current scale down to P0_*i- This step will create a matrix, V, of size Ng X N0. For each

pixel, / (1 to N0) is assigned to a single node by finding the max values in the row vector

vt. Each pixel ultimately becomes a member of a node at level g, which is used to find

the node statistics described in Figure 4.7.

Input Image
Scale 4

Figure 4.7 Multiscale Graph Segmentations of a SAR Object Chip

Once nodes represent multiple pixels, the V matrix using the interpolation matrices

below level g can be used to find intensity statistics for node k and scale g, which are then

used to find similar nodes at level g. After identifying members (pixels) of each k node at

47

level g, the pixel members can be described as an intensity histogram, which is written as

a probability density function (pdf):

Prfo) = ^ k = 0,1,2 L - 1, (4.22)

where pr(Tk) is m e probability of an image pixel being a member of histogram bin rk.

For this method, k = 16 bins is chosen in the texture calculations which provides the

required textural discrimination, unless noted otherwise. To calculate the moments, write

the moment equation as follows:

MnO) = Yi'Jo(rk - mrp(rk), (4.23)

where the mean value of r is:

m = Y.Lkllrk*p(rk). (4.24)

The second, third, and fourth moments, which are the standard deviation, skewness, and

kurtosis, respectively are calculated. Then, this feature vector is compared to other nodes

in scale g using a vector correlation function:

corrkj = - , [VfcHV;] k,j = 1,2 Ng. (4.25)
J[[VkHvk]].[[v,Hv7]]

The correlation value is used to augment existing weights between nodes by using the

flowing function:

Wk.e-astats\l-corrkJ\^ (4 2 6)

where ccstats is a weighting constant specific for each weighting function used.

Correlations of values of corrkj < 1 will reduce coupling weights.

48

Another statistical measure of interest is the inter-scale variance at finer scales for

each node. Unlike the intensity statistics, the multi-scale variance calculates the variance

of nodes at particular scales below g. These variance values are discovered by finding V

at each level below g, creating a vector of variances for each node k a level g of desired

length. Variance is kept at levels g — 1, g — 2,g — 3. Variance vectors are then

compared, and weights are augmented using Equations (4.25) and (4.26) with an avar

parameter.

A third measure used to augment node couplings at a scale g is boundary comparison.

After each node's pixel members are found using V, boundary pixels are identified, and a

list of non-node member neighbors is created. Then, node weights are increased between

neighboring nodes from the list that satisfy a mean intensity threshold, Tmean, written as:

Wkj — aboundary * wkj^ \Hk ~~ l*j\ < Tmean, (4.27)

where ccBoundary is a predefined weight constant, fik, and \ij are intensity means of nodes

k and j at level g found from these methods.

4.3.5 Object Candidate Selection

The final stage of the algorithm uses prior object knowledge to scan the segmentation

at each scale and extract potential objects based on size and shape statistics. A high and

low threshold, r ^ ^ a n d rlow, is then multiplied by the statistics of the largest and

smallest prior object ground truths. In this case, rhigh is set to 1.5 and Tiow is set to .5.

Total area is set to minimum and maximum axis length and eccentricity to find segments

that fall between the high and low thresholds. Results for implementing this object

candidate selection with the segmentation method are described in Section 4.3.6.

49

4.3.6 Segmentation Evaluation and Results

The purpose of using a segmentation method for object detection in an image frame

for finding both moving and non-moving objects is that an object can be considered

"detected" if a segmented region of interest (ROI) has been found within the distance

Tcentroid fr°m the centroid of the object ground truth. The parameters are set as a =

.25,/? = S,astats = .05, avar — .05, a£,0Mncjary — ^••Tmean — 20. The dataset has been

tested on wavelet approximation level — 0,1,2,3. For testing segmentation accuracy for

object detection, the same subset of the camera 0 Columbus Large Image Format (CLIF)

sequence described in Section 4.2.4 has been chosen.

As can be seen in Figure 4.8, graph segmentation provides strong detection accuracy

at each of the wavelet approximation levels. There is a slight decrease at wavelet-level 2,

possibly due to object boundary shape and resolution. Figure 4.9 shows the segmentation

time for image chips that include objects and surrounding neighborhoods (approx 50 x 50

pixels). As can be seen from Figure 4.9, computation time decreases logarithmically with

an increase in wavelet level. This correlated decrease is due to the exponential reduction

in dimensionality.

50

Graph Segmentation Detection Accuracy

0.86

0.85

0.84
>»
2 0.83 s u

< 0.82

0.81

0.8

0.79

•CLIF target

0 1 2 3

Wavelet Level

Figure 4.8 Graph Segmentation Detection Accuracy of Objects in CLIF Dataset

Graph Segmentation Computation Time

100

^ 10 •CLIF target
s
©

1/3

H 1

0.1
Wavelet Level

Figure 4.9 Graph Segmentation of CLIF Objects Computation Time

51

4.3.7 Conclusion

Although object boundaries are coarsely approximated at a wavelet level of 3, time

and accuracy have shown to be optimal at this level. The rectangular shape of the object

lends itself to coarse approximations derived from wavelet decomposition. In the future,

study graph segmentation implementations on more datasets will be studied and detection

results with other segmentation algorithms will be compared, as well as test new types of

higher-level statistics to improve segmentation.

4.4 Data-Mining-Based Moving Object Detection

Taking concepts from the previous two methods, a comprehensive moving object

detection scheme that uses object prior offline machine learning to detect objects in an

aerial image sequence autonomously has been developed. Object detection and tracking

in low frame rate, low resolution video poses challenges that are difficult for recent

object tracking methods to accurately detect and track objects. In this section, a multi

stage algorithm which takes image sequences and object priors as input to first train an

offline classifier is presented which then uses similar real time data to detect moving

objects. After preprocessing and optical flow estimations are completed, motion,

intensity, and edge features are used to create multiscale graph segmentation of the

moving image sub-field. Object candidates are found after post processing using object

prior information, where a second set of features are calculated and input into the trained

classifier.

The primary contribution is to introduce novel feature sets specifically designed for

moving object segmentation in graph theoretic and object silhouette detection via binary

supervised classification. The novel set of edge histogram features are generated from

52

each candidate segment (no background information used) and fed into a binary classifier

that is trained offline with a set of ground truth data, achieving real-time results. The

final stage of the algorithm uses detected candidates between subsequent frames to

suppress objects with weak size and spatial similarity, allowing only object candidates

with highest similarity to a previous candidate remain. Each step of this algorithm will

be detailed, referencing previously described methods.

4.4.1 Motion Detection

This method implements the phase-based optical flow with wavelets flow described

in Section 4.2.3, using level 2 wavelet approximation as input to get optical flow output.

Optical flow values, O, are then post processed to reduce non-vehicular motion due to

background noise and camera movement. Both a size and magnitude filter are used. The

filters are based on object dimensions to reduce motion detection to areas a lA minimum

object dimension, drnin, (for cases of partial occlusion) to 4 x maximum object

dimension, dmax, (for cases where multiple objects are traveling together). Minimum

size, tminsize, ari|d magnitude, Tminmag, thresholds are used to reduce noise, while camera

motion is detected and rejected by finding a dominant flow direction, Tdomorient that

indicates camera motion.

After each of the post processing steps are applied, a reduced set of locations, G, for

frame / where potential object motion is present, and can be written as:

" t — 1 ^ fc: (i i j j Us,{u,v) -> T-minmag & ™s -"* ^-mlnsize & ̂ n \Q) ^ 1domorient *-*-°)

where 0s,{u,v} is t n e optical flow in the u and v at s, and NS is the 4-connected

neighborhood around s with 0S^UV^ > tminmag. The orientation of 0Sl{u,t7} IS collected

53

into discrete bins and first used to find a possible dominant orientation, then used for

object motion location determination.

4.4.2 Flow Gradient Intersect Features

Due to the constraints necessary to find optical flow, aperture problem errors can

cause inaccurate velocities. Most errors include motion detected along the direction of

intensity gradients, which occur along object boundaries. Moving objects typically

display a concave boundary, which causes an intersection near the object centroid when

line segments are extended from points of detected optical flow along its orientation. The

line segment length, 7y(ovv, is chosen to extend half the distance of the maximum object

dimension from the origin of the optical flow value.

Each line segment is then overlaid onto a 2-D grid, If, of same dimensions as the

optical flow input, where the total sum of intersecting lines is tabulated at each location.

A Gaussian filter is then applied to the grid to smooth the values, causing peaks to appear

near object centroids (Figure 4.10).

Figure 4.10 (Top left) The original image and (top right) its 2-Level 2-D wavelet
approximation coefficients (bottom left) overlaid with optical flow field, the
corresponding flow gradient image is shown, and (bottom right) the final image after a 2-
D Gaussian filter is applied.

54

These types of clusters of high values in the flow gradient images are very common

in both rotational and translational motions of objects. In Figure 4.10, the left cluster

corresponds to the white object's location in the second frame input in the optical flow

image.

4.4.3 Edge Intersect Features

As seen in Figure 4.10, two clusters of flow gradient intersect values correspond to

locations of the same object in the two optical flow input frames. An additional feature

set that will distinguish between the object's location in both frames is provided. The

concave boundary of objects is used to find locations where line segments normal to

object edgelets (small edge segments) intersect at high consistencies.

A procedure similar to that described in Section 4.4.2 is used to determine gradient

orientations of boundaries. First, a Canny filter is used to create an edge image of the

optical flow input images. After edge images have been calculated, windowed regions of

size wedge are analyzed for dominant edgelet orientation. For the implementation, a

wedge = 3 x 3 window is used, giving possible orientations of 0°, 45°, 90°, 135°. A line

segment of length redge is created at the edge point in the direction normal to the

dominant edgelet orientation. A 2-D accumulator grid, /e, is then generated and

smoothed in similar fashion as described in Section 4.3.2. Figure 4.11 gives typical

results of the edge flow features for an object.

This feature set will be implemented in both the graph segmentation, object candidate

classification, and non-maximal suppression stages of the algorithm. The specific

methods for implementation will be discussed in Sections 4.4.4-4.4.8.

55

Figure 4.11 Edge Gradient Flow Process

4.4.4 Hierarchical Graph Segmentation

In this next stage, an initial graph, Gg , is created from Gt, where the initial nodes,

V0 = s^c\ assuming that members of s > 0 (candidate object motion is detected).

Initial undirected edges, Eg , are then formed between nodes spatially located within a

predetermined distance, dedge. The initial edge energy cues are comprised of a feature

vector, x, which includes values from the wavelet approximation, flow gradient intersect,

edge gradient intersect, and location. The feature set of Gg can be written as for each

(i = l... |G,|):

x« = (xf,xf) (4.29)

where

x£° = (x,y), xf = [lwj(x,y),If(x,y),Ie(x,y)].

A weight matrix is created, Wg , and populate it with the edge weights between

neighboring nodes, using the following energy function taken from [44]:

_ I e a l X z *2 I if 0 <
Wit — S 7

X l X l

56

< ^ed^e (4.30) ifc

^ o otherwise

where a is a vector of weights corresponding to each of the members in x^ and / and k

are members of node set K0 . Sharon [41] concluded that when solving the generalized

eigen problem L\x — XW\x with minimal positive eigenvalue A, salient nodes are found

where V(u) is minimal (as described in Section 4.3.2). In this formula, u is the set of

membership nodes, which is initially set as:

Uo\i.k) = {1
Q | [| = £ for i,k = l,2,...\Gt\. (4.31)

The median value of T is chosen as the threshold in determining which nodes are selected

as node locations at the next coarsest level. Setting 1 > /? > .5 will increase the

tendency for larger nodes to be chosen as new coarse nodes, where . 5 > /? > 0 will

cause smaller node selection to increase. (3 — .5 eliminates any size bias in the node

selection. Depending on the dimensions of the image frame compared with the desired

object dimension, /? can be automatically selected to create nodes of a size similar to

prior object dimensions.

Higher scales of nodes are then determined using seed nodes with low Y values, with

interpolation matrices used to associate different scale node members with one another.

Mean node feature values are determined at higher scales based on the original x^

features, as explained in Section (4.3.3). The hierarchical node agglomeration stage halts

when the number of nodes size remains constant.

57

Figure 4.12 demonstrates the hierarchical graph segmentation process, which achieves

strong segmentation of object regions through combining similar nodes having feature

values described in Sections 4.4.2-4.4.3.

Figure 4.12 Hierarchical Node Agglomeration Using Multi Cue

4.4.5 Object Candidate Selection

After Gl and Gt+1 (the two frames associated with optical flow) have been calculated,

the next step is to iterate through each level of graph nodes and collect nodes that

resemble object prior spatial statistics into an object list, Tt,t+1. The graph node area is

used as minimum and maximum dimensions as spatial features, which are compared to

object priors for inclusion into Tt,t+1. Object candidate membership is formulated as:

Tt,t+i _ r (0 r(t+D (L _ ^ ,7(t) i/(t+i) ^ (A ^ 9 x
/ ul >ulc \\Lmaxarea> Lmaxdim -^ v u > vkj Lminarea> Lmindim \^-JZ-J

fori = 0...|Gt|,fc = 0...|Gt+1|,

G^ J = 1... r(t+i)

58

All object candidates are passed into the object detection through binary classification

stage described in Section 4.4.6.

4.4.6 Supervised Classification Object Detection

Rotationally invariant feature sets are found using the centroid of each object

candidate in Tt,t+1. Due to high variance in the possibly present object intensity, only the

edge feature data is used to determine the probability of object presence. The first set of

rotationally invariant features are a normalized set of the sum of edges binned in a set of

radial distances from the centroid, termed edge histograms (explained in full detail in

Chapter 5). This feature set, p r , can be treated as a probability density function (pdf),

written as:

P r (r f c)=^f k = 0,1,2 L - l , (4.33)

where rk is the edge pixel radius bin from the centroid, and nk is the total occurances of

edge pixels within radius distance bin k, and n is the total number of edge pixels found.

A second set of edge features uses the edge gradient intersect features associated with

each object candidate centroid in Tt,t+1. The sum of intersect values occurring in the

same radial distances used for the edge histograms is now taken to normalize the values

to create a pdf, pg, of gradient intersects occurances, with each value written as:

Pg(rk) = ^ k = 0,1,2 L - l (4.34)

where bk = £ Ie(Xi,yL), i £ rk.

Due to low signal to noise ratio (SNR) at the higher wavelet levels necessary to

achieve real time optical flow results, the known up sampling index correspondences of

59

the centroid at) — l,j — 2,... 0 is also used. Sets of features at each of these wavelet

levels are then obtained, as well, giving us a final feature set:

ff = (pJ
r, pi'1 p°, pJ

g, pi"1 p°), (4.35)

i = l,2 |7*' t + 1 | .

Now that object candidate features have been calculated, each object feature vector is

used as input into a binary classifier trained offline using ground truth object data.

Offline training uses object ground truth centroids and non-object locations that generate

optical flow due to object position changes, thus allowing for fast binary classification of

object candidates.

4.4.7 Multi-Frame Object Matching

Now that most non-object candidates have been eliminated using the method

described in Section 4.4.6, objects, which are detected in sequential frames, must be

retained. An object matching through Mahalanobis distance measure, which first iterates

through remaining objects in Tt,t+1, deemed T^g1, is used to find the best matches

between members of T£arg and T^rg that occur within maximum object

translation, dtrans. The following previously calculated histogram features p .̂ and p]
g are

used, as well as introduce a three dimensional histogram of optical flow values:

f • •

Vof{\Oijk\) = -J" i = 0,1,2, ...lorient ~ 1, (4-36)

J = 0,1,2,... Lmag — 1, k = 0,1,2,..., L(HSt — 1 ,

where otjk is a discretized optical flow value occurring rk from the centroid, with the

optical flow having the /th orientation and /th magnitude. The value f[jk is the total

60

number of occurrences of the absolute values that occur in bin ijk, and/ is the total non

zero optical flow values. Absolute values of the flow are used to ensure compliment

gradient direction will be treated is strong indication of similar flow.

Mdistf = ar grain
7nafta((p«'/,p^)j')+ma?iai(pW'j,p^)-J')+ma/laf(p«

J',p^)'y)
(4.37)

l = 1,2, ..., |7 tar,g|> ̂ = 1>2, ..., |/|

trans >

t+1
targ

Values in Ttarg that have no matches or matches above a predefined threshold are

removed from the object candidate list, reducing false alarms that resemble objects due to

clutter, shadows, and illumination effects.

4.4.8 Object Non-Maximal Suppression

Multiple candidates represent segments of the object at different node scales, which

can lead to multiple successful object matches in 4.4.6 of the same object. It is necessary

to determine which of these candidates best represents the object regions, thus, T{arg

suppresses objects within a minimum distance, dm[n, of each other, leaving only the best

object unsuppressed. The suppression decision is based on object candidate areas closest

to optimal object prior area, aprior, which is written as:

Tt _ f tar9 if argmi n\aprior - at\ for all i < dmin
1 [nontarg otherwise

: _ i n \ft I
i — x,£.,..., 11 targ\

This necessary step significantly reduces the number of multiple detections of the same

object, but should be performed after the supervised classification to ensure the non-

objects similar to object areas do not suppress actual object segments. Figure 4.13 gives

61

an example of how the object detection and non-maximal suppression reduce object false

alarms.

Figure 4.13 Binary Classification and Non-Maximal Suppression Results of Object
Candidates

4.4.8 Object Detection Testing Data

A subset of the camera 1 Columbus Large Image Format (CLIF) sequence datasetis

chosen for testing (described in Section 4.2.4). The object ground truths is increased to

39 objects (Figure 4.14) with a total of 322 potential object detections. Non-object

ground truth were chosen as locations outside object ground truths that displayed optical

flow values in the range to pass through size and magnitude filters.

Figure 4.14 Object Detections in CLIF Data Sequences

4.4.9 Object Detection Evaluation

For evaluating the object detection framework, the accuracy of the algorithm is

determined the by comparing segmentations labeled as "objects" against segmentation

62

ground truth of moving objects. A detection is considered "positive" if the centroid of

the algorithm output and the object ground truth are within a minimum distance

threshold, set to 5 pixels for the data set. False negatives are accumulated when moving

objects go undetected after appearing for the necessary minimum frames (two in the

case). The results are presented using differing levels of object candidate matching

thresholds, which allow higher accuracy with more false alarms as the matching distance

is relaxed, but allows for more false positive results (Figure 4.15).

To ensure selection of a classifier with the highest classification accuracy and speed,

the feature set has been tested on several machine learning methods, with their evaluation

discussed in the subsequent sections. As can be seen in Figure 4.16, Random Forest and

Association Rule (PART) classifiers outperforms other methods with a 98.6% and 98.2%

area under the curve (AUC) of the receiver operator characteristic (ROC), respectively.

OS

>

0.9

0.8

0.7

• | 0.6

0.5

0.4

© a.
3

H 0.3

0.2

0.1

0

ROC Curves for Target Detection through Binary Classification

0.00
False Positive Rate

0.44

•N-B •MLP

0.98

•PART — •RFO

Figure 4.15 ROC Curves of Binary Object Classification

63

•o
e
o

Classification Time vs. Candidate Instance Size

25 50 100 250

Candidate Sample Size

500 1000 2500 5000

•N-B
•PART

•MLP
•RFO

Figure 4.16 Classifier Execution Speeds for Varying Object Candidate Sizes

4.4.10 Conclusion

The combination of optical flow, edge and wavelet-based feature sets can effectively

differentiate objects from the background in low frame rate videos for object detection in

real time. The framework and stages necessary have been used to achieve high detection

accuracy by using phase-based optical flow and hierarchical graph segmentation, coupled

with an offline-trained supervised classification method for object discrimination.

Intermediate filtering stages reduce false alarms and poor segments, along with multiple

detections through object matching and non-maximal suppression. Further work includes

expanding the method into tracking objects using multiple object detections coupled with

a dynamic state model.

64

4.5 Object Detection Conclusion

Several object detection methods that can be implemented on a variety of sensor

data that has clearly defined objects have been presented. Properties such as multiscale

wavelet transformations and hierarchical graph segmentation allows for the user to adjust

the segmentation and motion estimation outputs to perform optimally for a given object

library shape and size. It is the belief that algorithm performance varies for each

detection method under specific scenarios, where a multi-detection framework (such as

the one described in Section 4.4) provides optimal performance over the range of OCs

that occur in SE.

CHAPTER 5

FEATURE EXTRACTION AND CLASSIFICATION

5.1 Feature Extraction and Classification Introduction

As discussed in Chapter 3, selecting object characteristics that robustly

discriminate themselves from cluttered backgrounds is imperative for successful

classification accuracy. In this chapter, feature sets and classifiers that achieve these

specific aims within the SE framework (Figure 5.1) are discussed.

Input
Image(s)

A
Image Pre

Imagede-noising

\
Inter-frame

.statistic matching

N
Dimensionality

reduction

N
linage

Smoothing

orocessmg
W e i n e r f i l ter

r
Histogram

specification

'
Wavelet

decomposition

'
Gaussian filter

T
Processed
Image(s)

y

Object Detection
Motion

detection
Phase-based
Optical Flow

Image
Segmentation

Miilrmnle gtnpU
segment! rion

ROI locations

ROI Feature Sets

Figure 5.1 Feature Extraction and Classification in the SE Framework

65

66

First, a novel set of features, dense and reduced speeded-up robust features

(DRSURJF), which are used for tracking (described in Chapter 6), are introduced. Next,

feature sets on both binary classification (detection) and multi-class classification on SE

data sets are presented and evaluated. These feature sets include another novel feature

set, edge histograms. The chapter will end with a conclusion on the feature sets

discussed, with recommendations on how and when to implement them for other SE data

sets.

5.2 Dense and Reduced Speed-up Robust Features (DRSURF)

The dense and reduced SURF (DRSURF) descriptors, as the name implies, are a

dense set of SURF descriptors using a smaller area and gradient bin size. If an interest

point detection methods using a Hessian determinant or any other corner point detector

does not find repeatable locations to calculate descriptors for low resolution objects, this

issue is combated by taking reduced scale gradient values at pixel locations evenly

spaced within the size of the objects of interest. Issues of orientation variations are

discussed in this section as well.

5.2.1 DRSURF Interest Point Detection

An integral image is used to quickly calculate the area of rectangular regions (fthe

operations necessary). Due to an approximately constant scale of objects in the image

sequence for aerial object tracking, the scale space feature calculations that SIFT and

SURF both employ are disregarded, although an extension to include multiscale

descriptors is easily possible. The method deviates from SURF in the choice of scale

space interest points; instead motion detection from the optical flow step in the algorithm

67

to find the points of interest is used. Areas in the optical flow field that have motions

large enough to be a moving object are chosen as interest points. A grid is then created

on top of the interest point that spans pd pixels in every direction from the central point.

The value of pd is chosen empirically to encompass the entire potential object area

through adjusting the object point window size wp, with total window size being

mp — 2wpx2wp. A step variable, sGridstep, is also used to determine the spacing

between interest points, along with pd, yields the density of the feature vector. After

testing different combinations of pd and sGridstep, it was determined that pd = 3 and

sGridstep = 2 provides the best discrimination between object and background for the

entire data set, but pd = 2 and sGridstep = 2 provides reasonably high results for the

reduced computation (Figure 5.2).

Figure 5.2 DRSURF Interest Point Location and Feature Window

68

5.2.2 DRSURF Orientation Assignment

Reproducible orientation methods that are employed in SIFT and SURF to determine

the orientation around an interest point that yields a maximum gradient magnitude. As

the image rotates, this gradient magnitude will change, along with the orientation, which

ensures the correct feature descriptor alignment. Because the interest points typically

lack a large gradient, a set of feature descriptors with multiple orientations is calculated

by rotating the interest point grid by ±9 * sAngiestep. The feature descriptors are

determined by prior knowledge of object behavior and gradient invariability. In the case,

objects cannot rotate more than 30°/frame, and feature descriptors maintain rotational

invariability to 15°, so 6 = 15° and sAnglestep = 2 is used, giving five orientations per

interest point (Figure 5.3 shows a subset of these). This increase in dimensionality and

computation is necessary and possible due to the reduced set of interest points from the

optical flow calculation and reduced size of the gradient descriptor.

Orientation = 0° Orientation = -15° Orientation = 15°

Figure 5.3 DRSURF Grid Over Multiple Orientation

5.2.3 DRSURF Feature Descriptor Calculation

To explain the method of calculating gradient bins within an object area, the original

SURF method, which is based on the SIFT feature descriptor [45], is discussed. SURF

69

uses approximations to create descriptors similar to SIFT but with reduced computations

while sacrificing very little matching accuracy [46]. The first step in SURF and SIFT is

to find interest points by identifying locations with large gradients in both the x and v

directions (corner points), which is not implemented in the next step. Following the

SURF method, the integral image of the input image lx is first used to speed up

computation of the gradients in the descriptors step. This step can be formalized as:

The next step is to use the interest point grid discussed in Section 5.2.1 to construct

square windows around each of the points on the grid. The window around each point is

18x18 pixels in size. This size is based on the scale chosen to extract gradient bins. The

descriptor window is divided into 2 x 2 regular subregions. Within each of these sub

regions, the Haar wavelets of size 6 are calculated at fthe locations within the specific

subregion. The Haar Wavelet responses for each subregion finds the gradients in the x

and y direction spanning a scale (six in the case) by using box filters and the integral

images, which requires only six calculations. The vector for each bin describes the

underlying intensity structure of the neighborhood as v = [£ dx £ dy |£ dx\ |£ dy |].

The gradient for each point in the interest point grid then becomes a set of descriptor

vectors of size 4 x 4 . Combining the entire interest point grid creates an interest point

vector of size 4 x 4 x 2 * floor { /sG d) + 1 - Consequently, for pd = 2 and

sAngiestep — 2, an object can be represented with a 144 member length descriptor vector.

70

5.3 Invariant Moment Descriptors

As briefly mentioned in the Chapter 2, invariant moment descriptors provide a set of

statistical features that have considerable invariance to rotation, translation, and scaling

changes in object images [81]. This set of descriptors combines the overall shape and

intensity distribution, which can be formulated using the discrete version of the moment

for an image / (x, y):

Mij=Y.xYiyXlyn{x,y), (5.2)

to then be able to find centroids x — —— , y = ——. The central moments are then defined
Moo Moo

as:

nPq = ExSy(* - *)p(y - y)*/(*.y), (5.3)

where/; and q give the moment order. The central moments used in the Hu moments are

written as:

Moo = Moo, (5-4)

Moi = 0

Mio = 0,

Mn = Mn - xM01 = M u - yMw,

H20 = M20 - xM10,

M02 = M02 - yM01,

M21 = M2i - 2*Mn - yM20 + 2x2M01,

M12 = M12 ~ 2yM n - xMQ2 + 2y2M10,

Mso = M30 - 3xM20 + 2x2M10,

M03 = M03 - 3yM02 + 2y2M01.

71

From these, moments 77̂ -, can be made invariant to translation and scale by dividing by

the scaled 00th moment, written as:

^ij ~ fi+itiV ' '
Moov 2

Finally, the seven Hu moments, (pL

<Pi = ^720+^02, (5-6)

<Pi = 0?20+T?02) 2 + (2?7n)2,

<P3 = 0730 + 37?l2)2 + (3??21 - 7?03)2,

(PA = (mo+Vn)2 + (>72i + ^7o3)
2,

<P5 = 0?30-377l2)0730+?7l2)[0?30 + ^12)2 ~

3(772i + *7o3)
2] + (3^2i-3r/o3)(?72i+^03)[3(??30 +

>7l2)2 - 0?21 + >703)2L

<Pe = (^20-^02)[(»73o + riiiY - (7721 + W 2] +

4^ i i (r ? 3 0 - ^ i2) (^2 i -%3) ,

<P7 = Or]21-r]02)(r]30+r]12)[(r]30 + 7712)
2 -

3(^2i +?7o3)2] + 0?3o-3r712)(j?2i+?7o3)[30?30 +

^7l2)2 - 0l21 + ^03)2]-

As noted in Chapter 2, invariant moments have been successfully implemented for

feature tracking. This success is the main justification for evaluating these features for

multi-class object classification. This feature set is also useful because of its ability to

both reduce an image to seven values and to provide good discrimination even with

multiple variations in image appearance (Figure 5.4). Invariant moments were calculated

72

at each wavelet approximation level for every object. Classification discrimination is

provided in the evaluation and conclusion sections.

Original
2xOrig.
Rotated

*, 1
8.1820
8.1813
8.1829

•, 1
18.8799
18.8800
18.8723

<l>, 1
33.4573
33.4559
33.3082

4>, 1
31.9405
31.9398
31.9367

<t>, 1
64.8930
64.8928
64.7491

<t>« 1
42.0927
42.0910
42.1936

*,
65.319C
65.3138
65.4305

Figure 5.4 Scaled and Rotated Images and Corresponding Invariant Moments

5.4 Edge Histograms

To provide more discrimination of object shape, a method that combines edge

detection and histogram analysis is employed to find a rotational invariant set of

descriptors, which are deemed edge histograms. Because this method is not scale

invariant, wavelet approximations are resized to the original image dimensions using the

cubic interpolation.

To find edge histograms, first run the canny edge filter on the rescaled wavelet

approximations (Figure 5.5).

73

Figure 5.5 Canny Filtered Objects at Varying Wavelet Levels

After the binary edge image is calculated, the center of the image is chosen as the

origin and circular bins of five pixel radii intervals are created, summing the total amount

of detected edge pixels occurring within the specified range (Figure 5.6). This largest bin

is chosen to be r = 50, which is equal to half of the length of the largest object in the

dataset. The bin vector is itself used as a feature vector for classification for both binary

classification and multi-object type classification, with evaluation results provided in

Section 5.5.

Edge histogram statistics are also calculated to find a more robust statistical

representation of the edge distribution. The mean, standard deviation, skewness, and

kurtosis (described in Section 5.5) are chosen.

74

Figure 5.6 Edge Bin Histogram of an Object Image

5.5 Texture Statistics

A set of texture statistics is calculated directly using the wavelet approximation to

gain insight on how different levels of object detail effects the specificity and sensitivity

of object texture features for classification. The intensity histogram is then used to

account for rotational variations in the image data sets. Here, a set of features that is

based on the coefficient intensity histogram is described, which is written as a probability

density function (pdf):

P r O " k) = ^ k = 0,1,2 L-l, (5.7)

where pr(rk) is the probability of an image pixel being a member of histogram bin rk.

For this method, k = 16 bins is chosen for the texture calculations, unless noted

otherwise. To calculate the moments, the moment equation is written as follows:

M n (r) = Z ^ (r f c - m) n p (r f c) , (5.8)

where the mean value of r is:

m = lU>rk*p(rk). (5.9)

The second, third, and fourth moments, which are the standard deviation, skewness, and

knrtosis, respectively, are calculated. Also, the uniformity is calculated calculated as:

75

U=Y1
L

k-=lp2(rk) (5.10)

and the entropy to measure variability as:

e = -Yi=lv(rk)\og2V(jk). (5.11)

Besides calculating the statistical moments of the gradient histogram, the gray-level

co-occurrence matrix is found for each of the principal directions (0°, 45°, 90°, 135°) to

find how often pixels of similar intensity "co-occur" within an image in the orientation

specified, that will produce a square matrix, G, the size of intensity bins, k, in each

dimension. The value at each location Gij will be the total number of times two pixels of

a chosen orientation having similar intensity values "occur" within the region. After

constructing co-occurrence matrices in the principal directions (typically

0°,45°, 90,135°), the matrices are normalized to give a joint occurrence probability of

pixel pairs with the corresponding orientation and intensity range (Figure 5.7).

Figure 5.7 Steps in Texture Calculation

76

A set of spatially dependent texture descriptors termed Haralick features [56] are

defined as:

1. Contrast: £i,yU ~j\2p(i,j)

2. Correlation: £ V-MU-Hmj)

3. Energy: T.ijP(i,j)2

4. Homogeneity: I.i,j^jz]\-

Contrast measures intensity differences between neighboring pixels over the entire

image, where correlation returns a measure of how correlated a pixel is to its neighbor.

The energy provides a sum of the squared elements in the co-occurrence matrix, returning

a value of 1 for a constant intensity. Homogeneity provides a value of the closeness of

the member distribution in the co-occurrence matrix. To address rotational invariance, an

average of the feature values is taken for all the principal orientations, so that co

occurrences that move to a different matrix due to rotational changes will still be

measurable.

5.6 Classification Methods Using Feature Descriptors

Classification methods that have been previously used to classify objects both for

detection and object type schemes have been found. These methods will be discussed

further in Section 5.6.1.

5.6.1 Bayesian Classification

Bayesian classification leverages prior probabilities from observed evidence to

determine whether a specific hypothesis is true or false. This method is powerful when

combined with domain expert knowledge, given that a probability can be numerically

77

evaluated. Naive Bayes classification can use maximum likelihood estimates of

probabilities based on distributions of the data, allowing for classification of states

without domain knowledge. This method decouples conditional feature distributions, so

that fused data sources can be independently estimated as a one-dimensional distribution.

This method, too, can be used in a hierarchical manner, which allows for feed-forward

inputs of lower-level fusion classification results into high level of classification.

5.6.2 Neural Networks

This machine learning method allows classifiers to be continuously trained through

back propagation and supervised learning to increase the accuracy of classification,

modeling the synaptic processes of neurons. The method can leverage domain expertise

to classify threats and conditions, which can then be used to retrain the network through

back propagation. Two types of neural network classifiers are implemented for

evaluation, multilayer perception and radial basis function methods. Multilayer

Perceptron Learning (MLP) uses multilayer perceptron, adaptive learning, and back

propagation to increase the accuracy of classifiers. Radial Basis Function (RBF) network

typically has three layers: an input layer, a hidden layer with a non-linear RBF and

activation function, and a linear output layer.

5.6.3 Support Vector Machines

Support Vector Machines (SVM) are a set of related learning methods used for

classification and regression analysis. In SVM, a hyperplane or set of hyperplanes is

constructed. SVMs work best with data sets that have a wide "functional margin."

Sequential Minimal Optimization (SMO) trains a support vector and solves (classifies)

78

data analytically by breaking down the size of the dataset. SVM has empirically been

shown to give a good generalization performance on a wide variety of problems.

5.6.4 Association Rule Mining

Association Rule Mining is a market basket approach that finds connections between

the occurrences of different features occurring within a class with a level of support and

confidence. A rules-based method known as PART algorithm that obtains ailes from

partial decision trees is obtained and then used to build a tree using the decision tree

learner[82].

5.6.5 KSTAR Classification

KSTAR is an instance-based classifier that bases the test instances upon the class of

training instances similar to it. In KSTAR, the similar class training instances are

determined by an entropy distance measure. This method provides a consistent approach

to handling attributes of different types, as is the case in the evaluation [83].

5.7 Feature Descriptor and Classification Evaluation

For testing classification accuracy for the feature sets, three datasets that provide

different challenges for successful classification have been employed. The datasets have

been approved for public release, and all ground truth data was created through visual

inspection by the authors. All classification was performed using Weka 3.6.2 machine

learning software and feature descriptor calculations were computed using Matlab

R2009a on an Intel® Core i7 920 @ 2.67 GHz processor with 12 GB of RAM.

79

The feature descriptor sets have been tested at wavelet levels N = 0,1.2,3.4 for CLIF

dataset and N = 0,1,2,3,4,5 for CEGR and I1CO with varying degrees of accuracy. We

will present and discuss the results for each of the datasets separately.

5.7.1 Columbus Large Image Format (CLIF)

A subset of the camera 0 Columbus Large Image Format (CLIF) described in Section

4.2.4 has been chosen. Non-objects sequences were created at random locations with a

chip size equivalent to actual objects in each image sequence. The only constraint in the

creation of these sequences was that the ground truth locations could not coincide. The

CLIF datasetwas used solely for binary object detection, with the only two classes being

"object" and "non-object."

Due to the intra-class variability of feature and invariant moment descriptors, edge

histogram descriptors were the only descriptors evaluated. The results for object/non-

object classification using only edge histogram bin counts of radii

r = 1,3,5,7,10,12,15,17,20 and histogram statistics: mean, standard deviation, kurtosis,

and skewness at each wavelet approximation level were obtained. All wavelet levels

were combined to search for improvements. Figure 5.8 provides a plot of detection

accuracies for each classifier at each wavelet level and at the additional 'ALL' level. The

'ALL' level produced the highest binary classification accuracy (88.52%) from the PART

algorithm. For individual wavelet levels, level-1 produced the highest classification

accuracy. This accuracy decreased as the wavelet level increased.

80

CLIF Edge Histogram Descriptor Binary
Classification

All

Wavelet Level

Nai've-Bayes

MLP

RBF

SMO

KStar

PART

Figure 5.8 CLIF Object Detection Accuracy Using Edge Histograms

5.7.2 Army Research Lab CEGR Infrared Dataset

This dataset contains MWIR image sequences often intelligence objects travelling in

a 100-meter circle from a range of 500 meters. Object chips were taken every ten frames

as objects traveled horizontally in both directions. Eight of the ten objects were chosen

for this study due to their relative similarity in size and structure. The object types were:

Truck, SUV, BTR70, BRDM2, BMP2, T72, ZSU23-4, and 2S3. The Cincinnati

Electronics Night Conqueror MWIR imager was combined with a Great River frame

grabber to extract data. The Night Conqueror camera uses a 640 x 480 pixel Indium

Antimonide (InSb) focal plane array (FPA) with 28-micron pitch. A system, which had a

fixed FOV 300 mm lens resulting in a 3.4 x 2.6 FOV and a C02 notch cold filter, has

been used. Multi-object type classification evaluation was performed using this dataset

to study the discrimination accuracy of feature descriptors with different classification

algorithms described in Section 5.6.1-5.6.5.

81

Here, the results obtained using the descriptors and classification methods described

in Section 5.6 on the CEGR dataset where descriptors were calculated for object image

chips (120 x 120 pixel size) are presented. The results for multi-class object

classification using edge histogram bin counts of radii r = 5,10,15,20,25,30,35,40,45,50

and histogram statistics: mean, standard deviation, kurtosis, and skewness at each wavelet

approximation level are also shown. The plots in Figures 5.9 through 5.11 show the

accuracy results for each descriptor type using wavelet levels N = 0,1,2,3,4,5 as input.

The descriptor set that contains all of the wavelet levels is denoted as the 'ALL' level.

The results achieved after combining all of the descriptors for each wavelet level are

presented in Figure 5.12. The best performance for the individual sets of the descriptors

was the combined wavelet-level invariant moment descriptors, which gave a 94.14%

classification accuracy using the KSTAR algorithm, and an 89.83% accuracy using MLP.

The combined wavelet level for the edge histogram descriptors performed next highest

with top accuracy results given by PART at 88.56%. The texture descriptors had the

lowest accuracy of the feature sets, with the KSTAR classification method achieving

86.38% accuracy for all wavelet-level texture descriptors. When all descriptors were

used together, the 'ALL' wavelet descriptors produced the highest accuracy, with SMO

producing 98.55% accuracy and KSTAR and MLP producing 97% accuracy. The

wavelet approximation level-1 had the highest individual accuracy, which then decreased

as the wavelet level increased. The KSTAR and MLP algorithms provided the highest

overall classification accuracy for CEGR.

82

CEGR Invariant Moment Multi-Class Classification

u es —
3 u u

100
90
80
70
60
50
40
30
20
10
0

ALL 1 2 3

Wavelet Level

-Naive-Bayes

•MLP

RBF

•SMO

-*-KSta r

PART

Figure 5.9 CEGR Classification Results Using Moment Invariants

CEGR Edge Histogram Multi-Class Classification

?
u

<

too
90
80
70
60
50
40
30
20
10
0

ALL 0 1 2 3

Wavelet Level

Naive-Bayes

MLP

RBF

SMO

KStar

PART

Figure 5.10 CEGR Classification Results Using Edge Histogram

83

CEGR Texture Descriptor Multi-Class Classification

t

Naive-Bayes

MLP

RBF

SMO

KStar

PART

ALL

Wavelet Level

Figure 5.11 CEGR Classification Results Using Texture Statistics

CEGR All Descriptors Multi-Class Classification

Naive-Bayes

MLP

RBF

SMO

KStar

PART

ALL

Wavelet Level

Figure 5.12 CEGR Classification Results Using Invariant Moments, Edge Histograms,
and Texture Statistics

84

5.7.3 Army Research Lab I1CO Visible Dataset

This dataset also contains each of the moving objects described in Section 5.7.2, with

the same motion and range as the CEGR data. The visible light imagery was collected

using a camera manufactured by lllunis that was referred to as I ICO in the NVESD

nomenclature. A Nikon zoom lens was adjusted to produce a 3.4-degree HFOV and

locked in position. The output imagery was collected using a Coreco framegrabber. As

with the CEGR dataset, multi-object type classification evaluation was performed using

the 11 CO dataset to study the discrimination accuracy of feature descriptors with different

classification algorithms as described in Section 5.7.2.

In this section, the results obtained from using the descriptors and classification

methods described in Section 5.7.2 on the I ICO dataset are presented. In this

experiment, descriptors were calculated for object image chips (120 x 120 pixel size).

The plots in Figures 5.13 through 5.15 show the accuracy results for each descriptor type

using wavelet levels N = 0,1,2,3,4,5 as input, and the descriptor set that contains all of

the wavelet levels is denoted as the 'ALL' level. Results (in Figure 5.16) received when

all of the descriptors for each wavelet level are described. The best performance for the

individual sets of the descriptors was the combined wavelet-level invariant moment

descriptors, which achieved a 92.86% classification accuracy using the KSTAR

algorithm, and an 86.07% accuracy using SMO. The combined wavelet level for the

edge histogram descriptors (using the same bins and statistics as CEGR) performed next

highest with top accuracy results given by MLP at 89.64% and KSTAR with 87.86%).

The texture descriptors again had the lowest accuracy of the feature sets, with the MLP

classification method giving 70.71% accuracy for all wavelet-level texture descriptors.

85

When all descriptors were used, the "ALL" wavelet levels produced the best results with

98.57% accuracy using the KSTAR algorithm, with SMO producing a 96.43% accuracy

and MLP producing a 95.36% accuracy. Level-0 (original image) produces the best

results for individual wavelet levels for all descriptors with decreasing accuracy

correlating with increasing wavelet levels. The level-1 wavelet approximation

coefficients produced the highest accuracy results for moment invariant descriptors, and

wavelet level-2 coefficients performed the best for edge histogram descriptors. All of the

wavelet levels performed roughly the same for texture descriptors. As with CEGR, the

KSTAR and MLP algorithms provided highest classification accuracy overall for the

IlCOdataset.

I1CO Invariant Moments Multi-Class Classification

100

• Nai've-Bayes

- • - M L P

RBF

»*!-SMO

J*!1"" Kstar

PART
10
0

ALL 0 1 2 3 4 5

Wavelet Level

Figure 5.13 I1CO Classification Results Using Moment Invariants

86

u
u
3

100
90
80
70
60
50
40
30
20
10
0

I ICO Edge Histogram Multi-Class Classification

ALL

Wavelet Level

Nai've-Bayes

iMLP

RBF

SMO

KStar

PART

Figure 5.14 I ICO Classification Results Using Edge Histogram Statistics

u
S3
• -

s
o

IICO Texture Descriptor Multi-Class Classification

100
90
80
70
60
50
40
30
20
10
0

All 0

^"£C--5i|5Sa«

1 2 3 4 5

Wavelet Level

•Nai've-Bayes

>MLP

RBF

•SMO

•KStar

PART

Figure 5.15 I1CO Classification Results Using Texture Statistics

87

IICO ALL Descriptors Multi-Class Classification

All 0

Wavelet Level

Nai've-Bayes

MLP

RBF

SMO

KStar

PART

Figure 5.16 I ICO Classification Results Using Invariant Moments, Edge Histograms, and
Texture Statistics at Wavelet Levels N = 0,1,2,3,4,5, ALL.

5.8 Feature Extraction and Classification Conclusion

The feature descriptors that provide discrimination for classification using varying

levels of wavelet approximations of object image chips have been extensively tested. A

multi-scale wavelet representation provides the best input for calculating object

descriptors, with best results occurring with wavelet levels 1 and 2 for all three datasets.

Invariant moments and edge histogram statistics out-performed the texture statistics for

both the I ICO and CEGR datasets in classification accuracy for all the classifiers used.

KSTAR and MLP algorithms consistently performed better than the remaining

algorithms, with Nai've-Bayes consistently producing the lowest accuracy. Optimum

performance for multi-class classification for objects with high resolution is to combine

invariant moment and edge histogram descriptors using wavelet 0-2 levels. For object

detection (binary classification) for low-resolution images with large intra-object

88

intensity variability like the CLIF dataset, edge histogram statistics generated from multi-

scale (0-2) wavelet approximation coefficients provides an accurate solution for object

detection.

CHAPTER 6

TRACKING FOR SE

6.1 Introduction

As discussed in Chapter 2, several classes of object tracking algorithms are

commonly found in the literature. Tracking methods based on previous information used

in detection and classification (Figure 6.1) have been designed.

Input
Image

I
Image Pre

Image de-noising

>
111 ttr- frame

statistic matching

\
Dimensionality

rediiction

\
linage

Smoothing

processing
W e i n e r f i l ter

t
Histogram

specification

'
Wavelet

decomposition

'
Gaussian filter

Processed
Image

Optical
Flow

Object Detection
Phase-based
Optical Flow

i v

Gradient
Features

Invariant
statistics

Image
Segmentation

T
ROI locations

T
Feature Extraction

DRSTJRF Boundarv

Multisc.ile p aph
tegmmtanou

Edge
Data : histogram

Hu
moments

Texture
features

GLCMJS
tf xhu P moments

T
ROI Feature Sets

Classification

Target Tvpe MLP

Figure 6.1 Object Tracking in SE Framework

89

90

The feature tracking methods can use both optical flow and DRSURF feature

descriptors to create a fused set of descriptors, which are then compared to values from

the detected locations in the new image sequence. A description of how to find optical

flow feature and DRSURF feature tracking values is presented in Section 6.2.

6.2 Optical Flow Object Tracking

After optical flow is calculated between two consecutive images, optical flow at

known object locations are measured by calculating an average of the absolute value of

the top n optical flow responses in horizontal and vertical directions, \\in | =

in a window of size wt based on the object bounding box. If

\Htarg nmax\ > threshv, a velocity threshold set to the smallest optical flow value

observed when an object centroid has moved to a pixel location larger than 3, the

windowed object search algorithm is initialized. An object search field is chosen to

include 2vmax x 2vmax windowed area centered at the object location. Each location

\Hfeiidnmax\ > threshv is chosen as a candidate for a new object location. After

studying the optical flow in regions of tested object tracks, a high correlation has been

found between previous and current object locations through the optical flow using the

iMnJ Hny

following negative vector correlation function:

mrr- — lOFiold\-[QFinew\ r- _ -, (r ,N

corrlOF — __———— —— -r, it — x,yj , ^o.ij
J\\0FioLdY{0Fiold*\\0Fine\vY\0Finew\\

where OFiold and 0Finew are the vectorized forms of the 2-D optical flow values of size

wt x wt for both the horizontal and vertical directions. The top value means are also

included in the correlation vector, written as:

file:///Htarg

91

corr.,
r-nmax

[V-oldn-maxYi^new nmax]

[[Void nmaxliVold n m a x] J * l [^ n e w nmax\'[V-new nmax\\

(6.2)

These two correlation values are then used to find the location with highest correlation,

using a weighted combination of:

corrtotal = [corrxOF corryOF corr^nmaJ • [.25 .25 .5]T. (6.3)

For detection, it is assumed that there is no prior knowledge of a specific object of

interest, so we measure only the | *-nrnax | at each central pixel location in a windowed

region, wt, which is set to the average object bounding box size.

An object is considered successfully tracked to a sequential image frame if the object

ground truth centroid and tracker algorithm selection point are within half the distance of

the object-bounding box, wt. Figure 6.2 shows results obtained from an optical flow

tracking algorithm for moving objects at each wavelet level.

u
S3
• -

3
U
u
<
at
a
u
55

u
H

Optical Flow Target Tracking Accuracy

1

Wavelet Approximation Level

•Lucas-Kanade

•Phase-based

•LK-pyramid

Figure 6.2 Object Tracking Accuracy Results for Each Optical Flow at Wavelet Levels
N=0,1,2,3

92

Optical flow can increase the accuracy and specificity of object tracking methods, and

a combination of optical flow and feature tracking methods can produce the best results

for robust aerial object tracking.

6.3 DRSURF Feature Tracking

The DRSURF feature calculation process detailed in Section 5.2 is used as an

illumination invariant feature set for tracking using vector correlation similar to the

optical flow tracking. The implementation for tracking and provide an evaluation is

described.

6.3.1 DRSURF Feature Tracking Implementation

An object chip is provided to the tracker for the creation of the DRSURF feature

descriptor vector, and its location in the image is noted. Next, the optical flow is taken

between the image with known object and location and a new image frame with unknown

object position. The search space is reduced to a window surrounding the last known

object location of size 2vmax x 2vmax, where vmax is the previously determined

maximum object velocity. This area is further reduced to locations where the optical

flow is larger than a previously determined threshold for minimum motion detection.

The DRSURF features are calculated for the remaining locations at orientations

0°, —15°, 15°, —30°, 30° with respect to the previously found object. A vector

correlation similarity measure is then employed to quantify the similarity of the candidate

descriptor vectors at each orientation, dfeiid with the object descriptor, dtarg, using

the following equation:

r r t r r _ [*targ]i<lfeild.orient]
corrtarg-feild ~ I • (° . y j

l[[dtarg]'[dta.rg]]*[l&feUdorient]-[d/
eildorient'\

93

The maximum correlation location and orientation are chosen as the new object

location and new orientation for the next frame. The optical flow of the next frame is

then calculated, and the process is repeated. If optical flow is not found at the object

location, the tracker retains the same object location for the frame.

6.3.2 Feature Tracking Evaluation and Results

For testing DRSURF feature tracking, a subset of the camera 0 Columbus Large

Image Format (CLIF) sequence as described in Section 4.2.2 is used. For object tracking,

the methods outlined in Section 5.2.4 are used. An object is considered successfully

tracked to a sequential image frame if the object ground truth centroid and tracker

algorithm selection point are within half the distance of the object bounding box, wt.

Figure 6.3 gives the tracking accuracy of varying DRSURF feature lengths, which is

accompanied by their execution times in Figure 6.4. Figure 6.5 shows the results of an

optical-flow / feature-tracking algorithm using DRSURF feature descriptors, SURF

descriptors, object histogram, pixel intensities, and invariant moments. Tracking

accuracy is calculated at varying levels of optical-flow sensitivity, with a lower threshold

increasing possible candidate locations the feature-tracking step.

Tracking Accuracy vs. Grid Point / Step Size

55

OX)

e

1

0.95

0.9

0.85

0.8

0.75

0.7

•Step Size = 1

•Step Size = 2

Step Size = 3

Grid Point Size (p)

Figure 6.3 DRSURF Feature Tracking Accuracy for Varying Feature Lengths

Point Grid Size (Density) vs. Feature Descriptor
Length

L
ie

—
s *•*

'u
c/1
S>

Q
u
3

53

U.

1000

800

600
400

200

0

1 2

Grid Point Size (p)

•Step Size= 1

•Step Size = 2

Step Size = 3

gure 6.4 DRSURF Feature Tracking Execution Time for Varying Feature Lengths

95

Feature Descriptor Tracking Accuracy

—•— DRSURF (step=2 p=2)

• Intensity Histogram

—sir— SURF descriptors

) (Intensity Correlation

)K Invariant Moments

0.1 0.3 0.6 0.9

Optical Flow Threshold

Figure 6.5 Tracking Accuracy Results for DRSURF and Other Methods at Different
Optical Flow Thresholds

6.3.3 DRSURF Feature Tracking Conclusion

The DRSURF feature tracker outperformed (91 % average accuracy) the other

descriptor values at each of the optical-flow thresholds given in Figure 6.5. Unlike

methods used to test other feature sets, the DRSURF tracking method remains relatively

unchanged at the different optical flow thresholds, providing evidence that the method

works over large fields of potential object locations (high specificity), without loss of

accuracy. The DRSURF method is a viable solution for low-dimensional object tracking

in aerial image sequences due to its dense and robust feature vector. Although the multi-

orientation calculations results in increased computation, the increased accuracy provides

the trade off in time, especially because the method can now be parallelized for enhanced

performance.

96

6.4 Object Tracking Conclusion

Two feature tracking methods which depend on a correlation score for updating the

SE with new locations of objects have been presented and evaluated. This method has

shown to be successful in the data sets, with accurate tracking for both translation and

rotational motion. The data sets lack strong affine variations that some researchers in SE

may be interested, which causing large variations in object statistics that correlation

tracking may have problems handling. To combat such challenges, cascading tracking

methods that employ multiple trackers simultaneously to create a higher-level decision-

metric that weights tracker certainty based on prior tracker performance have been

studied. The current methods would incorporate well in such a scheme, especially if it is

coupled with a dynamic state modeling function such as a particle filter, due to the

formers ability to accurate follow non-occluded motion and latter's ability to handle

frames when the object is hidden.

CHAPTER 7

GPU IMPLEMENTATION OF THE SE FRAMEWORK

7.1 GPU Introduction

A relatively cheap and powerful parallel processing platform is using a workstation's

graphical processing units (GPU). Now that several computer vision algorithm

implementations using GPUs have been developed over the past five years [84][85][86],

implementing SE methods for GPU processing requires limited GPU-specific software

development experience.

Although many steps in SE are performed sequentially (output in previous step is input

in the next), particular tasks can benefit from parallel processing due to their independent

calculations. Due to the extra CPU to GPU communication overhead incurred when using

GPUs, each stage of the SE workflow should be evaluated to determine the execution time

gains.

In this chapter, the GPU implementations of the SE framework using varying data

dimensions are presented, evaluated, and discussed. The reader is provided with

recommendations on when to use GPU-based implementations for calculating steps for

preprocessing, segmentation, motion estimation, feature extraction, and tracking functions

for SE.

97

98

7.2 GPU-Based SE Framework Implementations

In this section, the SE framework is divided into the sequential steps that take multiple

sensor data frames as input and return object location and track data. The workflow

tackles each task using the previous stage outputs as an input, thus disallowing GPU

implementation upon the entire algorithm. The computation required to accomplish each

of the SE framework's tasks the GPU-enabled implementation for potential execution time

gains are described. The execution time and speed up will be provided for each stage

described in the following sections.

The performance of the GPU-based methods on representative inputs of varying sizes

with a CPU-based implementation is evaluated. The GPU-based implementation of a

single calculation is used, and parallel iterations are performed when applicable to the

particular task. The inputs used on each task are comparable to typical dimensions based

on the original input data (in the case 2-D images with 0-50 objects present). Each data

input and iteration benchmark size are performed 200 times, using the average time per

run as the benchmark in Figures 7.1-7.30.

The CPU used in the following experiments is a single-core of the 2.67 GHz Intel i7

920 processor with 12 GB of RAM. The GPU used in the testing is the Tesla CI 060 GPU

with 4095 MB VRAM. Benchmarking code was written in MATLAB using Jacket

wrapping functions and benchmarking functions found in reference [87].

7.2.1 GPU for Image Preprocessing

As described in Section 2.2, most SE methods initially perform denoising and

smoothing operations to the input data in aims to reduce irregularities in local

neighborhoods. A popular method, which convolves a 2-D Gaussian kernel with input

99

images (Section 3.5), is implemented. Due to the potentially large dimensionality of the

input image when compared with the typical Gaussian kernels used (~ 5 x 5 pixels), the

independent operations of a 2-D convolution lends itself to potential execution time gains

through GPU parallel processing.

In Figures 7.1 and 7.2, the CPU-GPU execution times and speed-up gains are shown,

respectively, varying the input size to image matrices of 10-2900 pixels per dimension.

As can be seen from both figures, GPU implementation outperforms CPU past 300 pixels

per dimension, reaching 4x speed gains 1000 pixels.

GPU vs. CPU Execution Time: Gaussian 2-D
Convolutions

LZUt-Ul 1
£ 1.00E-01
o 8.00E-02 1

<fi o.UUb-Uz •
| 4.00E-02 •
H 2.00E-02 -

0.00E+00 -

__._ ^..^.

— ' " — • " " - " - - ^ -

^^^^
_tt^^^^

^^S~^ __
III ' — — — ' ' ""

© o o o o o o o o o o o o o o o o
— < i / - > 0 0 0 0 0 0 0 0 0 © 0 0 0 0 0

•— m to r-- 0 s — ro in r~- ON •— m i / ^ r - o s
_ —, „ _ — (N <̂ l o i (N r-i

Input Image Dimensions (row=columns)
CPU time

— G P U time

Figure 7.1 GPU-CPU Execution Times for 2-D Gaussian Convolutions

100

U
p

X

Sp
ee

d-

GPU vs. CPU Speed-Up Gains: Gaussian 2-D

O "

5 -
4 -
3 -
2 -
1 -

U "

Convolutions

j - * — / '
f^*

^f

y ^^y^

<$> $ & ^ «# ^ ^ vs> - # . # *sp # ^ . # ^ A# #
\ 'b <o 'N °l <v \> \T <\ \°l i> rp V V T

Input Image Dimensions (row=columns)
-Speed Up

Figure 7.2 Speed-Up Gains Using GPU for Gaussian 2-D Convolutions

7.2.2 GPU for Object Detection

As described throughout Chapter 4, motion detection is a difficult and computationally

cumbersome problem, especially dealing with increasingly large sensor data.

Performance gains in execution time using GPUs for both optical flow for motion

estimation and graph segmentation for object detection are used.

As described in Section 4.2.3, phase-based optical calculates a bank of Gabor filters to

estimate velocity. Equation (4.15) is used to generate these filter responses, which can be

performed independently. A GPU can perform the set of 1-D convolutions for each Gabor

filter simultaneously for the entire filter bank, potentially gaining essential speed-up time.

Figures 7.3 and 7.4 show these results of Gabor filter bank calculations for varying input

image dimensions from 10-500.

GPU vs. CPU Execution Time: Gabor Filter Bank (26
Filters)

c c
CJ
ai

w

s

2.00E-01
1.80E-01
1.60E-01
1.40E-01
1.20E-01
l.OOE-01
8.00E-02
6.00E-02
4.00E-02
2.00E-02
O.OOE+00

10 50 90 130 170 210 250 290 330 370 410 450 490

Input Image Dimensions (row-columns)

•CPU time

•GPU time

X
a. 3 <

•a

a.
!/3

90
80
70
60
50
40
30
20
10
0

Figure 7.3 GPU-CPU Execution Times for Gabor Filter Bank

GPU vs. CPU Speed-Up Gains: Gabor Filter Bank (26
Filters)

o
, _ _ „ _ ^] fv| r .) <-*) O J cn fr , r n (^ ,v, ^)- -) - ^)- ^ ^f

Input Image Dimensions (row=coJumns)

1 " Speed Up

Figure 7.4 GPU-CPU Speed Up for Gabor Filter Bank

GPU implementation for Gabor filter bank calculations outperforms throughout the

entire input size, which is expected due to the independent computations reducing

execution times.

As discussed in Section 4.3, multi-scale graph segmentation provides a hierarchical

set of segmentations that contain accurate object segments. This process requires both

large computations due to the vectorization of the 2-D input, as well as an iterative node

agglomeration. Any speed gains that can improve execution times allow for larger input

values to be used in the method. The graph initialization stage requires significant

completion time when performed iteratively, but as the calculations are performed

independently in local neighborhoods (Equation 4.16 and 4.17), this step is implemented

in the GPU. Figures 7.5 and 7.6 give the execution time and speed-up gains for varying

input matrix sizes. An exponential speed-up gain for the GPU implementation, which is

necessary for computing even medium-sized input matrices (due to the vectorization) is

shown. The GPU speed-up surpasses 10,000 at 600 dimension size, which is a

reasonably expected input size in some sensor data.

GPU vs. CPU Execution Time: Graph Edge Weight,
4-Connected Neighborhood

1.60E+03 T
^ 1.40E+03 -
"g 1.20E+03 -
g 1.00E+03 -
t» 8.00E+02 -
V 6.00E+02
§ 4.00E+02 -
f- 2.00E+02 -

0.00E+00 -I
i O O > ' " > O i / " l O i ' " l O i / " > © U ") O i / - > 0 > ' " i O > / * l © i / ~ > 0 < / " > O m O

m w - i o o o r n i ^ i o o o r n w - i o o o r o i n o o o n t n o o O f - i u - i o o

Input Image Dimensions (row=columns)

CPU time
I ——-GPU time

Figure 7.5 GPU-CPU Execution Times for Graph Edge Weighting

103

GPU vs. CPU Speed-Up Gains: Graph Edge Weight, 4-
Connected Neighborhood

X
a.
p

Sp
ee

d-

12000

10000

8000

6000

4000

2000

o -»

Input Image Dimensions (row=columns)

Speed-Up

Figure 7.6 GPU-CPU Speed-Up for Graph Edge Weighting

As discussed in Section 4.3.2, nodes in the hierarchical graph clustering scheme are

selected based in a normalized cuts-like fashion, where the generalized eigen problem

(Equation 4.18) is solved. This gamma function is required of each node in the graph,

thus independent calculations are performed. This recursive system continually performs

this function on smaller sets of graph nodes, which will make the GPU implementation

progressively less efficient until a node size is reached where CPU can perform the

method more efficiently. A series of GPU-CPU execution time and speed-up gains

(Figures 7.7-7.12) is used for varying node sizes and iterations, to clearly define

breakeven points in the implementation speed-up gains. For varying input sizes, CPU

operations outperform the GPU, although times are fairly comparable. CPU

computations also outperform the GPU for smaller iteration sizes, but a GPU gain is

observed for iterations over 7500 nodes.

GPU vs. CPU Execution Time: Graph Cuts

I

7.00E-03
6.00E-03
5.00E-03
4.00E-03
3.00E-03
2.00E-03
1.00E-03

0.00E+00
o o o © ©
<— i/-) © © O

o o
© ©
ro u-i r~ Ov
tN CN CN fN

•CPU time

•GPU time

Input Image Dimensions (row-columns)

Figure 7.7 GPU-CPU Execution Times for Graph Cuts (no loops)

GPU vs. CPU Speed-Up Gains: Graph Cuts

Q .
_.

1

Sp
ee

d

1.4
1.2

1
0.8
0.6
0.4
0.2

0 — — —

^ " \
r\

\ ^ \«> f (? ^ = ? \ \ ^ < f \ ^ ^ i \ d ? rfi rfi rfi rfi r>f>

•Speed-Up Input Image Dimensions (row=columns)

Figure 7.8 GPU-CPU Speed-Up for Graph Cuts (no loops)

"O

: (
Se

co
n

T
im

t

GPU vs. CPU Execution Time: Graph Cuts (Small Loops)

l.ZUtL-VJ ~

1.00E-03 -

8.00E-04 -

6.00E-04 -

4.00E-04 •

2.00E-04 -

.
/

s\.^<f***\J
• " S y j / V • »̂

— — ^ " - - - - - '^~^

10 20 30 40 50 60 70 80 90 100110120130140150160170

Input Image Dimensions (row=columns=loons)
CPU time

GPU time

Figure 7.9 GPU-CPU Execution Times for Graph Cuts (small loops)

x

0.03

0.025
a
3

ed
-

a.
C/3

0.02

0.015

0.01

0.005

0

GPU vs. CPU Speed-Up Gains: Graph Cuts (Small Loops)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

•Speed Up
Input Image Dimensions (row=columns=loops)

Figure 7.10 GPU-CPU Speed Up for Graph Cuts (small loops)

GPU vs. CPU Execution Time: Graph Cuts (Large Loops)

2.50E-01

— 2.00E-0I
•o

g 1.50E-01
in
IT 1.00E-01
S

^ 5.00E-02

0.00E-H)0

•CPU time

•GPU time

100 500 1000 2500 5000 7500 10000 20000

Input Image Dimensions (row=columns=loops)

Figure 7.11 GPU-CPU Execution Times for Graph Cuts (large loops)

GPU vs. CPU Speed-Up Gains: Graph Cuts (Large Loops)

X
a.
3

a.
ifi

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

•Speed-Up

100 500 1000 2500 5000 7500 10000 20000

Input Image Dimensions (row=columns)

Figure 7.12 GPU-CPU Speed Up for Graph Cuts (large loops)

7.2.3 GPU for Feature Extraction

As described in Chapter 5, although the potential number of candidates is

significantly lower than initial SE stages (preprocessing and motion estimation), a dense

set of features for each object candidate at every location can now be calculated

simultaneously, validating the economy of using a GPU implementation. GPU based

107

computations are implemented for both histograms and invariant moments in hopes to

improve execution time.

In Section 5.4, the methodology of edge histogram features for object classification is

discussed. This step requires several steps for computation, with a final step using a

calculation similar to Equation (5.7). Each object candidate location requires an

independent set of calculations for edge histograms, and GPU speed gains in similar

fashion to graph cuts to see gains for specific input sizes (Figures 7.13.-7.19) are

presented. When no iterations are performed, a constant, larger execution time for GPUs

can be observed. For iterations, the GPU implementation outperforming the CPU for

iteration sizes larger than 20, which is normally expected for real applications, are

observed.

3.50E-03 !
~ 3.00E-03
*c 2.50E-03 -
1 2.00E-03 -
— 1.50E-03 •
£ 1.00E-03 -

H 5.00E-04 -
0.00E+00 -

^ — C P U time
— G P U time

GPU vs. CPU Execution Time: Histogram
, , „_

8 16 32 64 128 256 512 1024

Input Image Dimensions (feature length)

Figure 7.13 GPU-CPU Execution Time for Histogram (no loops)

GPU vs. CPU Speed-Up Gains: Histogram

x
a.

•a n

3? 0.03

0.08
0.07
0.06
0.05
0.04

0.02
0.01

0

8 16 32 64 128 256 512 1024

Speed-Up input Image Dimensions (feature length)

Figure 7.14 GPU-CPU Speed Up for Histogram (no loops)

GPU vs. CPU Execution Time: Histogram (Small
Iterations, 24 bin)

4.50E-02
4.00E-02

I* 3.50E-02
g 3.00E-02
|j 2.50E-02
w 2.00E-02
| 1.50E-02
H 1.00E-02

5.00E-03
0.00E+00

CPU time

<GPU time

<N m i/~> ^c oc o* — <N T m r~- oc O -— r i Ĵ-
— — — — —• —' fN tN CN <N

Iterations

Figure 7.15 GPU-CPU Execution Time for Histogram (small loops)

X
a.
•

•a
0)
V

a.

14

12

10

8

6

4

2

0

GPU vs. CPU Speed-Up Gains: Histogram (Small
Iterations, 24 bin)

i/~, O V . i n */-> o <r, o *o o */•> o </~,
r-i ' t >n r~ oo o — r<-> -tt
— — —' — — c i r*i CN <N

•Speed-Up
Iterations

Figure 7.16 GPU-CPU Speed Up for Histogram (small loops)

!

GPU vs. CPU Execution Time: Histogram (Large
Iterations, 24 bin)

5.00E-01
4.50E-01
4.00E-01
3.50E-01
3.00E-01
2.50E-01
2.00E-01
1.50E-01
1.00E-01
5.00E-02

0.00E+00

•CPU time

O O O O O O O O O O O O O O O O O
— * i / - ! O O 0 0 0 0 © 0 0 0 O O O O O

•— m t/~» r - C* — ro v . r~~ o^ —• c~i u~j r-» o^
— —-•— — —' CN c i r-i CN r-i

Iterations

•GPU time

Figure 7.17 GPU-CPU Execution Time for Histogram (large loops)

X
a
•

• a v
o
a.

110

GPU vs. CPU Speed-Up Gains: Histogram (Large
Iterations, 24 bin)

o o o o o o o o o o o o o o o o o
— > / - > o o o o o © © o o o o o o o ©

—> r̂ y} r-- o* •— c~iirir--^'—' ci *o r-- o
— .— — — — (N t ^ i r ^ r J t N

Iterations
•Speed Up

Figure 7.18 GPU-CPU Speed Up for Histogram (large loops)

The methodology and presented the implementation of invariant moments in Section

5.3, using this set of features in object classification, have been discussed. Similar to

feature histograms, this feature set is also calculated in a local, independent manner for

each object candidate, thus lending itself to speed-up gains via parallelization. In Figures

7.19-7.24, these results are presented. Unlike histograms, CPU-GPU execution times

remain similar throughout a single calculation with varying input sizes. GPU speed-up

gains are evident for the entire span of iterations, following a linear speed-up with

increasing loop size.

I l l

GPU vs. CPU Execution Time: Invariant Moments

1
<»

1.80E-02
1.60E-02
1.40E-02
1.20E-02
1.00E-02
8.00E-03
6.00E-03
4.00E-03
2.00E-03
0.00E+00

•CPU time
•GPU time

— c ^ c > ' 3 - i o ^ o r - - o o a s o ^ - (N r ' - i - 3 - i o ^ c t - - - o o a \

Input Image Dimensions (row=columns)

Figure 7.19 GPU-CPU Execution Time for Invariant Moments (no loops)

x
a.
I

•a a
0) a.

c/3

GPU vs. CPU Speed-Up Gains: Invariant Moments

1.2
1

0.8
0.6
0.4
0.2

0

—' r-l m "3- i/-> \ 0 t-- oo os © —' r-l r') TJ- 1/1 vo r~

•Speed-Up Input Image Dimensions (row=columns)

Figure 7.20 GPU-CPU Speed-Up for Invariant Moments (no loops)

112

e o u

8.00E-02
7.00E-02
6.00E-02
5.00E-02
4.00E-02
3.00E-02
2.00E-02
1.00E-02

O.OOE+00

•CPU time

•GPU time

GPU vs. CPU Execution Time: Invariant Moments
(Small Iterative 15 x 15 size target)

" (N n ^ » ^ ^ o ^ M ! ^ o —' CN ri *3" m vo (•— oo ^

Iterations

Figure 7.21 GPU-CPU Execution Time for Invariant Moments (small loops)

1
Sp

ee
d-

U
p

X

140 i
120
100 •
80 •
60 -
40 -
20

0

•Speed-U

GPU vs. CPU Speed-Up Gains: Invariant Moments
(Small Iterative 15 x 15 size target)

^ * - - * • " , " "

^r^*-*~*'
^

^^^^"'^
^ ^ 0 - " * ^ * ^

^^^^"^

P Iterations

Figure 7.22 GPU-CPU Speed-Up for Invariant Moments (small loops)

113

1.20E+00

-£• l.OOE+00

§ 8.00E-01

$ 6.00E-01

| 4.00E-01

H 2.00E-01

O.OOE+00

•CPU time

•GPU time

GPU vs. CPU Execution Time: Invariant Moments
(Large Iterative 15 x 15 size target)

© o o o o o o o o o o o o o o o o — m o o o o o o c o o o o o o o o
— r*-; 'As r-- C^ — c~. </"i r- 0s —• c". 'O r— C*

— — — — — r4 CN tN r> c-i

Iterations

Figure 7.23 GPU-CPU Execution Time for Invariant Moments (large loops)

a.

o>
a> a

c/5

GPU vs .CPU Speed-Up Gains: Invariant Moments
(Large Iterative 15 x 15 size target)

2000
1800
1600
1400
1200
1000
800
600
400
200

0

•Speed Up

o o o o o o o o o
o o o o o o o o o
c-> in r- c> — m v-> r- o*
— — •—' — <N <N <N < N < N

Iterations

Figure 7.24 GPU-CPU Speed-Up for Invariant Moments (large loops)

7.2.4 GPU for Object Tracking

Described in both Sections 6.2 and 6.3, a correlation-based feature tracker for

following detected objects through the image sequence has been used. This stage

typically requires a searching-type of algorithm where a match score or probability is

114

calculated at new potential object location. This type of method can easily be inhibited

by the size of the features used for the matching (Figure 6.4), as well as the number of

locations to compare. GPUs can provide a means to calculate probabilities based on

feature matching simultaneously, thus larger feature sizes and locations can be used to

provide real time tracking results. GPUs create performance gains when a significant

number of locations are present, which can grow rapidly if multiple orientations of each

object are used for comparison (described in Section 5.2.2). The normalized cross

correlation (Equation 6.9-10) speed-up using the GPU (Figures 7.25-7.30) is presented.

For non-iterative, varying vector size, CPUs outperform the GPU implementation. For

iterative implementation, the GPU begins to outperform the CPU after 30 iterations,

showing a linear speed-up with an increase in loops size.

GPU vs. CPU Execution Time: Normalized Cross

6.00E-04

4.00E-04

2.00E-04

O.OOE+00 J

o o o o o o o o o o o o o o o o o
— m o o o o o o o o o o o o o o o

— co u~) c-~ C* •—' en u-> r- c* •—• ro >/~> r-- o

CPU time
„„TT . Input Image Dimensions (row=columns)
GPU time

Figure 7.25 GPU-CPU Execution Time for Normalized Cross Correlation (no loops)

e e u
1 >

E

115

Q.
I

•O
i>
o
a .

t/3

0.14
0.12

0.1
0.08
0.06
0.04
0.02

0

GPU vs. CPU Speed-Up Gains: Normalized Cross
Correlation

© o © o o
—' m o o ©

—| ft in
O
©

© ©
© ©
0\ —'

© ©
© ©
r i in

© ©
© ©

©
©

© © ©
© © ©

m i n r~- &>
(N <N <N (N

Speed Up Input Image Dimensions (row=columns)

Figure 7.26 GPU-CPU Speed-Up for Normalized Cross Correlation (no loops)

o
u
K

t/5

E

3.00E-02

2.50E-02

2.00E-02

1.50E-02

1.00E-02

5.00E-03

0.00E+00

•CPU time

-GPU time

GPU vs. CPU Execution Time: Normalized Cross
Correlation (Small Iterations, 144-length vector)

i n © i / " > © | n © i n © s n © i n © | n © i n © i n ©
i n o o © r n i n o o © m i n o o © m i n o o © r ' - i ' n o o

— — — — r-i (N r\ r~) c i r»i f) ro *3- ^j- r f • *

Iterations

Figure 7.27 GPU-CPU Execution Time for Normalized Cross Correlation (small loops)

116

X
a
a i
•o 0J
04
a. t/1

20

15

10

5

0

GPU vs. CPU Speed-Up Gains: Normalized Cross
Correlation (Small Iterations, 144-length vector)

•Speed-Up

o m o w ~ > O i / " i o i n © ' / ~ > o u -) O i / " -) O i / ' } 0 > ' ' i ©
r > i ' / -) O O O r ' > i / - > o o o r ' > < / _ > o o O r « ") i / - > o o © r < i > / - > o o

Input Image Dimensions (iteration)

Figure 7.28 GPU-CPU Speed-Up for Normalized Cross Correlation (small loops)

T
im

e
(S

ec
oi

 2.00E-01

1.50E-01

1.00E-01

5.00E-02

0.00E+00

-CPU time

-GPU time

GPU vs. CPU Execution Time: Normalized Cross
Correlation (Large Iteartions, 512-Iength vector)

o o o o o o o o o o o o o o o o o
— u - i O O O O O O O O O O O O O O O

—- m wo (^ os — m in r~- o\ — rn un r~ o
— —• — — — r-i CM <N CN r^i

Iterations

Figure 7.29 GPU-CPU Execution Time for Normalized Cross Correlation (large loops)

117

x
a.

•o
Qi a.

C/3

180

GPU vs. CPU Speed-Up Gains: Normalized Cross
Correlation (Large Iteartions, 512-length vector)

o o o o o o o o o o o o o o o o ©
— w - i O O O O O O O O O O O O O O O

'— c i i n r - " - ^ — • m «/i r~- 0 s >-~ f i >n r - ON
— — — —. — <N <N <N r-J <N

•SpeedUp Iterations

Figure 7.30 GPU-CPU Speed-Up for Normalized Cross Correlation (large loops)

7.2.5 GPU for Implementation Summary

Each of the SE sub-tasks to determine the benefits of GPU-enabled implementations

and provided time-gains (in multiples of execution time) have evaluated for each feature

calculation in Table 7.1. For non-iterative, highly parallel methods, such as 2-D

convolutions (Gaussian filtering) and graph weight initialization, qualitative gains in

execution time can be observed. For most feature calculations tested, time lag due to

CPU-GPU communication reduces performance to a fraction of the execution time

produced by CPU implementations. When feature calculations are required to be

performed in an independent iterative manner (as is the case with feature extraction and

tracking calculations), large gains are observed at even small iteration sizes (Table 7.2).

118

Table 7.1 Algorithm GPU Speed-Up for SE

Feature Calculation

2-D Convolution

Graph Weight
Initialization

Graph Norm Cuts

Invariant Moments

Histogram
Normalized Cross
Correlation

Input Size (pixels:

25

0.23

0.25

0.02

0.89

0.06

0.06

100

0.80

10.90

0.03

0.98

0.05

0.06

250

1.48

288.87

0.02

1.00

0.06

0.06

row=colu

500

2.80

4780.88

0.07

1.00

0.06

0.07

mns)

1000

4.06

14565.00

0.23

1.00

0.07

0.08

Table 7.2 Iterative GPU Speed-Up for SE

Feature Calculation
(For Loop Iterations)

2-D Convolution

Graph Norm Cuts

Invariant Moments

Histogram
Normalized Cross
Correlation

Loop Size

25 100 250 500 1000

8.90 19.45 77.63 76.85 91.70

0.54 2.90 10.51 37.15 156.10

15.17 60.93 153.09 300.43 600.77

1.25 5.00 12.48 25.00 49.68

1.41 5.94 14.86 30.36 60.32

7.3 GPU-Based SE Framework Conclusion

GPU implementations of SE feature calculations have been tested, and the findings

have been discussed. Although GPU provide new real-time methods to SE by leveraging

fast, independent feature calculations, each implementation should be analyzed to

determine lower bound speed gains. Preprocessing steps that reduce input sizes to

increase real-time implementation can potentially be eliminated, which can increase

119

specificity by leveraging additional object details. At the time of this writing, several

limitations still hinder seamless GPU implementation into SE algorithms, such as lack of

compatibility for sparse matrices and conditional statements in loops. The independent

calculations required to accurately detect, classify, and track objects in increasingly large

sensor data will benefit immensely from GPU implementations.

CHAPTER 8

CONCLUSIONS

8.1 Contributions to Object Detection

In Chapter 4, three specific methods for object detection are presented and evaluated

which successfully delineate objects from the background in changing, cluttered

environments. Although that these methods may not work out-of-the-box for any SE

application, each of these methods contribute to the SE community with the hopes that

particular methodologies can be used as benchmarks or expanded upon to serve the user's

particular needs. The ill-defined nature of object detection will remain a challenging

topic for many years to come, with more complex and computationally intensive methods

continuously being realized due to the expanding resources available. The research in

this field will be continued by leveraging recent investigations with GPU implementation

discussed in Chapter 7 with the hopes of using larger input data to increase accuracy.

Additionally, more tracking methods will be integrated into the detection stage to further

decrease false alarms caused by OCs, with more computationally intensive methods

available for real time implementation.

More optical flow and image segmentation methods will be implemented to a create a

cascading performance model which can predict algorithm accuracy probabilities based

on offline evaluation. This direction can attain an even higher standard of robustness that

is not currently found in the object detection literature. Methods such as the one

120

121

described in Section 4.4 is only the beginning of how motion and segmentation methods

can be integrated into one another for refining detection results.

8.2 Contributions to Feature Extraction and Classification

Several novel feature extraction methodologies that have proven to successfully

detect, classify, and track objects in image sequences have been implemented. For

detection, the flow and edge gradients have been implemented with a binning

methodology, which can help in detecting object with concave boundaries (like objects).

Other researchers in persistent surveillance can benefit from these additional features, due

to the difficulties in robust segmentation and detection algorithm design. Edge bins also

provide useful invariant feature for classification, due to their ability to handle rotation

and partial occlusion. Most feature sets cannot handle both of these types of variations in

object appearance, which can work well when combined with features that provide high

levels of specificity. Edge bins have shown to work well in classifying both multiclass

object sets and binary detections by itself, but can still aid in working in a larger group of

features. As shown in this dissertation, these features can be sped up by GPUs when used

in an independent, iterative manner (which is typically the case).

DRSURF features have provided a novel way to describe a low resolution object with

poor second derivatives for tracking. This method will be integrated with other features

for a hierarchical tracking methodology, which first uses invariant features to reduce the

search space, then performs DRSURF calculations for better tracking results. The

DRSURF features can provide other researchers with an additional feature set to

benchmark tracking and feature extraction methods.

122

Multiple methods for supervised classification for both detection and multiclass

labeling have also been thoroughly investigated and evaluated. Several methods

generated high accuracy, Random Forest performed best in real-time scenarios due to its

high accuracy and fast training speed. The Random Forest detection scheme will be

tested on other data sets that provide training data to study the robust discrimination

strength of the classifier. MLP and KSTAR have also displayed accurate results when

trained offline, but real-time classification requirements may inhibit their use.

8.3 Contributions to Object Tracking

Aside from using DRSURF for tracking, the use of tracking methods which can

follow objects through rotation, translation, and scaling changes by integrating motion

and appearance features have been presented and validated. Although this approach is

not unique in terms of combining these two classes of features, the method takes into

account specific phenomena that occurs using particular optical flow (phase-based) and

gradient features (DRSURF) for an optimal tracking performance. Like object detection

problems with robustness, this particular approach cannot provide an out-of-the-box

solution for any image sequence that contains objects. Creating more robust tracking is a

natural next step for the research in object tracking, with methods that can be

incorporated in the detection stage of particular interest. The use of GPUs expands the

ability to perform matching on larger candidate spaces for reductions in false negatives,

but must be counteracted by high selective tracking methods. Such tracking methods

should incorporate a multi-tracking scheme, which can choose a particular tracker's

estimation based on tracker performance models. Although the presented tracker does

not currently provide this level of complexity, the powerful detection methodology may

123

play a more significant role in tracking, which is referred as detect-before-track. These

methods suffer from higher computational costs and reduced robustness to occlusions,

which will be mitigated by implementing GPU versions for speed increases and using

dynamic state models.

REFERENCES

[1] B. Bhanu, "Automatic Object Recognition: State of the Art Survey," IEEE./.
Aerospace and Electronic Systems, vol. AES-22, no. 4, pp. 364-379, Feb.
2007.

[2] J. Han and M. Kamber. Data Mining Concepts and Techniques. San Francisco,
CA: Morgan Kaufman Publishers, 2001.

[3] M. Motwani, M. Gadiya, R. Motwani, and F. C. Harris, Jr., "A Survey of Image
Denoising Techniques," Proc. qf'GSPX2004, Santa Clara, CA, Sept. 2004.

[4] R. Yang, L. Yin, M. Gabbouj, J. Astola, and Y. Neuvo, "Optimal Weighted
Median Filters under Structural Constraints," IEEE Journal of Signal
Processing, vol. 43, pp. 591-604, Mar. 1995.

[5] A. Ben Hamza, P. Luque, J. Martinez, and R. Roman, "Removing Noise and
Preserving Details with Relaxed Median Filters," Journal ofMathemtical
Imaging and Vision, vol. 11-2, pp. 161-177, Oct. 1999.

[6] A. K. Jain, Fundamentals of Digital Image Processing, Prentice Hall,
Englewood Cliffs, NJ, 1989.

[7] H. Zhang, Aria Nosratinia, and R. O. Wells, Jr., "Image Denoising via
Wavelet-Domain Spatially Adaptive FIR Wiener Filtering," IEEE Proc Int.
Conf Acoustics, Speech, and Signal Processing, Istanbul, Turkey, June 2000.

[8] D. L. Donoho and I. M. Johnstone, "Ideal Spatial Adaption via Wavelet
Shrinkage," Biometrika, vol. 81, pp. 425-455, Sept. 1994.

[9] E. P. Simoncelli and E. H. Adelson, "Noise Removal via Bayesian Wavelet
Coring," 3" Int. Conf. Image Processing, Lausanne, vol. I, pp. 379-382, Sept.
1996.

[10] R. G. Baraniuk, "Optimal Tree Approximation with Wavelets," Proc. SPIE
Technology Conf Wavelet Applications Signal Processing VII, Denver, CO,
1999, vol. 3813, pp. 196-207.

124

125

[11] W. Buccigrossi and E. P. Simoncelli, "Image Compression via Joint Statistical
Characterization in the Wavelet Domain,"./. IEEE Image Processing, vol. 8, no.
12, pp. 1688-1701, Dec. 1999.

[12] T. D. Bui and G. Y. Chen, "Translation-Invariant Denoising using Multi-
Wavelets," J. IEEE Transactions on Signal Processing, vol. 46, no. 12, pp.3414-
3420, 1998.

[13] I. Cohen, S. Raz, and D. Malah, "Translation Invariant Denoising using the
Minimum Description Length Criterion," Signal Processing, vol. 75, no. 3, pp.
201-223, 1999.

[14] A. Jung, "An Introduction to a New Data Analysis Tool: Independent
Component Analysis," Proceedings of Workshop GK "Non linearity,"
Regensburg, Oct. 2001.

[15] R. C. Gonzalez and R.E. Wood. Digital Image Processing. Reading, MA:
Addison Wesley, 2002.

[16] J. C. Russ, The Image Processing Handbook: Fourth Edition, Boca Raton, FL:
CRC, 2002.

[17] K. Pearson, "On Lines and Planes of Closest Fit to Systems of Points in Space,"
Philosophical Magazine, vol. 2, no. 6, pp. 559-572, 1901.

[18] C. Rader and N. Brenner, "A New principle for Fast Fourier Transformation," J.
IEEE Acoustics, Speech, and Signed Processing, vol. 24, pp. 264-266, Jan. 2003.

[19] S. Mallat, A Wavelet Tour of Signal Processing, New York, NY: Academic
Press, 1999.

[20] M. Foracchia, E. Grisan, and A. Ruggeri, "Luminosity and Contrast
Normalization in Retinal Images," Medical Image Analysis, vol. 9, pp. 179-190,
June 2005.

[21] B. K. P. Horn, Robot Vision, Cambridge, MA: MIT Press, 1986.

[22] B. K. P. Horn and B.G. Schunck, "Determining Optical Flow," Technical
Report A.I. Memo 572, Massachusetts Institute of Technology, 1980.

[23] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, "Performance of Optical Flow
Techniques," International JournalI of Computer Vision, vol. 12, pp. 43-77, Feb.
1994.

126

[24] B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an
Application to Stereo Vision," Proc 7n Int. Joint Conf. on Artificial Intelligence,
IJCAI, pp. 674-679, 1981.

[25] D. J. Fleet and A. D. Jepson, "Computation of Component Image Velocity
from Local Phase Information," Int. J. Computer Vision, vol. 5, no. 1, pp. 77-
104, 1990.

[26] J. Canny, "A Computational Approach to Edge Detection,"./. IEEE Pattern
Analysis and Machine Intelligence PAMI, vol. 8, pp. 679-698, 1986.

[27] E. Saber, A. M. Tekalp, and G. Bozdagi, "Fusion of Color and Edge
Information for Improved Segmentation and Edge Linking," J. Image Vis.
Comput., vol. 15, no. 1197, pp. 769-780, 1997.

[28] M. Sezgin and B. Sankur, "Survey Over Image Thresholding Techniques and
Quantitative Performance Evaluation,",/. Electronic Imaging, vol. 13, pp. 146-
165,2004.

[29] F. Meyer, "Topographic Distance and Watershed Lines," Signal Processing, vol.
38, pp. 113-125, 1994.

[30] C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S.
Lai, and D. Usher, "Automated Detection of Diabetic Retinopathy on Digital
Fundus Images," Diabetic Medicine: A Journal of the British Diabetic
Association, vol. 19, pp. 105-112, Feb. 2002.

[31] J. Shi and J. Malik, "Normalized Cuts and Image Segmentation," CVPR '97:
Proc. 1997 Conf. on Computer Vision and Pattern Recognition (CVPR '97),
Washington, DC, USA: IEEE Computer Society, 1997.

[32] J. Malcolm, Y. Rathi, and A. Tannenbaum, "Graph Cut Segmentation with
Nonlinear Shape Priors," in IEEE Int. Conf on Image Processing, 2007. ICIP
2007, vol. 4, 2007.

[33] N. Vu and B.S. Manjunath, "Shape Prior Segmentation of Multiple Objects with
Graph Cuts," IEEE Intern. Conf on Computer Vision and Pattern Recognition.
(CVPR), 2008.

[34] C. H. Fosgate, H. Krim, W. W. Irving, W. C. Karl, and A. S. Willsky,
"Multiscale Segmentation and Anomaly Enhancement of SAR Imagery," J.
IEEE Image Processing, vol. 6, pp. 7-20, Aug. 2002.

[35] K. L. Vincken, A. S. E. Koster, and M. A. Viergever, "Probabilistic Multiscale
Image Segmentation," J. Pattern Analysis and Machine Intelligence, vol. 19, pp.
109-120, 1997.

127

[36] H. Choi and R. G. Baraniuk, "Multiscale Image Segmentation using Wavelet-
Domain Hidden Markov Models," J. Image Processing, vol. 10, pp. 1309-1321,
Aug. 2002.

[37] J. B. Kim, C. W. Lee, K. M. Lee, T. S. Yun, and H. J. Kim, "Wavelet-
Based Object Tracking for Automatic Traffic Surveillance," IEEE TENCON'01,
vol. 1, pp. 313-316, Singapore, Aug. 2001.

[38] A. Bugeau and P. Perezz, 'Track and Cut: Simultaneous Tracking and
Segmentation of Multiple Objects with Graph Cuts," Journal of Image Video
Processing, vol. l,pp. 1-14,2008.

[39] D. J. Salmond and H. Birch., "A Particle Filter for Track-before-Detect," Proc.
American Control Conference. 2001. Arlington, VA, USA.

[40] Y. Boers, H. Driessen, J. Torstensson, M. Trieb, R. Karlsson, and F. Gustafsson,
"Track-before-Detect Algorithm for Tracking Extended Objects," Proc. IEEE on
Radar and Sonar Navigation, vol. 153, pp. 345-351, 2006.

[41] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt, "Hierarchy and
Adaptivity in Segmenting Visual Scenes," Nature, vol. 442, pp. 810-813, Aug.
2006.

[42] K. Mikolajczyk and C. Schmid, "Scale and Affine Invariant Interest Point
Detectors," Int. J. Computer Vision, vol. 1, no. 60, pp. 63-86, 2004.

[43] C. Schmid and R. Mohr, "Local Grey-value Invariants for Image Retrieval,"
./. IEEE Pattern Analysis and Machine Intelligence, vol. 19, pp. 530-535, 1997.

[44] K. Mikolajczyk and C. Schmid, "A Performance Evaluation of Local
Descriptors," J. Pattern Analysis and Machine Intelligence, vol. 27, pp. 1615-
1630,2005.

[45] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int.
J. Computer Vision, vol. 60, pp. 91-110, Nov. 2004.

[46] H. Bay, A. Ess, T. Tuytelaars, and L. Vangool, "Speeded-Up Robust Features
(SURF)," Computer Vision and Image Understanding, vol. 110, pp. 346-359,
June 2008.

[47] J. Xiao, H. Cheng, H. Feng, and C. Yang, "Object Tracking and Classification
in Aerial Videos," Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, May 2008.

128

[48] W. Freeman and E. Adelson, "The Design and Use of Steerable Falters," J.
IEEE Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891-906,
1991.

[49] J.-Y. Choi and Y.-K. Yang, "Object Detection from Aerial Images using Local
Shape Information," Advances in Image and Video Technology, vol. 5414, ch.
20, pp. 227-236,2009.

[50] S. Belongie, J. Malik, and J. Puzicha, "Shape Matching and Object
Recognition using Shape Contexts," J. IEEE Pattern Analysis and Machine
Inleligence., vol 24, no. 4, pp. 509-522, Apr. 2002.

[51] D. Cremers, T. Kohlberger, and C. Schnorr, "Shape Statistics in Kernel Space
for Variational Image Segmentation," Pattern Recognition, vol. 36, no. 9, pp.
1929-1943, Sept. 2003.

[52] T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution Gray-Scale and
Rotation Invariant Texture Classification with Local Binary Patterns," J. IEEE
Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, 2002.

[53] L. Van Gool, T. Moons, and D. Ungureanu, "Affine / Photometric Invariants
for Planar Intensity Patterns," Proceedings of the 4th European Conference on
Computer Vision, Cambridge, UK, pp. 642-651, 1996.

[54] A. Ashbrook, N. Thacker, P. Rockett, and C. Brown, "Robust Recognition of
Scaled Shapes using Pairwise Geometric Histograms," Proc. 6" British Machine
Vision Conference, Birmingham, UK, pp. 503-512, 1995.

[55] G. Dorko and C. Schmid, "Selection of Scale-Invariant Parts for Object Class
Recognition," Proc. of the 9th Int. Conf. Computer Vision, Nice, France, pp.
634-640, 2003.

[56] R. M. Haralick, K. Shanmugan, and I. Dinstein, "Textural Features for Image
Classification," J. IEEE Systems, Man, and Cybernetics, vol. SMC-3, pp. 610-
621,1973.

[57] D. Gabor, "Theory of Communication," ./. I.E.E.E, vol. 3, no. 93, pp. 429-457,
1946.

[58] J. K. M. Vetterli, Wavelets and Subband Coding, Prentice Hall, 1995.

[59] L. Eikvil, L. Aurdal, and H. Koren, "Classification-Based Object Detection in
High-Resolution Satellite Images," ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 64, pp. 65-72, Jan. 2009.

129

[60] L. Cao, "Classification SAR Objects with Support Vector Machine," Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Feb. 2007.

[61] A. Sadjadi and X. Yu, "Neural Network Directed Bayes Decision Rule for
Moving Target Classification," IEEE Trans. On Aerospace and Electronic
Systems, vol. 36, pp. 176-188, Jan. 2000.

[62] A. Yilmaz, O. Javed, and M. Shah, "Object Tracking: A Survey," ACM Compitt.
Surv.,vol 38, no. 4, pp. 13-20, 2006.

[63] S. Avidan, "Support Vector Tracking," J. IEEE Pattern Analysis and Machine
Intelligence, vol. 26, no. 8, pp. 1064-1072, Aug. 2004.

[64] O. Williams, A. Blake, and R. Cipolla, "Sparse Bayesian Learning for
Efficient Visual Tracking," J. IEEE Pattern Analysis and Machine Intelligence,
vol. 27, no. 8, pp. 1292-1304,2005.

[65] S. Park, J. K. Aggarwal, "A Hierarchical Bayesian Network for Event
Recognition of Human Actions and Interactions," Multimedia Systems, vol. 10,
no. 2, pp. 164-179,2004.

[66] S. J. Julier and J.K. Uhlmann, "A New Extension of the Kalman Filter to
Nonlinear Systems." In Proc. SPIE - Int. Soc. Opt. Eng. (USA) (Orlando, FL,
Apr. 1997), vol. 3068, pp. 182-193.

[67] Y. Bar-Shalom, T. Foreman, Tracking and Data Association. Academic Press
Inc., 1988.

[68] H. Tanizaki, "Non-Gaussian State-Space Modeling of Nonstationary Time
Series,"./. American Statistics Association, vol. 82, pp. 1032-1063, 1987.

[69] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, "Tracking in Low Frame
Rate Video: A Cascade Particle Filter with Discriminative Observers of
Different Life Spans," J. IEEE Pattern Analysis and Machine Intelligence, vol.
30, no. 10, pp. 1728-1740, Oct. 2008.

[70] C. TomasiandT. Kanade, "Detection and Tracking of Point Features,"
Carnegie Mellon University, Tech. Rep. CMU-CS-91-132, April 1991.

[71] D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach toward Feature
Space Analysis," J. Pattern Analysis and Machine, vol. 24, no. 5, pp. 603-619,
Aug. 2002.

[72] A. Bugeau and P. Perezz, "Track and Cut: Simultaneous Tracking and
Segmentation of Multiple Objects with Graph Cuts," J. Image Video Process.,
vol. 2008, pp. 1-14,2008.

130

[73] J. S. Lim, Two-Dimensional Signal and Image Processing, Englewood Cliffs,
NJ, Prentice Hall, p. 548, equations 9.44-9.46, 1990.

[74] L. F. Chen, H. Y. M. Liao, and J. C. Lin, "Wavelet-Based Optical Flow
Estimation," J. IEEE Circuits Syst. Video Techno!., vol. 12, no. 1, pp. 1-12,
Feb. 2002.

[75] R. G. Baraniuk, "Optimal Tree Approximation with Wavelets," Proc. SPIE
Tech. Conf. Wavelet Applications Signal Processing VII, vol. 3813, pp. 196-
207, Denver, CO, 1999.

[76] J. Bouguet, "Pyramidal Implementation of the Lucas-Kanade Feature Tracker:
Description of the Algorithm," Technical report, OpenCV Document, Intel
Microprocessor Research Labs, 2000.

[77] T. Gautama and M. A. Van Hulle, "A Phase-Based Approach to the Estimation
of the Optical Flow Field using Spatial Filtering," J. IEEE Neural Networks,
vol. 13, pp. 1127-1136,2002.

[78] M. M. Van Hulle, "A Goal Programming Network for Linear Programming,"
Biol. Cybernetics, vol. 65, pp. 243-252,1991.

[79] Columbus Large Image Format (CLIF) Dataset. [Online]. Available:
https://www.sdms.afrl.af.mil/datasets/clif2007/

[80] E. Sharon, A. Brandt, and R. Basri, "Fast Multiscale Image Segmentation," J.
IEEE Computer Vision and Pattern Recognition, vol. 1, pp. 1070-77, 2000.

[81] M. K. Hu, "Visual Pattern Recognition by Moment Invariants," IRE Trans.
Info. Theory, vol. IT-8, pp. 179-187, 1962.

[82] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, June 2005.

[83] J. G. Cleary and L. E. Trigg, "K*: An Instance-Based Learner Using an
Entropic Distance Measure," Proc. of the 12" Int. Conf. on Machine Learning,
pp. 108-114, 1995.

[84] J. Fung and S. Mann, "OpenVIDIA: Parallel GPU Computer Vision," A CM
MULTIMEDIA, pp. 849-852, 2005.

https://www.sdms.afrl.af.mil/datasets/clif2007/

131

[85] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, "GPUCV: A
GPU-Accelerated Framework for Image Processing and Computer Vision,"
Proc. of the 4" Int. Sym. Advances in Visual Computing, Part II, pp. 430-439,
Springer, 2008.

[86] NVIDIA Corporation. NVIDIA CUDA Programming Guide, version 1.1, 2007.

[87] T. Larsen, Aalborg University, Denmark, Feb., 2010. [Online]. Available.
http://wiki.accelereyes.com/wiki/index.php/GPU Memory Transfer.

http://wiki.accelereyes.com/wiki/index.php/GPU

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Winter 2011

	Data mining based learning algorithms for semi-supervised object identification and tracking
	Michael P. Dessauer

	ProQuest Dissertations

