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ABSTRACT 

Sensor exploitation (SE) is the crucial step in surveillance applications such as airport 

security and search and rescue operations. It allows localization and identification of 

movement in urban settings and can significantly boost knowledge gathering, 

interpretation and action. Data mining techniques offer the promise of precise and 

accurate knowledge acquisition techniques in high-dimensional data domains (and 

diminishing the "curse of dimensionality" prevalent in such datasets), coupled by 

algorithmic design in feature extraction, discriminative ranking, feature fusion and 

supervised learning (classification). Consequently, data mining techniques and 

algorithms can be used to refine and process captured data and to detect, recognize, 

classify, and track objects with predictable high degrees of specificity and sensitivity. 

Automatic object detection and tracking algorithms face several obstacles, such as 

large and incomplete datasets, ill-defined regions of interest (ROIs), variable scalability, 

lack of compactness, angular regions, partial occlusions, environmental variables, and 

unknown potential object classes, which work against their ability to achieve accurate 

real-time results. Methods must produce fast and accurate results by streamlining image 

processing, data compression and reduction, feature extraction, classification, and 

tracking algorithms. Data mining techniques can sufficiently address these challenges by 

implementing efficient and accurate dimensionality reduction with feature extraction to 
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refine incomplete (ill-partitioning) data-space and addressing challenges related to object 

classification, intra-class variability, and inter-class dependencies. 

A series of methods have been developed to combat many of the challenges for the 

purpose of creating a sensor exploitation and tracking framework for real time image 

sensor inputs. The framework has been broken down into a series of sub-routines, which 

work in both series and parallel to accomplish tasks such as image pre-processing, data 

reduction, segmentation, object detection, tracking, and classification. These methods 

can be implemented either independently or together to form a synergistic solution to 

object detection and tracking. 

The main contributions to the SE field include novel feature extraction methods for 

highly discriminative object detection, classification, and tracking. Also, a new 

supervised classification scheme is presented for detecting objects in urban environments, 

which incorporates both novel features and non-maximal suppression to reduce false 

alarms, which can be abundant in cluttered environments such as cities. Lastly, a 

performance evaluation of Graphical Processing Unit (GPU) implementations of the 

subtask algorithms is presented, which provides insight into speed-up gains throughout 

the SE framework to improve design for real time applications. 

The overall framework provides a comprehensive SE system, which can be tailored 

for integration into a layered sensing scheme to provide the war fighter with automated 

assistance and support. As more sensor technology and integration continues to advance, 

this SE framework can provide faster and more accurate decision support for both 

intelligence and civilian applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 What is Object Recognition? 

Over the past several decades, many industries have invested greatly into research 

and implementation of performing autonomous surveillance with increasing complexity. 

The reasoning behind moving towards automation in systems is three-fold: reducing 

human casualties, human error, and reducing the financial cost of human operation. A 

particular field of surveillance that can benefit from automation is in sensor exploitation 

(SE), which outputs a knowledge layer using sensor data as input. 

An SE system effectively removes man from the process of the acquisition, 

classification, and tracking objects of interest. As object-mounted sensor technologies 

exponentially increase coverage areas, coupled with booming available computational 

resources, human-run objecting systems can no longer keep up with potential object 

acquisitions in real time scenarios. Multiple sensor modalities exist concurrently on 

objects, along with other data such as GPS and satellite imagery to provide a rich, layered 

sensing stack that a single human operator cannot manage unassisted. SE provides the 

required assistance to aid human operators in utilizing the sensing capabilities currently 

available in the specific platform. 
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In its most basic form, SE acquires (detects), classifies, and tracks objects by 

processing a sequences of images [1]. This process can be broken down into a series of 

sub-tasks, which take the output from a previous step as input into the current step. 

Figure 1.1 describes the typical algorithm subtask sequence in an SE application, each of 

which will be described in further detail. 
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process • * 
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| Object Knowledge | 

^ ^ Chip 

Feature 
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Feature* 

Object Recognition 
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Figure 1.1 SE System Step Diagram 

The SE method begins with sensor input data at the top left, termed "Sensor," which 

is typically one or several images. The input images are then fed into the SE system as 

follow: 

1. Pre-screener: This initial stage conditions the input image into a form acceptable 

for feature extraction methods. Typically, subtasks such as image denoising, data 

reduction, and initial non-object filtering are performed to both enhance speed and 

accuracy of later stages. A set of potential object "chips" is outputted from this 
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stage, where each chip represents a location (bounding box or boundary) from the 

input image(s). 

2. Feature Extractor: This stage takes a potential object chip and calculates a 

single or set of values that can discriminate a member of an object library from 

non-objects (confusers). Feature extraction methods are domain-specific, due to 

the specific requirements of invariance to object changes (rotational, translation, 

scale, partial occlusion, illumination, etc.) 

3. Discriminator: This step uses either an online or offline training system and 

features from the previous step to attain an object "likeliness" score, which can 

either be binary or probability based. The likeliness score for each object chip is 

then passed to the decision rule stage. 

4. Decision Rule: This final stage uses likeliness scores and parameter settings to 

discretely label potential object chips as either "non-object" or "object" in a 

binary detection system, or a particular object in a multi-object detection. Both 

online information .neighboring likeliness scores) and offline (user-defined 

thresholds of likeliness) are used to enhance accuracy, and adjust the false-alarm 

and false-dismissal ratios. 

SE suffers from a lack of robust solutions due to several clear challenges in the 

problem space. Such challenges include a large range of potential input sensor data, 

changing operating conditions (OCs), cluttered environments, object signature non-

repeatability, limited or incomplete testing data, and real-time execution [1]. Many of 

these issues also occur in problems in data mining, which is the driving force for 

choosing a data mining-based solution to the SE problems. 
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1.2 Data Mining and the Knowledge Discovery Process 

The diverse applications of data mining and general knowledge discovery in 

databases (KDD) causes a lack of agreement on the basic definitions of the field [2]. 

Although it is unclear whether KDD and data mining are one in the same, or merely a 

step in the KDD process. As with SE, knowledge discovery can be described as a series 

of sequential steps: 

1. Data Processing (Cleaning): Raw data will contain noisy and missing entries 

which must be resolved to decrease potential misclassification. This stage 

typically involves several processing steps that resolve particular irregularities 

present in the data domain. 

2. Data Reduction: Data dimensionality size can inhibit mining methods by both 

shear computational burden and reduce accuracy from redundant, meaningless 

data. Reduction methods are employed to retain only useful information through 

compression or filtering methods. 

3. Data Transformation: Processed, reduced data is then transformed using 

mathematical techniques for exposing discriminative characteristics of the data. 

The transformations are chosen based on input structure requirements for the 

classification or decision making stage. 

4. Data Mining: In this crucial step, discriminative patterns from training data are 

used with statistical classification schemes to generate relationships, anomalies, 

trends, and patterns using the transformed data. 

5. Pattern Verification and Evaluation: This final stage evaluates data mining 

methods by comparing predictions based on testing and training data used to 
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design the model for higher-level pattern detection and classification. This step 

provides visual representation of the accuracy and effectiveness of the data 

mining method. 

Figure 1.2 is a diagram of the KDD process, which shows the typical algorithmic 

workflow. The SE and KDD processes have significant overlap in the overall 

methodologies, both beginning with large data that contains a significantly smaller set of 

desired information (object data). Ideas from both methods are combined in the 

framework, presenting an SE framework that includes ideas and workflow from the KDD 

process. 

Figure 1.2 Knowledge Discovery Steps in Data Mining 



1.3 Data Mining-Based SE Method 

As previously described, the KDD and SE steps require similar sequence of subtasks, 

due to the strong coherence in their problem space. Figure 1.3 contains the data mining 

steps for SE that contains both critical stages in a comprehensive SE and KDD process. 

This approach to solving the SE problems provides the guidance to develop the SE 

framework described in Figure 1.3. 

Process Image 
Sequence 

£|$tf .̂ E—sN Transform 
"** r^l « I Image 

Data Mining Steps for Object Recognition and 
Tracking 

Detect 
Objects 

Extract 
Features 

Prior Target Data 
Textur« 
riv.tun..s 
tTFii,TF12, 
•>13...! 
(IFJVIF22, 
-F23....! 
|TF51.TF«, 
TF3J,...) 
(TF41.TF42, 
rs.15....) 

Shape Gfdd.e-ff. 
h;,HLrt;!; £*.\]tUH>b 
jSFi i ,sr i2,(CF: i ,Gri2, 
SFU....J GFli... ) 
(SF21.Sf-«.(CiMl,GfM, 
SF23,...) GF23....I 
[SF31,SF32.(t5F3l,<3FS2. 
SF33,...( GF33,...) 
{5F41,SF42,<GF41,GF42. 
SF43....J GM1....I 

] J i Classification 

llms Tsund 

Sj***- 3 mimm 

^•T^tel 

Figure 1.3 Data Mining for SE Steps 

Image Sequence Processing: Raw images acquired from either ground or 

moving sensors will frequently contain noise generated from both the acquisition 

process (camera or transmission) and also from OCs such as non-uniform 

illumination and natural phenomena. Denoising operations are performed on the 
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input data to reduce these irregularities in aims to diminish further propagations 

throughout the process, resulting in inaccuracies. Non-transform data reductions 

can also be applied in this stage for filtering out obvious non-object locations. 

2. Data Transformation: This next stage transforms cleaned and filtered image 

data into a form that can then be used to extract discriminative information for 

accurate detection and classification. This stage can also reduce data 

dimensionality through compression transformations, eradicating redundant 

information and increasing computation time. 

3. Object Detection: This critical SE stage discriminates objects from non-objects 

using a wide array of possible methods. This method in itself can be broken down 

into a data mining process when a detection is the ultimate SE aim. This stage 

can also be considered an initial detection stage but retains false alarms (filtering), 

which are then reduced in classification stages. Object detection is the focus of 

several chapters of this dissertation, and several multiple approaches to object 

detection are presented. 

4. Feature Extraction: This step describes the variety of statistical calculations 

used to compactly represent a region of interest (ROI), which in turn is passed to a 

classification or decision rule algorithm for object discrimination. Feature 

extraction methods must take account for the domain-specific intra-class and 

inter-class variations that can potentially arise, requiring invariant features to best 

represent these changing characteristics. 

5. Classification: Taking feature sets and training data (object priors) as input, this 

stage uses both supervised machine learning methods or statistical analysis to 
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determine the ultimate class or label of a particular region of interest. Common 

classes can be binary, such as "object" or "non-object," or can consist of an object 

library where multiple object classes exist. 

6. Tracking: This final stage of SE updates the position of a correctly classified 

object (detected). Changes in object orientation and scale, along with partial 

occlusions requires a tracker to be robust to changes in object appearance. 

Although some trackers can be considered "detection" algorithms in that the 

object is re-detected and associated to itself at different time intervals, the 

tracking stage is considered independent from object detection. 

These stages lay the groundwork for the SE framework presented in this paper, some 

of which demand multi-stage algorithms within each particular step. Although data 

mining steps can describe the entire SE system, steps 3,4, and 6 can each be considered 

an independent data mining problem, in cases where other stages are not required. 

1.4 Dissertation Outline 

In Chapter 2, the SE framework that solves each of the SE problems is discussed in 

the introduction, along with background on current methods employed. In Chapter 3, the 

initial image processing and data transformation methods used to condition the data for 

further use in subsequent steps are described. Next, Chapter 4 will detail the object 

detection methods used for both moving and non-moving object recognition, using phase-

based optical flow and hierarchical graph segmentation with supervised classification. 

These two methods are then combined with machine classification for detecting moving 

objects through multiple frames. In Chapter 5, novel feature extraction methods used for 

binary and multiclass object classification are presented, and compared to several 



9 

machine-learning methods. In Chapter 6, a novel feature tracking method that employs 

existing features (from previous steps) for real-time tracking results is employed. In 

Chapter 7, the GPU implementations of the algorithms described in Chapters 3-7 are 

presented and discuss execution time gains. Finally, the conclusions and potential future 

research directions are presented in Chapter 8. 



CHAPTER 2 

SENSOR EXPLOITATION FRAMEWORK 

2.1 SE Framework Introduction 

The SE framework can be conceptualized as a series of necessary computer vision 

tasks that uses both supervised and unsupervised learning methods to detect, classify and 

track both moving and non-moving objects throughout an image sequence. The 

algorithm is based on the sequence design on the data mining-based SE diagram 

described in Section 1.3, creating and implementing a set of specific sub-tasks for each 

step. 

Figure 2.1 provides a flow chart-style diagram of the required tasks and the methods 

employed to accomplish them. Most of these tasks have been outlined in Chapter 1, with 

additional sub-tasks specific to the image-based SE challenges. These methods are used 

to reduce false alarms and speed completion time, increasing performance at each 

downstream step. In this chapter, the background research performed to accomplish the 

tasks is outlined in Figure 2.1, and a brief introduction into each of the methods 

developed for solving the particular task is discussed. Each major task depicted in a blue 

box is a main topic in subsequent chapters. 

10 
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ROI locations 

Feature Extraction 

S S I DRSURF 

Invariant 
statistics 

Hu 
moments 

Boundary 
Data 

Texture 
features 

Edge 
histogram j 

GLCMA 
tatare 

M « i l l 

ROI Feature Sets 

Classification 

Target 
TyP6 MLP 

Feature Tracking 

Target 
Location 

Vector 
Correlation 

Figure 2.1 SE Framework Tasks and Methodologies 

2.2 Image Preprocessing 

An initial stage within most higher-level computer vision processes are one or more 

image preprocessing steps to condition image pixel values for increased robustness and 

accuracy. Typical preprocessing steps include image denoising, background elimination, 

contrast enhancement, and dimensionality reduction. Several tasks and their 

accompanying methods that are necessary for generating accurate detection, tracking, and 

classification results are described. 

1. Image denoising (smoothing) describes the set of processes that attempts to 

remove degradations from image data caused by instrument imperfections, data 
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acquisition, interfering natural phenomena, transmission errors and compression 

[3]. Image denoising techniques can be broken up into two basic approaches: 

spatial filtering methods and transfer domain methods. Spatial filters can use both 

linear and nonlinear low-pass kernels, which convolve with an image to smooth 

or blur, at the cost of reducing object boundary contrast. Nonlinear methods such 

as weighted median [4] and relaxed median filtering [5] help combat this 

drawback. Transform domain filtering methods include spatial-frequency filters 

such as Fast Ftheier Transform (FFT), wavelet transform, independent component 

analysis. FFT methods first transform the data into the frequency domain, then 

uses a frequency domain filter and adaptive cut-off frequency [6]. Wavelet 

methods create a set of multi-resolution coefficients which are then used for linear 

[7] and non-linear [8][9] filtering, coefficient modeling [10][11], and non-

orthogonal transform methods[12][13]. Independent component analysis (ICA) 

assumes a signal is non-gaussian, but requires a higher computational cost [14]. 

A two-dimensional linear spatial filter, the Weiner filter, is implemented. This 

filter provides denoising at low computational cost and minimal boundary 

contrast reduction. At the end of the preprocessing step, a second linear 

smoothing step is also performed. This step uses a Gaussian kernel to blur 

processed images to homogenize intra-object values for increased detection 

accuracy. 

2. Inter-frame statistical matching helps eliminate illumination changes when 

performing tasks that require multiple image region matching and comparisons, 

such as object tracking and motion estimation. Histogram transformation 
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methods treat image intensity distribution as a probability density function (pdf), 

which is then used to fit a specific distribution [15]. Histogram equalization both 

increases contrast and normalizes an image sequence through matching the 

intensity histogram to equal-depth bins [16]. Histogram specification uses a 

reference model histogram to transform an image's histogram to match that of the 

model most closely [15]. Specification is used to retain denoised image statistics 

and most closely match global statistics from previous images in a sequence. 

3. Dimensionality reduction methods decrease image size to retain only 

informative data for further processes, as well as minimizing computation time. 

Methods that can achieve this task include data transformations such as principal 

component analysis (PCA) [17], fast Fourier transform (FFT) [18], and wavelet 

transformation [19]. PCA is an orthogonal linear transformation, which reduces a 

set of variables by calculating eigenvalues from a covariance matrix, retaining 

values with most contrast (information). FFT coefficients can be thresholded by 

frequency to reduce high frequency data. Wavelet transform allows for a 

multiscale depiction of the image. Unlike Fourier descriptors, wavelet 

coefficients retain spatial information because their basis functions (or wavelets) 

are localized in the image, where a Fourier basis function spans the entire image. 

Wavelet approximation (low-pass) coefficients are used to represent images in 

reduced dimensions. Different scales are used throughout the process but are all 

calculated efficiently in this step. 

4. Inter-object variance reduction is required to take into account differences in 

intra-object variations between objects within a single class. An example of such 
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a case is the boundaries that occur between a light colored object and its 

windshield, which is absent for darker colored objects. This additional smoothing 

step creates a local blurring to reduce these sharp contrasts. Background 

modeling has been proposed which can reduce contrast [20] over a localized area. 

A simple 2-D Gaussian kernel function, as described in [15], is used due to its 

computational speed and effectiveness in reducing the overall quality of results. 

2.3 Object Detection 

An important process in the SE framework, the object detection strategy uses multiple 

techniques to both detect moving and non-moving regions of interest which conform to 

predefined size, shape, and motion characteristics. The methods output regions of 

interest locations that are then used as input for feature extraction, tracking, and 

classification methods. 

1. Optical Flow computes an approximation of the 2-D motion field from 

spatiotemporal patterns of image intensities, which is a projection of the 3-D 

velocities of surface points into the image surface [21]. Motion estimation in 

image sequences via optical flow methods was first introduced by Horn and 

Schunk in 1980-81 [22]. Since this introduction, new techniques have been 

developed that calculate 2-D velocity fields using a variety of approaches. In the 

survey paper from Barron [23], the author selects a local intensity-based method 

by Lucas and Kanade [24] and a phase-based approach by Fleet and Jepson [25] 

as providing results with the highest accuracy and density. After evaluating these 

methods, a phase-based approach for motion estimation using wavelet 

approximation is performed. 
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2. Image Segmentation of non-trivial images is one of the most difficult tasks in 

image processing. Accurate segmentation typically leads to the success or failure 

of the analysis process [15]. Although the amount of image segmentation 

methods and research is immense, most methods can be divided into detecting 

discontinuities and similarities in an image region. Discontinuity detection is 

typical for methods that find edges in images through kernel operations [26], 

which are then followed with morphological operations to create connected 

component regions [27]. To segment regions that display edge occlusion, edge 

detection and linkage methods will fail in many scenarios. Similarity measures, 

on the other hand, are robust to occlusion because they tend to search over a local 

region for image statistics that display similar values. Simple methods that use 

similarity are intensity and color thresholding, with more advanced methods using 

histogram statistics in local regions for better discrimination [28]. Region-based 

methods can employ both pixel intensity similarities and discontinuities for 

segmentation such as watersheds [29] or region-growing methods that use seed 

points [30]. Graph-theory is a popular method for creating partitions and 

connections between similar pixels, forming regions. The normalized cuts [31] 

method uses similarity measures to "cut" graph node connections while keeping 

strong connections together, while other methods use shape information to create 

segments from the graph [32][33]. Multi-scale segmentation has proven 

successful in finding relationships between intra-segment statistics at different 

scales. Such methods include model-based approaches [34] and probabilistic 

linking [35]. Many methods employ wavelet decompositions for segmentation, 
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such as using a multi-scale hidden Markov tree [36] and neural-networks [37]. A 

novel implementation of the multi-scale graph theoretic segmentation using 

wavelet coefficients for object detection is used. 

3. Track-before-detect is a popular detection method that when applied to high 

frame rate data, provides high detection accuracy over multiple image frames 

[38]. The method uses a similar approach in terms of requiring matching of 

multiple instances of a detected object to reduce false alarms, but instead of using 

a dynamic state space model technique such as [39] and [40], object matching and 

non-maximal suppression are employed to discriminate object candidates in the 

subsequent frame. Both optical flow and graph segmentation methods are 

employed to acquire the short tracks to validate detected objects. These acquired 

motion features are then combined with intensity and edge features to form a 

multi-cue energy function in a hierarchical graph segmentation algorithm inspired 

by [41]. 

2.4 Feature Extraction and Classification 

In many domains that require data mining methods for classification, proper feature 

set selection is a critical step in attaining accurate results. For SE, robust feature 

selection is especially difficult due to the many scale, rotation, illumination, and 

environmental variations that occur within a single image sequence. Several classes of 

feature extraction techniques are surveyed and novel extensions of them that have 

produced accurate classification results are created. 

1. Gradient feature descriptors are a general class of features describes some of 

the most recent and highly celebrated methods to date. These methods use first 
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and second order derivatives to identify unique local areas that can best be 

differentiated using matching algorithms in subsequent frames or in object 

libraries. Corner point detection methods, such as Harris corner points [42] and 

differential invariants [43], provide a means to find locations for calculating 

descriptors that can be tracked through a series of frames. Mikolajczyk and 

Schmid [44] provide a thorough evaluation of local descriptors for image 

matching (object tracking), observing SIFT (Scale Invariant Feature Transform) 

[45], and speed-up robust features (SURF) [46] and GLOH (Gradient Location 

and Orientation Histogram) methods as ranking highest in performance. 

Histogram and gradients (HOG) are used in the classification stage [47]. 

Steerable filters can also provide rotational invariance by "steering" in a particular 

direction based on the highest gradient [48]. 

2. Boundary and shape descriptors use an object silhouette, or outer boundary, to 

describe the object for discrimination. Typically a boundary detection method, 

like [26], must be employed at some part in the feature extraction process, which 

uses contrast with the background to detect discontinuities. Log-polar shape 

descriptors are presented in [49] to detect aerial objects. Belongie et al introduce 

"shape contexts" for matching similar shapes to one another [50]. Non-linear 

shape statistics have also been used for segmentation and tracking by using a 

density estimation method [51]. Boundary information typically lacks rotational 

invariance, thus, a feature set is created that both maintains shape discrimination 

and invariance to rotation. 
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3. Invariant descriptors is a large research area that handles the multiple variations 

that occur in SE is a primary challenge. Invariant feature extraction is a large 

research area, which includes some very common methods such as histograms 

[52] and invariant moments [53], which provide invariant feature sets to rotation, 

translation, and scaling changes. Recent extensions include the geometric 

histogram [54] and scale-invariant descriptors [55]. Both invariant features and 

several types of histograms for classification are used. These forms of 

classification can help to detect objects with high variations due to rotations and 

partial occlusions. 

4. Texture-based descriptors belong to a class that uses the internal statistics of an 

object for classification, referred to as "texture." Such methods include 

calculating gray-level co-occurrence matrices [15], then generating the celebrated 

Haralick features [56]. Some methods use filters such as the Gabor transform 

[57] and wavelets [58] to generate a set of texture classifiers. Due to the large 

variations within classes of objects, a very limited set of texture features are used, 

although the feature set is very important in other image recognition fields. 

In the methodology, many of the calculated feature sets are used as inputs into 

supervised classification algorithms. Previous image classification and SE research is 

dominated by supervised classification schemes. In [59], spatial and texture features are 

calculated and used in a two-stage classification algorithm, which uses both rule-based 

classification for object detection, then linear discriminate analysis (LDA) and quadratic 

discriminate analysis to (QDA) to further classify objects types. Cao et al. [60] employ 

support vector machines and wavelet moment invariants to classify SAR images into a 3-
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class object classification system. Neural-networks directed Bayes-decision rules creates 

conditional probabilities for classification, using object motion characteristics as the 

primary features [61]. 

2.5 Object Tracking 

In this final stage of the SE framework, previous knowledge derived from the 

detection and classification stages is used to provide a feature tracking scheme that 

generates a probability of a current object location. Object tracking is determining the 

trajectory of an object throughout a 2-D or 3-D surface. This undertaking is challenging 

due to: loss of information due to 2-D projection of a 3-D scene, image noise, complex 

motion, non-rigid objects, partial or full occlusions, complex shapes, environmental 

conditions, and real-time processing requirements [62]. The object tracking research is 

rich in methods that employ supervised classification, dynamic state space models, 

feature matching, and iterative detections. The background of each of these methods will 

be described in more detail. 

1. Tracking by classification uses online training of classifiers to track through an 

image sequence by labeling a location as an "object" class and all non-object 

locations as "non-objects." Avidan uses support vector machines (SVM) with an 

optical flow algorithm to maximize a classification score to update the object 

location [63]. Williams et al. use full probabilistic relevance vector machine 

(RVM) to generate observation with Gaussian distributions to track by 

determining the displacement of the object [64]. Bayesian networks have also 

been successfully implemented for object tracking [65]. 
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2. Dynamic state models use ideas from control theory, dynamic state modeling for 

object tracking is a very popular method with current object tracking research. 

The dynamic state of the changing position is governed by the dynamic equation, 

which includes previous states and noise. Methods based on classical dynamic 

modeling, such as Kalman filters [66] [67] and particle filters [68][69] are used for 

their robustness to changing operating conditions. These methods can retain 

object tracks over partial and full occlusions, although they can suffer from issues 

of drifting. 

3. Feature matching is a successful class of tracking algorithms which locate 

unique features associated with spatial areas over multiple frames. Methods such 

as the KLT tracker use features discussed in Section 2.4 to match similar feature 

sets to generate similarity scores [70]. Cross-correlation is a basic method for 

determining the similarity between two sets of image descriptors, which is used as 

a similarity metric in Chapter 6. Distance measures are another means to 

determine the matching measurement, with low distances equating to strong 

matches. Multiple tracking methods use the Mahalanobis distance metric, while 

other tracking methods have used covariance matrices, homography estimations, 

and Euclidean distances [42]. These distance measures can affect tracking results 

through feature sensitivity, as discussed in the methods section. 

4. Iterative detection (detect-before-track) performs a detection using a clustering 

or segmentation to determine object presence, which is associated with a 

particular track. Such methods include using optical flow and segmentation 

(described in Section 2.3), with the additional detection and tracking methods 
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such as mean-shift [71] and Track-and-cut [72]. These detect-before-track 

methods can suffer from heavier computation, but can benefit from performing 

independent segmentation tasks in parallel. 

Background into each of the classes of object tracking methodologies is discussed, 

and the vast areas of research exploration within each of these areas are identified. 

Although a feature matching-based method (described in Chapter 6) is currently used, 

several ideas are derived from other tracking methods throughout the SE framework. 

2.6 SE Framework Description Conclusion 

This chapter serves as a brief introduction into each of the SE framework stages, 

providing the reader with a glimpse into the wide range of research areas involved in 

creating solutions to the challenges that SE design faces. Each of these stages can easily 

garner investigation and exploration that could produce dissertation-level research. The 

main aims of this dissertation are to demonstrate how each of these areas of research can 

be combined into a working set of algorithms to achieve the entire set of SE challenges in 

a single framework. Each of the algorithms and SE challenges is described in detail 

throughout the next several chapters. 



CHAPTER 3 

IMAGE PREPROCESSING 

3.1 Introduction 

As discussed in Chapter 2, an initial stage of the series of tasks are performed to 

condition an input image or images prior to higher-level operations. In Figure 3.1, the 

subroutines highlighted in red display the sequential image processing stage. 
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First, the digital sensor image representation is described as a discrete function, 

f(x, y), of pixel size MxN. For this description, the discussion will be limited to 

grayscale, or intensity images, represented as: 

/ (x ,y) = /(x,y). (3.1) 

For each (x, y) location {note in matrix form, x refers to rows andy refers to 

columns). These intensities make up a two-dimensional matrix, with ranges for 8-bit 

images between [0, 255], or if normalized between [0,1]. These intensities can also be 

thought of as magnitudes at a particular location (Figure 3.2), allowing to more easily 

visualize many of the computational methods discussed in the rest of the chapters. Also 

shown in Figure 3.2 are typical image sensor data in visible and infrared spectrums. 

lm;ige/(.Y,t'/ 

! • ' 

Figure 3.2 Matrix Representation of an 2-D Image and Object Chips 

As explained in both Chapters 1 and 2, raw input data must be conditioned for 

successful information exploitation. Image sequence exploitation is no different, with 

sensor data series requiring denoising, data reduction and filtering techniques to provide 

higher order algorithms with appropriately "cleaned" input data to produce accurate 

results. 
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Several methods have been employed in the SE framework, each of which serves a 

unique purpose down the chain of algorithms. Although these methods are not the only 

ones capable of denoising, reducing, transforming, and filtering data sets for SE, they 

have been selected for both their specific use for the data sets of interest and because they 

can easily be augmented for data sets with differing properties. 

3.2 The Wiener Filter 

The Weiner filter is applied to adaptively reduce noise artifacts. Using a local 

neighborhood of size m x n, an average of the local estimated variances, v, is used to 

create a pixel-wise filter: 

; a y ) = M + £ ^ ! a a ; ) - M ) , (3.2) 

where u is the local mean, o the local standard deviation, and I(i,j) is the image pixel 

value at location (ij). In the implementation, the local neighborhood is set to n = m = 3, 

but can easily be automated by using prior knowledge of object dimensions. Figure 3.3, 

shows the original raw intensity object chip of an aerial object in grayscale (left), then 

display the same object chip in the center using jet colormap (middle) for better 

visualization. The last image is the output after performing a 2-D Wiener filter with the 

mean calculated over a 5 x 5 window. 
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Figure 3.3 Raw Image Object Chip in Grayscale and Jet Colormap, and Object Chip after 
Wiener Filter 

The Wiener filtering reduces small, local variations that can mislead edge detection 

and gradient feature extraction methods. Notice how both background and object local 

areas smoothen within its segment, with little to no blurring of boundary areas. This 

function is first performed so that noisy signals do not propagate into forms that cannot 

be easily cleaned, such as after data reduction steps. 

3.3 Histogram Specification 

Now that local noise has be reduced through Wiener filtering, additional image 

irregularities can occur which cannot be solved through calculations of localized areas, 

such as environmental changes due to illumination. To combat such issues, The next 

preprocessing step is to perform histogram specification [15] between the subsequent 

images used for the input. Histogram specification approximately matches the intensity 

histogram from image lt to the histogram from image / £ + d t by creating a transform 

function which maps the probability density function (pdf) from the histogram It to the 

histogram It+dt. 



26 

For discrete pixel values, the probability of occurrence of intensity level r* in an 

image is approximated by: 

Pr(rk)=^ * = 0,1,2 L-l, (3.4) 

where n is the total pixel count of the entire image, nk is the count of pixels that have 

intensity rk, and L is the range of intensity values (0-255 for 8-bit images). The 

histogram equalization transform function is then: 

sk = Hrk)= Zf=o Pr(r;) (3.5) 

= l J = o ^ k = 0,1,2 L-l 

Each image pixel rk is mapped to sk through transform T, resulting in forming an 

image with a histogram that is much more evenly spread out across the range [0...L-1] of 

pixel intensities. This step is performed to reduce false optical flow values from 

illumination changes between image frames. In Figure 3.4, you can see the subtle 

changes in the histogram, which performs an important role of reducing illumination 

effects that result in poor motion estimation. 

Figure 3.4 Histogram Specification to Reduce Illumination Effects 
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3.4 Wavelet Decomposition 

Wavelet decomposition has been employed for the purpose of dimensionality and 

data redundancy reduction, providing a multiscale solution-space for detection scale-

specific motion within an image frame [74]. Before implementing the detection 

algorithms, a 2-D discrete wavelet transform of the processed image is performed to 

create a multiscale representation of the image frame. The 2-D discrete wavelet 

transform uses a wavelet function, T/;(X, y) , and a scaling function, q)(x,y) to correctly 

position the function before convolving with the image of size M x Abusing the following 

formula: 

<Pj,m.n(x, y) = 2}/2<p(2jx - m, Vy - n) , (3.6) 

rl>i
Jim.n(.x,y) = 2J^(2h-m,2Jy-n), i = {H,V,D} (3.7) 

The 2-D discrete wavelet transform of the function / ( x , y ) of an image of size M x TV is 

formalized as [19]: 

Wv(/o.m, n) = -j=I,x=o £y=o /(*,y)(pjo,m.n(x, y), (3.8) 

W\Q, m, n) = ^ = 2 ^ ZJkJ/C*, yWj>m.n{x, y) i = {H, V, D] , (3.9) 

where j 0 is the starting scale, which is typically set to j 0 = 0, then set to N = M = 2J 

and j = 0,1,2,... J - 1 and m,n = 0,1,2,...,2 j - 1, and {H,V,D} yield the 2-D 

combination to get if)1 for a horizontal (H), vertical (V), and diagonal (D) direction. 

Daubechies-3 and Haar wavelets are used, as they have evidenced to offer high degrees 

of detection and tracking accuracy in previous studies [75]. The generated wavelet 

approximation coefficients, Wv, are used as input into the optical flow algorithm 
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described in Chapter 4. Due to the 2J scaling relationship between pixel locations, optical 

flow fields can be easily interpolated to find flow at original image locations. The first 

three levels of wavelet approximation coefficients are found, with higher scales detecting 

larger motions. The notation WL to refer to a wavelet approximation of an image, /, at 

level L is used. 

In Figure 3.5, the approximation coefficients of wavelet decompositions are shown on 

visible and IR sensor data. As can be seen from Figure 3.5, object data sizes are reduced 

but characteristics can still be retained at lower wavelet levels. Based on the resolution of 

the image, high scale approximations lose any resemblence to the object chip it 

represents, which in most cases is an indication the coefficients cannot be used to 

sucessfully discriminate the object from the background. 
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Figure 3.5 (Top) Visible Aerial Object Chip Wavelet Decomposition Approximation 
Coefficients Levels 0-3 and (bottom) Levels 1 -6 on an IR Chip 

3.5 Gaussian Smoothing 

Gaussian smoothing was implemented in the final stage of preprocessing. Intra-

object non-uniform pixel variations can make image segmentation difficult because areas 

that contain sub-segments of the same object may differ too significantly to merge 

together. This second noise reduction filter also assists motion detection by decreasing 

discontinuities that do not appear in subsequent frames due to occlusion. The size of the 

kernel was chosen to be roughly Vi the size of the smallest object to both retain object 

edge information and sufficiently smooth intra-object pixel intensities. 

The Gaussian kernel is a member of a class of spatial filters; spatial filters are used in 

preprocessing stages to reduce noise and help connect edge and object regions through 
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combining neighborhood pixels to transform a central pixel intensity or color value. The 

Gaussian kernel g(x,y) is formalized as: 

g(x,y) = ^e~y^ ) , (3.10) 

where o determines the width of the kernel. A smoothing mask or kernel is a matrix of 

coefficients (usually rectangular or circular) which is convolved with an image. The 

coefficients increase toward the center of the kernel to give larger weight to pixel 

locations closest to the central pixel of the passing image window. Figure 3.6 show the 

changes to an object that occur after a Gaussian filter is applied. Take note that some 

boundary information is lost through this smoothing process, unlike the Wiener filter. 

This loss in boundary localization is acceptable in cases where large intra-class variations 

are significantly reduced. 
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Figure 3.6 {Top) 2-D Gaussian Filtering With Changes in Histogram, {bottom) Original 
Object Chip, its Level 2 Wavelet Approximation, and Post Gaussian Filter Output 

3.6 Conclusion 

The image preprocessing methodology that was performed to condition the data for 

the subsequent SE stages follows. Image preprocessing methods are very data-specific, 

with this particular set of methods providing acceptable results in the evaluation. It 

would be advantageous to experiment with several preprocessing methods when 

attempting to perform SE on a dataset of sensor data that does not conform to the 

characteristics of previous tested data. 



CHAPTER 4 

OBJECT DETECTION 

4.1 Introduction 

Now that image data has been conditioned using the methods described in the 

previous chapter, the critical stage of object detection takes the processed data as 

input, then performs multiple algorithms that detect motion and segments images to 

then determine potential object locations (Figure 4.1 highlighted in red). 
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This process requires sophisticated algorithms that demand potential object prior data, 

due to the myriad of possible ways to break down even a simple real image into discrete 

parts. In the subsequent sections of this chapter, the use of exploit sensor data to detect 

object motion is explained, then create a hierarchical segmentation of the scene to extract 

only segments which match domain knowledge of object candidates are explained. A full 

object detection methodology that reduces false alarms by employing a track-before-

detect system is presented. Evaluations of each of the methods are also presented and 

discussed. 

4.2 Motion Detection Using Optical Flow 

As discussed in Chapter 2, two optical flow calculation methods, one intensity-based 

and one phase-based, have been chosen to evaluate wavelet approximations of image 

scenes for object detection and tracking. In the following sections, each method is 

described, along with an explanation about how they differ in calculating the optical flow 

values. 

4.2.1 Lucas and Kanade Method 

In the Lucas and Kanade optical flow method, an iterative approach is used to find 

velocity components for images A = I(t) and B = I(t + dt). The image velocity, 

v = \vx vy\ , can be defined as the vector that minimizes the residual function s defined 

at image position p = \px py\ as [76]: 

e(y) = e(vxi vy) = ^ ^ \ W * ( y ) - B{x + vxy + vy)f. (4.1) 
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An integration window, co, is chosen to have a size both large enough to find large object 

motions and small enough to retain local accuracy. Using prior domain knowledge of 

object velocity can allow for the automatic selection of co to the smallest window that can 

contain maximum object motion. An optimum optical flow calculation will give: 

de(v) 
dv 

= [0 0]. (4.2) 
v=vopt 

After expanding Equation (4.2) from Equation (4.1): 

After substituting B(x + vxy + vy) by its first order Taylor expansion for the point 

v = [0 0]T, it can be seen that the (A(x, y) — B(x, y)) is the image gradient between the 

two images, with the image gradient vector written as: 

VI = ̂  = A(Xly)-BCx,y). (4.4) 

The derivative images Ix and Iy can be found from image A only through the use of a 

central difference operator. Equation (4.3) can then be rewritten using the difference 

images as: 

I Idem7 _ yPx+a>x yPy+Uy (\ ll lxly\ _ \SI Ix]\ 
II to \ ^ ^x=Px-^x^y=Py-ay\^IxIy 7 2 J V [SI Iy])' ^ ^ 

Denote 

r2 
r ^ yPx+^x yPy+Uy !x lx^y 
U L,x=px-oix Ly=v -u, \r , , 2 

Vxy y 

u j . yPx+Ux yPy+^y \ S l lx\ ,. _. 
" ^x=px-oix^y=Py-ojy\Slly\- V*-') 
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Now, Equation 4.2 can be rewritten as: 

ipg*|T««-5. (4.8) 

The optimum optical flow vector is then: 

vopt * G-^b. (4.9) 

This equation is only a valid result when G is invertible, which occurs when the 

gradients in image A are nonzero in both the x and y directions. This method is used 

iteratively through a Newton-Raphson method to find larger pixel displacements. The 

algorithm will perform k iterations before stopping. These k iterations improve optical 

flow accuracy, but require additional computation time. This algorithm is implemented 

using multiple levels (N = 0,1,2,3) of wavelet approximations as inputs and set the 

iterations to k = 3. 

4.2.2 Pyramid Implementation of Lucas and Kanade 

This multi-scale approach to the Lucas and Kanade optical flow calculation is 

motivated by the possibility of calculating motion at both large and small scales by 

recursively reducing the image size while keeping the window size constant. The 

pyramidal representation of the input image I of size M x TV will be denoted as 7°, or the 

zeroth level of the image with dimensions m° = M and n° = N. The pyramid is then 

recursively constructed using a Taylor series expansion around the each point 

IL~1(2x, 2y) to get IL. This expansion is possible due to the coordinate relationship 

between levels in L as: 

{*,y)i=^. (4.io) 
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The image at I1'1 is defined as follows (through Taylor series expansion): 

lL{x,y)=-IL-\2x,2y) 

+ -[IL~1(2x - l,2y) + IL~1(2x + l,2y) + /L"1(2x, 2y - 1) 
o 

+ /L _ 1(2x,2y+1)] 

1 
+ — [/L_1(2x - l,2y - 1) + /L_1(2x + l,2y + 1) 

16 

+ ll~\2x - l,2y + 1) + IL~1(2x + l,2y - 1)]. 

Similar to wavelet approximation coefficients, the image pyramid-level height is 

typically Lmax = 2,3,4, because the large reduction in size makes levels >3 useless for 

determining local motion. The pyramidal Lucas Kanade using the same parameters as 

from Section 4.2.1. is then implemented, setting the additional pyramid parameter level to 

3 to ensure multi-scale optical flow calculations. 

4.2.3 Phase-Based Optical Flow 

For a third estimate of motion, a phase-based optical flow method from Gautama and 

Van Hulle, which uses spatial Gabor filters for velocity estimation [77], is used. This 

method, similar to that Fleet and Jepson [25], tracks contours of constant phase over time, 

which have been proven to be more robust to illumination changes and non-translation 

motions than contours of constant amplitude. This method is divided into three stages. 

This method begins by filtering the image multiple times using quadrature pairs of 

Gabor filters, where a temporal phase gradient is computed. Each filter is characterized 

by its center frequency, (fx, fy), and the width, a, of the Gaussian curve which produces a 

complex-valued phase response, with a phase component 0(x, t). As Fleet and Jepson 

state, the temporal changes of a constant phase can approximate motion, which is 
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represented as contours that satisfy 0(x, t) = c. This equation is differentiated with 

respect to t, which gives us the temporal phase gradient, V 0(x, t): 

V0(x,t)-Vx = V(Kx,t)-(v,l) , (4.11) 

where v is the velocity vector. The temporal phase gradient can then be written in the 

following manner: 

<t>t = - ( v - 4>x) = -Il0*llproj0n(v), (4.12) 

where 0£ is the normalized (f>x. The component velocity in the direction normal to the 

filter orientation can now be computed as: 

vc = proj«(v)fl? = 1^T)(fx,fy). (4.13) 

In the second stage of the algorithm, the reliability of the component velocities is 

measured, due to inaccurate velocities computed at phase singularities. The linearity of 

the component velocities are measured by performing a linear least squares regression on 

the phase component pairs, taking the mean square error divided by the gradient to yield 

phase nonlinearity. High non-linearity values above a defined threshold are rejected. 

The linearity threshold is then chosen as, threshUn = .05, as suggested by the authors to 

reject phases between [-150, 150], which begins producing unreliable results. 

The final stage of the algorithm is the combination of reliable component velocities 

into a single velocity measure at each location in the x and y directions. The following 

equation is used to create the full velocity using a constraint line, Lit yielding the full 

velocity at the point where several constraint lines intersect. Guatama and Van Hulle use 

a goal programming method that uses amplifiers to converge to a solution for a full 

velocity, v = (u, v~) from component velocities by minimizing the distances between 
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constraint lines. An iteration step of the goal programming network is written as 

[78]: 

v*« = v>- As£?=1 veJL ( ^ f - | |vc, | |), (4.14) 

where N is the number of constraint lines and As is the time interval between state 

updates. This algorithm is implemented using a Gabor filter bank of size 11 filter pairs 

using /? = 1 to get a Gaussian width, a, using the following equation: 

a = j . (4.15) 

The minimum number of constraint lines was set to N = 5 for all of the 

implementations. The next stage of the algorithm processes and reshapes optical flow 

calculations to match original image sequence dimensions. The optical flow for each 

wavelet approximation level,/, will have the dimension size relationship of My x Nj = 

/ 2 ; x Inp w ' m a n interpolation necessary to map values to the original image size. 

The wavelet scaling function is used to interpolate the optical flow values to mimic the 

compression of the image (Section 3.3). The values of the rescaled optical flow are then 

multiplied at each location by 2 ; to account for the increase in pixel distances. Figure 4.2 

provides typical optical flow results for wavelet approximation levels N — 0,1,2,3 for 

each of the three methods described in Sections 4.2.1-4.2.3. 
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Figure 4.2 {Top left to right) Image Frame With Multiple Object Motions and Wavelet 
Approximation N=0...3, (2nd from top) Lucas and Kanade Optical Flow for Each 
Wavelet Level, (3rd from top) Lucas and Kanade Pyramid Optical Flow for Each Wavelet 
Level, and {bottom) Phase-Based Optical Flow Method. 

4.2.4 Evaluation and Results 

For evaluating the optical flow calculations, a subset of the camera 1 Columbus Large 

Image Format (CLIF) sequence [79] has been chosen. This camera captures an aerial 

view of an urban area at a two frame/sec rate. Because the image sequence dimensions 

are too large for complete processing (9733 x 8033), sub-image sequences of varying 

sizes between 700 x 700 and 214 x 529 have been created. In total, six sequences were 

used ranging between 20 and 38 frames in each and containing 16 object ground truth 

data. The optical flow calculations were computed using Matlab R2009a release on an 
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Intel® Core i7 920 @ 2.67 GHz processor with 12 GB of RAM. The completion time for 

each wavelet level and optical flow technique is provided in Figure 4.3. 

Optical Flow Calculation Time 

1 2 

Wavelet Approximation Level 

Lucas-Kanade 

Phase-based 

LK-pyramid 

Figure 4.3 Computation Time at Each Wavelet Approximation Level N=0,1,2,3-

Object detection at a specific pixel location is based on pixel locations where 

\^targ nmax | > threshv, with the threshold chosen for each optical flow method based on 

prior knowledge of minimum optical flow values from a moving object. The results are 

provided in Figure 4.4, which shows object detection accuracy and overall detection area. 

Optimum performance gives high detection accuracy with low detection area. 
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Detection Accuracy and Coverage Area 
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•Lucas-Kanade Area 

•Phase-based Area 

•LK-pyramid Area 

L 
I 

Wavelet Approximation Level 

Figure 4.4 Detection Accuracy Results for Each Optical Flow at Wavelet Levels 
7V=0,1,2,3. 

4.2.5 Optical Flow Evaluation Conclusions 

Although all three optical flow methods were successful in detecting object motion, 

the phase-based method achieved superior object tracking accuracy (91.05% at level-0), 

possibly due to the illumination invariance that phase-based methods achieve. Wavelet 

approximations provide an exponential decrease in computational time, which was 

expected due to the dimensionality reduction. Detection accuracy and specificity are 

reduced with the increase in wavelet decomposition levels, and the best compromise is 

the phase-based method at level 1 (87% accuracy). Although computational time is still 

too large for use in a real-time analysis, lower-level language implementation coupled 

with parallel programming can reduce this computation time significantly. 

4.3 Object Detection Using Hierarchical Graph Segmentation 

This method uses the concept of multi-scale graph segmentation for the bottom-up 

aggregation of nodes, allowing image areas to merge together at different scales, similar 
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to methods described in [80][41]. As outlined in Figure 4.5, the method begins with a 

construction of a level 0 graph using intensity contrast as weights for edges. An iterative 

graph coarsening method is then used to aggregate nodes at a new scale. This step is 

repeated until a predetermined minimum amount of nodes has been reached. Higher-

level weighting functions are used to augment weights, which use node statistics to 

change node couplings. After the algorithm completes, the graphs are scanned for 

segments similar to desired object shape and size. 

Construct fine-level graph: assign coupling weights between neighboring 
pixels according to intensity contrast 

~ i . 
Create coarse-level graph: 

• Select representative nodes as seeds 

• Aggregate other pixels around seeds, based on their couplings 

• Calculate aggregate (segment) properties 
• Derive coarse-level couplings from fine-level couplings and 

modify by similarity in aggregate properties 

I " 
Determine boundaries of salient segments by a top-down process 

Figure 4.5 Diagram of the Multi-Scale Graph Segmentation Algorithm [41] 

The multi-scale graph-theoretic segmentation algorithm is divided into its constituent 

parts and discuss its implementation. The algorithm subsections include: (Section 4.3.1) 

graph initialization, (Section 4.3.2) energy function for node selection, (Section 4.3.3) 

graph coarsening, (Section 4.3.4) inter-node weighting using node statistics, and (Section 

4.3.5) object segmentation candidate selection. 

Repeat 
while 

number of 
nodes >1 
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4.3.1 Graph Initialization 

In the initial stage (level 0) of the graph segmentation algorithm, each pixel in image / 

of size Mx N is considered as a node in a graph, with an edge connecting each 4-

connected neighbor. An inclusion matrix, Ug, (g is graph scale) is created which is used 

to find pixel membership (U>0) at a particular level. The initial membership matrix U0 

of size (Mx N) x (Mx N) has a value of: 

Uod.j) = {0 | f • ~ Jj for ij = 1,2,... M * N, (4.16) 

so that each row in U0 has only one member at location i = j , creating an identity matrix. 

A weight matrix, W0, of the same size as U0, is also created and populated with values 

from edge couplings. This edge (connection) strength is initially dependent solely on 

pixel intensity similarities, with high similarity creating stronger edge strength. The 

function to determine the initial edge is written as [80]: 

WtJ = e-«\ii-h\, (4.17) 

where / andj are nodes in a graph representing 4-connected neighboring pixels, / is image 

intensity value, and a is a global parameter set to 0.25 to best segment targets of desired 

size. The a list of edges (W0 > 0) and node locations (U0 > 0) are then used to create a 

Laplacian matrix, L0, which is used in the energy equation in Section 4.3.2. 

4.3.2 Node Energy Function 

To decide which nodes are chosen to be representative nodes in the next scale, 

(g = 1), an energy function, T(u), is calculated using the Laplacian matrix, weight 

matrix, and inclusion matrix. Sharon et al. concluded that when solving the generalized 

eigen problem Lu = XWu with minimal positive eigenvalue X, salient nodes are found 
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where T(u) is minimal. The following equation is then used to generate energy values 

for each node in the inclusion matrix [41]: 

r f r ) = * W « « - " j ) 2
 = ^ (4.i8) 

I.i>jWijUiUj -UTWU 

The median value of T is chosen as the threshold in determining which nodes are 

selected as node locations at the next coarsest level. As nodes grow in size, an additional 

size constant, /?, is introduced to reduce the tendency of larger nodes to be selected, 

changing Equation (4.18) as follows: 

r(ii) = - ^ L y . (4.19) 
(-uTWu) 

Setting 1 > /? > .5 will increase the tendency for larger nodes to be chosen as new 

coarse nodes, where . 5 > /? > 0 will cause smaller node selection to increase. /? — .5 

eliminates any size bias in the node selection. Depending on the dimensions of the image 

frame compared with the desired object dimension, /? can be automatically selected to 

create nodes of a size similar to prior object dimensions. 

4.3.3 Graph Coarsening 

Candidate nodes are selected using the T function described above as all nodes that 

satisfy T(u) < median(T). The number of selected nodes is typically - in size. The 

N i 
inclusion matrix, for the new level Ug+1 is created with an approximate size Ng x s'/ y, 

where Ng is the number of nodes of the graph at level g. After the nodes with minimum 

energy are selected, an interpolation matrix, Pg^g+1^ is created. This new interpolation 

matrix uses weights from Wg to associate non-candidate nodes to candidate nodes. After 
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Pfl_>(5+1) is populated with weight values from non-candidate nodes, the nodes at level g 

are scanned again to find any nodes that were not selected as candidates and did not have 

connections to candidate nodes. Nodes in this pass are defined as size Ng+1. These 

"orphaned" nodes are appended to Pg_>^g+1^) and Ug+1, as additional candidate node 

locations. The interpolation matrix is then normalized so that: 

l S i + 1 Pik = 1 for all k > Ng+1, (4.20) 

which gives a normalized weighted relationship for all nodes not selected as coarse level 

nodes. Using the interpolation matrix, the weights are determined at the node scale level 

g + 1 as: 

% + i = Jj-*to+i)W& Vfe+D- (4-21) 

Figure 4.6 (Left) Multi-Scale Segmentation of Level 1 Approximation Image at Levels 
g = 4,7,10, (right) Interpolation Matrices (Pg^g+1y) For Levels g = 0,3,6,9. 
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4.3.4 Higher-level Node Statistics 

After initial weights (Section 4.3.1) and interpolation matrices (Section 4.3.3) 

augment the edge weights connecting nodes at levels g > 0, additional statistics are 

calculated, and their similarity measure is used to reduce or increase node weights. For 

most of these calculations, the original pixel membership in current node scale must be 

found. This membership can be found by multiplying interpolation matrices from the 

current scale down to P0_*i- This step will create a matrix, V, of size Ng X N0. For each 

pixel, / (1 to N0) is assigned to a single node by finding the max values in the row vector 

vt. Each pixel ultimately becomes a member of a node at level g, which is used to find 

the node statistics described in Figure 4.7. 

Input Image 
Scale 4 

Figure 4.7 Multiscale Graph Segmentations of a SAR Object Chip 

Once nodes represent multiple pixels, the V matrix using the interpolation matrices 

below level g can be used to find intensity statistics for node k and scale g, which are then 

used to find similar nodes at level g. After identifying members (pixels) of each k node at 
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level g, the pixel members can be described as an intensity histogram, which is written as 

a probability density function (pdf): 

Prfo) = ^ k = 0,1,2 L - 1, (4.22) 

where pr(Tk) is m e probability of an image pixel being a member of histogram bin rk. 

For this method, k = 16 bins is chosen in the texture calculations which provides the 

required textural discrimination, unless noted otherwise. To calculate the moments, write 

the moment equation as follows: 

MnO) = Yi'Jo(rk - mrp(rk), (4.23) 

where the mean value of r is: 

m = Y.Lkllrk*p(rk). (4.24) 

The second, third, and fourth moments, which are the standard deviation, skewness, and 

kurtosis, respectively are calculated. Then, this feature vector is compared to other nodes 

in scale g using a vector correlation function: 

corrkj = - , [VfcHV;] k,j = 1,2 Ng. (4.25) 
J[[VkHvk]].[[v,Hv7]] 

The correlation value is used to augment existing weights between nodes by using the 

flowing function: 

Wk.e-astats\l-corrkJ\^ ( 4 2 6 ) 

where ccstats is a weighting constant specific for each weighting function used. 

Correlations of values of corrkj < 1 will reduce coupling weights. 
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Another statistical measure of interest is the inter-scale variance at finer scales for 

each node. Unlike the intensity statistics, the multi-scale variance calculates the variance 

of nodes at particular scales below g. These variance values are discovered by finding V 

at each level below g, creating a vector of variances for each node k a level g of desired 

length. Variance is kept at levels g — 1, g — 2,g — 3. Variance vectors are then 

compared, and weights are augmented using Equations (4.25) and (4.26) with an avar 

parameter. 

A third measure used to augment node couplings at a scale g is boundary comparison. 

After each node's pixel members are found using V, boundary pixels are identified, and a 

list of non-node member neighbors is created. Then, node weights are increased between 

neighboring nodes from the list that satisfy a mean intensity threshold, Tmean, written as: 

Wkj — aboundary * wkj^ \Hk ~~ l*j\ < Tmean, (4.27) 

where ccBoundary is a predefined weight constant, fik, and \ij are intensity means of nodes 

k and j at level g found from these methods. 

4.3.5 Object Candidate Selection 

The final stage of the algorithm uses prior object knowledge to scan the segmentation 

at each scale and extract potential objects based on size and shape statistics. A high and 

low threshold, r ^ ^ a n d rlow, is then multiplied by the statistics of the largest and 

smallest prior object ground truths. In this case, rhigh is set to 1.5 and Tiow is set to .5. 

Total area is set to minimum and maximum axis length and eccentricity to find segments 

that fall between the high and low thresholds. Results for implementing this object 

candidate selection with the segmentation method are described in Section 4.3.6. 
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4.3.6 Segmentation Evaluation and Results 

The purpose of using a segmentation method for object detection in an image frame 

for finding both moving and non-moving objects is that an object can be considered 

"detected" if a segmented region of interest (ROI) has been found within the distance 

Tcentroid fr°m the centroid of the object ground truth. The parameters are set as a = 

.25,/? = S,astats = .05, avar — .05, a£,0Mncjary — ^••Tmean — 20. The dataset has been 

tested on wavelet approximation level — 0,1,2,3. For testing segmentation accuracy for 

object detection, the same subset of the camera 0 Columbus Large Image Format (CLIF) 

sequence described in Section 4.2.4 has been chosen. 

As can be seen in Figure 4.8, graph segmentation provides strong detection accuracy 

at each of the wavelet approximation levels. There is a slight decrease at wavelet-level 2, 

possibly due to object boundary shape and resolution. Figure 4.9 shows the segmentation 

time for image chips that include objects and surrounding neighborhoods (approx 50 x 50 

pixels). As can be seen from Figure 4.9, computation time decreases logarithmically with 

an increase in wavelet level. This correlated decrease is due to the exponential reduction 

in dimensionality. 
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Graph Segmentation Detection Accuracy 
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Figure 4.8 Graph Segmentation Detection Accuracy of Objects in CLIF Dataset 
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Figure 4.9 Graph Segmentation of CLIF Objects Computation Time 
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4.3.7 Conclusion 

Although object boundaries are coarsely approximated at a wavelet level of 3, time 

and accuracy have shown to be optimal at this level. The rectangular shape of the object 

lends itself to coarse approximations derived from wavelet decomposition. In the future, 

study graph segmentation implementations on more datasets will be studied and detection 

results with other segmentation algorithms will be compared, as well as test new types of 

higher-level statistics to improve segmentation. 

4.4 Data-Mining-Based Moving Object Detection 

Taking concepts from the previous two methods, a comprehensive moving object 

detection scheme that uses object prior offline machine learning to detect objects in an 

aerial image sequence autonomously has been developed. Object detection and tracking 

in low frame rate, low resolution video poses challenges that are difficult for recent 

object tracking methods to accurately detect and track objects. In this section, a multi­

stage algorithm which takes image sequences and object priors as input to first train an 

offline classifier is presented which then uses similar real time data to detect moving 

objects. After preprocessing and optical flow estimations are completed, motion, 

intensity, and edge features are used to create multiscale graph segmentation of the 

moving image sub-field. Object candidates are found after post processing using object 

prior information, where a second set of features are calculated and input into the trained 

classifier. 

The primary contribution is to introduce novel feature sets specifically designed for 

moving object segmentation in graph theoretic and object silhouette detection via binary 

supervised classification. The novel set of edge histogram features are generated from 
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each candidate segment (no background information used) and fed into a binary classifier 

that is trained offline with a set of ground truth data, achieving real-time results. The 

final stage of the algorithm uses detected candidates between subsequent frames to 

suppress objects with weak size and spatial similarity, allowing only object candidates 

with highest similarity to a previous candidate remain. Each step of this algorithm will 

be detailed, referencing previously described methods. 

4.4.1 Motion Detection 

This method implements the phase-based optical flow with wavelets flow described 

in Section 4.2.3, using level 2 wavelet approximation as input to get optical flow output. 

Optical flow values, O, are then post processed to reduce non-vehicular motion due to 

background noise and camera movement. Both a size and magnitude filter are used. The 

filters are based on object dimensions to reduce motion detection to areas a lA minimum 

object dimension, drnin, (for cases of partial occlusion) to 4 x maximum object 

dimension, dmax, (for cases where multiple objects are traveling together). Minimum 

size, tminsize, ari|d magnitude, Tminmag, thresholds are used to reduce noise, while camera 

motion is detected and rejected by finding a dominant flow direction, Tdomorient that 

indicates camera motion. 

After each of the post processing steps are applied, a reduced set of locations, G, for 

frame / where potential object motion is present, and can be written as: 

" t — 1 ^ fc: ( i i j j Us,{u,v) -> T-minmag & ™s -"* ^-mlnsize & ̂ n \Q ) ^ 1domorient \*-*-°) 

where 0s,{u,v} is t n e optical flow in the u and v at s, and NS is the 4-connected 

neighborhood around s with 0S^UV^ > tminmag. The orientation of 0Sl{u,t7} IS collected 
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into discrete bins and first used to find a possible dominant orientation, then used for 

object motion location determination. 

4.4.2 Flow Gradient Intersect Features 

Due to the constraints necessary to find optical flow, aperture problem errors can 

cause inaccurate velocities. Most errors include motion detected along the direction of 

intensity gradients, which occur along object boundaries. Moving objects typically 

display a concave boundary, which causes an intersection near the object centroid when 

line segments are extended from points of detected optical flow along its orientation. The 

line segment length, 7y(ovv, is chosen to extend half the distance of the maximum object 

dimension from the origin of the optical flow value. 

Each line segment is then overlaid onto a 2-D grid, If, of same dimensions as the 

optical flow input, where the total sum of intersecting lines is tabulated at each location. 

A Gaussian filter is then applied to the grid to smooth the values, causing peaks to appear 

near object centroids (Figure 4.10). 

Figure 4.10 (Top left) The original image and (top right) its 2-Level 2-D wavelet 
approximation coefficients (bottom left) overlaid with optical flow field, the 
corresponding flow gradient image is shown, and (bottom right) the final image after a 2-
D Gaussian filter is applied. 
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These types of clusters of high values in the flow gradient images are very common 

in both rotational and translational motions of objects. In Figure 4.10, the left cluster 

corresponds to the white object's location in the second frame input in the optical flow 

image. 

4.4.3 Edge Intersect Features 

As seen in Figure 4.10, two clusters of flow gradient intersect values correspond to 

locations of the same object in the two optical flow input frames. An additional feature 

set that will distinguish between the object's location in both frames is provided. The 

concave boundary of objects is used to find locations where line segments normal to 

object edgelets (small edge segments) intersect at high consistencies. 

A procedure similar to that described in Section 4.4.2 is used to determine gradient 

orientations of boundaries. First, a Canny filter is used to create an edge image of the 

optical flow input images. After edge images have been calculated, windowed regions of 

size wedge are analyzed for dominant edgelet orientation. For the implementation, a 

wedge = 3 x 3 window is used, giving possible orientations of 0°, 45°, 90°, 135°. A line 

segment of length redge is created at the edge point in the direction normal to the 

dominant edgelet orientation. A 2-D accumulator grid, /e, is then generated and 

smoothed in similar fashion as described in Section 4.3.2. Figure 4.11 gives typical 

results of the edge flow features for an object. 

This feature set will be implemented in both the graph segmentation, object candidate 

classification, and non-maximal suppression stages of the algorithm. The specific 

methods for implementation will be discussed in Sections 4.4.4-4.4.8. 
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Figure 4.11 Edge Gradient Flow Process 

4.4.4 Hierarchical Graph Segmentation 

In this next stage, an initial graph, Gg , is created from Gt, where the initial nodes, 

V0 = s^c\ assuming that members of s > 0 (candidate object motion is detected). 

Initial undirected edges, Eg , are then formed between nodes spatially located within a 

predetermined distance, dedge. The initial edge energy cues are comprised of a feature 

vector, x, which includes values from the wavelet approximation, flow gradient intersect, 

edge gradient intersect, and location. The feature set of Gg can be written as for each 

(i = l... |G,|): 

x« = (xf,xf) (4.29) 

where 

x£° = (x,y), xf = [lwj(x,y),If(x,y),Ie(x,y)]. 

A weight matrix is created, Wg , and populate it with the edge weights between 

neighboring nodes, using the following energy function taken from [44]: 
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< ^ed^e (4.30) ifc 

^ o otherwise 

where a is a vector of weights corresponding to each of the members in x^ and / and k 

are members of node set K0 . Sharon [41] concluded that when solving the generalized 

eigen problem L\x — XW\x with minimal positive eigenvalue A, salient nodes are found 

where V(u) is minimal (as described in Section 4.3.2). In this formula, u is the set of 

membership nodes, which is initially set as: 

Uo\i.k) = {1
Q | [ | = £ for i,k = l,2,...\Gt\. (4.31) 

The median value of T is chosen as the threshold in determining which nodes are selected 

as node locations at the next coarsest level. Setting 1 > /? > .5 will increase the 

tendency for larger nodes to be chosen as new coarse nodes, where . 5 > /? > 0 will 

cause smaller node selection to increase. (3 — .5 eliminates any size bias in the node 

selection. Depending on the dimensions of the image frame compared with the desired 

object dimension, /? can be automatically selected to create nodes of a size similar to 

prior object dimensions. 

Higher scales of nodes are then determined using seed nodes with low Y values, with 

interpolation matrices used to associate different scale node members with one another. 

Mean node feature values are determined at higher scales based on the original x^ 

features, as explained in Section (4.3.3). The hierarchical node agglomeration stage halts 

when the number of nodes size remains constant. 



57 

Figure 4.12 demonstrates the hierarchical graph segmentation process, which achieves 

strong segmentation of object regions through combining similar nodes having feature 

values described in Sections 4.4.2-4.4.3. 

Figure 4.12 Hierarchical Node Agglomeration Using Multi Cue 

4.4.5 Object Candidate Selection 

After Gl and Gt+1 (the two frames associated with optical flow) have been calculated, 

the next step is to iterate through each level of graph nodes and collect nodes that 

resemble object prior spatial statistics into an object list, Tt,t+1. The graph node area is 

used as minimum and maximum dimensions as spatial features, which are compared to 

object priors for inclusion into Tt,t+1. Object candidate membership is formulated as: 

Tt,t+i _ r (0 r(t+D (L _ ^ ,7(t) i/(t+i) ^ (A ^ 9 x 
/ ul >ulc \\Lmaxarea> Lmaxdim -^ v u > vkj Lminarea> Lmindim \^-JZ-J 

fori = 0...|Gt|,fc = 0...|Gt+1|, 

G^ J = 1... r(t+i) 
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All object candidates are passed into the object detection through binary classification 

stage described in Section 4.4.6. 

4.4.6 Supervised Classification Object Detection 

Rotationally invariant feature sets are found using the centroid of each object 

candidate in Tt,t+1. Due to high variance in the possibly present object intensity, only the 

edge feature data is used to determine the probability of object presence. The first set of 

rotationally invariant features are a normalized set of the sum of edges binned in a set of 

radial distances from the centroid, termed edge histograms (explained in full detail in 

Chapter 5). This feature set, p r , can be treated as a probability density function (pdf), 

written as: 

P r ( r f c )=^f k = 0,1,2 L - l , (4.33) 

where rk is the edge pixel radius bin from the centroid, and nk is the total occurances of 

edge pixels within radius distance bin k, and n is the total number of edge pixels found. 

A second set of edge features uses the edge gradient intersect features associated with 

each object candidate centroid in Tt,t+1. The sum of intersect values occurring in the 

same radial distances used for the edge histograms is now taken to normalize the values 

to create a pdf, pg, of gradient intersects occurances, with each value written as: 

Pg(rk ) = ^ k = 0,1,2 L - l (4.34) 

where bk = £ Ie(Xi,yL), i £ rk. 

Due to low signal to noise ratio (SNR) at the higher wavelet levels necessary to 

achieve real time optical flow results, the known up sampling index correspondences of 
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the centroid at) — l,j — 2,... 0 is also used. Sets of features at each of these wavelet 

levels are then obtained, as well, giving us a final feature set: 

ff = (pJ
r, pi'1 p°, pJ

g, pi"1 p° ), (4.35) 

i = l,2 |7*' t + 1 | . 

Now that object candidate features have been calculated, each object feature vector is 

used as input into a binary classifier trained offline using ground truth object data. 

Offline training uses object ground truth centroids and non-object locations that generate 

optical flow due to object position changes, thus allowing for fast binary classification of 

object candidates. 

4.4.7 Multi-Frame Object Matching 

Now that most non-object candidates have been eliminated using the method 

described in Section 4.4.6, objects, which are detected in sequential frames, must be 

retained. An object matching through Mahalanobis distance measure, which first iterates 

through remaining objects in Tt,t+1, deemed T^g1, is used to find the best matches 

between members of T£arg and T^rg that occur within maximum object 

translation, dtrans. The following previously calculated histogram features p .̂ and p]
g are 

used, as well as introduce a three dimensional histogram of optical flow values: 

f • • 

Vof{\Oijk\) = -J" i = 0,1,2, ...lorient ~ 1, (4-36) 

J = 0,1,2,... Lmag — 1, k = 0,1,2,..., L(HSt — 1 , 

where otjk is a discretized optical flow value occurring rk from the centroid, with the 

optical flow having the /th orientation and /th magnitude. The value f[jk is the total 
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number of occurrences of the absolute values that occur in bin ijk, and/ is the total non­

zero optical flow values. Absolute values of the flow are used to ensure compliment 

gradient direction will be treated is strong indication of similar flow. 

Mdistf = ar grain 
7nafta((p«'/,p^)j')+ma?iai(pW'j,p^)-J')+ma/laf(p«

J',p^)'y) 
(4.37) 

l = 1,2, ..., |7 tar,g|> ̂  = 1>2, ..., |/| 

trans > 

t+1 
targ 

Values in Ttarg that have no matches or matches above a predefined threshold are 

removed from the object candidate list, reducing false alarms that resemble objects due to 

clutter, shadows, and illumination effects. 

4.4.8 Object Non-Maximal Suppression 

Multiple candidates represent segments of the object at different node scales, which 

can lead to multiple successful object matches in 4.4.6 of the same object. It is necessary 

to determine which of these candidates best represents the object regions, thus, T{arg 

suppresses objects within a minimum distance, dm[n, of each other, leaving only the best 

object unsuppressed. The suppression decision is based on object candidate areas closest 

to optimal object prior area, aprior, which is written as: 

Tt _ f tar9 if argmi n\aprior - at\ for all i < dmin 
1 [nontarg otherwise 

: _ i n \ft I 
i — x,£.,..., 11 targ\ 

This necessary step significantly reduces the number of multiple detections of the same 

object, but should be performed after the supervised classification to ensure the non-

objects similar to object areas do not suppress actual object segments. Figure 4.13 gives 
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an example of how the object detection and non-maximal suppression reduce object false 

alarms. 

Figure 4.13 Binary Classification and Non-Maximal Suppression Results of Object 
Candidates 

4.4.8 Object Detection Testing Data 

A subset of the camera 1 Columbus Large Image Format (CLIF) sequence datasetis 

chosen for testing (described in Section 4.2.4). The object ground truths is increased to 

39 objects (Figure 4.14) with a total of 322 potential object detections. Non-object 

ground truth were chosen as locations outside object ground truths that displayed optical 

flow values in the range to pass through size and magnitude filters. 

Figure 4.14 Object Detections in CLIF Data Sequences 

4.4.9 Object Detection Evaluation 

For evaluating the object detection framework, the accuracy of the algorithm is 

determined the by comparing segmentations labeled as "objects" against segmentation 
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ground truth of moving objects. A detection is considered "positive" if the centroid of 

the algorithm output and the object ground truth are within a minimum distance 

threshold, set to 5 pixels for the data set. False negatives are accumulated when moving 

objects go undetected after appearing for the necessary minimum frames (two in the 

case). The results are presented using differing levels of object candidate matching 

thresholds, which allow higher accuracy with more false alarms as the matching distance 

is relaxed, but allows for more false positive results (Figure 4.15). 

To ensure selection of a classifier with the highest classification accuracy and speed, 

the feature set has been tested on several machine learning methods, with their evaluation 

discussed in the subsequent sections. As can be seen in Figure 4.16, Random Forest and 

Association Rule (PART) classifiers outperforms other methods with a 98.6% and 98.2% 

area under the curve (AUC) of the receiver operator characteristic (ROC), respectively. 
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Figure 4.15 ROC Curves of Binary Object Classification 
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Figure 4.16 Classifier Execution Speeds for Varying Object Candidate Sizes 

4.4.10 Conclusion 

The combination of optical flow, edge and wavelet-based feature sets can effectively 

differentiate objects from the background in low frame rate videos for object detection in 

real time. The framework and stages necessary have been used to achieve high detection 

accuracy by using phase-based optical flow and hierarchical graph segmentation, coupled 

with an offline-trained supervised classification method for object discrimination. 

Intermediate filtering stages reduce false alarms and poor segments, along with multiple 

detections through object matching and non-maximal suppression. Further work includes 

expanding the method into tracking objects using multiple object detections coupled with 

a dynamic state model. 
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4.5 Object Detection Conclusion 

Several object detection methods that can be implemented on a variety of sensor 

data that has clearly defined objects have been presented. Properties such as multiscale 

wavelet transformations and hierarchical graph segmentation allows for the user to adjust 

the segmentation and motion estimation outputs to perform optimally for a given object 

library shape and size. It is the belief that algorithm performance varies for each 

detection method under specific scenarios, where a multi-detection framework (such as 

the one described in Section 4.4) provides optimal performance over the range of OCs 

that occur in SE. 



CHAPTER 5 

FEATURE EXTRACTION AND CLASSIFICATION 

5.1 Feature Extraction and Classification Introduction 

As discussed in Chapter 3, selecting object characteristics that robustly 

discriminate themselves from cluttered backgrounds is imperative for successful 

classification accuracy. In this chapter, feature sets and classifiers that achieve these 

specific aims within the SE framework (Figure 5.1) are discussed. 
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Figure 5.1 Feature Extraction and Classification in the SE Framework 
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First, a novel set of features, dense and reduced speeded-up robust features 

(DRSURJF), which are used for tracking (described in Chapter 6), are introduced. Next, 

feature sets on both binary classification (detection) and multi-class classification on SE 

data sets are presented and evaluated. These feature sets include another novel feature 

set, edge histograms. The chapter will end with a conclusion on the feature sets 

discussed, with recommendations on how and when to implement them for other SE data 

sets. 

5.2 Dense and Reduced Speed-up Robust Features (DRSURF) 

The dense and reduced SURF (DRSURF) descriptors, as the name implies, are a 

dense set of SURF descriptors using a smaller area and gradient bin size. If an interest 

point detection methods using a Hessian determinant or any other corner point detector 

does not find repeatable locations to calculate descriptors for low resolution objects, this 

issue is combated by taking reduced scale gradient values at pixel locations evenly 

spaced within the size of the objects of interest. Issues of orientation variations are 

discussed in this section as well. 

5.2.1 DRSURF Interest Point Detection 

An integral image is used to quickly calculate the area of rectangular regions (fthe 

operations necessary). Due to an approximately constant scale of objects in the image 

sequence for aerial object tracking, the scale space feature calculations that SIFT and 

SURF both employ are disregarded, although an extension to include multiscale 

descriptors is easily possible. The method deviates from SURF in the choice of scale 

space interest points; instead motion detection from the optical flow step in the algorithm 
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to find the points of interest is used. Areas in the optical flow field that have motions 

large enough to be a moving object are chosen as interest points. A grid is then created 

on top of the interest point that spans pd pixels in every direction from the central point. 

The value of pd is chosen empirically to encompass the entire potential object area 

through adjusting the object point window size wp, with total window size being 

mp — 2wpx2wp. A step variable, sGridstep, is also used to determine the spacing 

between interest points, along with pd, yields the density of the feature vector. After 

testing different combinations of pd and sGridstep, it was determined that pd = 3 and 

sGridstep = 2 provides the best discrimination between object and background for the 

entire data set, but pd = 2 and sGridstep = 2 provides reasonably high results for the 

reduced computation (Figure 5.2). 

Figure 5.2 DRSURF Interest Point Location and Feature Window 
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5.2.2 DRSURF Orientation Assignment 

Reproducible orientation methods that are employed in SIFT and SURF to determine 

the orientation around an interest point that yields a maximum gradient magnitude. As 

the image rotates, this gradient magnitude will change, along with the orientation, which 

ensures the correct feature descriptor alignment. Because the interest points typically 

lack a large gradient, a set of feature descriptors with multiple orientations is calculated 

by rotating the interest point grid by ±9 * sAngiestep. The feature descriptors are 

determined by prior knowledge of object behavior and gradient invariability. In the case, 

objects cannot rotate more than 30°/frame, and feature descriptors maintain rotational 

invariability to 15°, so 6 = 15° and sAnglestep = 2 is used, giving five orientations per 

interest point (Figure 5.3 shows a subset of these). This increase in dimensionality and 

computation is necessary and possible due to the reduced set of interest points from the 

optical flow calculation and reduced size of the gradient descriptor. 

Orientation = 0° Orientation = -15° Orientation = 15° 

Figure 5.3 DRSURF Grid Over Multiple Orientation 

5.2.3 DRSURF Feature Descriptor Calculation 

To explain the method of calculating gradient bins within an object area, the original 

SURF method, which is based on the SIFT feature descriptor [45], is discussed. SURF 
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uses approximations to create descriptors similar to SIFT but with reduced computations 

while sacrificing very little matching accuracy [46]. The first step in SURF and SIFT is 

to find interest points by identifying locations with large gradients in both the x and v 

directions (corner points), which is not implemented in the next step. Following the 

SURF method, the integral image of the input image lx is first used to speed up 

computation of the gradients in the descriptors step. This step can be formalized as: 

The next step is to use the interest point grid discussed in Section 5.2.1 to construct 

square windows around each of the points on the grid. The window around each point is 

18x18 pixels in size. This size is based on the scale chosen to extract gradient bins. The 

descriptor window is divided into 2 x 2 regular subregions. Within each of these sub 

regions, the Haar wavelets of size 6 are calculated at fthe locations within the specific 

subregion. The Haar Wavelet responses for each subregion finds the gradients in the x 

and y direction spanning a scale (six in the case) by using box filters and the integral 

images, which requires only six calculations. The vector for each bin describes the 

underlying intensity structure of the neighborhood as v = [£ dx £ dy |£ dx\ |£ dy | ]. 

The gradient for each point in the interest point grid then becomes a set of descriptor 

vectors of size 4 x 4 . Combining the entire interest point grid creates an interest point 

vector of size 4 x 4 x 2 * floor { /sG d ) + 1 - Consequently, for pd = 2 and 

sAngiestep — 2, an object can be represented with a 144 member length descriptor vector. 



70 

5.3 Invariant Moment Descriptors 

As briefly mentioned in the Chapter 2, invariant moment descriptors provide a set of 

statistical features that have considerable invariance to rotation, translation, and scaling 

changes in object images [81]. This set of descriptors combines the overall shape and 

intensity distribution, which can be formulated using the discrete version of the moment 

for an image / (x, y ): 

Mij=Y.xYiyXlyn{x,y), (5.2) 

to then be able to find centroids x — —— , y = ——. The central moments are then defined 
Moo Moo 

as: 

nPq = ExSy(* - *)p(y - y)*/(*.y), (5.3) 

where/; and q give the moment order. The central moments used in the Hu moments are 

written as: 

Moo = Moo, (5-4) 

Moi = 0 

Mio = 0, 

Mn = Mn - xM01 = M u - yMw, 

H20 = M20 - xM10, 

M02 = M02 - yM01, 

M21 = M2i - 2*Mn - yM20 + 2x2M01, 

M12 = M12 ~ 2yM n - xMQ2 + 2y2M10, 

Mso = M30 - 3xM20 + 2x2M10, 

M03 = M03 - 3yM02 + 2y2M01. 
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From these, moments 77̂ -, can be made invariant to translation and scale by dividing by 

the scaled 00th moment, written as: 

^ij ~ fi+itiV ' ' 
Moov 2 

Finally, the seven Hu moments, (pL 

<Pi = ^720+^02, (5-6) 

<Pi = 0?20+T?02) 2 + (2?7n)2, 

<P3 = 0730 + 37?l2)2 + (3??21 - 7?03)2, 

(PA = (mo+Vn)2 + (>72i + ^7o3)
2, 

<P5 = 0?30-377l2)0730+?7l2)[0?30 + ^12)2 ~ 

3(772i + *7o3)
2] + (3^2i-3r/o3)(?72i+^03)[3(??30 + 

>7l2)2 - 0?21 + >703)2L 

<Pe = (^20-^02)[(»73o + riiiY - (7721 + W 2 ] + 

4^ i i ( r ? 3 0 - ^ i2 ) ( ^2 i -%3) , 

<P7 = Or]21-r]02)(r]30+r]12)[(r]30 + 7712)
2 -

3(^2i +?7o3)2] + 0?3o-3r712)(j?2i+?7o3)[30?30 + 

^7l2)2 - 0l21 + ^03)2]-

As noted in Chapter 2, invariant moments have been successfully implemented for 

feature tracking. This success is the main justification for evaluating these features for 

multi-class object classification. This feature set is also useful because of its ability to 

both reduce an image to seven values and to provide good discrimination even with 

multiple variations in image appearance (Figure 5.4). Invariant moments were calculated 
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at each wavelet approximation level for every object. Classification discrimination is 

provided in the evaluation and conclusion sections. 
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Figure 5.4 Scaled and Rotated Images and Corresponding Invariant Moments 

5.4 Edge Histograms 

To provide more discrimination of object shape, a method that combines edge 

detection and histogram analysis is employed to find a rotational invariant set of 

descriptors, which are deemed edge histograms. Because this method is not scale 

invariant, wavelet approximations are resized to the original image dimensions using the 

cubic interpolation. 

To find edge histograms, first run the canny edge filter on the rescaled wavelet 

approximations (Figure 5.5). 
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Figure 5.5 Canny Filtered Objects at Varying Wavelet Levels 

After the binary edge image is calculated, the center of the image is chosen as the 

origin and circular bins of five pixel radii intervals are created, summing the total amount 

of detected edge pixels occurring within the specified range (Figure 5.6). This largest bin 

is chosen to be r = 50, which is equal to half of the length of the largest object in the 

dataset. The bin vector is itself used as a feature vector for classification for both binary 

classification and multi-object type classification, with evaluation results provided in 

Section 5.5. 

Edge histogram statistics are also calculated to find a more robust statistical 

representation of the edge distribution. The mean, standard deviation, skewness, and 

kurtosis (described in Section 5.5) are chosen. 
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Figure 5.6 Edge Bin Histogram of an Object Image 

5.5 Texture Statistics 

A set of texture statistics is calculated directly using the wavelet approximation to 

gain insight on how different levels of object detail effects the specificity and sensitivity 

of object texture features for classification. The intensity histogram is then used to 

account for rotational variations in the image data sets. Here, a set of features that is 

based on the coefficient intensity histogram is described, which is written as a probability 

density function (pdf): 

P r O " k ) = ^ k = 0,1,2 L-l, (5.7) 

where pr(rk) is the probability of an image pixel being a member of histogram bin rk. 

For this method, k = 16 bins is chosen for the texture calculations, unless noted 

otherwise. To calculate the moments, the moment equation is written as follows: 

M n ( r ) = Z ^ ( r f c - m ) n p ( r f c ) , (5.8) 

where the mean value of r is: 

m = lU>rk*p(rk). (5.9) 

The second, third, and fourth moments, which are the standard deviation, skewness, and 

knrtosis, respectively, are calculated. Also, the uniformity is calculated calculated as: 
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U=Y1
L

k-=lp2(rk) (5.10) 

and the entropy to measure variability as: 

e = -Yi=lv(rk)\og2V(jk). (5.11) 

Besides calculating the statistical moments of the gradient histogram, the gray-level 

co-occurrence matrix is found for each of the principal directions (0°, 45°, 90°, 135°) to 

find how often pixels of similar intensity "co-occur" within an image in the orientation 

specified, that will produce a square matrix, G, the size of intensity bins, k, in each 

dimension. The value at each location Gij will be the total number of times two pixels of 

a chosen orientation having similar intensity values "occur" within the region. After 

constructing co-occurrence matrices in the principal directions (typically 

0°,45°, 90,135°), the matrices are normalized to give a joint occurrence probability of 

pixel pairs with the corresponding orientation and intensity range (Figure 5.7). 

Figure 5.7 Steps in Texture Calculation 
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A set of spatially dependent texture descriptors termed Haralick features [56] are 

defined as: 

1. Contrast: £i,yU ~j\2p(i,j) 

2. Correlation: £ V-MU-Hmj) 

3. Energy: T.ijP(i,j)2 

4. Homogeneity: I.i,j^jz]\-

Contrast measures intensity differences between neighboring pixels over the entire 

image, where correlation returns a measure of how correlated a pixel is to its neighbor. 

The energy provides a sum of the squared elements in the co-occurrence matrix, returning 

a value of 1 for a constant intensity. Homogeneity provides a value of the closeness of 

the member distribution in the co-occurrence matrix. To address rotational invariance, an 

average of the feature values is taken for all the principal orientations, so that co­

occurrences that move to a different matrix due to rotational changes will still be 

measurable. 

5.6 Classification Methods Using Feature Descriptors 

Classification methods that have been previously used to classify objects both for 

detection and object type schemes have been found. These methods will be discussed 

further in Section 5.6.1. 

5.6.1 Bayesian Classification 

Bayesian classification leverages prior probabilities from observed evidence to 

determine whether a specific hypothesis is true or false. This method is powerful when 

combined with domain expert knowledge, given that a probability can be numerically 
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evaluated. Naive Bayes classification can use maximum likelihood estimates of 

probabilities based on distributions of the data, allowing for classification of states 

without domain knowledge. This method decouples conditional feature distributions, so 

that fused data sources can be independently estimated as a one-dimensional distribution. 

This method, too, can be used in a hierarchical manner, which allows for feed-forward 

inputs of lower-level fusion classification results into high level of classification. 

5.6.2 Neural Networks 

This machine learning method allows classifiers to be continuously trained through 

back propagation and supervised learning to increase the accuracy of classification, 

modeling the synaptic processes of neurons. The method can leverage domain expertise 

to classify threats and conditions, which can then be used to retrain the network through 

back propagation. Two types of neural network classifiers are implemented for 

evaluation, multilayer perception and radial basis function methods. Multilayer 

Perceptron Learning (MLP) uses multilayer perceptron, adaptive learning, and back 

propagation to increase the accuracy of classifiers. Radial Basis Function (RBF) network 

typically has three layers: an input layer, a hidden layer with a non-linear RBF and 

activation function, and a linear output layer. 

5.6.3 Support Vector Machines 

Support Vector Machines (SVM) are a set of related learning methods used for 

classification and regression analysis. In SVM, a hyperplane or set of hyperplanes is 

constructed. SVMs work best with data sets that have a wide "functional margin." 

Sequential Minimal Optimization (SMO) trains a support vector and solves (classifies) 
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data analytically by breaking down the size of the dataset. SVM has empirically been 

shown to give a good generalization performance on a wide variety of problems. 

5.6.4 Association Rule Mining 

Association Rule Mining is a market basket approach that finds connections between 

the occurrences of different features occurring within a class with a level of support and 

confidence. A rules-based method known as PART algorithm that obtains ailes from 

partial decision trees is obtained and then used to build a tree using the decision tree 

learner[82]. 

5.6.5 KSTAR Classification 

KSTAR is an instance-based classifier that bases the test instances upon the class of 

training instances similar to it. In KSTAR, the similar class training instances are 

determined by an entropy distance measure. This method provides a consistent approach 

to handling attributes of different types, as is the case in the evaluation [83]. 

5.7 Feature Descriptor and Classification Evaluation 

For testing classification accuracy for the feature sets, three datasets that provide 

different challenges for successful classification have been employed. The datasets have 

been approved for public release, and all ground truth data was created through visual 

inspection by the authors. All classification was performed using Weka 3.6.2 machine 

learning software and feature descriptor calculations were computed using Matlab 

R2009a on an Intel® Core i7 920 @ 2.67 GHz processor with 12 GB of RAM. 
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The feature descriptor sets have been tested at wavelet levels N = 0,1.2,3.4 for CLIF 

dataset and N = 0,1,2,3,4,5 for CEGR and I1CO with varying degrees of accuracy. We 

will present and discuss the results for each of the datasets separately. 

5.7.1 Columbus Large Image Format (CLIF) 

A subset of the camera 0 Columbus Large Image Format (CLIF) described in Section 

4.2.4 has been chosen. Non-objects sequences were created at random locations with a 

chip size equivalent to actual objects in each image sequence. The only constraint in the 

creation of these sequences was that the ground truth locations could not coincide. The 

CLIF datasetwas used solely for binary object detection, with the only two classes being 

"object" and "non-object." 

Due to the intra-class variability of feature and invariant moment descriptors, edge 

histogram descriptors were the only descriptors evaluated. The results for object/non-

object classification using only edge histogram bin counts of radii 

r = 1,3,5,7,10,12,15,17,20 and histogram statistics: mean, standard deviation, kurtosis, 

and skewness at each wavelet approximation level were obtained. All wavelet levels 

were combined to search for improvements. Figure 5.8 provides a plot of detection 

accuracies for each classifier at each wavelet level and at the additional 'ALL' level. The 

'ALL' level produced the highest binary classification accuracy (88.52%) from the PART 

algorithm. For individual wavelet levels, level-1 produced the highest classification 

accuracy. This accuracy decreased as the wavelet level increased. 



80 

CLIF Edge Histogram Descriptor Binary 
Classification 

All 

Wavelet Level 

Nai've-Bayes 

MLP 

RBF 

SMO 

KStar 

PART 

Figure 5.8 CLIF Object Detection Accuracy Using Edge Histograms 

5.7.2 Army Research Lab CEGR Infrared Dataset 

This dataset contains MWIR image sequences often intelligence objects travelling in 

a 100-meter circle from a range of 500 meters. Object chips were taken every ten frames 

as objects traveled horizontally in both directions. Eight of the ten objects were chosen 

for this study due to their relative similarity in size and structure. The object types were: 

Truck, SUV, BTR70, BRDM2, BMP2, T72, ZSU23-4, and 2S3. The Cincinnati 

Electronics Night Conqueror MWIR imager was combined with a Great River frame 

grabber to extract data. The Night Conqueror camera uses a 640 x 480 pixel Indium 

Antimonide (InSb) focal plane array (FPA) with 28-micron pitch. A system, which had a 

fixed FOV 300 mm lens resulting in a 3.4 x 2.6 FOV and a C02 notch cold filter, has 

been used. Multi-object type classification evaluation was performed using this dataset 

to study the discrimination accuracy of feature descriptors with different classification 

algorithms described in Section 5.6.1-5.6.5. 
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Here, the results obtained using the descriptors and classification methods described 

in Section 5.6 on the CEGR dataset where descriptors were calculated for object image 

chips (120 x 120 pixel size) are presented. The results for multi-class object 

classification using edge histogram bin counts of radii r = 5,10,15,20,25,30,35,40,45,50 

and histogram statistics: mean, standard deviation, kurtosis, and skewness at each wavelet 

approximation level are also shown. The plots in Figures 5.9 through 5.11 show the 

accuracy results for each descriptor type using wavelet levels N = 0,1,2,3,4,5 as input. 

The descriptor set that contains all of the wavelet levels is denoted as the 'ALL' level. 

The results achieved after combining all of the descriptors for each wavelet level are 

presented in Figure 5.12. The best performance for the individual sets of the descriptors 

was the combined wavelet-level invariant moment descriptors, which gave a 94.14% 

classification accuracy using the KSTAR algorithm, and an 89.83% accuracy using MLP. 

The combined wavelet level for the edge histogram descriptors performed next highest 

with top accuracy results given by PART at 88.56%. The texture descriptors had the 

lowest accuracy of the feature sets, with the KSTAR classification method achieving 

86.38% accuracy for all wavelet-level texture descriptors. When all descriptors were 

used together, the 'ALL' wavelet descriptors produced the highest accuracy, with SMO 

producing 98.55% accuracy and KSTAR and MLP producing 97% accuracy. The 

wavelet approximation level-1 had the highest individual accuracy, which then decreased 

as the wavelet level increased. The KSTAR and MLP algorithms provided the highest 

overall classification accuracy for CEGR. 
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CEGR Invariant Moment Multi-Class Classification 
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Figure 5.9 CEGR Classification Results Using Moment Invariants 
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Figure 5.10 CEGR Classification Results Using Edge Histogram 
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CEGR Texture Descriptor Multi-Class Classification 
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Figure 5.11 CEGR Classification Results Using Texture Statistics 
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Figure 5.12 CEGR Classification Results Using Invariant Moments, Edge Histograms, 
and Texture Statistics 
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5.7.3 Army Research Lab I1CO Visible Dataset 

This dataset also contains each of the moving objects described in Section 5.7.2, with 

the same motion and range as the CEGR data. The visible light imagery was collected 

using a camera manufactured by lllunis that was referred to as I ICO in the NVESD 

nomenclature. A Nikon zoom lens was adjusted to produce a 3.4-degree HFOV and 

locked in position. The output imagery was collected using a Coreco framegrabber. As 

with the CEGR dataset, multi-object type classification evaluation was performed using 

the 11 CO dataset to study the discrimination accuracy of feature descriptors with different 

classification algorithms as described in Section 5.7.2. 

In this section, the results obtained from using the descriptors and classification 

methods described in Section 5.7.2 on the I ICO dataset are presented. In this 

experiment, descriptors were calculated for object image chips (120 x 120 pixel size). 

The plots in Figures 5.13 through 5.15 show the accuracy results for each descriptor type 

using wavelet levels N = 0,1,2,3,4,5 as input, and the descriptor set that contains all of 

the wavelet levels is denoted as the 'ALL' level. Results (in Figure 5.16) received when 

all of the descriptors for each wavelet level are described. The best performance for the 

individual sets of the descriptors was the combined wavelet-level invariant moment 

descriptors, which achieved a 92.86% classification accuracy using the KSTAR 

algorithm, and an 86.07% accuracy using SMO. The combined wavelet level for the 

edge histogram descriptors (using the same bins and statistics as CEGR) performed next 

highest with top accuracy results given by MLP at 89.64% and KSTAR with 87.86%). 

The texture descriptors again had the lowest accuracy of the feature sets, with the MLP 

classification method giving 70.71% accuracy for all wavelet-level texture descriptors. 
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When all descriptors were used, the "ALL" wavelet levels produced the best results with 

98.57% accuracy using the KSTAR algorithm, with SMO producing a 96.43% accuracy 

and MLP producing a 95.36% accuracy. Level-0 (original image) produces the best 

results for individual wavelet levels for all descriptors with decreasing accuracy 

correlating with increasing wavelet levels. The level-1 wavelet approximation 

coefficients produced the highest accuracy results for moment invariant descriptors, and 

wavelet level-2 coefficients performed the best for edge histogram descriptors. All of the 

wavelet levels performed roughly the same for texture descriptors. As with CEGR, the 

KSTAR and MLP algorithms provided highest classification accuracy overall for the 

IlCOdataset. 
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Figure 5.13 I1CO Classification Results Using Moment Invariants 
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Figure 5.14 I ICO Classification Results Using Edge Histogram Statistics 
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Figure 5.16 I ICO Classification Results Using Invariant Moments, Edge Histograms, and 
Texture Statistics at Wavelet Levels N = 0,1,2,3,4,5, ALL. 

5.8 Feature Extraction and Classification Conclusion 

The feature descriptors that provide discrimination for classification using varying 

levels of wavelet approximations of object image chips have been extensively tested. A 

multi-scale wavelet representation provides the best input for calculating object 

descriptors, with best results occurring with wavelet levels 1 and 2 for all three datasets. 

Invariant moments and edge histogram statistics out-performed the texture statistics for 

both the I ICO and CEGR datasets in classification accuracy for all the classifiers used. 

KSTAR and MLP algorithms consistently performed better than the remaining 

algorithms, with Nai've-Bayes consistently producing the lowest accuracy. Optimum 

performance for multi-class classification for objects with high resolution is to combine 

invariant moment and edge histogram descriptors using wavelet 0-2 levels. For object 

detection (binary classification) for low-resolution images with large intra-object 
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intensity variability like the CLIF dataset, edge histogram statistics generated from multi-

scale (0-2) wavelet approximation coefficients provides an accurate solution for object 

detection. 



CHAPTER 6 

TRACKING FOR SE 

6.1 Introduction 

As discussed in Chapter 2, several classes of object tracking algorithms are 

commonly found in the literature. Tracking methods based on previous information used 

in detection and classification (Figure 6.1) have been designed. 
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The feature tracking methods can use both optical flow and DRSURF feature 

descriptors to create a fused set of descriptors, which are then compared to values from 

the detected locations in the new image sequence. A description of how to find optical 

flow feature and DRSURF feature tracking values is presented in Section 6.2. 

6.2 Optical Flow Object Tracking 

After optical flow is calculated between two consecutive images, optical flow at 

known object locations are measured by calculating an average of the absolute value of 

the top n optical flow responses in horizontal and vertical directions, \\in | = 

in a window of size wt based on the object bounding box. If 

\Htarg nmax\ > threshv, a velocity threshold set to the smallest optical flow value 

observed when an object centroid has moved to a pixel location larger than 3, the 

windowed object search algorithm is initialized. An object search field is chosen to 

include 2vmax x 2vmax windowed area centered at the object location. Each location 

\Hfeiidnmax\ > threshv is chosen as a candidate for a new object location. After 

studying the optical flow in regions of tested object tracks, a high correlation has been 

found between previous and current object locations through the optical flow using the 

iMnJ Hny 

following negative vector correlation function: 

mrr- — lOFiold\-[QFinew\ r- _ -, (r ,N 

corrlOF — __———— —— -r, it — x,yj , ^o.ij 
J\\0FioLdY{0Fiold\\*\\0Fine\vY\0Finew\\ 

where OFiold and 0Finew are the vectorized forms of the 2-D optical flow values of size 

wt x wt for both the horizontal and vertical directions. The top value means are also 

included in the correlation vector, written as: 

file:///Htarg
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corr., 
r-nmax 

[V-oldn-maxYi^new nmax] 

[[Void nmaxliVold n m a x ] J * l [ ^ n e w nmax\'[V-new nmax\\ 

(6.2) 

These two correlation values are then used to find the location with highest correlation, 

using a weighted combination of: 

corrtotal = [corrxOF corryOF corr^nmaJ • [.25 .25 .5]T. (6.3) 

For detection, it is assumed that there is no prior knowledge of a specific object of 

interest, so we measure only the | \*-nrnax | at each central pixel location in a windowed 

region, wt, which is set to the average object bounding box size. 

An object is considered successfully tracked to a sequential image frame if the object 

ground truth centroid and tracker algorithm selection point are within half the distance of 

the object-bounding box, wt. Figure 6.2 shows results obtained from an optical flow 

tracking algorithm for moving objects at each wavelet level. 
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Optical flow can increase the accuracy and specificity of object tracking methods, and 

a combination of optical flow and feature tracking methods can produce the best results 

for robust aerial object tracking. 

6.3 DRSURF Feature Tracking 

The DRSURF feature calculation process detailed in Section 5.2 is used as an 

illumination invariant feature set for tracking using vector correlation similar to the 

optical flow tracking. The implementation for tracking and provide an evaluation is 

described. 

6.3.1 DRSURF Feature Tracking Implementation 

An object chip is provided to the tracker for the creation of the DRSURF feature 

descriptor vector, and its location in the image is noted. Next, the optical flow is taken 

between the image with known object and location and a new image frame with unknown 

object position. The search space is reduced to a window surrounding the last known 

object location of size 2vmax x 2vmax, where vmax is the previously determined 

maximum object velocity. This area is further reduced to locations where the optical 

flow is larger than a previously determined threshold for minimum motion detection. 

The DRSURF features are calculated for the remaining locations at orientations 

0°, —15°, 15°, —30°, 30° with respect to the previously found object. A vector 

correlation similarity measure is then employed to quantify the similarity of the candidate 

descriptor vectors at each orientation, dfeiid with the object descriptor, dtarg, using 

the following equation: 

r r t r r _ [*targ]i<lfeild.orient] 
corrtarg-feild ~ I • ( ° . y j 

l[[dtarg]'[dta.rg]]*[l&feUdorient ]-[d/ 
eildorient'\ 
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The maximum correlation location and orientation are chosen as the new object 

location and new orientation for the next frame. The optical flow of the next frame is 

then calculated, and the process is repeated. If optical flow is not found at the object 

location, the tracker retains the same object location for the frame. 

6.3.2 Feature Tracking Evaluation and Results 

For testing DRSURF feature tracking, a subset of the camera 0 Columbus Large 

Image Format (CLIF) sequence as described in Section 4.2.2 is used. For object tracking, 

the methods outlined in Section 5.2.4 are used. An object is considered successfully 

tracked to a sequential image frame if the object ground truth centroid and tracker 

algorithm selection point are within half the distance of the object bounding box, wt. 

Figure 6.3 gives the tracking accuracy of varying DRSURF feature lengths, which is 

accompanied by their execution times in Figure 6.4. Figure 6.5 shows the results of an 

optical-flow / feature-tracking algorithm using DRSURF feature descriptors, SURF 

descriptors, object histogram, pixel intensities, and invariant moments. Tracking 

accuracy is calculated at varying levels of optical-flow sensitivity, with a lower threshold 

increasing possible candidate locations the feature-tracking step. 
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Figure 6.5 Tracking Accuracy Results for DRSURF and Other Methods at Different 
Optical Flow Thresholds 

6.3.3 DRSURF Feature Tracking Conclusion 

The DRSURF feature tracker outperformed (91 % average accuracy) the other 

descriptor values at each of the optical-flow thresholds given in Figure 6.5. Unlike 

methods used to test other feature sets, the DRSURF tracking method remains relatively 

unchanged at the different optical flow thresholds, providing evidence that the method 

works over large fields of potential object locations (high specificity), without loss of 

accuracy. The DRSURF method is a viable solution for low-dimensional object tracking 

in aerial image sequences due to its dense and robust feature vector. Although the multi-

orientation calculations results in increased computation, the increased accuracy provides 

the trade off in time, especially because the method can now be parallelized for enhanced 

performance. 
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6.4 Object Tracking Conclusion 

Two feature tracking methods which depend on a correlation score for updating the 

SE with new locations of objects have been presented and evaluated. This method has 

shown to be successful in the data sets, with accurate tracking for both translation and 

rotational motion. The data sets lack strong affine variations that some researchers in SE 

may be interested, which causing large variations in object statistics that correlation 

tracking may have problems handling. To combat such challenges, cascading tracking 

methods that employ multiple trackers simultaneously to create a higher-level decision-

metric that weights tracker certainty based on prior tracker performance have been 

studied. The current methods would incorporate well in such a scheme, especially if it is 

coupled with a dynamic state modeling function such as a particle filter, due to the 

formers ability to accurate follow non-occluded motion and latter's ability to handle 

frames when the object is hidden. 



CHAPTER 7 

GPU IMPLEMENTATION OF THE SE FRAMEWORK 

7.1 GPU Introduction 

A relatively cheap and powerful parallel processing platform is using a workstation's 

graphical processing units (GPU). Now that several computer vision algorithm 

implementations using GPUs have been developed over the past five years [84][85][86], 

implementing SE methods for GPU processing requires limited GPU-specific software 

development experience. 

Although many steps in SE are performed sequentially (output in previous step is input 

in the next), particular tasks can benefit from parallel processing due to their independent 

calculations. Due to the extra CPU to GPU communication overhead incurred when using 

GPUs, each stage of the SE workflow should be evaluated to determine the execution time 

gains. 

In this chapter, the GPU implementations of the SE framework using varying data 

dimensions are presented, evaluated, and discussed. The reader is provided with 

recommendations on when to use GPU-based implementations for calculating steps for 

preprocessing, segmentation, motion estimation, feature extraction, and tracking functions 

for SE. 

97 
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7.2 GPU-Based SE Framework Implementations 

In this section, the SE framework is divided into the sequential steps that take multiple 

sensor data frames as input and return object location and track data. The workflow 

tackles each task using the previous stage outputs as an input, thus disallowing GPU 

implementation upon the entire algorithm. The computation required to accomplish each 

of the SE framework's tasks the GPU-enabled implementation for potential execution time 

gains are described. The execution time and speed up will be provided for each stage 

described in the following sections. 

The performance of the GPU-based methods on representative inputs of varying sizes 

with a CPU-based implementation is evaluated. The GPU-based implementation of a 

single calculation is used, and parallel iterations are performed when applicable to the 

particular task. The inputs used on each task are comparable to typical dimensions based 

on the original input data (in the case 2-D images with 0-50 objects present). Each data 

input and iteration benchmark size are performed 200 times, using the average time per 

run as the benchmark in Figures 7.1-7.30. 

The CPU used in the following experiments is a single-core of the 2.67 GHz Intel i7 

920 processor with 12 GB of RAM. The GPU used in the testing is the Tesla CI 060 GPU 

with 4095 MB VRAM. Benchmarking code was written in MATLAB using Jacket 

wrapping functions and benchmarking functions found in reference [87]. 

7.2.1 GPU for Image Preprocessing 

As described in Section 2.2, most SE methods initially perform denoising and 

smoothing operations to the input data in aims to reduce irregularities in local 

neighborhoods. A popular method, which convolves a 2-D Gaussian kernel with input 



99 

images (Section 3.5), is implemented. Due to the potentially large dimensionality of the 

input image when compared with the typical Gaussian kernels used (~ 5 x 5 pixels), the 

independent operations of a 2-D convolution lends itself to potential execution time gains 

through GPU parallel processing. 

In Figures 7.1 and 7.2, the CPU-GPU execution times and speed-up gains are shown, 

respectively, varying the input size to image matrices of 10-2900 pixels per dimension. 

As can be seen from both figures, GPU implementation outperforms CPU past 300 pixels 

per dimension, reaching 4x speed gains 1000 pixels. 
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7.2.2 GPU for Object Detection 

As described throughout Chapter 4, motion detection is a difficult and computationally 

cumbersome problem, especially dealing with increasingly large sensor data. 

Performance gains in execution time using GPUs for both optical flow for motion 

estimation and graph segmentation for object detection are used. 

As described in Section 4.2.3, phase-based optical calculates a bank of Gabor filters to 

estimate velocity. Equation (4.15) is used to generate these filter responses, which can be 

performed independently. A GPU can perform the set of 1-D convolutions for each Gabor 

filter simultaneously for the entire filter bank, potentially gaining essential speed-up time. 

Figures 7.3 and 7.4 show these results of Gabor filter bank calculations for varying input 

image dimensions from 10-500. 
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Figure 7.4 GPU-CPU Speed Up for Gabor Filter Bank 

GPU implementation for Gabor filter bank calculations outperforms throughout the 

entire input size, which is expected due to the independent computations reducing 

execution times. 



As discussed in Section 4.3, multi-scale graph segmentation provides a hierarchical 

set of segmentations that contain accurate object segments. This process requires both 

large computations due to the vectorization of the 2-D input, as well as an iterative node 

agglomeration. Any speed gains that can improve execution times allow for larger input 

values to be used in the method. The graph initialization stage requires significant 

completion time when performed iteratively, but as the calculations are performed 

independently in local neighborhoods (Equation 4.16 and 4.17), this step is implemented 

in the GPU. Figures 7.5 and 7.6 give the execution time and speed-up gains for varying 

input matrix sizes. An exponential speed-up gain for the GPU implementation, which is 

necessary for computing even medium-sized input matrices (due to the vectorization) is 

shown. The GPU speed-up surpasses 10,000 at 600 dimension size, which is a 

reasonably expected input size in some sensor data. 
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GPU vs. CPU Speed-Up Gains: Graph Edge Weight, 4-
Connected Neighborhood 
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Figure 7.6 GPU-CPU Speed-Up for Graph Edge Weighting 

As discussed in Section 4.3.2, nodes in the hierarchical graph clustering scheme are 

selected based in a normalized cuts-like fashion, where the generalized eigen problem 

(Equation 4.18) is solved. This gamma function is required of each node in the graph, 

thus independent calculations are performed. This recursive system continually performs 

this function on smaller sets of graph nodes, which will make the GPU implementation 

progressively less efficient until a node size is reached where CPU can perform the 

method more efficiently. A series of GPU-CPU execution time and speed-up gains 

(Figures 7.7-7.12) is used for varying node sizes and iterations, to clearly define 

breakeven points in the implementation speed-up gains. For varying input sizes, CPU 

operations outperform the GPU, although times are fairly comparable. CPU 

computations also outperform the GPU for smaller iteration sizes, but a GPU gain is 

observed for iterations over 7500 nodes. 
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7.2.3 GPU for Feature Extraction 

As described in Chapter 5, although the potential number of candidates is 

significantly lower than initial SE stages (preprocessing and motion estimation), a dense 

set of features for each object candidate at every location can now be calculated 

simultaneously, validating the economy of using a GPU implementation. GPU based 
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computations are implemented for both histograms and invariant moments in hopes to 

improve execution time. 

In Section 5.4, the methodology of edge histogram features for object classification is 

discussed. This step requires several steps for computation, with a final step using a 

calculation similar to Equation (5.7). Each object candidate location requires an 

independent set of calculations for edge histograms, and GPU speed gains in similar 

fashion to graph cuts to see gains for specific input sizes (Figures 7.13.-7.19) are 

presented. When no iterations are performed, a constant, larger execution time for GPUs 

can be observed. For iterations, the GPU implementation outperforming the CPU for 

iteration sizes larger than 20, which is normally expected for real applications, are 

observed. 
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Figure 7.17 GPU-CPU Execution Time for Histogram (large loops) 
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Figure 7.18 GPU-CPU Speed Up for Histogram (large loops) 

The methodology and presented the implementation of invariant moments in Section 

5.3, using this set of features in object classification, have been discussed. Similar to 

feature histograms, this feature set is also calculated in a local, independent manner for 

each object candidate, thus lending itself to speed-up gains via parallelization. In Figures 

7.19-7.24, these results are presented. Unlike histograms, CPU-GPU execution times 

remain similar throughout a single calculation with varying input sizes. GPU speed-up 

gains are evident for the entire span of iterations, following a linear speed-up with 

increasing loop size. 
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Figure 7.24 GPU-CPU Speed-Up for Invariant Moments (large loops) 

7.2.4 GPU for Object Tracking 

Described in both Sections 6.2 and 6.3, a correlation-based feature tracker for 

following detected objects through the image sequence has been used. This stage 

typically requires a searching-type of algorithm where a match score or probability is 
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calculated at new potential object location. This type of method can easily be inhibited 

by the size of the features used for the matching (Figure 6.4), as well as the number of 

locations to compare. GPUs can provide a means to calculate probabilities based on 

feature matching simultaneously, thus larger feature sizes and locations can be used to 

provide real time tracking results. GPUs create performance gains when a significant 

number of locations are present, which can grow rapidly if multiple orientations of each 

object are used for comparison (described in Section 5.2.2). The normalized cross 

correlation (Equation 6.9-10) speed-up using the GPU (Figures 7.25-7.30) is presented. 

For non-iterative, varying vector size, CPUs outperform the GPU implementation. For 

iterative implementation, the GPU begins to outperform the CPU after 30 iterations, 

showing a linear speed-up with an increase in loops size. 
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T
im

e 
(S

ec
oi

 2.00E-01 

1.50E-01 

1.00E-01 

5.00E-02 

0.00E+00 

-CPU time 

-GPU time 

GPU vs. CPU Execution Time: Normalized Cross 
Correlation (Large Iteartions, 512-Iength vector) 

o o o o o o o o o o o o o o o o o 
— u - i O O O O O O O O O O O O O O O 

—- m wo (^ os — m in r~- o\ — rn un r~ o 
— —• — — — r-i CM <N CN r^i 

Iterations 
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7.2.5 GPU for Implementation Summary 

Each of the SE sub-tasks to determine the benefits of GPU-enabled implementations 

and provided time-gains (in multiples of execution time) have evaluated for each feature 

calculation in Table 7.1. For non-iterative, highly parallel methods, such as 2-D 

convolutions (Gaussian filtering) and graph weight initialization, qualitative gains in 

execution time can be observed. For most feature calculations tested, time lag due to 

CPU-GPU communication reduces performance to a fraction of the execution time 

produced by CPU implementations. When feature calculations are required to be 

performed in an independent iterative manner (as is the case with feature extraction and 

tracking calculations), large gains are observed at even small iteration sizes (Table 7.2). 
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Table 7.1 Algorithm GPU Speed-Up for SE 

Feature Calculation 

2-D Convolution 

Graph Weight 
Initialization 

Graph Norm Cuts 

Invariant Moments 

Histogram 
Normalized Cross 
Correlation 

Input Size (pixels: 

25 

0.23 

0.25 

0.02 

0.89 

0.06 

0.06 

100 

0.80 

10.90 

0.03 

0.98 

0.05 

0.06 

250 

1.48 

288.87 

0.02 

1.00 

0.06 

0.06 

row=colu 

500 

2.80 

4780.88 

0.07 

1.00 

0.06 

0.07 

mns) 

1000 

4.06 

14565.00 

0.23 

1.00 

0.07 

0.08 

Table 7.2 Iterative GPU Speed-Up for SE 

Feature Calculation 
(For Loop Iterations) 

2-D Convolution 

Graph Norm Cuts 

Invariant Moments 

Histogram 
Normalized Cross 
Correlation 

Loop Size 

25 100 250 500 1000 

8.90 19.45 77.63 76.85 91.70 

0.54 2.90 10.51 37.15 156.10 

15.17 60.93 153.09 300.43 600.77 

1.25 5.00 12.48 25.00 49.68 

1.41 5.94 14.86 30.36 60.32 

7.3 GPU-Based SE Framework Conclusion 

GPU implementations of SE feature calculations have been tested, and the findings 

have been discussed. Although GPU provide new real-time methods to SE by leveraging 

fast, independent feature calculations, each implementation should be analyzed to 

determine lower bound speed gains. Preprocessing steps that reduce input sizes to 

increase real-time implementation can potentially be eliminated, which can increase 
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specificity by leveraging additional object details. At the time of this writing, several 

limitations still hinder seamless GPU implementation into SE algorithms, such as lack of 

compatibility for sparse matrices and conditional statements in loops. The independent 

calculations required to accurately detect, classify, and track objects in increasingly large 

sensor data will benefit immensely from GPU implementations. 



CHAPTER 8 

CONCLUSIONS 

8.1 Contributions to Object Detection 

In Chapter 4, three specific methods for object detection are presented and evaluated 

which successfully delineate objects from the background in changing, cluttered 

environments. Although that these methods may not work out-of-the-box for any SE 

application, each of these methods contribute to the SE community with the hopes that 

particular methodologies can be used as benchmarks or expanded upon to serve the user's 

particular needs. The ill-defined nature of object detection will remain a challenging 

topic for many years to come, with more complex and computationally intensive methods 

continuously being realized due to the expanding resources available. The research in 

this field will be continued by leveraging recent investigations with GPU implementation 

discussed in Chapter 7 with the hopes of using larger input data to increase accuracy. 

Additionally, more tracking methods will be integrated into the detection stage to further 

decrease false alarms caused by OCs, with more computationally intensive methods 

available for real time implementation. 

More optical flow and image segmentation methods will be implemented to a create a 

cascading performance model which can predict algorithm accuracy probabilities based 

on offline evaluation. This direction can attain an even higher standard of robustness that 

is not currently found in the object detection literature. Methods such as the one 

120 
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described in Section 4.4 is only the beginning of how motion and segmentation methods 

can be integrated into one another for refining detection results. 

8.2 Contributions to Feature Extraction and Classification 

Several novel feature extraction methodologies that have proven to successfully 

detect, classify, and track objects in image sequences have been implemented. For 

detection, the flow and edge gradients have been implemented with a binning 

methodology, which can help in detecting object with concave boundaries (like objects). 

Other researchers in persistent surveillance can benefit from these additional features, due 

to the difficulties in robust segmentation and detection algorithm design. Edge bins also 

provide useful invariant feature for classification, due to their ability to handle rotation 

and partial occlusion. Most feature sets cannot handle both of these types of variations in 

object appearance, which can work well when combined with features that provide high 

levels of specificity. Edge bins have shown to work well in classifying both multiclass 

object sets and binary detections by itself, but can still aid in working in a larger group of 

features. As shown in this dissertation, these features can be sped up by GPUs when used 

in an independent, iterative manner (which is typically the case). 

DRSURF features have provided a novel way to describe a low resolution object with 

poor second derivatives for tracking. This method will be integrated with other features 

for a hierarchical tracking methodology, which first uses invariant features to reduce the 

search space, then performs DRSURF calculations for better tracking results. The 

DRSURF features can provide other researchers with an additional feature set to 

benchmark tracking and feature extraction methods. 
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Multiple methods for supervised classification for both detection and multiclass 

labeling have also been thoroughly investigated and evaluated. Several methods 

generated high accuracy, Random Forest performed best in real-time scenarios due to its 

high accuracy and fast training speed. The Random Forest detection scheme will be 

tested on other data sets that provide training data to study the robust discrimination 

strength of the classifier. MLP and KSTAR have also displayed accurate results when 

trained offline, but real-time classification requirements may inhibit their use. 

8.3 Contributions to Object Tracking 

Aside from using DRSURF for tracking, the use of tracking methods which can 

follow objects through rotation, translation, and scaling changes by integrating motion 

and appearance features have been presented and validated. Although this approach is 

not unique in terms of combining these two classes of features, the method takes into 

account specific phenomena that occurs using particular optical flow (phase-based) and 

gradient features (DRSURF) for an optimal tracking performance. Like object detection 

problems with robustness, this particular approach cannot provide an out-of-the-box 

solution for any image sequence that contains objects. Creating more robust tracking is a 

natural next step for the research in object tracking, with methods that can be 

incorporated in the detection stage of particular interest. The use of GPUs expands the 

ability to perform matching on larger candidate spaces for reductions in false negatives, 

but must be counteracted by high selective tracking methods. Such tracking methods 

should incorporate a multi-tracking scheme, which can choose a particular tracker's 

estimation based on tracker performance models. Although the presented tracker does 

not currently provide this level of complexity, the powerful detection methodology may 
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play a more significant role in tracking, which is referred as detect-before-track. These 

methods suffer from higher computational costs and reduced robustness to occlusions, 

which will be mitigated by implementing GPU versions for speed increases and using 

dynamic state models. 
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