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Abstract

Training relation extractors for the purpose of automated knowledge base population requires the availabil-

ity of sufficient training data. The amount of manual labeling can be significantly reduced by applying

distant supervision, which generates training data by aligning large text corpora with existing knowledge

bases. This typically results in a highly noisy training set, where many training sentences do not express the

intended relation. In this paper, we propose to combine distant supervision with minimal human supervi-

sion by annotating features (in particular shortest dependency paths) rather than complete relation instances.

Such feature labeling eliminates noise from the initial training set, resulting in a significant increase of pre-

cision at the expense of recall. We further improve on this approach by introducing the Semantic Label

Propagation (SLP) method, which uses the similarity between low-dimensional representations of candidate

training instances to again extend the (filtered) training set in order to increase recall while maintaining high

precision. Our strategy is evaluated on an established test collection designed for knowledge base popula-

tion (KBP) from the TAC KBP English slot filling task. The experimental results show that SLP leads to

substantial performance gains when compared to existing approaches while requiring an almost negligible

human annotation effort.

Keywords: Relation Extraction, Knowledge Base Population, Distant Supervision, Active Learning,

Semi-supervised learning

1. Introduction

In recent years we have seen significant advances in the creation of large-scale knowledge bases (KBs),

databases containing millions of facts about persons, organizations, events, products, etc. Examples include
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Wikipedia-based KBs (e.g., YAGO [1], DBpedia [2], and Freebase [3]), KBs generated from Web documents

(e.g., NELL [4], PROSPERA[5]), or open information extraction approaches (e.g., TextRunner [6], PRIS-5

MATIC [7]). Other knowledge bases like ConceptNet [8] or SenticNet [9] collect conceptual information

conveyed by natural language and make them easily accessible for systems performing tasks like common-

sense reasoning and sentiment analysis[10]. Besides the academic projects, several commercial projects

were initiated by major corporations like Microsoft (Satori1), Google (Knowledge Graph [11]), Facebook2,

Walmart [12] and others. This is driven by a wide variety of applications for which KBs are increasingly10

found to be essential, e.g., digital assistants, or for enhancing search engine results with semantic search

information.

Because KBs are often manually constructed, they tend to be incomplete. For example, 78.5% of persons

in Freebase have no known nationality [13]. To complete a KB we need a knowledge base population (KBP)

system that extracts information from various sources of which a large fraction comprises unstructured15

written text items [11]. A vital component of a KBP system is a relation extractor to populate a target field

of the KB with facts extracted from natural language. Relation extraction (RE) is the task of assigning a

semantic relationship between (pairs of) entities in text.

There are two categories of RE systems: (i) closed-schema IE systems extract relations from a fixed

schema or for a closed set of relations while (ii) open domain IE systems extract relations defined by arbitrary20

phrases between arguments. We focus on the completion of KBs with a fixed schema, i.e., closed IE systems.

Effective approaches for closed schema RE apply some form of supervised or semi-supervised learn-

ing [14, 15, 16, 17, 18, 19] and generally follow three steps: (i) sentences expressing relations are trans-

formed to a data representation, e.g., vectors are constructed to be used in feature-based methods, (ii) a

binary or multi-class classifier is trained from positive and negative instances, and (iii) the model is then25

applied to new or unseen instances. To review the evolution of these and other natural language processing

techniques readers can refer to the article by Cambria and White [20].

Supervised systems are limited by the availability of expensive training data. To counter this problem,

the technique of iterative bootstrapping has been proposed [21, 22] in which an initial seed set of known

facts is used to learn patterns, which in turn are used to learn new facts and incrementally extend the training30

set. These bootstrapping approaches suffer from semantic drift and are highly dependent on the initial seed

1https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
2http://www.insidefacebook.com/2013/01/14/
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Knowledge Base
Relation (r) Entity 1 (e1) Entity 2 (e2)
born in Barrack Obama U.S.
spouse Barrack Obama Michelle
. . . . . . . . .

Mentions in free text True +?
Barack was born in Honolulu, Hawaii, U.S. ✓
Barrack Obama ended U.S. military involvement in the Iraq War. ✗
Michelle and Barack are visiting Cuba. ✗
Barack and his wife Michelle are meeting with Xi Jinpeng ✓

Figure 1: Illustration of the distant supervision paradigm and errors

set.

When an existing KB is available, a much larger set of known facts can be used to bootstrap training data,

a procedure known as distant supervision (DS). DS automatically labels its own training data by heuristically

aligning facts from a KB with an unlabeled corpus. The KB, written as D, can be seen as a collection of35

relational tables r(e1, e2), in which r ∈ R (R is the set of relation labels), and < e1, e2 > is a pair of entities

that are known to have relation r. The corpus is written as C.

The intuition underlying DS is that any sentence in C which mentions the same pair of entities (e1 and

e2) expresses a particular relationship r̂ between them, which most likely corresponds to the known fact

from the KB, r̂(e1, e2) = r(e1, e2), and thus forms a positive training example for an extractor of relation r.40

DS has been successfully applied in many relation extraction tasks [23, 24] as it allows for the creation of

large training sets with little or no human effort.

Equally apparent from the above intuition is the danger of finding incorrect examples for the intended

relation. The heuristic of accepting each co-occurrence of the entity pair < e1, e2 > as a positive training

item because of the KB entry r(e1, e2) is known to generate noisy training data or false positives [25], i.e.,45

two entities co-occurring in text are not guaranteed to express the same relation as the field in the KB they

were generated from. The same goes for the generation of negative examples: training data consisting of

facts missing from the KB are not guaranteed to be false since a KB in practice is highly incomplete. An

illustration of DS generating noisy training data is shown in Figure 1.

Several strategies have been proposed to reduce this noise. The most prominent make use of latent50

variable models, in which the assumption is made that each known fact is expressed at least once in the

corpus [25, 26, 27]. These methods are cumbersome to train and are sensitive to initialization parameters of

the model.

An active research direction is the combination of DS with partial supervision. Several recent works

differ in the way this supervision is chosen and included. Some focus on active learning, selecting training55

3



instances to be labeled according to an uncertainty criterion [28, 23], while others focus on annotations of

surface patterns and define rules or guidelines in a semi-supervised learning setting [29]. Existing methods

for fusion of distant and partial supervision require thousands of annotations and hours of manual labor

for minor improvements (4% in F1 for 23,425 annotations [28] or 2,500 labeled sentences indicating true

positives for a 3.9% gain in F1 [29]). In this work we start from a distantly supervised training set and60

demonstrate how noise can be reduced, requiring only 5 minutes of annotations per relation, while obtaining

significant improvements in precision and recall of the extracted relations.

We define the following research questions:

RQ 1. How can we add supervision most effectively to reduce noise and optimize relation extractors?

RQ 2. Can we combine semi-supervised learning and dimension reduction techniques to further enhance65

the quality of the training data and obtain state-of-the-art results using minimal manual supervision?

With the following contributions, we provide answers to these research questions:

1. In answer to RQ 1, we demonstrate the effectiveness and efficiency of filtering training data based on

high-precision trigger patterns. These are obtained by training initial weak classifiers and manually

labeling a small amount of features chosen according to an active learning criterion.70

2. We tackle RQ 2 by proposing a semi-supervised learning technique that allows extending an initial

set of high-quality training instances with weakly supervised candidate training items by measuring

their similarity in a low-dimensional semantic vector space. This technique is called Semantic Label

Propagation.

3. We evaluate our methodology on test data from the English Slot Filling (ESF) task of the knowledge75

base population track at the 2014 Text Analysis Conference (TAC). We compare different methods

by using them in an existing KBP system. Our relation extractors attain state-of-the-art effectiveness

(a micro averaged F1 value of 36%) while depending on a very low manual annotation effort (i.e., 5

minutes per relation).

In Section 2 we give an overview of existing supervised and semi-supervised RE methods and highlight80

their remaining shortcomings. Section 3 describes our proposed methodology, with some details on the DS

starting point (Section 3.1), the manual feature annotation approach (Section 3.2), and the introduction of the

semantic label propagation method (Section 3.3). The experimental results are given in Section 4, followed

by our conclusions in Section 5.

4



2. Related Work85

The key idea of our proposed approach is to combine DS with a minimal amount of supervision, i.e., re-

quiring as few (feature) annotations as possible. Thus, our work is to be framed in the context of supervised

and semi-supervised relation extraction (RE), and is related to approaches designed to minimize the annota-

tion cost, e.g., active learning. Furthermore, we use compact vector representations carrying semantics, i.e.,

so-called word embeddings. Below, we therefore briefly summarize related work in the areas of (i) super-90

vised RE, (ii) semi-supervised RE, (iii) evaluations of RE, (iv) active learning and (v) word embeddings.

2.1. Supervised Relation Extraction

Supervised RE methods rely on training data in the form of sentences tagged with a label indicating the

presence or absence of the considered relation. There are three broad classes of supervised RE: (i) methods

based on manual feature engineering, (ii) kernel based methods, and (iii) convolutional neural nets.95

Methods based on feature-engineering [17, 30] extract a rich list of manually designed structural, lexical,

syntactic and semantic features to represent the given relation mentions as sparse vectors. These features

are cues for the decision whether the relation is present or not. Afterwards a classifier is trained on positive

and negative examples. In contrast, kernel based methods [31, 32, 19] represent each relation mention as an

object such as an augmented token sequence or a parse tree, and use a carefully designed kernel function,100

e.g., subsequence kernel or a convolution tree kernel, to calculate their similarity with test patterns. These

objects are usually augmented with extra features such as semantic information. With the recent success of

deep neural networks in natural language processing, Convolutional neural networks (CNNs) have emerged

as effective relation extractors [33, 34, 35]. CNNs avoid the need for preprocessing and manual feature

design by transforming tokens into dense vectors using embeddings of words and extract n-gram based105

features independent of the position in the sentence.

Supervised approaches all share the need for training data, which is expensive to obtain. Two common

methods have emerged for the generation of large quantities of training data, both require an initial set of

known instances. When this number is initially small, the technique of bootstrapping is used. When a very

large number of instances is available from an existing knowledge base, distant supervision is the preferred110

technique. Both are briefly discussed below.
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2.1.1. Bootstrapping models for Relation Extraction

When a limited set of labeled instances is available, bootstrapping methods have proven to be effective

methods to generate high-precision relation patterns [21, 22, 36, 37]. The objective of bootstrapping is

to expand an initial ‘seed’ set of instances with new relationship instances. Documents are scanned for115

entities from the seed instances and linguistic patterns connecting them are extracted. Patterns are then

ranked according to coverage (recall) and low error rate (precision). Using the top scoring patterns, new

seed instances are extracted and the cycle is repeated.

An important step in bootstrapping methods is the calculation of similarity between new patterns and

the ones in the seed set. This measure decides whether a new pattern is relation oriented or not, based on120

the existing set. Systems use measures based on exact matches [36], cosine-similarity [21] or kernels [37].

A fundamental problem of these methods is semantic drift [38, 39]: bootstrapping, after several iterations,

deviates from the semantics of the seed relationship and extracts unrelated instances which in turn generate

faulty patterns. This phenomenon worsens with the number of iterations of the bootstrapping process.

Recently, Batista et al. [40] proposed the use of word embeddings for capturing semantic similarity125

between patterns. Contexts are modeled using linear combinations of the word embeddings and similarity

is measured in the resulting vector space. This approach has shown to reduce semantic drift compared to

previous similarity measures.

2.1.2. Distant Supervision

Distant supervision (DS) was first proposed in [41], where labeled data was generated by aligning in-130

stances from the Yeast Protein Database into research articles to train an extractor. This approach was later

applied for training of relation extractors between entities [13] and jointly training the named entity classifier

and the relation extractor [42].

Automatically gathering training data with DS is governed by the assumption that all sentences con-

taining both entities engaged in a reference instance of a particular relation, represent that relation. Many135

methods have been proposed to reduce the noise in training sets from DS. In a series of works the labels

of DS data are seen as latent variables. Riedel et al. [25] relaxed the strong all sentences-assumption to

an at-least-one-sentence-assumption, creating a multi-instance learner. Hoffman et al. [43] modified this

model by allowing entity pairs to express multiple relations, resulting in a multi-instance multi-label setting

(MIML-RE). Surdeanu et al. [27] further extended this approach and included a secondary classifier, which140

jointly modeled all the sentences in texts and all labels in knowledge bases for a given entity pair.
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Other methods apply heuristics [44], model the training data as a generative process [45, 46] or use a

low-rank representation of the feature-label matrix to exploit the underlying semantic correlated information.

2.2. Semi-supervised Relation Extraction

Semi-supervised Learning is situated between supervised and unsupervised learning. In addition to145

unlabeled data, algorithms are provided with some supervised information. The training data comprises

labeled instances Xl = (x1 . . . xl) for which labels Yl = (y1 . . . yl) are provided, and typically a large set of

unlabeled ones Xu = (x1 . . . xu).

Semi-supervised techniques have been applied to RE on multiple occasions. Chen et al. [47] apply label

propagation by representing labeled and unlabeled examples as nodes and their similarities as the weights150

of edges in a graph. In the classification process, the labels of unlabeled examples are then propagated from

the labeled to unlabeled instances according to similarity. Experimental results demonstrate that this graph-

based algorithm can outperform SVM in terms of F1 when very few labeled examples are available. Sun et

al. [18] show that several different word cluster-based features trained on large corpora can compensate for

the sparsity of lexical features and thus improve the RE effectiveness.155

Zhang et al. [48] compare DS and complete supervision as training resources but do not attempt to fuse

them. They observe that DS systems are often recall gated: to improve DS quality, large input collections

are needed. They also report modest improvements by adding crowd-sourced yes/no votes to the training

instances. Training instances were selected at random as labeling using active learning criteria did not affect

performance significantly.160

Angeli et al. [28] show that providing a relatively small number of mention-level annotations can im-

prove the accuracy of MIML-RE. They introduce an active learning criterion for the selection of instances

incorporating both the uncertainty and the representativeness, and show that the choice of criterion is im-

portant. The MIML-RE model of Surdeanu et al. [27] marginally outperforms the Mintz++ baseline using

solely DS: initialization of the latent variables using labeled data is needed for larger improvements. For165

this, a total of 10, 000 instances were labeled, resulting in a 3% increase on the micro-F1 .

Guided DS as proposed by Pershina et al. [29] incorporates labeled patterns and trigger words to guide

MIML-RE during training. They make use of a labeled dataset from TAC KBP to extract training guidelines,

which are intended to generalize across many examples.
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2.3. TAC KBP English Slot Filling170

The knowledge base population (KBP) shared task is part of the NIST Text Analysis Conference and

aims to evaluate different approaches for discovering facts about entities and expansion of knowledge bases.

A selection of entities is distributed among participants for which missing facts need to be extracted from a

given large collection of news articles and internet fora. Important components of these systems are query

expansion, entity linking and relation extractors. Over the years DS has become a regular feature of effective175

systems [23, 49]. Other approaches use hand-coded rules or are based on question answering systems [49].

The top performing 2014 KBP ESF system [50] uses DS, the manual labeling of 100, 000 features, and is

built on DeepDive, a database system allowing users to rapidly construct sophisticated end-to-end knowledge

base population techniques [51]. After initial DS, features are manually labeled and only pairs associated

with labeled features are used as positive examples. This approach has proven to be very effective but further180

investigation is needed to reduce the amount of feature labeling. Here, we show how we can strongly reduce

this effort while maintaining high precision.

2.4. Active Learning and Feature Labeling

Active learning is used to reduce the amount of supervision required for effective learning. The most

popular form of active learning is based on iteratively requiring manual labels for the most informative185

instances, an approach called uncertainty sampling. In relation extraction, typical approaches include query-

by-committee [28, 52] and cluster-based sampling [53]. While the focus in RE has been on labeling relation

instances, alternative methods have been proposed in other tasks in which features (e.g., patterns, or the

occurrence of terms) are labeled as opposed to instances [54, 55], resulting in a higher performance using

less supervision.190

Getting positive examples for certain relations can be hard, especially when training data is weakly

supervised. Standard uncertainty sampling is ineffective in this case: it is likely that a feature or instance has

a low certainty score because it does not carry much discriminative information about the classes. Assigning

labels to the most certain features has much greater impact on the classifier and can remove the principle

sources of noise. This approach has been coined as feature certainty [55], and we show that this approach is195

especially effective in DS for features that generalize across many training instances.

2.5. Distributional Semantics

The Distributional Hypothesis [56] states that words that tend to occur in similar contexts are likely to

have similar meanings. Representations of words as dense, low-dimensional vectors (as opposed to the stan-
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dard one-hot vectors), called word embeddings, exploit this hypothesis and are trained from large amounts200

of unlabeled text. Representations for words will be similar to those of related words, allowing the model to

generalize better to unseen events. The resulting vector space is also called a vector model of meaning [57].

Common techniques for generating very dense, short vectors use dimensionality reduction techniques (e.g.,

singular value decomposition) or neural nets to create so-called word embeddings. Word embeddings have

proven to be beneficial for many natural language processing tasks including POS-tagging, machine trans-205

lation and semantic role labeling. Two prominent methods for the embedding of words are Word2Vec [58]

and GloVe [59].

While much research has been directed at ways of constructing distributional representations of indi-

vidual words, for example co-occurrence based representations and word embeddings, there has been far

less consensus regarding the representation of larger constructions such as phrases and sentences from these210

representations. Blacoe et al. [60] show that, for short phrases, a simple composition like addition or mul-

tiplication of the distributional word representations is competitive with more complex supervised models

such as recursive neural networks.

3. Labeling Strategy for Noise Reduction

In this section we introduce our strategy to combine distantly supervised training data with minimal215

amounts of supervision. Briefly summarized, we designed our labeling strategy such as to minimize the

amount of false positive instances or noise while maintaining the diversity of relation expressions generated

by DS.

We perform a highly selective form of noise reduction starting from a fully distantly supervised relation

extractor, described in Section 3.1, and use the feature weights of this initial extractor to guide manual220

supervision in the feature space. Various questions arise from this. When do we over-constrain the original

training set generated by DS? What is the trade-of between the application of DS with highly diverse labeled

instances, and the constraining approach of labeling features, with a highly accurate yet restricted set of

training data? This is discussed in detail in Sections 3.2 and 3.3.

Our approach is depicted in Figure 2, and comprises the following steps:225

(1) An existing KB is used to generate distantly supervised training instances by matching its facts with

sentences from a large text corpus. We discuss the characteristics of this weakly labeled training set

as well as the features extracted from each sentence (see Section 3.1).
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(1) distant
supervisionKnowledge

Base

Documents

R1 <x11, y11>

R1 <x12, y12>...

R2 <x21, y21>

R2 <x22, y22>

...

Training set
(labeled relation instances)

(4) �ltering based on
       labeled features

Relation Extractor
for relation R1

Relation Extractor
for relation R2

...

(2), (6)
training

(3) feature
annotation

(5) label propagation in
       semantic feature space

Figure 2: Workflow Overview. Note that only step (3) involves human annotations.

(2) An initial relation extractor is trained using the noisy training data generated in step (1).

(3) Confident positive features learned by this initial classifier are presented to an annotator with knowl-230

edge of the semantics of the relation and labeled as true positive or false positive.

(4) The collection of training instances is filtered according to the labeled features and a second classifier

is trained. This framework, in which we combine supervision and DS, is explained in Section 3.2.

(5) In a semi-supervised step, the filtered distantly supervised training data is added to training data by

propagating labels from labeled features to distantly supervised instances based on similarity in a235

semantic vector space of reduced dimension. The technique is presented in Section 3.3 as Semantic

Label Propagation.

(6) A final relation extractor is trained on the augmented training set. We evaluate and discuss results of

the proposed techniques in Section 4.

3.1. Distantly Supervised Training Data240

The English Gigaword corpus [61] is used as unlabeled text collection to generate relation mentions.

The corpus consists of 1.8 million news articles published between January 1987 and June 2007. Articles

are first preprocessed using different components of the Stanford CoreNLP toolkit [62], including sentence

segmentation, tokenizing, POS-tagging, named entity recognition, and clustering of noun phrases which

refer to the same entity.245
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As KB we use a snapshot of Freebase (now Wikidata) from May 2013. The relation schema of Freebase

is mapped to that used for evaluation, the NIST TAC KBP ESF Task, which defines 41 relations, including

25 relations with a person as subject entity and 16 with organizations as subject. 26 relations require objects

or fillers that are themselves named entities (e.g., Scranton as place of birth of Joe Biden), whereas others

require string-values (e.g., profession (senator, teacher,. . . ), cause of death (cancer, car accident,. . . )).250

We perform weak entity linking between Freebase entities and textual mentions using simple surface

string matching. We reduce the effect of faulty entity links by thresholding the amount of training data per

subject entity [63]. Most frequently occurring entities from the training data (e.g., John Smith, Robert John-

son, . . . ) are often most ambiguous, hard to link to a KB and thus result in noisy training data. Thresholding

the amount of training data per entity also prevents the classifier from overfitting on several, popular entities.255

This follows from the observation that training data is initially skewed towards several entities frequently oc-

curring in news articles, like Barack Obama or the United Nations, resulting in over-classifying professions

of persons as president or seeing countries as members of the organization.

For each generated pair of mentions, we compute various lexical, syntactic and semantic features. Table 1

shows an overview of all the features applied for the relation classification. We use these features in a binary260

logistic regression classifier. Features are illustrated for an example relation-instance <Ray Young, General

Motors> and the sentence “Ray Young, the chief financial officer of General Motors, said GM could not bail

out Delphi”.

For each relation Ri, we generate a set of (noisy) positive examples denoted as R+
i and defined as

R+
i = { (m1,m2) | Ri(e1, e2) ∧ EL(e1,m1) ∧ EL(e2,m2) }

with e1 and e2 being subject and object entities from the KB and EL(e1,m1) being the entity e1 linked to

mention m1 in the text. As in previous work [43, 30], we impose the constraint that both entity mentions265

(m1,m2) ∈ R+
i are contained in the same sentence. To generate negative examples for each relation, we

sample instances from co-occurring entities for which the relation is not present in the KB.

We measured the amount of noise, i.e., false positives, in the training set of positive DS instances,

for a selection of 15 relations: we manually verified 2,000 randomly chosen instances (that DS found as

supposedly positive examples) for each of these relations. Table 2 shows the percentage of true positives270

among these 200 instances for each of these relations, which strongly varies among relations, ranging from

10% to 90%.

11



Table 1: Overview of different features used for classification for the sentence “Ray Young, the chief financial officer of General

Motors, said GM could not bail out Delphi”.

Feature Description Example Feature Value

Dependency

tree

Shortest path connecting the two names in

the dependency parsing tree coupled with

entity types of the two names

PERSON←appos←officer

→ prep of→ ORGANIZATION

The head word for name one said

The head word for name two officer

Whether 1dh is the same as e2dh false

The dependent word for name one officer

The dependent word for name two nil

Token

sequence

features

The middle token sequence pattern , the chief financial officer of

Number of tokens between the two names 6

First token in between ,

Last token in between of

Other tokens in between {the, chief, financial, officer}

First token before the first name nil

Second token before the first name nil

First token after the second name ,

Second token after the second name said

Entity

features

String of name one Ray Young

String of name two General Motors

Conjunction of e1 and e2 Ray Young–General Motors

Entity type of name one PERSON

Entity type of name two ORGANIZATION

Conjunction of et1 and et2 PERSON–ORGANIZATION

Semantic

feature
Title in between True

Order

feature

1 if name one comes before name two;

2 otherwise.
1

Parse Tree
POS-tags on the path connecting

the two names

NNP→DT→JJ→JJ

→NN→IN→NNP

12



Table 2: Training Data. Fractions of true positives are estimated from the training data by manually labeling a sample of 2,000 instances

per relation that DS indicated as positive examples

.

Relation
Estimated Fraction Positively Remaining Training Initial Number of

of True Positives Labeled SDPs Data after Filtering True Positives

per:title 85.1% 157 26.2% 369,079

org:top members employees 71.7% 236 16.7% 93,900

per:employee or member of 87.8% 256 16.5% 260,785

per:age 62.4% 79 52.2% 58,980

per:origin 85.2% 116 11.9% 1,555,478

per:countries of residence 55.6% 65 8.4% 493,064

per:charges 59.4% 122 21.5% 17,639

per:cities of residence 11.7% 96 7.4% 370,153

per:cause of death 51.9% 97 29.4% 31,386

per:spouse 63.2% 124 12.1% 172,874

per:city of death 19.9% 92 5.6% 125,333

org:country of headquarters 10.8% 92 13.4% 13,435

per:country of death 77.6% 70 16.5% 128,773

org:city of headquarters 56.5% 67 42.7% 36,238

org:founded by 13.3% 85 22.7% 318,991
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Relation: per:cities of residence

Knowledge Base Entry: < Sherman,Greenwich >

Dependency Tree:

Sherman , 63 , grew up in a middle-class neighborhood of Greenwich .

nsubj

prt

prep in

amod prep of

case

det

nn case

Shortest Dependency Path:

PERSON
nsubj←−−−− grew prep in−−−−−→ neighborhood

prep of−−−−−→ LOCATION

Figure 3: Dependency tree feature

3.2. Labeling High Confidence Shortest Dependency Paths

This section describes the manual feature labeling step that allows transforming a full DS training set

into a strongly reduced yet highly accurate training set, based on feature labeling. We focus on a particular275

kind of feature, i.e., a relation’s shortest dependency path (SDP). Dependency paths have empirically been

proven to be very informative for relation extraction: their capability of capturing information is evidenced

by a systematic comparison in effectiveness of different kernel methods [64] or as features in feature-based

systems [17]. This was originally proposed by Bunescu et al. [19], who claimed that the relation expressed

by a sentence is often captured in the shortest path connecting the entities in the dependency graph. Figure 3280

shows an example of an SDP for a sentence expressing a relation between a person and a city of residence.

As shown in Table 2, the fraction of false positive items among all weakly supervised instances can

be very large. Labeling features based on the standard active learning approach of uncertainty sampling is

ineffective in our case since it is likely that a feature or instance has a low certainty score simply because

not much discriminative information about the classes is carried. Annotating many such instances would

be a waste of effort. Assigning labels to the most certain features has much greater impact on the classifier

and can remove the principal sources of noise. This approach is called feature certainty sampling [55]. It is

intuitively an attractive method, as the goal is to reduce the most influential sources of noise as quickly as
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Figure 4: Illustration of frequency and confidence of dependency paths for example relations. (a) Occurrence frequency, ranked from

highest to lowest, and (b) confidence C of dependency paths (eq. 1), ranked from highest to lowest, with indication of true positives.

possible. For example for the relation founded by, there are many persons that founded a company who were

also top members, leading to instances that we wish to remove when cleaning up the training data for the

relation founded by. SDPs offer all the information needed to assess the relationship validity of the training

instances, are easily labeled, and generalize over a considerable fraction of the training set as opposed to

many of the feature-unigrams which remain ambiguous in many cases. We implement the feature certainty

idea by ranking SDP features according to the odds that when a particular SDP occurs, it corresponds to a

valid relation instance. This corresponds to ranking by the following quantity, which we call the considered

SDP’s confidence

Confidence(SDP) =
P (+|SDP)
P (−|SDP)

. (1)

It can be directly estimated from the original DS training set, based on each SDP feature’s (smoothed) occur-

rence frequencies among the positive and negative distantly supervised instances. In particular, P (+|SDP)

indicates the SPD’s fraction of occurrences among the positive training data and P (−|SDP)) among the

negative.285

All dependency paths are ranked from most to least confident and the top-k are assigned to a human

annotator to select the true positive SDPs. The annotator is asked to select only the patterns which un-

ambiguously express the relation. That is, a pattern is accepted only if the annotator judges it a sufficient

condition for that relation. The annotator is provided with several complete sentences containing the depen-

dency path to this cause. When the SDP does not include any verbs, e.g., when entities are both part of the290
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same Noun Phrase like “Microsoft CEO Bill Gates”, all words between the subject and object are included

and the complete path is added to the filter set. In our experiments, we restrict the time of SDP annotations

to a limited effort of 5 minutes for each relation. On average our expert annotator was able to label around

250 SDPs per relation this way. The ease of annotating SDPs becomes apparent when compared with an-

notating random relation instances, of which they managed to annotate only 100 in the same period of time.295

Section 4.3 provides further details on the different annotation methodologies for the experiments.

The motivation behind limiting the annotation time per relation to only a few hundred patterns comes

from the following analysis. First of all, a small subset of all different patterns is responsible for the majority

of relation instances in the DS training set. In fact, the sparsity of distantly supervised training data becomes

apparent when extracting all SDPs for each fact in the KB in one pass over the corpus. Figure 4a shows the300

approximately zipfian distribution of the frequency of the dependency paths generated by DS in the positively

labeled training set for several example relations. The abscis shows the rank of dependency paths for various

relations, sorted from most to least frequent, normalized by the total number of paths for the respective

relations (to allow visualization on the same graph). In line with our goal of getting a highly accurate training

set with the largest sources of noise removed at a low annotation cost, we focused on capturing those top305

most frequent patterns. Secondly, we noticed that beyond the first few hundred most confident SDPs, which

took around 5 minutes to annotate, further true positives tend to occur less frequently. Annotating many more

SDPs would only marginally increase the diversity in the training set, at a rapidly increasing annotation cost.

Figure 4b illustrates the occurrence of true positive patterns for decreasing confidence scores. For several

example relations, the figure shows the true positive patterns as markers on the confidence distribution of the310

1, 000 most confident SDPs.

Finally, using the manually selected set of SDPs, the complete training set is filtered by enforcing that

one of these SDPs be present in the feature set of the instance. We include all mention pairs associated with

that feature as positive examples of the considered relation. The classifier trained on the resulting training

set is intuitively of high precision but doesn’t generalize well to unseen phrase constructions. Note that the315

classifier is quite different from a regular pattern based relation extractor. Although all training instances

satisfy at least one of the accepted SDPs, the classifier itself is trained on a set of features including, but not

restricted to, these SDPs (see Table 1). Still, most of the benefits of DS are lost by having the selection of

training instances governed by a limited set of patterns.

The fourth column of Table 2 lists the fraction of training data remaining after filtering out all patterns320

apart from those classified as indicative of the relation at hand. The amount of training data remaining after
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Table 3: Examples of top-ranked patterns

Relation Top SDP Assessment

top members employees PER
appos←−−−− executive

prep of−−−−−→ ORG 3

PER
appos←−−−− chairman

appos−−−−→ ORG 3

ORG nn←−− founder
prep of−−−−−→ PER 7

children PER-2
appos←−−−− son

prep of−−−−−→ PER-1 3

PER-1
appos←−−−− father

prep of−−−−−→ PER-2 3

PER-2 nn←−− grandson
prep of−−−−−→ PER-1 7

city of birth PER rcmod←−−−− born
prep in−−−−−→ LOC 3

PER
nsubj←−−−− mayor

prep of−−−−−→ LOC 7

PER
appos←−−−− historian

prep from−−−−−−−→ LOC 7

schools attended PER
nsubj←−−−− graduated

prep from−−−−−−−→ ORG 3

PER
dep←−− student

prep at−−−−−→ ORG 3

PER
appos←−−−− teacher

prep at−−−−−→ ORG 7

(org:)parents ORG-2
appos←−−−− subsidiary

prep of−−−−−→ ORG-1 3

ORG-1
appos←−−−− division

prep of−−−−−→ ORG-2 3

ORG-2
prep to←−−−− shareholder

dep−−→ ORG-1 7

this filtering step strongly depends on the specific relation, varying from 5% to more than half of the original

training set. Yet on the whole, the filtering results in a strong reduction of the purely DS-based training

data, often removing much more than the actual fraction of noise (column 2). For example, for the relation

per:employee or member of, we note only 100%− 87.8% = 12.2% false positives, but the manual filtering325

leads to discarding 83.5% of the DS instances.

The strategy described in the previous paragraphs is related to the guidelines strategy from Pershina et

al. [29] (without the MIML model) in labeling features, but it differs in some essential aspects. Instead

of needing a fully annotated corpus to do so, we rank and label features entirely based on DS. Labeling

features based on a fully labeled set ignores the variety of DS and risks being biased towards the smaller set330

of labeled instances. Also, no active learning criteria were applied when choosing which features to label,

making the process even more efficient.
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3.3. Noise Reduction using Semantic Label Propagation

If we strictly follow the approach proposed in Section 3.2 and only retain DS training instances that

satisfy a positively labeled SDP, an important advantage of DS is lost, namely its potential of reaching high335

recall. If we limit the feature annotation effort, we risk losing highly valuable SDPs. To counteract this effect,

we introduce a second (re)labeling stage, adopting a semi-supervised learning (SSL) strategy to expand the

training set. This is done by again adding some instances from the set of previously discarded DS instances

with SDPs not matching any of the manually labeled patterns. We rely on the basic SSL approach of self-

training by propagating labels from known instances to the nearest neighboring unlabeled instances. This340

method requires a method of determining the distance between labeled and unlabeled instances. Dangers of

self-training include the failure to expand beyond the initial training data or the introduction of errors into the

labeled data. In order to avoid an overly strong focus on the filtered training data, we use low-dimensional

vector representations of words, also called word embeddings.

Word embeddings allow for a relaxed semantic matching between the labeled seed patterns and the

remaining weakly labeled patterns. As shown by Sterckx et al. [53], representing small phrases by summing

each individual word’s embedding leads to semantic representations of small phrases that are meaningful for

the goal of relation extraction. We represent each relation instance by a single vector by first removing

stop-words and averaging the embeddings of the words on the dependency path. For example, consider the

sentence:

Geagea on Friday for the first time addressed the court judging him for murder charges.

which has the following SDP,

PER
nsubj←−−−− addressed dobj−−−→ court

vmod−−−→ judging
prep for−−−−−→ charges

nn−−→ Criminal Charge

Its low-dimensional representation ~C is hence generated as

~C =
E(“addressed”) + E(“court”) + E(“judging”) + E(“charges”)

4
, (2)

with E(x) the word embedding of word x. The similarity between a labeled pattern ~Ct and a weakly labeled345

pattern ~CDS is then measured using cosine similarity between the vector representations.

Sim(~Ct, ~CDS) =
~Ct. ~CDS

|~Ct|.|~CDS |
(3)
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In the special case that no verbs occur between two entities, all the words between the two entities are used

to build the representations for the context vector.

Using these low-dimensional continuous representations of patterns, we can calculate similarities be-

tween longer, less frequently occurring patterns in the training data and the patterns from the initial seed set350

which are the most frequently occurring ones. We can now increase recall by adding similar but less frequent

patterns. More specifically, we calculate the similarity of the average vector of the labeled patterns (as in

the Rocchio classifier type of self-training) with each of the remaining patterns in the DS set and extend

the training data with the patterns that have a sufficiently high similarity with the labeled ones. We call this

technique Semantic Label Propagation.355

4. Experimental Results

4.1. Testing Methodology

We evaluate the relation extractors in the context of a Knowledge Base Population system [63, 65] using

the NIST TAC KBP English Slot Filling (ESF) Evaluation from 2012 to 2014. We choose for this evaluation

because of the diversity and difficulty of entities in the queries. In the end-to-end ESF framework, the input360

to the system is a given entity (the ‘query’), a set of relations, and a collection of articles. The output is a

set of slot fillers, where each slot filler is a triple consisting of two entities (including the query entity) and a

relation predicted to hold among these entities.

4.2. Knowledge Base Population System

Systems participating in the TAC KBP ESF need to handle each task of filling missing slots in a KB.365

Participants are only provided with one surface-text occurrence of each query entity in a large collection of

text provided by the organizers. This means that an information retrieval component is needed to provide the

relation extractor with sentences containing candidate fillers. Our system performs query expansion using

Freebase aliases and Wikipedia pages. Each document containing one of the aliases is parsed and named

entities are automatically detected. Persons, organizations, and locations are recognized, and locations are370

further categorized as cities, states, or countries. Non-entity fillers like titles or charges are tagged using lists

and table-lookups. For further details of the KBP system we refer to [63, 65].
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4.3. Methodologies for Supervision

In this section we detail the different procedures for human supervision. Supervision is obtained in two

forms: by labeling shortest dependency paths (SDPs) and by labeling single training instances indicated as375

positive by DS, as either true positives or as false positives (noise). After a background corpus is linked

with a knowledge base, phrases containing facts are stored in a database for further feature extraction, post

processing, and calculation of feature confidence values. Our annotators for the labeling of single training

instances were undergraduate students from different backgrounds with little or no experience in machine

learning or natural language processing. First, they were briefed on the semantics of the relation to be380

extracted using the official TAC KBP guidelines. They were then presented with training instances, i.e.,

phrases from the database. Each instance was shown with entity and subject highlighted and colored. The

average time needed to annotate a batch of 2,000 instances was three hours, corresponding to about 5 seconds

per instance, including the time needed to read and judge the sentence. As this procedure was relatively

expensive (annotators were paid $15 per hour), only the 15 most frequent relations, strongly influencing385

the optimal micro-F1 score shown in Table 2, were selected. Other relations received between 200 and

1,000 annotations each. In contrast, the time for annotation of the SDPs was limited to merely 5 minutes

per relation, during which, on average, 200 SDPs were judged. SDPs were presented in a spreadsheet as a

list, and true positives were labeled using a simple checkbox. All SDP annotations were done by a single

expert annotator. To measure the degree of expertise needed for these annotations, we also assigned a novice390

annotator (student) with the same task. We measured annotator agreement and time needed for a selection

of the relations. For this experiment the student was explained the meaning of dependency paths and the

aim of choosing valid SDPs. Several lists of SDPs that the expert was able to label in 5 minutes were

presented to the student. For the first two relations the student needed more than 10 minutes to label, but for

the subsequent relations, annotation time dropped to 5 minutes per relation, equivalent to the time needed395

by an expert annotator. We measured inter annotator agreement using Cohen’s kappa coefficient κ. Inter-

annotator agreement between student and expert was initially moderate (κ = 0.65) and increased after the

student completed lists of SDPs for two relations (κ varies between 0.85 and 0.95), indicating a very good

agreement.

4.4. Pattern-based Restriction vs. Similarity-based Extension400

As Table 2 shows, applying the manually annotated features as described in Section 3.2 often leads

to a drastic reduction of training instances, compared to the original distantly labeled training set. Using
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Figure 5: Example of the proposed sampling strategy for training set sizes, with Nfiltered = 0.05NDS , and in K = 10 steps.

similarity metrics described in Section 3.3, we again add weakly supervised training data to the filtered data.

An important question is therefore how to optimally combine initial reduction with subsequent expanding of

the training instances. Intuitively, one would expect a high-precision-low-recall effect in the extreme case of405

adding no similar patterns, and a low-precision-high-recall effect when adding all weakly labeled patterns,

both leading to a sub-optimal F1 measure. On the other hand, adding a limited amount of similar patterns

may increase recall without harming precision too much. In this section, we investigate for a selection of

relations, how the quality of the training set depends on the fraction of similar patterns it is extended with. In

our experimental setup, we start from the training set that only contains the Nfiltered instances that match the410

manually labeled patterns, gradually adding weakly labeled data, and each time training binary classifiers on

the corresponding training set. We chose to let the additional data grow exponentially, which allows studying

the effect of adding few extra instances initially, but extending towards the full weakly supervised training

set of size NDS in a limited number of cases. More specifically, in K experiments of adding additional

instances, the intermediate training set size Nk at step k is given by415

Nk = Nfiltered.

(
NDS

Nfiltered

)k/K

(4)

Figure 5 illustrates how an initial training set containing only 5% of the amount of instances from the

full weakly labeled training set, is increased in K = 10 consecutive experiments.

Apart from studying the addition of varying amounts of similar patterns, in this section we also inves-

tigate the influence of the type of similarity measure used. In Section 3.2 we suggested the use of word

embeddings, but is there a difference between different types of embeddings? Would embeddings work420

better than traditional dimension reduction techniques? And would such techniques indeed perform better
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Figure 6: Illustration of the behavior of Semantic Label Propagation for different dimension reduction techniques, and different amounts

of added weakly labeled data, quantified by k (as in eq. 4), with K = 10. k = 0 corresponds to only accepting manually filtered SDPs,

and k = 10 corresponds to using all weakly labeled (DS) data for training.
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than the original one-hot vector representations? These questions can be answered by considering several

similarity measures. As a classical baseline, we represent SDPs using the average one-hot or bag-of-words

(BOW) representations of the words contained in the SDPs. We also transform the set of one-hot representa-

tions using singular value decomposition (SVD) [66] fitted on the complete training set. For representations425

using the summed average of word embeddings described in Section 3.3, we use two sets of pre-trained

Word2Vec embeddings1 (trained on news text) and GloVe embeddings2 (trained on Wikipedia text).

Figure 6 shows the effect of adding different amounts of weakly labeled data, for different values of k

as in eq. 4 (with K = 10 steps) and for similarity measures based on the different types of representations

described above. Six frequently occurring relations were selected such that they give an idea of the various430

forms of behavior that we observed during our investigation of all extracted relations. The chosen effec-

tiveness measure is the optimal F1 value of classification on a development set, consisting of training data

from 2012 and 2013. (In the next Section we will evaluate on a held-out test set, which consists of queries

from the 2014 TAC ESF task, whereby the optimal value of k and type of dimension reduction is selected

based on the development set.) Also shown are standard deviations on these optimal F1 -values, obtained by435

resampling different positive and negative instances for training the classifier. Several insights can be gained

from Fig. 6:

• SDPs vs full DS training set: We observe that the effect of expanding the initial training set is strongly

dependent on the specific relation and the quality of the initial training data. In many cases training

data filtered using only highly confident SDPs (k = 0) generates a better relation extractor than pure DS440

(k = K). This holds for all shown relations, except for the age relation. We have to be aware that wrongly

annotating an important pattern, or by chance missing any in the top most confident ones, can strongly

reduce recall when only using the accepted SDPs. Adding even a small amount of similar patterns may

hence result in a steep increase in effectiveness, such as for k = 1 in the age and country of headquarters

relations.445

• Effect of semantic label propagation: When relaxing the filtering (i.e., increasing k) by adding unlabeled

data, the optimal F1 tends to increase until a certain point, and then again drops towards the behavior of

a fully DS training set, because the quality or similarity of the added training data declines and too many

false positives are re-introduced. The threshold on the amount of added DS instances is thus an important

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/
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parameter to tune on a development set. For some of the relations there is an optimal amount of added450

unlabeled data, whereas other relations show no clear optimum and fluctuate between distant and filtered

classifiers’ values.

• Impact of dimensionality reduction: The use of word embeddings often leads to an improved maximum

F1 value with respect to the BOW-representations or SVD-based dimension reduction. This is for example

very clear for the charges, city of headquarters, or cities of residence relations, with a slight preference455

of the GloVe embeddings with respect to Word2Vec for this application. However, we also noticed that

word embeddings are not always better than the BOW or SVD based representations. For example, the

highest optimal F1 for the age relation is reached with the BOW model.

4.5. End-to-End Knowledge Base Population Results

This section presents the results of training binary relation classifiers according to our new strategy for460

each of the 41 relations of the TAC KBP schema. We tuned hyperparameters on data of the 2012 and 2013

tracks and now test on the last edition of the ESF track of 2014.

Next to the thresholds of choosing the amount of unlabeled data added as discussed previously (i.e., the

value of k), other parameters include regularization and the ratio between positive and negative instances,

which appeared to be an important parameter influencing the confidence of an optimal F1 value greatly.465

Different ratios of negative to positive instances resulted in shifting the optimal trade-off between precision

and recall. The amount of available negative training data was on many occasions larger than the available

positive. More negative than positive training data overall appeared to result in lower positive classification

probabilities assigned by the classifier to test instances. Negative instances had to be down-weighted multiple

times to prevent the classifier from being too strict and rarely classify a relation as true. For each relation, this470

parameter was tuned for optimal F1 value at the 0.5 probability threshold of the logistic regression classifier.

We use the official TAC KBP evaluation script which calculates the micro-average of all classifications.

All methods are evaluated while ignoring provenances (the character offsets in the documents which contain

the justification for extraction of the relation), so as not to penalize any system for finding a new provenance

not validated in the official evaluation key. A listing of precision, recall and F1 for the top 20 most frequently475

occurring relations in the test set is shown in Table 4.

Next to traditional distant supervision (also known as Mintz++[30], indicated as ‘distant Supervision’

in Table 4), we compare our new semi-supervised approach (‘Semantic Label Propagation’) to a fully su-

pervised classifier trained by manually labeling 50, 000 instances (‘Fully Supervised’), and to the classifiers
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obtained by purely filtering on manually labeled patterns (‘SDP Filtered’). We also use the fully supervised480

classifiers in a traditional self-training scheme, classifying distantly supervised instances in the complete

feature space and adding confident instances to the training set (‘Self-Training (Instances)’). The supervi-

sion needed for these classifiers required far more annotation effort than the feature certainty sampling of

Semantic Label Propagation.

The official F1 value of 36.4% attained using Semantic Label Propagation is equivalent to the second485

best entry out of eighteen submissions to the 2014 ESF track [23]. A relation extractor is but a part of a

KBP system and is influenced by each of the other modules (e.g., recognition and disambiguation of named

entities), which makes it hard to compare to other systems. This is the case for the absolute values of Table 4,

but still, it demonstrates the overall quality of our relation extractors. Especially, our system relying on

very limited annotations has a competitive place among systems that rely on many hours of manual feature490

engineering [50]. Comparing the results for Semantic Label Propagation with the other approaches shows

that the proposed method that combines a small labeling effort based on feature certainty with the Semantic

Label Propagation technique, outperforms the DS method, semi-supervision using instance labeling, and full

supervision methods. This is also confirmed in Fig. 7, which shows the trade-off between the precision and

recall averaged over all TAC KBP relations for the different methods described above, using the TAC KBP495

evaluation script (varying the thresholds on classification).
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Figure 7: Precision-Recall Graph displaying the output of the TAC KBP evaluation script on different systems, for varying classifier

decision thresholds.

One would expect the SDP filtered and fully supervised extractors to attain high precision, but this is not

the case for some of the relations. For example, for relation countries of residence recall of these extractors

is higher than recall of the SLP method. However, only those precision and recall scores are shown that

correspond to the maximum values for F1 and while precision could have been higher for these extractors500

at the cost of lower recall, recall is equally important for this type of evaluation. The SDP filtered and

fully supervised extractors are likely to attain high precision values, but this will not compensate for the

loss in recall when evaluating F1 scores. We conclude by noting that the results may also be influenced

to peculiarities of the data. Entities chosen by TAC may not always be representative for the majority of

persons or organizations in the training data: TAC entities are in many cases more difficult than the average505

entity from the training set and the most common way of expressing a relationship for these entities might

not be present in the test set.
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4.6. 2015 TAC KBP Cold Start Slot Filling

The Slot filling task in TAC KBP in 2015 was organized as part of the Cold Start Slot Filling track,

where the goal is to search the same document collection to fill in values for specific slots for specific510

entities, and in a second stage fill slots for answers given during the first stage. In the authors’ TAC KBP

2015 submission [65], the ideas presented in this paper were applied, leading to a second place in the

Slot Filling Variant. The results showed the influence of a clean training set and the effectiveness of self-

training. A top-performing entry was again based on a database system similar to DeepDive [51] and training

set filtering using high-precision patterns. We note that the idea of self-training using a first stage high-515

precision classifier was also included in this system, independently of the work presented in this paper.

Some participants successfully used ensembles of neural architectures for relation extraction. However, a

selection of our linear classifiers in combination with a careful filtering of distantly supervised training data

was shown to outperform these more sophisticated ensembles.

5. Conclusions520

In this paper we set out to create high quality training data for relation extractors for automatic knowledge

base population systems, while requiring negligible amounts of supervision. To achieve this, we combine

the following techniques for the unsupervised generation of training data and manual supervision: (i) dis-

tant supervision (DS): known relations from an existing knowledge base are used to automatically generate

training data, (ii) feature annotation: rather than labeling instances, features (e.g., text patterns expressing525

a relationship) are annotated, selected by means of an active learning criterion based on confidence, and

(iii) semantic feature space representation: low dimensional vector representations are used to detect addi-

tional, semantically related patterns that do not occur in the thus far selected training data, leaving useful

patterns undetected otherwise. Thus, we address the problem of noisy training data obtained when using DS

alone, by filtering of the training data using high-precision patterns to increase precision (see [53]). After530

this, to improve recall, we introduce the semi-supervised Semantic Label Propagation method, that allows

relaxing the pattern-based filtering of the DS training data by again including weakly supervised items that

are sufficiently “similar” to highly confident instances. We found that a simple linear combination of the

embeddings of words in a relation pattern is an effective representation when propagating labels from su-

pervised to weakly supervised instances. Tuning a threshold parameter for similarity creates an improved535

training set for relation extraction.
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The main contributions of this paper to the domain of relation extraction and automatic knowledge base

population, are (i) the novel methodology of filtering an initial DS training set, where we motivated and

demonstrated the effectiveness of an almost negligible manual annotation effort, and (ii) the Semantic Label

Propagation model for again expanding the filtered set in order to increase diversity in the training data. We540

evaluated our classifiers on the knowledge base population task of TAC KBP and showed the competitiveness

with respect to established methods that rely on a much heavier annotation cost.
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deepdive, Proceedings of the VLDB Endowment 8 (11) (2015) 1310–1321.615

[25] S. Riedel, L. Yao, A. McCallum, Modeling relations and their mentions without labeled text, in: Ma-

chine Learning and Knowledge Discovery in Databases, Springer Berlin Heidelberg, 2010, pp. 148–

163.

31



[26] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, D. S. Weld, Knowledge-based weak supervision

for information extraction of overlapping relations, in: Proceedings of the 49th Annual Meeting of the620

Association for Computational Linguistics: Human Language Technologies-Volume 1, Association for

Computational Linguistics, 2011, pp. 541–550.

[27] M. Surdeanu, J. Tibshirani, R. Nallapati, C. D. Manning, Multi-instance multi-label learning for re-

lation extraction, in: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning, Association for Computational625

Linguistics, 2012, pp. 455–465.

[28] G. Angeli, J. Tibshirani, J. Wu, C. D. Manning, Combining distant and partial supervision for relation

extraction, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-

cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest

Group of the ACL, 2014, pp. 1556–1567.630

[29] M. Pershina, B. Min, W. Xu, R. Grishman, Infusion of labeled data into distant supervision for relation

extraction, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguis-

tics (Volume 2: Short Papers), Association for Computational Linguistics, Baltimore, Maryland, 2014,

pp. 732–738.

[30] M. Mintz, S. Bills, R. Snow, D. Jurafsky, Distant supervision for relation extraction without labeled635

data, in: ACL 2009, Proceedings of the 47th Annual Meeting of the Association for Computational

Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP,

2-7 August 2009, Singapore, 2009, pp. 1003–1011.

[31] D. Zelenko, C. Aone, A. Richardella, Kernel methods for relation extraction, in: Proceedings of the

ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10, EMNLP ’02,640

Association for Computational Linguistics, Stroudsburg, PA, USA, 2002, pp. 71–78.

[32] A. Culotta, J. Sorensen, Dependency tree kernels for relation extraction, in: Proceedings of the 42nd

Annual Meeting on Association for Computational Linguistics, Association for Computational Lin-

guistics, 2004, p. 423.

[33] D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, Relation classification via convolutional deep neural network,645

in: COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the

Conference: Technical Papers, August 23-29, 2014, Dublin, Ireland, 2014, pp. 2335–2344.

32



[34] K. Xu, Y. Feng, S. Huang, D. Zhao, Semantic relation classification via convolutional neural networks

with simple negative sampling, arXiv preprint arXiv:1506.07650.

[35] H. Adel, B. Roth, H. Schütze, Comparing convolutional neural networks to traditional models for slot650

filling, arXiv preprint arXiv:1603.05157.

[36] S. Brin, Extracting patterns and relations from the world wide web., Technical Report 1999-65, Stan-

ford InfoLab (November 1999).

[37] C. Zhang, W. Xu, Z. Ma, S. Gao, Q. Li, J. Guo, Construction of semantic bootstrapping models for

relation extraction, Knowledge-Based Systems 83 (2015) 128–137.655

[38] M. Komachi, T. Kudo, M. Shimbo, Y. Matsumoto, Graph-based analysis of semantic drift in espresso-

like bootstrapping algorithms, in: Proceedings of the Conference on Empirical Methods in Natural

Language Processing, EMNLP ’08, Association for Computational Linguistics, Stroudsburg, PA, USA,

2008, pp. 1011–1020.

[39] J. R. Curran, T. Murphy, B. Scholz, Minimising semantic drift with mutual exclusion bootstrapping,660

Proceedings of the Conference of the Pacific Association for Computational Linguistics (2007) 172–

180.

[40] D. S. Batista, B. Martins, M. J. Silva, Semi-supervised bootstrapping of relationship extractors with

distributional semantics, in: Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015, pp. 499–665

504.

[41] M. Craven, J. Kumlien, Constructing biological knowledge bases by extracting information from text

sources, in: Proceedings of the Seventh International Conference on Intelligent Systems for Molecular

Biology, August 6-10, 1999, Heidelberg, Germany, 1999, pp. 77–86.

[42] I. Augenstein, A. Vlachos, D. Maynard, Extracting relations between non-standard entities using dis-670

tant supervision and imitation learning (2015) 747–757.

[43] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, D. S. Weld, Knowledge-based weak supervision

for information extraction of overlapping relations, in: Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11,

Association for Computational Linguistics, Stroudsburg, PA, USA, 2011, pp. 541–550.675

33



[44] A. Intxaurrondo, M. Surdeanu, O. L. de Lacalle, E. Agirre, Removing noisy mentions for distant

supervision, Procesamiento del lenguaje natural 51 (2013) 41–48.

[45] E. Alfonseca, K. Filippova, J.-Y. Delort, G. Garrido, Pattern learning for relation extraction with a hier-

archical topic model, in: Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics: Short Papers-Volume 2, Association for Computational Linguistics, 2012, pp. 54–59.680

[46] S. Takamatsu, I. Sato, H. Nakagawa, Reducing wrong labels in distant supervision for relation extrac-

tion, in: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:

Long Papers-Volume 1, Association for Computational Linguistics, 2012, pp. 721–729.

[47] J. Chen, D. Ji, C. L. Tan, Z. Niu, Relation extraction using label propagation based semi-supervised

learning, in: Proceedings of the 21st International Conference on Computational Linguistics and the685

44th annual meeting of the Association for Computational Linguistics, Association for Computational

Linguistics, 2006, pp. 129–136.
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ford’s 2014 slot filling systems, TAC KBP.695

[51] C. Zhang, Deepdive: A data management system for automatic knowledge base construction, Ph.D.

thesis, UW-Madison (2015).

[52] H. S. Seung, M. Opper, H. Sompolinsky, Query by committee, in: Proceedings of the fifth annual

workshop on Computational learning theory, ACM, 1992, pp. 287–294.

[53] L. Sterckx, T. Demeester, J. Deleu, C. Develder, Using active learning and semantic clustering for700

noise reduction in distant supervision, in: 4e Workshop on Automated Base Construction at NIPS2014

(AKBC-2014), 2014, pp. 1–6.

34



[54] G. Druck, B. Settles, A. McCallum, Active learning by labeling features, in: Proceedings of the 2009

Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, Association

for Computational Linguistics, 2009, pp. 81–90.705

[55] J. Attenberg, P. Melville, F. Provost, A unified approach to active dual supervision for labeling features

and examples, in: In European conference on Machine learning and knowledge discovery in databases,

2010, pp. 40–55.

[56] Z. Harris, Distributional structure, Word 10 (23) (1954) 146–162.

[57] J. H. Martin, D. Jurafsky, Speech and language processing, International Edition.710

[58] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space,

CoRR abs/1301.3781.

[59] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in: Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,

October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, 2014,715

pp. 1532–1543.

[60] W. Blacoe, M. Lapata, A comparison of vector-based representations for semantic composition, in:

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning, Association for Computational Linguistics, Jeju Island,

Korea, 2012, pp. 546–556.720

[61] D. Graff, J. Kong, K. Chen, K. Maeda, English gigaword, Linguistic Data Consortium.

[62] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, D. McClosky, The stanford corenlp

natural language processing toolkit, in: Proceedings of 52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations, 2014, pp. 55–60.

[63] M. Feys, L. Sterckx, L. Mertens, J. Deleu, T. Demeester, C. Develder, Ghent University-IBCN partic-725

ipation in TAC-KBP 2014 slot filling and cold start tasks, in: 7th Text Analysis Conference, Proceed-

ings, 2014, pp. 1–10.

[64] M. Stevenson, M. A. Greenwood, Comparing information extraction pattern models, in: Proceedings

of the Workshop on Information Extraction Beyond The Document, Association for Computational

Linguistics, 2006, pp. 12–19.730

35



[65] L. Sterckx, J. Deleu, T. Demeester, C. Develder, Ghent University-IBCN participation in TAC-KBP

2015 cold start task, in: 8th Text Analysis Conference, Proceedings (To Appear), 2015.

[66] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, R. A. Harshman, Indexing by latent

semantic analysis, JASIS 41 (6) (1990) 391–407.

36


	Introduction
	Related Work
	Supervised Relation Extraction
	Bootstrapping models for Relation Extraction
	Distant Supervision

	Semi-supervised Relation Extraction
	TAC KBP English Slot Filling
	Active Learning and Feature Labeling
	Distributional Semantics

	Labeling Strategy for Noise Reduction
	Distantly Supervised Training Data
	Labeling High Confidence Shortest Dependency Paths
	Noise Reduction using Semantic Label Propagation

	Experimental Results
	Testing Methodology
	Knowledge Base Population System
	Methodologies for Supervision
	Pattern-based Restriction vs. Similarity-based Extension
	End-to-End Knowledge Base Population Results
	2015 TAC KBP Cold Start Slot Filling

	Conclusions

