Background. Drug-drug interaction (DDI) is a major cause of morbidity and
mortality. [...] Biomedical literature mining can aid DDI research by
extracting relevant DDI signals from either the published literature or large
clinical databases. However, though drug interaction is an ideal area for
translational research, the inclusion of literature mining methodologies in DDI
workflows is still very preliminary. One area that can benefit from literature
mining is the automatic identification of a large number of potential DDIs,
whose pharmacological mechanisms and clinical significance can then be studied
via in vitro pharmacology and in populo pharmaco-epidemiology. Experiments. We
implemented a set of classifiers for identifying published articles relevant to
experimental pharmacokinetic DDI evidence. These documents are important for
identifying causal mechanisms behind putative drug-drug interactions, an
important step in the extraction of large numbers of potential DDIs. We
evaluate performance of several linear classifiers on PubMed abstracts, under
different feature transformation and dimensionality reduction methods. In
addition, we investigate the performance benefits of including various
publicly-available named entity recognition features, as well as a set of
internally-developed pharmacokinetic dictionaries. Results. We found that
several classifiers performed well in distinguishing relevant and irrelevant
abstracts. We found that the combination of unigram and bigram textual features
gave better performance than unigram features alone, and also that
normalization transforms that adjusted for feature frequency and document
length improved classification. For some classifiers, such as linear
discriminant analysis (LDA), proper dimensionality reduction had a large impact
on performance. Finally, the inclusion of NER features and dictionaries was
found not to help classification.Comment: Pacific Symposium on Biocomputing, 201