10 research outputs found

    Data mining with the SAP NetWeaver BI accelerator

    Get PDF
    The new SAP NetWeaver Business Intelligence accelerator is an engine that supports online analytical processing. It performs aggregation in memory and in query runtime over large volumes of structured data. This paper first briefly describes the accelerator and its main architectural features, and cites test results that indicate its power. Then it describes in detail how the accelerator may be used for data mining. The accelerator can perform data mining in the same large repositories of data and using the same compact index structures that it uses for analytical processing. A first such implementation of data mining is described and the results of a performance evaluation are presented. Association rule mining in a distributed architecture was implemented with a variant of the BUC iceberg cubing algorithm. Test results suggest that useful online mining should be possible with wait times of less than 60 seconds on business data that has not been preprocessed

    I/O performance evaluation with Parabench — programmable I/O benchmark

    Get PDF
    AbstractChoosing an appropriate cluster file system for a specific high performance computing application is challenging and depends mainly on the specific application I/O needs. There is a wide variety of I/O requirements: Some implementations require reading and writing large datasets, others out-of-core data access, or they have database access requirements. Application access patterns reflect different I/O behavior and can be used for performance testing.This paper presents the programmable I/O benchmarking tool Parabench. It has access patterns as input, which can be adapted to mimic behavior for a rich set of applications. Using this benchmarking tool, composed patterns can be automatically tested and easily compared on different local and cluster file systems. Here we introduce the design of the proposed benchmark, focusing on the Parabench programming language, which was developed for flexible pattern creation. We also demonstrate here an exemplary usage of Parabench and its capabilities to handle the POSIX and MPI-IO interfaces

    Scaling Up Concurrent Main-Memory Column-Store Scans: Towards Adaptive NUMA-aware Data and Task Placement

    Get PDF
    Main-memory column-stores are called to efficiently use modern non-uniform memory access (NUMA) architectures to service concurrent clients on big data. The efficient usage of NUMA architectures depends on the data placement and scheduling strategy of the column-store. Most column-stores choose a static strategy that involves partitioning all data across the NUMA architecture, and employing a stealing-based task scheduler. In this paper, we implement different strategies for data placement and task scheduling for the case of concurrent scans. We compare these strategies with an extensive sensitivity analysis. Our most significant findings include that unnecessary partitioning can hurt throughput by up to 70%, and that stealing memory-intensive tasks can hurt throughput by up to 58%. Based on our analysis, we envision a design that adapts the data placement and task scheduling strategy to the workload

    Data mining with the SAP NetWeaver BI accelerator

    No full text
    The new SAP NetWeaver Business Intelligence accelerator is an engine that supports online analytical processing. It performs aggregation in memory and in query runtime over large volumes of structured data. This paper first briefly describes the accelerator and its main architectural features, and cites test results that indicate its power. Then it describes in detail how the accelerator may be used for data mining. The accelerator can perform data mining in the same large repositories of data and using the same compact index structures that it uses for analytical processing. A first such implementation of data mining is described and the results of a performance evaluation are presented. Association rule mining in a distributed architecture was implemented with a variant of the BUC iceberg cubing algorithm. Test results suggest that useful online mining should be possible with wait times of less than 60 seconds on business data that has not been preprocessed

    Data mining with the SAP NetWeaver BI accelerator

    No full text
    The new SAP NetWeaver Business Intelligence accelerator is an engine that supports online analytical processing. It performs aggregation in memory and in query runtime over large volumes of structured data. This paper first briefly describes the accelerator and its main architectural features, and cites test results that indicate its power. Then it describes in detail how the accelerator may be used for data mining. The accelerator can perform data mining in the same large repositories of data and using the same compact index structures that it uses for analytical processing. A first such implementation of data mining is described and the results of a performance evaluation are presented. Association rule mining in a distributed architecture was implemented with a variant of the BUC iceberg cubing algorithm. Test results suggest that useful online mining should be possible with wait times of less than 60 seconds on business data that has not been preprocessed

    Data Mining with the SAP NetWeaver BI Accelerator

    No full text
    The new SAP NetWeaver Business Intelligence accelerator is an engine that supports online analytical processing. It performs aggregation in memory and in query runtime over large volumes of structured data. This paper first briefly describes the accelerator and its main architectural features, and cites test results that indicate its power. Then it describes in detail how the accelerator may be used for data mining. The accelerator can perform data mining in the same large repositories of data and using the same compact index structures that it uses for analytical processing. A first such implementation of data mining is described and the results of a performance evaluation are presented. Association rule mining in a distributed architecture was implemented with a variant of the BUC iceberg cubing algorithm. Test results suggest that useful online mining should be possible with wait times of less than 60 seconds on business data that has not been preprocessed. 1

    Datenzentrierte Bestimmung von Assoziationsregeln in parallelen Datenbankarchitekturen

    Get PDF
    Die folgende Arbeit befasst sich mit der Alltagstauglichkeit moderner Massendatenverarbeitung, insbesondere mit dem Problem der Assoziationsregelanalyse. Vorhandene Datenmengen wachsen stark an, aber deren Auswertung ist für ungeübte Anwender schwierig. Daher verzichten Unternehmen auf Informationen, welche prinzipiell vorhanden sind. Assoziationsregeln zeigen in diesen Daten Abhängigkeiten zwischen den Elementen eines Datenbestandes, beispielsweise zwischen verkauften Produkten. Diese Regeln können mit Interessantheitsmaßen versehen werden, welche dem Anwender das Erkennen wichtiger Zusammenhänge ermöglichen. Es werden Ansätze gezeigt, dem Nutzer die Auswertung der Daten zu erleichtern. Das betrifft sowohl die robuste Arbeitsweise der Verfahren als auch die einfache Auswertung der Regeln. Die vorgestellten Algorithmen passen sich dabei an die zu verarbeitenden Daten an, was sie von anderen Verfahren unterscheidet. Assoziationsregelsuchen benötigen die Extraktion häufiger Kombinationen (EHK). Hierfür werden Möglichkeiten gezeigt, Lösungsansätze auf die Eigenschaften moderne System anzupassen. Als Ansatz werden Verfahren zur Berechnung der häufigsten NN Kombinationen erläutert, welche anders als bekannte Ansätze leicht konfigurierbar sind. Moderne Systeme rechnen zudem oft verteilt. Diese Rechnerverbünde können große Datenmengen parallel verarbeiten, benötigen jedoch die Vereinigung lokaler Ergebnisse. Für verteilte Top-N-EHK auf realistischen Partitionierungen werden hierfür Ansätze mit verschiedenen Eigenschaften präsentiert. Aus den häufigen Kombinationen werden Assoziationsregeln gebildet, deren Aufbereitung ebenfalls einfach durchführbar sein soll. In der Literatur wurden viele Maße vorgestellt. Je nach den Anforderungen entsprechen sie je einer subjektiven Bewertung, allerdings nicht zwingend der des Anwenders. Hierfür wird untersucht, wie mehrere Interessantheitsmaßen zu einem globalen Maß vereinigt werden können. Dies findet Regeln, welche mehrfach wichtig erschienen. Der Nutzer kann mit den Vorschlägen sein Suchziel eingrenzen. Ein zweiter Ansatz gruppiert Regeln. Dies erfolgt über die Häufigkeiten der Regelelemente, welche die Grundlage von Interessantheitsmaßen bilden. Die Regeln einer solchen Gruppe sind daher bezüglich vieler Interessantheitsmaßen ähnlich und können gemeinsam ausgewertet werden. Dies reduziert den manuellen Aufwand des Nutzers. Diese Arbeit zeigt Möglichkeiten, Assoziationsregelsuchen auf einen breiten Benutzerkreis zu erweitern und neue Anwender zu erreichen. Die Assoziationsregelsuche wird dabei derart vereinfacht, dass sie statt als Spezialanwendung als leicht nutzbares Werkzeug zur Datenanalyse verwendet werden kann.The importance of data mining is widely acknowledged today. Mining for association rules and frequent patterns is a central activity in data mining. Three main strategies are available for such mining: APRIORI , FP-tree-based approaches like FP-GROWTH, and algorithms based on vertical data structures and depth-first mining strategies like ECLAT and CHARM. Unfortunately, most of these algorithms are only moderately suitable for many “real-world” scenarios because their usability and the special characteristics of the data are two aspects of practical association rule mining that require further work. All mining strategies for frequent patterns use a parameter called minimum support to define a minimum occurrence frequency for searched patterns. This parameter cuts down the number of patterns searched to improve the relevance of the results. In complex business scenarios, it can be difficult and expensive to define a suitable value for the minimum support because it depends strongly on the particular datasets. Users are often unable to set this parameter for unknown datasets, and unsuitable minimum-support values can extract millions of frequent patterns and generate enormous runtimes. For this reason, it is not feasible to permit ad-hoc data mining by unskilled users. Such users do not have the knowledge and time to define suitable parameters by trial-and-error procedures. Discussions with users of SAP software have revealed great interest in the results of association-rule mining techniques, but most of these users are unable or unwilling to set very technical parameters. Given such user constraints, several studies have addressed the problem of replacing the minimum-support parameter with more intuitive top-n strategies. We have developed an adaptive mining algorithm to give untrained SAP users a tool to analyze their data easily without the need for elaborate data preparation and parameter determination. Previously implemented approaches of distributed frequent-pattern mining were expensive and time-consuming tasks for specialists. In contrast, we propose a method to accelerate and simplify the mining process by using top-n strategies and relaxing some requirements on the results, such as completeness. Unlike such data approximation techniques as sampling, our algorithm always returns exact frequency counts. The only drawback is that the result set may fail to include some of the patterns up to a specific frequency threshold. Another aspect of real-world datasets is the fact that they are often partitioned for shared-nothing architectures, following business-specific parameters like location, fiscal year, or branch office. Users may also want to conduct mining operations spanning data from different partners, even if the local data from the respective partners cannot be integrated at a single location for data security reasons or due to their large volume. Almost every data mining solution is constrained by the need to hide complexity. As far as possible, the solution should offer a simple user interface that hides technical aspects like data distribution and data preparation. Given that BW Accelerator users have such simplicity and distribution requirements, we have developed an adaptive mining algorithm to give unskilled users a tool to analyze their data easily, without the need for complex data preparation or consolidation. For example, Business Intelligence scenarios often partition large data volumes by fiscal year to enable efficient optimizations for the data used in actual workloads. For most mining queries, more than one data partition is of interest, and therefore, distribution handling that leaves the data unaffected is necessary. The algorithms presented in this paper have been developed to work with data stored in SAP BW. A salient feature of SAP BW Accelerator is that it is implemented as a distributed landscape that sits on top of a large number of shared-nothing blade servers. Its main task is to execute OLAP queries that require fast aggregation of many millions of rows of data. Therefore, the distribution of data over the dedicated storage is optimized for such workloads. Data mining scenarios use the same data from storage, but reporting takes precedence over data mining, and hence, the data cannot be redistributed without massive costs. Distribution by special data semantics or user-defined selections can produce many partitions and very different partition sizes. The handling of such real-world distributions for frequent-pattern mining is an important task, but it conflicts with the requirement of balanced partition

    Scaling Up Concurrent Analytical Workloads on Multi-Core Servers

    Get PDF
    Today, an ever-increasing number of researchers, businesses, and data scientists collect and analyze massive amounts of data in database systems. The database system needs to process the resulting highly concurrent analytical workloads by exploiting modern multi-socket multi-core processor systems with non-uniform memory access (NUMA) architectures and increasing memory sizes. Conventional execution engines, however, are not designed for many cores, and neither scale nor perform efficiently on modern multi-core NUMA architectures. Firstly, their query-centric approach, where each query is optimized and evaluated independently, can result in unnecessary contention for hardware resources due to redundant work found across queries in highly concurrent workloads. Secondly, they are unaware of the non-uniform memory access costs and the underlying hardware topology, incurring unnecessarily expensive memory accesses and bandwidth saturation. In this thesis, we show how these scalability and performance impediments can be solved by exploiting sharing among concurrent queries and incorporating NUMA-aware adaptive task scheduling and data placement strategies in the execution engine. Regarding sharing, we identify and categorize state-of-the-art techniques for sharing data and work across concurrent queries at run-time into two categories: reactive sharing, which shares intermediate results across common query sub-plans, and proactive sharing, which builds a global query plan with shared operators to evaluate queries. We integrate the original research prototypes that introduce reactive and proactive sharing, perform a sensitivity analysis, and show how and when each technique benefits performance. Our most significant finding is that reactive and proactive sharing can be combined to exploit the advantages of both sharing techniques for highly concurrent analytical workloads. Regarding NUMA-awareness, we identify, implement, and compare various combinations of task scheduling and data placement strategies under a diverse set of highly concurrent analytical workloads. We develop a prototype based on a commercial main-memory column-store database system. Our most significant finding is that there is no single strategy for task scheduling and data placement that is best for all workloads. In specific, inter-socket stealing of memory-intensive tasks can hurt overall performance, and unnecessary partitioning of data across sockets involves an overhead. For this reason, we implement algorithms that adapt task scheduling and data placement to the workload at run-time. Our experiments show that both sharing and NUMA-awareness can significantly improve the performance and scalability of highly concurrent analytical workloads on modern multi-core servers. Thus, we argue that sharing and NUMA-awareness are key factors for supporting faster processing of big data analytical applications, fully exploiting the hardware resources of modern multi-core servers, and for more responsive user experience

    Flexibility in Data Management

    Get PDF
    With the ongoing expansion of information technology, new fields of application requiring data management emerge virtually every day. In our knowledge culture increasing amounts of data and work force organized in more creativity-oriented ways also radically change traditional fields of application and question established assumptions about data management. For instance, investigative analytics and agile software development move towards a very agile and flexible handling of data. As the primary facilitators of data management, database systems have to reflect and support these developments. However, traditional database management technology, in particular relational database systems, is built on assumptions of relatively stable application domains. The need to model all data up front in a prescriptive database schema earned relational database management systems the reputation among developers of being inflexible, dated, and cumbersome to work with. Nevertheless, relational systems still dominate the database market. They are a proven, standardized, and interoperable technology, well-known in IT departments with a work force of experienced and trained developers and administrators. This thesis aims at resolving the growing contradiction between the popularity and omnipresence of relational systems in companies and their increasingly bad reputation among developers. It adapts relational database technology towards more agility and flexibility. We envision a descriptive schema-comes-second relational database system, which is entity-oriented instead of schema-oriented; descriptive rather than prescriptive. The thesis provides four main contributions: (1)~a flexible relational data model, which frees relational data management from having a prescriptive schema; (2)~autonomous physical entity domains, which partition self-descriptive data according to their schema properties for better query performance; (3)~a freely adjustable storage engine, which allows adapting the physical data layout used to properties of the data and of the workload; and (4)~a self-managed indexing infrastructure, which autonomously collects and adapts index information under the presence of dynamic workloads and evolving schemas. The flexible relational data model is the thesis\' central contribution. It describes the functional appearance of the descriptive schema-comes-second relational database system. The other three contributions improve components in the architecture of database management systems to increase the query performance and the manageability of descriptive schema-comes-second relational database systems. We are confident that these four contributions can help paving the way to a more flexible future for relational database management technology
    corecore