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Abstract

With the ongoing expansion of information technology, new fields of application
requiring data management emerge virtually every day. In our knowledge culture
increasing amounts of data and work force organized in more creativity-oriented
ways also radically change traditional fields of application and question established
assumptions about data management. For instance, investigative analytics and
agile software development move towards a very agile and flexible handling of
data. As the primary facilitators of data management, database systems have to
reflect and support these developments. However, traditional database management
technology, in particular relational database systems, is built on assumptions of
relatively stable application domains. The need to model all data up front in a
prescriptive database schema earned relational database management systems the
reputation among developers of being inflexible, dated, and cumbersome to work
with. Nevertheless, relational systems still dominate the database market. They are
a proven, standardized, and interoperable technology, well-known in IT departments
with a work force of experienced and trained developers and administrators.

This thesis aims at resolving the growing contradiction between the popularity and
omnipresence of relational systems in companies and their increasingly bad reputation
among developers. It adapts relational database technology towards more agility
and flexibility. We envision a descriptive schema-comes-second relational database
system, which is entity-oriented instead of schema-oriented; descriptive rather than
prescriptive. The thesis provides four main contributions: (1) a flexible relational data
model, which frees relational data management from having a prescriptive schema;
(2) autonomous physical entity domains, which partition self-descriptive data according
to their schema properties for better query performance; (3) a freely adjustable storage
engine, which allows adapting the physical data layout used to properties of the
data and of the workload; and (4) a self-managed indexing infrastructure, which
autonomously collects and adapts index information under the presence of dynamic
workloads and evolving schemas. The flexible relational data model is the thesis’
central contribution. It describes the functional appearance of the descriptive schema-
comes-second relational database system. The other three contributions improve
components in the architecture of database management systems to increase the query
performance and the manageability of descriptive schema-comes-second relational
database systems. We are confident that these four contributions can help paving the
way to a more flexible future for relational database management technology.
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1 Introduction

Relational databases are the foundation of western civilization.
Bruce Lindsay [Winslett, 2005]

Today’s databases live in diverse and changing ecosystems. The functional and
non-functional requirements we design a database for become increasingly unstable.
End user empowerment [Nagarajan, 2011], agile analytics [Cohen et al., 2009], agile
software development methods [Beck et al., 2001] and data integration [Franklin et al.,
2005, Sarma et al., 2008] are particular drivers of this development. Yet, traditional
relational data management builds on the assumption of rather stable requirements.
As a consequence, many developers perceive relational data management technologies
as cumbersome, inflexible and dated [Kiely and Fitzgerald, 2005]. Instead of the strict,
prescriptive schema-comes-first thinking in traditional data management, a flexible
and descriptive schema-comes-second take on data management is more suitable for
many of today’s application areas. The current momentum in the NoSQL development
gives evidence.

Still, relational database management systems are the most common in the IT
departments around the world. Relational systems account for 90 % of the information
systems in Fortune 100 companies [Brodie and Liu, 2010]. There are a number of good
reasons for many businesses to stick with relational systems [Leavitt, 2010, Stonebraker,
2011, Brodie and Liu, 2010, Mohan, 2013]. Relational database management systems
bring 30 years of proven database technology. They are powerful and easily available.
Their concepts are widely and well known, with hundreds of thousands of experienced
and trained developers and administrators around the world. Relational database
management systems build on established industry standards and are interoperable
and a long known player in complex IT infrastructures. In addition, there is a wide
set of mature tools and utilities around relational databases helping with design,
development, administration, and maintenance.

The wide gap between the still existing popularity of relational systems and their
misfit with current realities in application domains and software development is
obvious. This thesis is an effort to close this gap. Its aim is to adapt relational
database technology to schema-comes-second data management – to remove the
cumbersomeness and inflexibility of relational database technologies while retaining
its strengths, power, standards, maturity, and interoperability.

In the remainder of this introduction, we briefly outline the basics of traditional
schema-comes-first data management in Section 1.1, where relational database
management systems originate from. In Section 1.2 we contrast this with an elaborate
description of schema-comes-second data management to show where the deficits of
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1 Introduction

traditional relational database systems are. Section 1.3 closes the introduction with
an overview of the thesis and its contributions.

1.1 Traditional Schema-Comes-First Data Management

Traditional database management systems, typically relational, are widely available
today. They can be purchased as products or licenses from bigger and smaller vendors,
such as Oracle, IBM, Microsoft, Sybase, and SAP. Alongside commercial products
there exist database management systems, such as MySQL, PostgreSQL, Derby, and
H2, which are available for free. Database management systems implement data
management functionality in a general, application-independent way. A database
management system is not immediately ready to provide functionality for a particular
database. Rather, they have to be set up according to the requirements the database
has to fulfill.

Database systems are complex and have to meet many functional and non-functional
requirements. Every application scenario has its own very specific requirements.
Functional requirements include aspects of the database schema, the workload,
and access rights. In contrast, non-functional requirements involve rather technical
parameters such as expected data size, tolerated latency, throughput, and concurrency.
To properly set up a database management system, all requirements have to be
known. Requirement analysis is complicated by the fact that requirements of multiple
applications can differ or can even be contradictory.

In the 1970s, database research and industry established a database design process
that is still used today. That process guides developers in systematically collecting
requirements and helps in translating them step-by-step into a complete database
configuration. The process consists of four phases: analysis, conceptual design,
logical design, and physical design [cf. Liu and Özsu, 2009, Database Design].
During analysis, developers collect and structure application-specific requirements,
typically extracted from discourse descriptions. In the conceptual design phase,
the different requirements are consolidated into a single conceptual design. This is
based on a conceptual model language, such as Entity-Relationship [Chen, 1975] or
UML [OMG, 2009], and is independent of any data model implemented in database
management systems. The logical database design transforms the conceptual design
to an implemented data model of choice, such as a relational [Codd, 1970], object-
orientated, or graph-based [Rodriguez and Neubauer, 2010] data model. The result of
this transformation is a logical design. Developers create the logical design through
well-defined transformation rules from the conceptual design [Teorey et al., 1986]. To
compensate for mistakes made in the conceptual design, the logical design phase can
involve normalization procedures [Bernstein, 1976]. All functional requirements have
to be met by the logical design. In the final physical design phase, the logical design
is implemented in a specific database management system on specific hardware. Here,
the developers decide, among many other parameters, on the configuration of access
paths, such as indexes, partitions, and materialized views. During the physical design,
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time

Design Load Use

Development Deployment Production

Figure 1.1: Traditional database usage pattern

the developer’s decisions are based on the expected data and workload, i.e. the most
important queries and updates. The result is the physical design of the system; that
also has to meet all non-functional requirements. The whole design process is not
strictly sequential, but rather iterative. At any time, developers may loop back to an
earlier phase to revise the design. The goal is a complete database design that meets
all functional and non-functional requirements.

Figure 1.1 shows the traditional usage pattern of a database. Designing the
database and loading data typically happens at development and deployment, before
the database is used productively. The whole design process typically takes multiple
days or weeks depending on the complexity of the database-to-be. If a stable
design is found that can be productively used for a long time, the effort pays off.
Traditional database applications, such as banking, accounting, resource management,
and business reporting, allow a stable database design. However, once in a while
even stable database designs have to be adapted or extended, for example as the
applications built on top evolve. At this this point, the usage pattern is basically
repeated, including the laborious design process. After a redesign, loading data
includes transfering the data from the old design to the new design, which is typically
a delicate process requiring a lot of attention and care to avoid data loss. Again, if
the new design is stable for a reasonably long time, the efforts spent on the redesign
can pay off. With the traditional usage pattern, stable database design as well as
stable requirements are crucial for the economic efficiency of a database.

1.2 Modern Schema-Comes-Second Data Management

Since the beginning of the 21st century we have perceived a quickly progressing
digitalization towards a complete digital transformation of society, business, science,
and culture. Electronic information technology gradually pervades every part of
our civilization. In 2007, 94 % of the world’s technological memory and 99 % of the
world’s telecommunication was digital [Hilbert and López, 2011]. Text, audio, and
film – each of the three major types of media – transformed to a digital electronic
representation. We capture, edit, distribute, consume, and archive media content
predominantly by means of electronic technology. Likewise, all kinds of physical
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1 Introduction

parameters (e.g., position, location, distance, speed, pressure, weight, temperature,
current) can be measured digitally. With electronic technology, we observe, measure,
and analyze real-world events and control activities and processes. Databases are the
prime means of handling larger amounts of electronic information. With the ongoing
proliferation of information technology, databases inevitably appear everywhere where
we start accumulating electronic information for archiving, manipulation, controlling,
intelligence, and analysis.

The success of electronic technology feeds its proliferation as well as its
development Kurzweil [2001]. Information technology is known for its exponential
growth rates. The main facilitators of these growth rates are the steady advancements
in semiconductor manufacturing, famously summarized in Moore’s law [Moore, 1965].
The net effects are visible on a global scale. Our worldwide capacity to store
information per capita grew on average by 25 % per year between 1986 and 2007. In
the same time, our general purpose computing capacity per capita grew on average
by 58 % per year [Hilbert and López, 2011]. While advancements in manufacturing
allow increasing production of storage and computing capacities each year, they also
lower the price per unit. The ubiquitous availability of cheap storage, computing, and
communication capacities greatly stimulates creativity in putting available information
to use and constantly propels new applications and usage patterns.

Our world is driven by ideas. Algorithmic routine tasks are either automated or
outsourced to developing countries. First and foremost, the Western job markets
prosper around complex, interactive, creative, and heuristic work [Pink, 2006, 2009].
In 2005, McKinsey categorized 70 % of the jobs created in the United States between
1998 and 2004 as predominately characterized by complex interactions [Johnson
et al., 2005]. Creativity, ideas, and inventions are per se unpredictable [Taleb, 2010].
Predicting the ideas of tomorrow requires having them today. Learning follows an
unscripted process. Understanding forms and evolves on the fly and may never reach
a fixpoint. In consequence, what we do with databases – how we organize, retrieve,
and analyze information – is a constantly evolving and inherently unpredictable field.

Today’s database management systems are used in diverse and changing fields of
application. With the persistent acceleration of society [Gleick, 1999] these trends
will more likely intensify than regress. Soon we will see databases in unexpected areas
fueling applications we have not thought of before. The requirements for which we
design a database become increasingly unstable. Application domains with unstable
requirements demand developers to constantly remodel databases, and in particular
database schemas. While such agile application domains used to be the exception,
they are common today. Monash recently compiled a not-meant-to-be-complete list of
common reasons causing database schemas to change [Monash, 2013a]; among those
are every day events such as product and service changes, organizational changes,
mergers and acquisitions. 30 % of all information systems in Fortune 100 companies are
modified significantly every year [Brodie and Liu, 2010]. Given the laborious database
design process, it is more than clear that many developers perceive relational data
management technologies and database design methods as cumbersome, inflexible and
dated [Kiely and Fitzgerald, 2005]. The prescriptiveness of the traditional database
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schema considerably limits the agility and flexibility of a database system with respect
to changes in its application domain. In the following, we will describe two areas of
application for database systems that are characterized by very agile database usage.

1.2.1 Investigative Analytics

Knowledge is the central element of today’s economic growth and revenue
generation [Powell and Snellman, 2004]. With the powerful computing and storage
technology that is available as a commodity today, data analysis has become an
essential means to gain new knowledge. It requires asking the right questions, and
having the right data available to answer them. Traditionally, with the goal of helping
business controlling and providing decision support, these have been questions for
weekly and monthly reports on business data available in a company’s ERP and
CRM systems. The established data analytics technology has been developed for
such weekly and monthly reports. Typically, a company integrates all necessary data
sources into a comprehensive and consolidated data warehouse and runs batches of
queries to generate the reports [Lehner, 2002]. For controlling and decision support,
data warehouses have been an effective and successful solution, accounting for a
considerable part of the success of traditional data management technology in general.

However, the world of analytics has changed. Today, we have more data available
than ever before. In 2008, an IDC report [Gantz et al., 2008] estimated nearly
1800 exabytes of digital information to be produced in 2011 alone. This is ten times
the amount produced in 2006, resulting in a compound annual growth rate of almost
60 %. About half of the produced information gets stored and is of potential interest
for analysis and knowledge discovery. A 2012 survey among companies running Oracle
database systems found that “42 % can be considered large data shops, supporting
more than 50 TB” [McKendrick, 2012]. Especially sentiments-carrying data is of
analytical interest, most prominently marketing campaign data, social data, internet
log data, and data derived from other analyses [Stodder, 2012]. Often such data comes
from partners and is not produced in-house. Tapping all these sources is crucial on
the way to new valuable knowledge. However, all of these kinds of data are typically
very dynamic and prone to schema changes [Monash, 2013a].

Today, we are also better and more creative in analyzing the data. Data analysis has
become a common practice to gain knowledge throughout all business departments;
as well as in science [Hey et al., 2009] and even art [Viégas and Wattenberg, 2007].
With the spread of data analysis, the methods used have greatly advanced. While
traditional analytics involved mainly monitoring and reporting, investigative analytics
is “seeking (previously unknown) patterns in data” [Monash, 2011]. The demand for
new knowledge is not satisfied by setting up monthly or weekly reports. The work
of knowledge workers, analysts, and data scientists becomes increasingly important.
In a recent survey, 61 % of the respondents said the data scientist/analyst job role is
essential to their organization [McKendrick, 2013]. Analysts and data scientists use
sophisticated algorithms and follow highly iterative workflows, where every answer
sparks new questions [Endeca, 2008] or as Monash [2013b] phrases it: “People don’t
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want to submit requests for reports or statistical analyses; they want to get answers
as soon as the questions come to mind.” Similar workflows have also been framed
with the notions of dataspaces and pay-as-you-go data integration [Franklin et al.,
2005, Sarma et al., 2008].

Having been the initial trailblazer for analytics, traditional data management
technology becomes more and more the impediment to the quest for up-to-the-minute
knowledge. Where our understanding of data constantly evolves, schema changes
are inevitable. The properties of database management systems for investigative
analytics were famously described by Cohen et al. as MAD skills [Cohen et al., 2009].
Accordingly, a database management system has to be magnetic in “attracting all the
data sources that crop up [...] regardless of data quality niceties”, agile as a “database
whose physical and logical contents can be in continuous rapid evolution”, and deep
by serving “both as a deep data repository and as a sophisticated algorithmic runtime
engine”. Traditional relational database management systems fundamentally lack
these properties required in the world of investigative analytics. In particular, they
lack the flexibility for handling dynamically evolving schemas.

1.2.2 Agile Software Development

Before the 1960s software development did not follow any particular pattern or
formalized method. Solely focussed on and trained in the technical side of software
programming, developers followed an individual approach and rarely understood
the business context of an application or user needs. As this hampered the overall
progress in software development, organizations started to establish more disciplined
approaches to software development. One of the first models used to structure the
development of information systems is the system development life cycle, also known
as the waterfall model. It identified sequential stages of planning, analysis, design,
development, testing, and so on. The purely sequential nature of the waterfall model
still led many projects to fail to satisfy the users. Users were typically rarely involved,
and when they were, then mostly too late. Incremental development methods had
broader success. With it, the whole concept of a development method evolved to a
“recommended collection of phases, procedures, rules, techniques, tools, documentation,
management, and training used to develop a system” [Avison and Fitzgerald, 2003].

Since the late 1990s, however, incremental approaches specifically and methods
in general started being perceived as rigid, inflexible, ritualistic, and creativity
inhibiting [Wastell, 1996]. By now, software development has widely changed
to agile and lean approaches such as extreme programming (XP) [Beck, 1999],
Scrum [Takeuchi and Nonaka, 1986, Schwaber, 1997], Crystal Clear [Cockburn, 2004],
and Kanban [Ohno, 1988, Anderson, 2003, 2010]. For an overview see Abrahamsson
et al. [2003] and Cohen et al. [2004]. A 2012 survey among 4048 individuals from the
software development community found that 84 % of the respondents’ organizations
were practicing agile development, a growth of 80 % from 2011 [VersionOne, 2012]. In
the same study Scrum appeared to be by far the most popular method; 72 % of the
respondents’ organizations were using Scrum or Scrum variants.
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1.2 Modern Schema-Comes-Second Data Management

Although the agile methods differ in the particular organization and controlling
of the software development process, they all share commonalities. The manifesto
for agile software development [Beck et al., 2001] states twelve principles subsuming
the idea of agile methods. Among those: “welcome changing requirements”, “deliver
working software frequently”, “working software is the primary measure”, and “best
architectures, requirements, and designs emerge from self-organizing teams”. Instead
of involving developers in rigid processes and extensive planning, agile software
development centers the creativity and excellence of people to handle the unpredictable
dynamic world of software development. Agile methods are characterized by short
development cycles, each with the goal of a shippable product. In Scrum, for instance,
a sprint typically lasts between one week and one month. Teams are small, self-
organizing groups of developers, usually not larger than ten individuals. Priorities
can be readjusted on a daily basis.

The traditional relational database development procedure is obviously incompatible
with the aim of agile software development. Schema-comes-first thinking prescribes
the design of a comprehensive, elaborate schema. This sequential procedure originates
from the 1970s and fits well with the waterfall model and incremental methods of
software development, but is not able to keep up with the speed and flexibility of
agile development. Unfortunately, the design of relational database management
systems also originates from the 1970s and still carries the thinking of the sequential
development procedure prevailing in those years. Relational database management
systems’ DNA is simply not agile.

1.2.3 Summary

Agile application domains demand a descriptive schema-comes-second way of thinking
in data management. This implies a new agile database usage radically different
from the traditional one. While the traditional Design-Load-Use pattern builds on
consecutive steps, they are rather concurrent and iterative in the agile database usage.
Data is loaded from other sources and is directly used. When needed, data can be
redesigned or more data can be loaded from other sources. Where the traditional
pattern separates design time and production time, the agile usage pattern considers
everything as being part of production time. The database schema is not developed
separately; it evolves with the database usage. The schema is explicitly user-driven.
While working with the data, the user changes the database schema whenever necessary
so that it follows the user’s current understanding and needs. Traditional schema
adaptation mechanisms such as views do not represent adequate solutions since they
offer only additional prescriptive schema where descriptive schema is required. In
agile application domains, the schema is the user’s means to describe the structure of
data, rather than the database’s means to prescribe the structure of data. This may
lead to ambiguous and inconsistent data. However instead of preventing ambiguity
and inconsistencies, however, the database management system should support the
user in finding and fixing them.
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Figure 1.2: Contributions of the thesis.

1.3 Contributions

This thesis aims at increasing the flexibility of relational database systems to make
them attractive for the agile world of today. Specifically, we make relational database
technology ready for schema-comes-second data management. To achieve this goal,
the thesis provides four contributions.

FRDM ["fri:d@m] a flexible relational data model.

ADOM ["æd@m] autonomous physical entity domains.

FASE ["feIz] a freely adjustable storage engine.

SMIX ["smIks] a self-managed indexing infrastructure.

Figure 1.2 illustrates the four contributions of the thesis. The flexible relational data
model FRDM is the thesis’ central contribution towards schema-comes-second data
management. FRDM is descriptive rather than prescriptive and allows a user-driven
and freely evolving schema. FRDM gains its flexibility from omitting the implicit
constraints that define the prescriptive nature of the relational data model. Among
other flexibilities, FRDM allows tuples to have arbitrary attributes and be part of
any number of tables (entity domains in the FRDM terminology). It is possible
to implement FRDM in existing relational database management systems by using
existing components and technologies. However, accompanied by the thesis’ other
three contributions, it makes a more complete and better-to-handle system. We
discuss FRDM in detail in Chapter 2. Parts of the material in Chapter 2 have been
developed jointly with Wolfgang Lehner.
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In FRDM, an entity domain is a purely logical concept, which has a crucial effect
on system architecture. In contrast to traditional relational tables, logical entity
domains cannot double as physical entity domains for the storage system since entities
may appear in multiple domains. The self-managed horizontal partitioning ADOM
autonomously manages physical entity domains based on the self-description of the
entities. It assigns each entity to a single physical domain, specifically to the domain
where the entity fits best according to its schema. This physical entity separation
allows the database system to increase its query efficiency. Instead of scanning the
large pile of all entities in a database, queries can skip ADOM partitions that are
irrelevant schema-wise. ADOM is directly integrated in the processing of the database
system and works with low overhead. We discuss ADOM in detail in Chapter 3. Parts
of the material in Chapter 3 have been developed jointly with Kai Herrmann and
Wolfgang Lehner and have been published in an early version in Herrmann et al. [2014]
and, in the version of the thesis, are accepted for publication to the 9th International
Workshop on Self-Managing Database Systems 2014.

In FRDM, entities can have arbitrary attributes, which has an impact on the
efficiency of the physical data layout. A couple of physical data layouts for self-
descriptive, irregularly structured data have been proposed and discussed in the
literature. However, the physical data layout most efficient for a given database
depends on the actual irregularity and on the workload. FASE, therefore, provides
a configurable physical data layout. This allows seting up different physical data
layouts for databases in the same database management system, all using the same
storage engine. FASE supports all common data layouts for regular data and irregular
data. For each of those layouts, FASE exhibits the same performance trade-offs as
one would expect from a native implementation. FASE significantly increases the
physical data independence of database management systems. We discuss FASE in
detail in Chapter 4. Parts of the material in Chapter 4 have been developed jointly
with Alfred Hanisch and Wolfgang Lehner.

With the arbitrary attribute sets FRDM entities can have, the definition of useful
indexes becomes a problem, too. Where the schema is not known in advance, indexes
cannot be defined in advance. Where a self-descriptive schema constantly evolves,
the index configuration has to evolve constantly, too. This is particularly important
for secondary indexes, which represent additional access information and occupy
additional resources. SMIX solves this problem. It provides an infrastructure of
self-managed secondary indexes, where the DBA only allocates a fixed amount of
resources for indexation and the database system takes care of the rest. SMIX
incrementally builds up secondary index information during query processing for the
data that is queried. To remain within the resource limits, SMIX also discards index
information if it is not used anymore. SMIX can autonomously adapt to changing
workloads as well as to changing data sets and changing schemas. We discuss SMIX
in detail in Chapter 5. Parts of the material in Chapter 5 have been developed jointly
with Thomas Kissinger, Tobias Jäkel and Wolfgang Lehner and have been published
in Voigt et al. [2013], Kissinger et al. [2012], and Voigt et al. [2012].
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Although ADOM, FASE, and SMIX are of particular help in a FRDM database
system, all four contributions of this thesis are also valid independently of one another
as they address very different aspects of database systems. We will, therefore, discuss
each contribution, including related work and evaluation, separately in one of the
following four chapters. The final chapter concludes the thesis and provides suggestions
for future research.
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2 FRDM – A Flexible Relational Data
Model

Any data-related business processes you have [...] should assume that your
data models will be in perpetual, rapid flux.

Curt Monash [Monash, 2013a]

The Flexible Relational Data Model (FRDM) is a descriptive schema-comes-
second relational data model. It is entity-oriented instead of being schema-oriented;
descriptive rather than prescriptive. The flexibility FRDM offers, is based on an
assessment of the flexibility and inflexibility of the traditional relational data model.
Specifically, FRDM allows:

• Self-descriptive entities: Entities can instantiate arbitrary sets of attributes
regardless of the entity domain (a table in a traditional relational database).
The attributes an entity instantiates can be changed any time.
• Multifaceted entities: Entities can belong to multiple entity domains. Entities

can join domains or leave domains any time.
• Independent attributes: Attributes do not have to be assigned to a dedicated

entity domain. Entities from different entity domains can instantiate the same
attribute. Attributes can be added or dropped independently from entity
domains.
• Independent technical types: Values from the same attribute can differ in their

technical type (e.g., integer, float, char, etc.). The technical type of a value can
be changed at runtime without affecting the attributes or other values of the
attributes.

FRDM is relational in the sense that it builds on the operational power of the relational
algebra. It is compatible and interoperable with relational data sets.

FRDM is accompanied by a flexible constraint framework FRDM-C that provides
explicit restrictions on the flexibility of FRDM. The scope and the range of the
restriction can be tailored to any requirements ranging from the constraint-free,
descriptive nature of pure FRDM to the strictly prescriptive nature of the traditional
relational data model. FRDM-C helps to introduce rigidity exactly when and at
which parts of the data it is needed for the application at hand. FRDM-C constraints
can vary in their effect from simply informing to strictly prohibiting, so that they are
not only a tool to maintain data quality but also help with achieving data quality.

As a preliminary before detailing FRDM, we assess the relational data model
regarding its flexibility and inflexibility in Section 2.1 and discuss other flexible data
models in Section 2.2. Then, Section 2.3 and 2.4 present FRDM and FRDM-C in
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detail, respectively. We show how relational data can be represented in FRDM and
how FRDM can be restricted to the strictness of the relational data model with
FRDM-C constraints in Section 2.5, to demonstrate the super-relational nature of
FRDM. This is followed by considerations regarding the implementation of FRDM
within the architecture of relational database management systems (Section 2.6).
Finally, Section 2.7 concludes the chapter.

2.1 Assessment of the Relational Data Model

To many developers the relational data model appears cumbersome and inflexible. A
clear understanding of the inflexibility of relational data model is a necessity to create
a more flexible relational data model. In the first half of the following assessment
we examine which particular inflexibilities the relational data model exhibits. Under
closer observation, the relational data model also exhibits some valuable flexibilities,
which are worthwhile to retain. We discuss these relational flexibilities in the second
half of the assessment.

2.1.1 Relational Inflexibility

The perceived cumbersomeness and inflexibility of the relational model originates from
implicit constraints. Unlike constraints explicitly specified in the schema, implicit
constraints are not user-made; they represent inherent inflexibility of the data model.
Implicit constraints forbid loading new inconsistent and ambiguous data into an
existing database; implicit constraints hinder retrieving data in new compositions. All
of these are good features if the corresponding behavior is desired. If not, however, the
features turn into limitations. The essential problem of implicit constraints is that the
user cannot switch them off; the user is committed to implicit constraints. Therefore,
implicit constraints are incompatible with schema-comes-second data management.
A flexible relational data model has to be free of implicit constraints; all constraints
ought to be explicit and user-defined.

Implicit constraints of a data model limit the freedom of the user to structure
the data. Nevertheless, the data model is the contract between user and database
management system about which basic structure data will have. This elementary
structure is the foundation for all operations and services a database management
system offers. Consequently, a data model for structured data has to specify some
elementary structure; without, it is a data model for unstructured data. The minimum
degree of structure needed to refer to data as structured data is a controversial
discrimination and depends on who is asked.

Nevertheless, to identify the implicit constraints of the relational data model, we
define a baseline model for structured data. The baseline model comprises the model
elements common to the major data models for structured data. That way, the
baseline model ensures a minimmum degree of structure needed for structured data.
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2.1 Assessment of the Relational Data Model

Baseline Model The common nucleus of general-purpose data models for structured
data is the entity. An entity is a set of values that describe a simple real-world
object or aspect. Each value belongs to a logical value domain, e.g. name, age,
zip code, street no. Following the technical conditions in computer systems, the
values are encoded according to technical types, such as integer, float, and string.
Entity and value domain uniquely identify a value. For operations, entities
need to be identifiable individually, e.g. the entity Margaret Atwood, and in
logical groups, e.g. all novelists. Hence, entities have an identity for individual
identification and belong to logical entity domains for group identification.

The relational model defines a significantly more rigid structure than the baseline
model. In the baseline model entity, entity domain, value domain, and technical type
are independent concepts used to group values along different aspects. In the relational
model the four equivalent concepts tuple, relation, column, and technical type depend
on each other. Relation as the central concept brings three functions together in
one place. Relations are (1) entity containers for storage and processing, (2) entity
domains, i.e. logical handles to address groups of entities, and (3) define entity schema
constraints. The combination of these three functions into a single concept results in
the subordination of the other data model concepts and, in consequence, results in
the five implicit constraints that characterize the relational model.

Dependent values domains Relations define their columns. Columns cannot exist
independently from relations. Two columns from different relations may have
the same name, but they are not the same, they are considered two different
value domains.

No multifaceted entities Relations define their tuples. Two tuples from different
relations are considered different entities. The same tuple cannot be part of
multiple relations. Only a copy of a tuple can be restored in another relation,
still the copy and the original are treated as two individual tuples. Multi-faceted
entities belonging to multiple entity domains are not possible.

No generalized entities Relations dictate which value domains their tuples have to
instantiate. Tuples must fill all the value domains, and so are prevented from
having a more general intension than the relation.

No specialized entities Besides generalization, the schema dictate of relations also
prohibits specialization. Tuples are not allowed to have a specialized intension
by filling additional value domains.

Dependent technical types Columns specify the technical type for all their values.
Values in the same value domains cannot have different technical types in the
relational model.
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2.1.2 Relational Flexibility

While the relational model exhibits implicit constraints on domains and technical
types, it is very flexible regarding entity constitution and entity relationships. In these
two aspects, the relational model does not bear implicit constraints. This separates
the relational model from other data models, such as the object-oriented data model,
and is also one of the major reasons for its success in databases.

All data models define what constitutes a single entity by assigning an identity
to each entity. This entity identity allows operations to refer to single entities and
to establish a basis for entities referencing each other. There are different ways to
establish an entity identity. The most common are:

Positional identity Entity identity depends on the entity’s position in the sequence
or in the hierarchy of a corpus of entities. Moving an entity to another position
in the corpus changes its identity.

Object identity A fixed value domain serves as identity. The values of this domain
are either generated by the system (e.g. object id) or provided by the user (e.g.
URI). The identity can be explicitly visible to the user as a regular value or
hidden by the system as in many object-oriented programming languages.

Value-based identity One or more value domains serves as identity. The set of value
domains that constitute the identity depends on the context and is defined by
the user.

Obviously, positional identity and object identity implicitly constrain the identity
definition. What defines the identity of entities is fixed by the data model; it cannot
be adapted in the context of a database or a query at runtime. The relational model
uses value-based identity, which is free of implicit constraints. Here, the user defines
what constitutes the identity of tuples, either with explicit primary constraint for
base relations in the schema or by distinct or group operations for result relations in
queries.

To represent relationships between entities, most data models allow entities to
reference other entities. Again, there are different ways to achieve this. The most
common referencing mechanisms are:

Nesting References are expressed with a hierarchical representation of entities, where
entities are nested in other entities. By definition, nested entities are in a
relationship. Cyclic references between multiple entities cannot be represented.
Moving an entity to another position in the corpus changes the represented
relationships.

Explicit association References are expressed with a dedicated association element
defined by the data model. In the data, every reference is explicitly marked as
such.
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Value-based reference References are expressed by value equality. Two entities are
in a relationship if they have the same value or similar values on certain value
domains. The set of value domains that constitute a relationship depends on
the context and is typically defined by the user.

Obviously, nesting is a very restrictive referencing mechanism. It constrains data
sets to strict hierarchical relationships. Explicit associations, although favored in
many data models, impose an implicit constraint on the data, too. They require that
every relationship between entities has to be explicitly marked as one in the data
before the relationship can be queried. In contrast, the value reference used in the
relational model solely depends on the user’s interpretation and can vary from context
to context. In the relational model, the user explicitly expresses what constitutes
a relationship, either with explicit foreign key constraints for base relations or join
operations in queries.

2.2 Related Work

Over the decades, research and development in data management and computer
science in general has created many data models and approaches to represent data.
Obviously, we can concentrate only on the ones most prominently used for representing
structured data. The baseline model for structured data serves as a reference. We
consider a model as a structured data model if it encompasses at least the elements of
the baseline model, namely: entity, entity domain, value, value domain, and technical
type. Data models worth considering can be grouped in four main categories: (1)
relational models, (2) software models, (3) document models, and (4) graph data
models. Table 2.1 lists the data models grouped by the four categories. In the
following, we briefly present and discuss these models with regard to their implicit
constraints and which flexibility requirements they fulfill.

2.2.1 Relational Models

What we discuss as relational models here represent extensions of the traditional
relational model as introduced by Codd [1970]. These extensions intend to free
the relational model from one or more implicit constraints. Hence, these extended
relational models allow additional flexibility compared to the pure relational model.
Besides, all these extensions preserve the flexible value-based identity and value-based
referencing of the relational model.

Extended NULL Semantic In the relational world, the NULL value takes an
exceptional position among all values. NULL is the only single value that is separately
interpreted and treated with a special logic. Generally, NULL serves as a placeholder
for regular values and denotes that the actual value is not present. The actual value
can be absent for a variety of reasons. For instance, ANSI/X3/SPARC [1975] lists
in total 14 reasons, each suggesting a slightly different interpretation and handling
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Table 2.1: Existing flexible data models.

Model category Discussed examples

Relational Extended NULL semantic [Bosak et al., 1962, Vassiliou, 1979]
Interpreted column [Acharya et al., 2008, Foping et al., 2009]
Interpreted record [Beckmann et al., 2006, Chu et al., 2007]
Polymorphic table [Aulbach et al., 2011]

Software Object orientation
Role modeling [Steimann, 2000]

Document XML [W3C, 2008, 2011a,b]
JSON [Crockford, 2006]
OEM [Papakonstantinou et al., 1995]

Tabular Bigtable [Chang et al., 2006, 2008]

Graph Property graph [Rodriguez and Neubauer, 2010]
Neo4J [Neo Technology, 2013b]
Freebase [Bollacker et al., 2008]
RDF [W3C, 2004a]
RDF w/ RDF Schema [W3C, 2004b]

of the NULL value. However, traditional relational database systems and the SQL
standard [ISO/IEC, 2006] treat NULL values inconsistently [Date, 1984], not following
a particular logical semantic. The most suitable interpretation sees NULL as an
unknown value, i.e. an entity that is NULL in a given value domain still instantiates
this value domain. The value only happens to be unknown. In contrast, entities
with a generalized intention do not instantiate a given value domain. Here, the value
does not exist. For instance, an entity representing a married person instantiates the
value domain wedding day, even if the date is unknown. For an unmarried person,
however, the date is not unknown; it does not exist. Hence, the entity representing the
unmarried person does not instantiate the value domain wedding day. The extended
NULL semantic distinguishes both interpretations [Bosak et al., 1962, Vassiliou, 1979].
This distinction allows the relational model to represent generalized entities and
thereby removes one of its implicit constraints. The other four implicit constraints of
the relational model remain.

Interpreted Column In the relational model, tuples instantiate only the columns
of the table they are contained in. In other words, entities cannot instantiate value
domains other than the ones associated with their entity domains. The interpreted
column approach is an extension to the relational model that allows entities with a
specialized intension [Acharya et al., 2008, Foping et al., 2009]. Relations that can
be specialized contain an additional text column next to their core schema. Without
any specialization the column remains empty. If a specialized entity is added to the
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relation, the interpreted column approach represents the additional values of the
entity in this column as text serialization. For each entity, the serialization contains
the auxiliary values plus a reference to their value domains. The specific serialization
technique used is independent of the principles of the approach. Usually, other data
models with a defined text serialization, such as XML [W3C, 2008], JSON [Crockford,
2006] or CSV [Shafranovich, 2005], serve the purpose. In a database management
system, the query processor has to de-serialize the interpreted column before evaluating
query operations on the auxiliary values. Hence, the interpreted column approach
is convenient for database management systems that offer direct query support for
complex values in columns typed by a secondary data model. For instance, IBM DB2
supports XML columns [Cheng and Xu, 2000, Nicola and der Linden, 2005], which
can be directly queried with XQuery [W3C, 2010a]. In such a case, the supported
data model is strongly preferable for the serialization, because the query processor
can directly leverage the existing query capabilities. Where such XML support exists,
the interpreted column approach is appealing because it easily frees the relational
model of an implicit constraint and allows specialized entities. However, it does not
remove the other four implicit constraints of the relational model.

Interpreted Record The interpreted record concept [Beckmann et al., 2006, Chu
et al., 2007] represents generalized and specialized entities in the relational model
without explicitly representing the nonexistence of values or relying on a secondary
data model. In the traditional relational model, the value domains that entities
instantiate are implicitly defined via the entity domain, which constitutes the implicit
constraints forbidding generalized and specialized entities. Instead, an interpreted
record explicitly marks every value with a reference to the corresponding value domain.
By this means the interpreted record omits NULL values as workaround representation
of not instantiated value domains. Additionally, specialized entities can be represented
without affecting the representation of the other entities in the same entity domain.
Nevertheless, value domains remain strictly associated with entity domains. Hence, the
interpreted record concept does not support independent value domains. Multifaceted
entities and independent technical types are not supported either.

Polymorphic Table The polymorphic table concept [Aulbach et al., 2011] originates
from the multi-tenancy domain [Jacobs, 2005, Jacobs and Aulbach, 2007]. In multi-
tenant databases, tenants share the database schema, i.e. entity domains, value
domains, and technical types or even data, i.e. entities and values. A crucial challenge
in multi-tenant databases is that tenants want to be able to customize metadata and
data even when it is shared [Lehner and Sattler, 2013]. Polymorphic tables [Aulbach
et al., 2011] combine sharing and customization of metadata and data in a single
concept. Generally, customization is the process of deriving a specialized table from
a shared base table. In that sense, customization is similar to object inheritance
(or specialization) [Currim and Ram, 2010]. The custom table of a tenant inherits
schema and data of the table it customizes. Multiple customizations of the same base
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table form an inheritance hierarchy, which is consolidated in one polymorphic table.
Polymorphic tables allow the representation of specialized entities since these can be
understood as a customization of their entity domain. In a limited way polymorphic
tables also support multifaceted entities. Next to base tables, the concept allows the
definition of extensions, which are named, predefined schema customizations. These
extensions provide a means to add facets to an entity. Compared to full support
for multifaceted entities, extensions remain limited, though. Extensions are always
derived from a base table and cannot be arbitrarily combined across base tables.
Support for generalized entities is not provided by the concept but could be easily
added as a customization in a similar way polymorphic tables allow customizations to
hide entities from a base table. Independent value domains and independent technical
types are not supported.

Summarizing the extensions for the relational model, we can say that reasonable
extensions exist to support generalized and specialized entities. We are not aware
of extensions that add support for multifaceted entities, independent value domains,
and independent technical types to the relational model.

2.2.2 Software Models

Software models originate from programming languages and other software
development technologies. Generally, we see that software models consist of elements
to structure operations, e.g. a function, and elements to structure data, e.g. a variable.
The elements to structure data resemble a data model. In many software models,
however, these elements are weaker than our baseline model for structured data. We
focus our discussion on object orientation and role modeling. Both build on the notion
of an object and encompass a dedicated association element to represent relationships
between entities. Accordingly, they provide neither value-based object identity nor
value-based referencing.

Object Orientation The notion of an object first appeared in the programming
language LISP in the early 1960s [McCarthy et al., 1960, 1962]. In the late
1960s, Simula, which is considered the first object-oriented programming language,
introduced objects, classes and methods as primary programming concepts [Dahl et al.,
1970]. Since then, object-orientation has been repeatedly characterized, defined, and
implemented in countless research work, programming languages, and development
tools. Today, there is no clear definition of object-orientation. An analysis of 88
papers from nearly four decades of computing literature found Inheritance, Object,
and Class to be the most fundamental concepts of object-orientation [Armstrong,
2006]. These are also the essential concepts allowing the use of object-orientation as
a structured data model.

Objects have attributes. The set of attributes an object has is defined by the class
the object is an instance of. With regard to the baseline model, objects resemble
entities and classes resemble entity domains. With inheritance, classes can adopt the
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structure from other classes, which is a restrictive means for representing multifaceted
entities. Typically, inheritance is limited to a strictly hierarchical pass down of
structure from the parent class to the child class. Even with multi-inheritance or
concepts such as mixins [Moon, 1986, Bracha and Cook, 1990] or traits [Schärli et al.,
2003], inheritance remains a relationship between classes; objects remain the instance
of a single class. Hence, inheritance and related concepts to structure programming
code do not offer full support for multifaceted entities. Furthermore, classes are strict
blue prints for objects; generalization or specialization is not allowed for individual
objects. Similarly, value domains are tied to classes and are not independent. Some
programming languages offer independent technical types, in this context often referred
to as weakly typed values. The concept of object-orientation does not define whether
values are weakly or strongly typed.

Role Modeling Role modeling distinguishes entity domains in natural types and
roles [Steimann, 2000]. Roles are entity domains that are founded and lack rigidity.
Entities from a domain representing a role can only exist in relationship to other
entities. When leaving this relation, an entity also leaves the domain but retains
its identity. In contrast, natural types are entity domains that are rigid but lack
foundation. Entities from a domain representing a natural type do not require
a relation to other entities to exist but would lose their identity on leaving the
domain. Role modeling allows multifaceted entities in the pre-defined form of roles.
Dynamically, entities can start playing a role, i.e. join the corresponding entity domain,
as well as stop playing a role, i.e. leave the domain. For each role it has to be modeled
upfront which natural type can play the role, which does not realize the full flexibility
we aim at with multifaceted entities. Role modeling does not contribute to the other
flexibilities.

With inheritance and the notion of roles, software models offer limited support for
multifaceted entities. Particularly the role concept allows the dynamic leaving and
joining of entity domains. Nevertheless, the set of entity domains to which an entity
can belong at runtime has to be determined upfront.

2.2.3 Document Models

Document models have been developed for representing documents, e.g. web pages.
Typically, document models represent documents as a hierarchy of entities, where
entities nest other entities. Nesting is the primary means of entity referencing. The
identity of an entity solely or primarily depends on the position of the entity within
the hierarchy. In consequence, document models offer neither value-based referencing
nor value-based identity.

XML XML [W3C, 2008] is a markup language for documents. The textual data
format intends to be machine-readable as well as readable by human. An XML
document represents semi-structured data consisting of typically natural language
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text and tags as markups to structure the text. Omitting the text, the tags can be
used to structure data. Tags have a name and can contain attribute–value pairs,
so that tags allow representing entities; the tag name denotes the entity domain
and the attributes denote value domains. The structure of an XML document can
be defined with a Document Type Definition (DTD) or another schema language,
such as XML Schema [W3C, 2011a,b]. Both DTD and XML Schema associate value
domains with the entity domains and specify technical types for the value domains.
Well-formed XML documents are not required to follow the schema specifications of a
DTD or an XML Schema; they must only satisfy syntactical rules given in the XML
specification. Valid documents additionally conform to the rules of a DTD or an XML
Schema. Consequently, we have to distinguish between well-formed documents and
valid documents to assess XML regarding the supported flexibilities.

Obviously, well-formed XML documents have fewer implicit constraints and offer
more flexibility. Without DTD or XML Schema, all value domains are per se
independent from entity domains. Tags can have arbitrary attributes, which allows
generalized entities as well as specialized entities. Still, tags exhibit only a single
tag name, so that multifaceted entities are not supported. Technical types are not
distinguished in well-formed XML.

Valid XML documents are stricter. DTD or XML Schema defines a schema for
entity domains and these schemas are enforced. Nevertheless, it is possible to explicitly
allow generalized entities and specialized entities in the schema for a given entity
domain. There is also a limited support for multifaceted entities in the shape of
extensions. Valid XML document do not allow independent value domains and
independent technical types.

The nesting of tags presents the primary mechanism to relate entities in XML.
Next to nesting, tags can cross-reference each other based on attribute values. In
the DTD an attribute can be declared as IDREF. IDREF values must match the
value of an ID attribute on some element in the XML document. The mechanism is
similar to the relational foreign key concept. Compared to value-based referencing,
however, it is limited because it prescribes the ID value as counterpart to the reference.
XLink [W3C, 2010b] offers a third referencing mechanism for XML. XLink references
XML elements with URIs, similar to links in HTML. Hence, an XLink resembles an
explicit association and not a value-based reference.

JSON JavaScript Object Notation (JSON) [Crockford, 2006] is a very simple
document model. Similar to XML, it is a textual data format design of a human-
readable and portable representation of structured data. A JSON document consists
of nested objects. Objects have attributes whose values can be strings, numbers,
booleans, arrays of values, or even objects. Objects resemble the entities in our
baseline model and attributes act as value domains. There is no equivalent for entity
domains. Consequently, objects can have arbitrary attributes, but they are not
identifiable in a logical group. Hence, the flexibility of the JSON objects comes at the
price of functionality. JSON values have technical types, which are independent from
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Figure 2.1: Example of structured data represented in OEM.

the value domains. The identity of objects is strictly positional. Next to the nesting
there is no other referencing mechanism.

OEM The Object Exchange Model (OEM) [Papakonstantinou et al., 1995] shares
some similarities with JSON but is about a decade older. It was developed in the
1990s for integrated access and data exchange between heterogeneous information
sources. Each OEM data set resembles a tree of nested objects. OEM objects are
fairly simple. They consist of a label, a data type, and a value. The data type can
be an atom type, e.g. integer, float, string; or set. If the value is a set, it contains
other OEM objects. Thereby, sets allow composing structures of higher order such as
entities in OEM. OEM is more general then the baseline model. It can represent single
values, sets or lists of values, single records, or with four levels of nesting, OEM can
represent structured data as in the baseline model, as illustrated in Figure 2.1. Then,
the topmost object represents the whole data set containing OEM objects, that each
represents an entity domain. These second-level OEM objects are also typed as set
and contain the OEM objects representing the entities of this domain, which in turn
contain OEM objects representing the values. These four-level OEM objects are the
leave nodes of the tree. Their label and their type correspond to the value domain and
the technical type of the represented value, respectively. OEM does not distinguish
the concepts of entity, entity domain, or value domain; in OEM they are all labels.
In consequence, OEM is purely descriptive and very flexible. As in other document
models, the identity of OEM objects is positional. For entity identity, however, the
labels of the third-level OEM objects can also be used as identity. Nevertheless, the
entity identity is not value-based. The same holds for referencing.

Document models offer more flexibility than most relational systems or software
models. However, most of their flexibility comes from completely omitting entity
domains or a relation between entity domains and value domains. Where document
models have schema information, such as DTD or XML Schema for XML documents,
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they are similarly strict. Additionally, with nesting, document models exhibit a very
restrictive primary referencing mechanism.

2.2.4 Tabular Models

A tabular data model also organizes data in tables like the relational data model but
differs so significantly in its design that it cannot be considered relational. The data
model of Google’s Bigtable system [Chang et al., 2006, 2008] defined the category of
tabular data models. To fulfill the needs of its large web applications, Google strictly
designed the Bigtable system and its data model for scale out of petabytes of data
across thousands of servers. The Bigtable data model has been implemented in various
systems, with Cassandra [Lakshman and Malik, 2010] and Apache HBase [Apache
Software Foundation, 2013] being the most successful ones. Becaused of its success, it
has remained the only model of its kind that draws considerable attention.

Bigtable organizes data in large, distributed, sparse tables. The columns of such a
table are grouped in column families. Hence, a table in Bigtable resembles a complete
database rather than a single table in the relational sense or a single entity domain
in the sense of our baseline model. Column families take the role of entity domains,
instead. Nevertheless rows, which resemble entities, can stretch across multiple column
families, so that the Bigtable data model supports multifaceted entities. Although
a column family can define a set of columns that rows should instantiate if they
appear in the column family, rows are free to instantiate any column in a column
family. Consequently, Bigtable allows arbitrarily generalized and specialized entities.
Similarly, the technical type of a value can differ from the technical type a column
may define, so that the Bigtable model also supports independent technical types.
Independent value domains are not supported, though. In Bigtable, columns with the
same name can appear in different column families, but they are not the same column,
as columns cannot be identified independently from their column family. Rows are
identified by a user-given row key. Value-based identity is not supported. Referencing
between rows works in a value-based way like the relational foreign key. However,
there is no join operation in Bigtable, and a row can only be retrieved by its row key.
Accordingly, Bigtable foreign keys are limited to row keys. References targeting any
other value than the row key can be stored but not retrieved.

The Bigtable model offers considerably more flexibility than the relational data
model. Because of its focus on scalability, however, it lacks flexibility regarding entity
identity and entity referencing.

2.2.5 Graph Models

Graph data models build on the mathematical definition of a graph. They represent
data as vertices and edges, where vertices represent entities and edges represent
relationships, i.e. references to other entities. In all graph models, entities have an
object identity and edges are an explicit representation of references. Consequently,
graph models do not allow value-based identity or value-based referencing. In this
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respect, graph models are very similar to software models. The essential difference to
software models is that graph models follow the principle of schema-comes-second.
While graph models emphasize the representation of data, software model focus on
the modeling of schema. The different focus gives graph models a descriptive nature.

In practice, graph models differ in how data is represented in a graph. Beside
vertices and edges, graphs can have labels and attribute–value pairs attached to the
vertices and even to the edges. [Rodriguez and Neubauer, 2010] distinguishes nine
types of graphs. Most prominent in data management are the property graph and the
RDF graph. In any case, the pure graph models do not provide schema specifications.
Some systems or standards overcome that by extending their underlying graph model
with additional elements.

Property Graph The property graph is probably the most common type of graph
used in graph databases, e.g. SAP HANA [Rudolf et al., 2013]. As a directed, labeled,
attributed multi-graph, the property graph is a structure powerful enough to embody
all the other eight graph types [Rodriguez and Neubauer, 2010]. Graphs of this type
have labels and attribute–value pairs for vertices as well as edges. For structured data,
vertices represent entities, vertex labels serve as entity domains and attribute–value
pairs (a.k.a. properties) express value domains and values. Technical types are not
specified in the property graph model. Similar to well-formed XML, property graphs
do not include schema specification. Likewise, value domains are per se independent
from entity domains and entities can be arbitrarily generalized and specialized. This
allows property graphs a great deal of flexibility. On the downside, they are constrained
to a single label per vertex, which prohibits multifaceted entities.

Neo4j Neo4j [Neo Technology, 2013b] is currently one of the most popular graph
database engines. Its proprietary data model is a modified version of the property
graph model, inheriting most of the property graph’s flexibility. In its first versions,
Neo4j lacked vertex labels and thereby entity domains. With version 2.0, though,
Neo4j introduces vertex labels in a more powerful fashion than node labels in property
graphs [Rathle, 2013, Neo Technology, 2013a, Hunger, 2013]. In contrast to the
property graph, Neo4j allows multiple labels per vertex, which paves the way for
support of multifaceted entities. Later, the label should be also used for explicit
schema constraints. As Neo4j is written in Java, values are technically typed but
independent from the value domain.

Freebase Freebase [Bollacker et al., 2008] is a public graph database operated by
Google. Its proprietary data model borrows from the property graph model but lacks
vertex labels and edge properties. Freebase represents entity domains with a defined
vertex property named type. Similar to JSON, values can be arrays, allowing Freebase
to represent multifaceted entities – a feature heavily used in the Freebase schema.
In the Freebase schema, every entity domain lists a set of value domains and their
expected type. Value domains are bound to the entity domain at which they are
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listed; they cannot exist independently. Entities can generalize the intension of their
entity domains; specialization is not supported. The expected type of a value domain
is either a technical type in the case of a value or an entity domain in the case of a
reference. The Freebase engine enforces expected types, so that it does not support
independent technical types.

RDF The Resource Description Framework (RDF) [W3C, 2004a] is widely used
for conceptual modeling and annotating structured information to web resources
particularly in the context of the so called semantic web [Berners-Lee et al., 2001,
Shadbolt et al., 2006]. RDF represents data statements about entities. Statements are
stored as subject-predicate-object triples; all triples can be interpreted as a labeled
graph. Accordingly, an RDF graph is a considerably simpler data model than a
property graph. Nevertheless, it is powerful enough to represent structured data. The
subject of a triple is typically an entity; the predicate is a value domain and the
object is a value or a reference. In RDF, everything except values is identified and
expressed by URIs [Berners-Lee et al., 2005]. In each triple, subject and predicate are
URIs, while the object is a URI only if it represents a reference. Similar to JSON,
RDF lacks entity domains. Consequently, entities can have arbitrary attributes and
value domains are independent, but means to identify logical groups of entities are
missing. RDF knows the most basic technical types and allows them independently
from the predicate in a triple.

RDF with RDF Schema RDF Schema [W3C, 2004b] is a set of predicates and
objects that allow the description of a schema for RDF data in RDF itself. One of
the main predicates is rdf:type, which assigns an entity to a class. Classes represent
either entity domains or value domains in RDF Schema; the rdf:type of the class
distinguishes between both. Value domains define an rdfs:domain, which links them
to entity domains, and an rdfs:range, which specifies the technical type of values or
the target entity domain for references. RDF entities do not have to comply with their
classes; generalization and specialization of entities is allowed. Generally, RDF allows
declaring the same predicate multiple times for the same object. Only the complete
subject-predicate-object triple has to be unique. This has three essential consequences
for the flexibility of RDF Schema. First, multifaceted entities are possible by simply
assigning multiple classes to an entity. Second, value domains are independent from
the entity domains since they can declare multiple entity domains as their rdfs:domain.
Third, value domains can specify multiple technical types. Although this allows
weakly typed values in some sense, technical types are not completely independent
since types that are used for a value domain have to be specified in the schema.

One main reason for the current popularity of graph models is, as we have seen,
the flexibility they provide. The other main reason is that graph models center
around representing relationships between entities, which is what is primarily needed
in many modern applications. However, the fixed object identity and the explicit
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representation of relationships are also a drawback since they limit the flexibility in
interpreting the data. Another drawback particularly of the property graph model
and its descendant used in SAP HANA, Neo4j, and Freebase is, that they lack any
kind of standardization currently.

2.2.6 Summary

As a summary, Table 2.2 shows which flexibilities each of the discussed data models
allows. We can see that none of the discussed models is completely constraint-free
and provides the flexibilities and characteristics provided by FRDM. Graph models,
particularly as in Neo4j, are free of implicit constraints regarding entity domains,
value domains and technical types, while the relational approaches are the only ones
to offer value-based identity and value-based references. FRDM integrates the level of
flexibility graph models provide with value-based identity and value-based references,
as indicated in Table 2.2, in a super-relational fashion. In the next section, we present
the flexible relational data model FRDM.

2.3 FRDM

FRDM is a super-relational data model for structured data. It is free of the relational
inflexibilities but keeps the relational flexibilities. The most prominent feature of
FRDM is that it separates the functionality of data representation, data processing,
and constraints. Data representation and data processing are realized in separate,
dedicated concepts. We detail the data representation of FRDM in Section 2.3.1 and
discuss data processing in Section 2.3.2. Schema constraints are realized as explicit
constraints outside of the core data model in the constraint framework FRDM-C,
which is presented in Section 2.4.

2.3.1 Data Representation

The data representation of FRDM builds on four concepts. The central concept is
the tuple:

Tuple A tuple is the central concept of the flexible relational data model and represents
an entity. A tuple consists of values. Each value is part of a value domain and
is encoded according to a technical type.

The concepts entity domain, value domain, and technical type describe the data
represented in tuples and provide logical data handles:

Entity domain Entity domains are logical data handles allowing to distinguish logical
groups of tuples within a database. Tuples belong to at least one entity domain
and may belong to multiple entity domains, so that domains can intersect each
other.
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2.3 FRDM

t1 : Camera

name : str = Canon PowerShot S110
resolution : float = 12.1
aperture : float = 2.0
weight : int = 198

t2 : Camera, GPS, Phone, Wireless

name : str = Samsung Galaxy S4
resolution : int = 13
screen : double = 4.3
weight : int = 133

t3 : Camera, Player, Wireless

name : str = Apple iPod touch
screen : double = 4.0
resolution : int = 5
weight : int = 88

t4 : Camera, GPS

name : str = Sony SLT-A99
resolution : int = 24

t5 : TV, Wireless

name : str = LG 60LA7408
resolution : str = Full HD
screen : int = 60

t6 : GPS

name : str = Garmin Dakota 20
weight : int = 150

Figure 2.2: Example entities representing electronic devices.

Value domain Value domains are logical data handles allowing to distinguish values
within a tuple. Each tuple can instantiate each value domain only once.

Technical type Technical types determine the physical representation of values. Value
operations such as comparisons and arithmetic are defined at the level of technical
types.

Formally, a flexible relational database is a septuple (D,A,T,E, fs, ft, fm). The
payload data D is a set of tuples. A tuple is an ordered set of values t = [v1, . . . , vm].
Let A be the set of all value domains available in the database. Then the tuple
schema function fs : D → P(A) denotes the schema of each tuple, i.e. the set of
value domains a tuple instantiates. fs(t) = [A1, . . . , Am] if t instantiates the value
domains A1, . . . , Am so that t ∈ A1 × · · · × Am. For convenience, we denote with
t[A] = v that tuple t instantiates value domain A with value v. T is the set of all
available technical types T . The typing function ft : D×A→ T shows the encoding of
values, with ft(t, A) = T if the value t[A] is encoded according to the technical type T .
Finally, E is the set of all available entity domains E, while the membership function
fm : D→ P(E) denotes which tuples belong to these domains. fm(t) = {E1, . . . , Ek}
if t belongs to the entity domains E1, . . . , Ek.

As an example, Figure 2.2 shows six entities in UML-object-diagram-like notation.
The entities represent electronic devices as they could appear in a product catalog.
Note that this small example exploits all the flexibilities of FRDM. All six entities are
self-descriptive and have their individual set of attributes. The order of the attributes
within an entity differs, too. Entities t2 to t5 belong to multiple entity domains.
Attributes, such as name, appear independently from entity domains. The technical
typing of values, for instance of the attribute resolution, varies independently of
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the attribute. In the flexible relational data model these six entities can be directly
represented as follows.

Tuples:

D =



t1 = [Canon PowerShot S110, 12.1, 2.0, 198] ,
t2 = [Samsung Galaxy S4, 13, 4.3, 133] ,
t3 = [Apple iPod touch, 4.0, 5, 88,Yellow] ,
t4 = [Sony SLT-A99, 24] ,
t5 = [LG 60LA7408,Full HD, 60] ,
t6 = [Garmin Dakota 20, 150]


Schema elements:

A = {aperture,name, resolution, screen,weight}
T = {float , int , str}
E = {Camera,GPS ,Player ,Phone,TV ,Wireless}

Schema function:

fs =



t1 → [name, resolution, aperture,weight ] ,
t2 → [name, resolution, screen,weight ] ,
t3 → [name, screen, resolution,weight ] ,
t4 → [name, resolution] ,
t5 → [name, resolution, screen] ,
t6 → [name,weight ]


Typing function:

ft =



(t1,name)→ str , (t1, resolution)→ float , (t1, aperture)→ float , . . .
(t2,name)→ str , (t2, resolution)→ int , (t2, screen)→ double, . . .
(t3,name)→ str , (t3, screen)→ double, (t3, resolution)→ int , . . .
(t4,name)→ str , (t4, resolution)→ int ,
(t5,name)→ str , (t5, resolution)→ str , (t5, screen)→ int ,
(t6,name)→ str , (t6,weight)→ int


Membership function:

fm =



t1 →{Camera} ,
t2 →{Camera,GPS ,Phone,Wireless} ,
t3 →{Camera,Player ,Wireless} ,
t4 →{Camera,GPS} ,
t5 →{TV ,Wireless} ,
t6 →{GPS}


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2.3.2 Data Processing

For data processing, FRDM builds on the well-known concept of a relation. It allows
to process tuples in a relational manner:

Relation Relations serve as central processing containers for tuples. FRDM queries
operate on relations; query operations have relations as input and produce
relations as output. Different from the traditional relational data model, with
FRDM the tuples in a relation determine the schema of the relation. Each
value domain instantiated by at least a single tuple in the relation is part of the
relation’s schema.

Let t be a tuple in relation R, then R has the schema

SR =
⋃
t∈R

fs(t)

so that SR ⊆ A. A relation R with schema SR does not have to instantiate each tuple
in every value domain, rather it is

R ⊆
⋃

Si∈P(SR)\∅

(
×
A∈Si

A

)
.

In other words, tuples may only instantiate a subset of a relation’s schema, with the
exception of the empty set. While t[A] = v denotes that tuple t instantiates value
domain A with value v, t[A] = @ indicates that tuple t does not instantiate value
domain A.

Mass operations address tuples by means of entity domains. Hence, each entity
domain denotes a relation containing all tuples that belong to this domain. Specifically,
an entity domain E denotes a relation R so that E ∈ fm(t) holds for all t ∈ R. In
the following, we refer to a relation representing tuples of domain E simply as E
where unambiguously possible. Figure 2.3 shows two relations in the electronic device
example denoted by the entity domains Camera and GPS , respectively.

The well-known relational operators (selection, projection, union, difference, cross-
product) are directly applicable to FRDM relations. However, the descriptive nature
of a FRDM relation requires two minor modifications to the semantic of the relational
operators. First, the logic of selection predicates and projection expressions has to
consider that value domains may not be instantiated by a tuple. An appropriate
evaluation function for such predicates and expressions is described in [Vassiliou,
1979]. In a nutshell, tuples that do not instantiate a value domain used in a selection
predicate are not applicable to the predicate and do not qualify. Tuples that do not
instantiate a value domain used in a projection expression do not instantiate the
value domain newly defined by the expression. Second, all operations have a strictly
tuple-oriented semantic, i.e. the schema of the relation resulting from an operation is
solely determined by the qualifying tuples. In consequence, the schema resulting from
a selection can differ from the schema of the input relation. More specifically, the
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Relation GPS

name resolution screen weight

Samsung Galaxy S4 13 4.3 133
Sony SLT-A99 24 @ @
Garmin Dakota 20 @ @ 150

Relation Camera

name resolution aperture weight screen

Canon PowerShot S110 12.1 2.0 198 @
Samsung Galaxy S4 13 @ 133 4.3
Apple iPod touch 5 @ 88 4.0
Sony SLT-A99 24 @ @ @

Figure 2.3: Relations denoted by entity domains.

Relation Camera ∩GPS

name resolution screen weight

Samsung Galaxy S4 13 4.3 133
Sony SLT-A99 24 @ @

Relation σaperture≤2.8Camera

name resolution aperture weight

Canon PowerShot S110 12.1 2.0 198

Figure 2.4: Relations resulting from relational operators.

resulting schema of a selection is equal to or a subset of the input schema depending
on which tuples qualify, so that SσP (A) ⊆ SA. Likewise, the schemas of the operand
relations do not matter for set operations. Tuples are equal if they instantiate the
same value domains with equal values. In the case of a union the schema results from
uniting the schemas of the operands, so that SA∪B = SA ∪ SB. In the case of a set
difference the resulting schema is equal to or a subset of the left operand’s schema,
again, depending on which tuples qualify, so that SA\B ⊆ SA. Derived operators,
such as join or intersection, are affected similarly.

As an example, Figure 2.4 shows two relations resulting from relational operators.
Relation Camera ∩ GPS is the intersection of the relations Camera and GPS as
shown in Figure 2.3. Relation σaperture≤2.8Camera, obviously results from a selection
on value domain aperture of the Camera relation.
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2.4 FRDM-C

FRDM-C is a flexible constraint framework meant to accompany FRDM. The flexibility
of FRDM originates from its lack of implicit constraints. Nevertheless, constraints are
a powerful feature if their effect is desired by the user. For the user, constraints are
the primary means to have the data management system to obtain and maintain data
quality. Each constraint is a proposition about the data in the database. Data either
complies to or violates this proposition, i.e. every constraint categorizes the data into
two disjoint subsets. It is up to the user how to utilize this categorization. At the
least, constraints inform about which data is compliant and which is violating. At
the most, constraints prohibit data modifications that would result in violating data.
Constraints present themselves as additional schema objects, attached to the schema
elements of the data model. The user can add and remove constraints at any time.

Formally, constraints take the general form of a triple (q, c, o). q is the qualifier;
c is the condition compliant data has to fulfill; o is the effect (or the outcome) the
constraint will have. The qualifier determines to which tuples the constraint applies.
It is either an entity domain Eq ∈ E, a value domain Aq ∈ A, or a pair of both
(Eq, Aq). Correspondingly, a constraint applies to all tuples t with Eq ∈ fm(t), with
Aq ∈ fs(t), or with (Eq, Aq) ∈ fm(t) × fs(t), respectively. We denote the set of
tuples a constraint C applies to as DC . Conditions are either tuple conditions or key
conditions, depending on whether they affect individual tuples or groups of tuples.
The effect determines the result of the operations that lead to violating data and
what happens to the violating data itself. In the following, we will detail conditions
and effects.

2.4.1 Conditions

The first group of conditions is tuple conditions. Tuple conditions restrict data at
the level of individual tuples, e.g. by mandating to which entity domains a tuple
can belong. Formally, a tuple condition is a function c : D → {>,⊥}. Then,
D>C = {t | t ∈ DC ∧ c(t)} are the complying tuples and D⊥C = {t | t ∈ DC ∧ ¬c(t)} are
the violating tuples. Tuple conditions are:

Entity domain condition An entity domain condition requires tuples t ∈ DC to
belong to an entity domain Ec so that Ec ∈ fm(t). We denote a specified entity
domain condition as entity-domain(Ec).

Value domain condition A value domain condition requires tuples t ∈ DC to
instantiate a value domain Ac so that Ac ∈ fs(t). We denote a specified
value domain condition as value-domain(Ac).

Technical type condition A technical type condition limits values of tuples t ∈ DC
in value domain Ac to a specified technical type Tc so that Tc = ft(t, Ac). We
denote a technical type condition as tech-type(Ac, Tc).
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Value condition A value condition requires values of tuples t ∈ DC in value domain
Ac to fulfill a specified predicate p so that p(t[Ac]) holds. We denote a value
condition as value(Ac, p).

The second group of conditions is key conditions. Key conditions restrict data at
the level of tuple groups. Formally, a key condition is a function c : P(D)→ {>,⊥}.
Key conditions are:

Unique key condition A unique key condition requires tuples to instantiate a set of
value domains AK ⊆ A uniquely so that ti[AK ] 6= tj [AK ] holds for all ti, tj ∈ DC
with ti 6= tj . As a result, all complying tuples are unambiguously identifiable on
AK . We denote a unique key condition as unique-key(AK).

Foreign key condition A foreign key condition requires tuples to instantiate value
domains AF ⊆ A with values referencing at least one tuple on value domains
AR ⊆ A so that for every tF ∈ DC there is one tR ∈ DR such that
tF [AF ] = tR[AR]. Similarly to DC , the set of referenceable tuples DR ⊆ D is
identified by either an entity domain ER ∈ E, a value domain AR ∈ A, or a pair
of both (ER, AR). We denote a foreign key condition as foreign-key(AF ,AR,mR)
where qR is the qualifier of DR.

If a group of tuples does not fulfill a key condition not all tuples of the group
are considered violating. We have to distinguish two cases. Consider a database
with tuples representing authors and a unique key constraint requiring unique author
names, as shown in Figure 2.5. In the first case, a constraint already exists in the
database and a modification of tuples results in a violation. Here only the modified
tuples become violating tuples. In the example shown in the figure, the database
contains two tuples and the unique constraint. Some operation inserts a third tuple,
which applies to the constraint so that the group of all author tuples violates the
constraint’s condition. As result, the set of violating tuples D⊥C encompasses the
inserted tuples t3. In the second case, the constraint is added to the database and
the tuples already existing in the database violate this constraint. Here the smallest
subset of tuples that violates the condition becomes the set of violating tuples, i.e.
D⊥C is the set of violating tuples for a constraint C if c(D⊥C) = ⊥, c(D \ D⊥C) = >,
and

∣∣D⊥C∣∣ is minimal. In the example shown in the figure, the minimal set of tuples
violating the unique constraint is {t2, t3}, so they become the violating tuples for the
constraint.

All conditions can be negated in a constraint. Negation swaps the set of violating
tuples with the set of complying tuples. For instance, the negated entity domain
condition ¬entity-domain(Ec) prohibits the entity domain Ec instead of requiring it.
Given two constraints C = (q, c, o) and C ′ = (q,¬c, o), it holds that D>C′ = D⊥C and
D⊥C′ = D>C . For any kind of constraint, the set of voilating tuples D⊥C is crucial for the
effect of the constraint.
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Database: t1 : Author

name = Atwood
born = 1939

t2 : Author

name = Thompson
born = 1937

t3 : Author

name = Thompson
born = 1952

Constraint C = (Author , unique-key(name), o)

Insert: t3 : Author

name = Thompson
born = 1952

Result: D⊥C = {t3}

Case 1:

Database: t1 : Author

name = Atwood
born = 1939

t2 : Author

name = Thompson
born = 1937

t3 : Author

name = Thompson
born = 1952

Insert: Constraint C = (Author , unique-key(name), o)

Result: D⊥C = {t2, t3}

Case 2:

Figure 2.5: Set of violating tuples for a unique key condition

2.4.2 Effects

We distinguish four types of effects constraints can have. They vary in the rigor the
constraint will exhibit.

Informing Allows all operations. The complying tuples and the violating tuples can
be queried by using the constraint as a query predicate.

Warning Allows all operations and issues a warning upon operations that lead to
violating tuples. The creation of the constraint results in a warning about
already existing violating tuples.

Hiding Allows all operations and issues a warning upon operations that lead to
violating tuples, and hides violating tuples from all other operations. The
creation of the constraint results in hiding already existing violating tuples,
except for operations that explicitly request to see violating tuples by using the
constraint as predicate.

Prohibiting Prohibits operations that lead to violating tuples and issues an error. The
creation of the constraint is prohibited in the case of already existing violating
tuples.
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2.5 Super-Relational Nature of FRDM

The presented flexible relational data model is a superset of the traditional relational
model. Traditional relations can be represented directly in the flexible model without
any change. A relational database is a septuple (D,A,T,R, fσ, fθ, fµ), where R is the
set of relations, A is the set of domains, T is the set of technical types, D is the set of
tuples, fσ is the schema function R→ P(A), fθ is the typing function A→ T, and fµ
is the membership function D→ R. The corresponding flexible relational database is
(D,A,T,E, fs, ft, fm) with

E = {name-of (R) | R ∈ R}
fs = {t→ fσ(fµ(t)) | t ∈ D}
ft = {(t, A)→ fθ(A) | A ∈ fσ(fµ(t)) ∧ t ∈ D}
fm = {t→ {name-of (fµ(t))} | t ∈ D} .

For each relation, we get an entity domain with the name of the relation. The schema
of each tuple can be derived from the schema of the relation to which the tuple
belongs in the relational model, so that fs(t) = fσ(fµ(t)). Additionally, the relational
schema provides the technical type of a value. Since the relational data model does
not allow independent technical types, the technical type is only determined by the
attribute, so that ft(t, A) = fθ(A). Finally, each tuple belongs to only a single entity
domain, specifically to the entity domain with the name of the tuple’s relation, so
that fm(t) = name-of (fµ(t)).

To emulate the implicit constraints of the relational model (cf. Section 2.1.1) the
flexible relational database has to be supplemented with explicit constraints. For each
relation R ∈ R we add the following prohibitive constraints:

• Entity domains have to mutually exclude each other, so that tuples can be
only part of one entity domain. This can be achieved with constraints of
the form (name-of (R),¬entity-domain(E), prohibiting) where name-of (R) 6= E
and R ∈ R.
• Entity domains prescribe the value domains of their corresponding

relation. This can be achieved with constraints of the form
(name-of (R), value-domain(A), prohibiting) for each value domain A ∈ fσ(R)
and each relation R ∈ R.
• Entity domains forbid all other value domains. This can be achieved with

constraints of the form (name-of (R),¬value-domain(A′), prohibiting) for each
value domain A′ /∈ fσ(R) and each relation R ∈ R.
• Value domains prescribe the technical type as defined by the corresponding

relation. This can be achieved with constraints of the form
(A, tech-type(A, fθ(A)), prohibiting) for each value domain A ∈ fσ(R) and each
relation R ∈ R.

As an example consider the two traditional relations shown in Figure 2.6. To
emulate their relational rigidity we need the following 17 prohibitive constraints
assuming no other entity domains and value domains are present in the database.
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Relation Author

name : str born : int

Margaret Atwood 1939
Hunter S. Thompson 1937
José Saramago 1922

Relation Camera

name : int resolution : int weight : int

Canon PowerShot S110 12 198
Samsung Galaxy S4 13 133
Sony SLT-A99 24 812

Figure 2.6: Two relations in the relational data model.

• Entity domains have to mutually exclude each other:

– (Author ,¬entity-domain(Camera), prohibiting)
– (Camera,¬entity-domain(Author), prohibiting)

• Entity domains prescribe the value domains of their corresponding relation:

– (Author , value-domain(Author.name), prohibiting)
– (Author , value-domain(Author.born), prohibiting)
– (Camera, value-domain(Camera.name), prohibiting)
– (Camera, value-domain(Camera.resolution), prohibiting)
– (Camera, value-domain(Camera.weight), prohibiting)

• Entity domains forbid all other value domains:

– (Author ,¬value-domain(Camera.name), prohibiting)
– (Author ,¬value-domain(Camera.resolution), prohibiting)
– (Author ,¬value-domain(Camera.weight), prohibiting)
– (Camera,¬value-domain(Author.name), prohibiting)
– (Camera,¬value-domain(Author.born), prohibiting)

• Value domains prescribe the technical type as defined by the corresponding
relation:

– (Author.name, tech-type(Author.name, str), prohibiting)
– (Author.born, tech-type(Author.born, int), prohibiting)
– (Camera.name, tech-type(Camera.name, str), prohibiting)
– (Camera.resolution, tech-type(Camera.resolution, int), prohibiting)
– (Camera.weight , tech-type(Camera.weight , int), prohibiting)
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2.6 Implementation of FRDM

The FRDM data model is positioned as a flexible descendant of the relational model.
Therefore it is suitable to be implemented within the existing and established relational
database system architecture. In this section, we briefly discuss how this can be done.
The characteristics of FRDM require four main changes to existing relational database
system code.

First, plan operators and query processing have to be adapted to handling descriptive
relations. More specifically, plan operators must reflect the adapted semantic of their
logical counterparts. Logically, operators have to remove value domains from the
schema of a relation if no tuple instantiates them. With a tuple-at-a-time processing
model, this orphaned value domain elimination is a blocking operation, since the
system can determine the schema only after all tuples are processed. Implicit duplicate
elimination is similarly impractical and thus was not implemented in relational
database systems. Likewise a practical solution for the elimination of orphaned value
domains is that plan operators determine the schema of the resulting operation as
narrowly as they safely can before the actual tuple processing and live with possible
orphaned value domains in the result relation. Similarly to the DISTINCT clause,
SQL can be extended with a, say, TRIM clause that allows the user to explicitly
request orphaned value domain elimination.

Second, the physical storage of tuples has to be adapted to the representation
of entity domains. For tuple storage, the existing base table functionality can be
reused but needs to be extended to handle uninstantiated value domains. Solutions
for such an extension are manifold in the literature, e.g. interpreted record [Beckmann
et al., 2006, Chu et al., 2007], vertical partitioning [Abadi et al., 2007], and pivot
tables [Agrawal et al., 2001, Cunningham et al., 2004]. Another reasonable approach
is a bitmap as it is used for instance by PostgreSQL [PostgreSQL Global Development
Group, 2013] to mark NULL values in records. Tuples can appear in multiple entity
domains. However, for storage economy and update efficiency, tuples should only
appear in a single physical table. Replication should be left to explicit replication
techniques. Consequently, the database system has to assign each tuple to a single
physical table and maintain its logical entity domain membership. There are two
principle ways how this can be done. One is to encode the domain membership
in the physical table assignment. Here, the system would create a physical table
for each combination of entity domains occurring in a tuple and store tuples in
the corresponding table. The mapping is simple and easy to implement. On the
downside, it may lead to a large number of potentially small physical tables (at worst
2E tables where E is the number of entity domains in a database) and tuples need
to be physically moved if their domain membership is changed. The other principle
way is storing the domain membership, e.g. with a bitmap, directly in a tuple itself.
This gives liberty regarding the assignment of tuples to physical tables, up to using
a single (universal) table for all tuples. With many tuples having the same domain
membership, this comes at the price of storage overhead – negligible in most cases,
though.
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Third, the physical tuple layout has to be extended to represent also the technical
type of values directly in the tuple. This is necessary for independent technical types.
To reduce storage needs and decrease interpretation overhead, the system can omit
the technical type in the tuple where explicit constraints prescribe a technical type.
However, creating and dropping such explicit constraints becomes expensive as the
physical representation of the affected tuples has to be changed.

Fourth, independent value domains require a modification of the system catalog. In
most system catalogs, value domains have a reference to the base table they belong
to. This reference has to be removed to make value domains available to all tuples
regardless of their entity domain membership.

2.7 Summary

With FRDM we proposed an evolutionary approach to meet the need for schema-
comes-second data management and to build on the power of relational database
systems. FRDM is entity-oriented instead of schema-oriented. It is designed around
self-descriptive entities, where schema comes with the data and does not have to be
defined up front. Additionally, FRDM allows multi-faceted entities where entities
can belong to multiple entity domains. Value domains can exist independently
from entity domains in FRDM. Similarly, FRDM allows to technically type values
independently from their value domain. FRDM retains the flexible properties of the
relational data model, which are value-based identity and value-based referencing
between entities. Altogether, FRDM is a super-relational data model. It can express
irregular data as well as regular relational data. We demonstrated both by examples.
For data retrieval, FRDM builds on the powerful, well-known, and proven set of
relational operations. Compared to the relational data model, FRDM is free of
implicit constraints. Nevertheless, where these constraints are needed and welcome,
the presented constraint framework FRDM-C allows formulating explicit restrictions
to the flexibility of FRDM. Next to presenting FRDM and FRDM-C, we also discussed
how FRDM can be implemented in existing relational database management systems.
As we showed at the beginning of the chapter, FRDM has a unique set of properties,
unique among other common flexible data models. FRDM combines the flexibility
of graph data models with the flexibility and power of the relational model. A
lot of technological expertise, knowledge, and experience have accumulated in and
around relational database management systems over the last three decades. We
are also convinced FRDM can contribute to the use of that experience also in the
more flexibility-demanding areas of schema-comes-second data management, where
traditional relational systems have been perceived as cumbersome and dated up to
now.
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3 ADOM – Autonomous Physical Entity
Domains

The good ones go into the pot, the bad ones go into your crop.
Jacob and Wilhelm Grimm. Cinderella

With self-descriptive data, such as in FRDM, logical entity domains cannot be used
as physical entity domains for storage. If they would be reused, entities belonging to
multiple logical entity domains would occur redundantly in multiple physical entity
domains. A straighforward solution is to centralize all entities in a single universal
physical domain. Retrieval operations, however, are disadvantaged by a universal
physical domain, because queries that address a single logical entity domain have to
read over the whole universal domain including many irrelevant entities that do not
belong to the logical entity domain in question. Horizontal partitioning presents a
simple technique to increase the efficiency of such queries. A partitioning scheme
taking into account the schema of self-descriptive entities allows queries to prune
partitions of irrelevant entities before touching the data. Designing and maintaining
such a partitioning particular for dynamic, irregular data sets is a laborious and never
ending task most DBAs are not willing to commit to. Hence, online an autonomous
solution is required.

Autonomous Physical Entity Domains (ADOM) is an autonomous partitioning
technique for dynamic sets of entities [Herrmann et al., 2014]. It partitions an entity
set into fixed-sized partitions, such that the entities in a partition share most of
their entity domains. The partitions can then be used as physical entity domains.
Queries that retrieve only entities belonging to a given entity domain can easily
prune partitions that contain entities belonging only to irrelevant entity domains.
Alongside logical entity domains, ADOM can also use other schema properties such
as the instantiated value domains as a basis for the partitioning. ADOM maintains
the partitioning while entities are added, modified, and removed. It is designed to
keep overhead low by operating contentiously in the background; it incrementally
assigns entities to partitions while they are touched anyway during modifications.
This ongoing dynamic partitioning increases the locality of queries and reduces query
execution cost.

In the following we define the Online Partitioning Problem in Section 3.1 and
discuss related work in Section 3.2. In Section 3.3, we present ADOM in detail. An
evaluation of the ADOM approach is presented in Section 3.4. Section 3.5 summarizes
the chapter.
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3.1 Online Partitioning

Entities in a universal physical entity domain are typically very heterogeneous
regarding their logical entity domains and their value domains. Figure 3.1 illustrates
such a universal physical domain for the product catalog scenario. As can be seen,
logical entity domains as well as value domains appear irregularly among the entities.
Some value domains, for instance, are very common, e.g. name or weight, while
others are specific to only certain kinds of entities, e.g. aperture for camera with
a built-in lense. The same can be seen for the logical entity domains the entities
belong to. Comprehensive studies observed that distribution of logical entity domains
and value domains mostly obeys Zipf’s law [Chang et al., 2004, Beckmann, 2005].
Although the entities exhibit some regularity, it is hard to find reasonable and reliable
generalizations that allow a static partitioning scheme. While all of today’s cameras
feature a sensor, a screen, and a storage card slot, some of them are also equipped with
a flash, a GPS sensor, or Wi-Fi. Soon, we will see cameras with mobile connectivity
but lacking a storage card slot. If there was a suitable static partitioning schema,
after all, it is reasonable to assume that the database modeler would have modeled
the database accordingly.

In the following, we do not distinguish between logical entity domains and value
domains. From the partitioning perspective both are merely schema properties, which
can be used as a partitioning criterion. The goal of partitioning is to increase the
query efficiency by allowing the database system the early pruning of partitions with
entities irrelevant for a query. Hence, it is essential that schema properties can be
identified not only for entities but also for queries. Before actually executing a given
query, the database system must be able to determine the set of schema properties
entities must exhibit to be relevant for the query. Logical entity domains and value
domains allow this.

Each partition is described in the system catalog using a partition synopsis p, which
lists the schema properties of the entities in the partition. Likewise, we can list all
schema properties relevant to a query in a query synopsis q. Based on the synopses,
queries can easily prune partitions that contain only entities irrelevant to the query,
i.e. partition for which |p ∧ q| = 0 holds. Correspondingly, the efficiency of a given
partitioning is the ratio of how many entities are relevant to a workload and how
many entities are actually read.

Definition 3.1 (Partitioning Efficiency). Given a universal physical entity domain
T containing the entities T = {e1, e2, . . .}, a query set W = {q1, q2, . . .}, and a
partitioning P = {p1, p2, . . .}, the efficiency of P is

Efficiency(P ) =

∑
q∈W,e∈T sgn(|e ∧ q|) · Size(e)∑
q∈W,p∈P sgn(|p ∧ q|) · Size(p)

.

The function Size() yields the size of an entity or a partition, indicating how much
has to be read to scan the entity or all entities in a partition, respectively. sgn(|e ∧ q|)
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3 ADOM – Autonomous Physical Entity Domains

results in 1 if entity e is relevant to query q and 0 if not. Likewise, sgn(|p ∧ q|) results
in 1 if partition p contains an entity relevant for query q and 0 if not.

The aim of automatic partitioning of a universal physical entity domain is to
continuously maximize the efficiency of a given partitioning under the presence of
modification operations. Modification operations are inserts, updates, and deletes
that change the set of entities or manipulate the schema properties of the entities.

Definition 3.2 (Online Partitioning Problem). Given a universal physical entity
domain T , a query set W , a partitioning P , and a modification m, online partitioning
updates P so that Efficiency(P ) is maximized for W after m is applied to T .

The online partitioning problem can be solved based on the workload or solely on the
entities. A workload-based solution tries to find a partitioning so that, ideally, entities
in the same partition are relevant to the same set of queries. Hence, the resulting
partitioning is tailored for the given workload. Whenever a workload is not available
or whenever the solution should be more general and robust, an entity-based solution
is more appropriate. An entity-based solution favors partitions that contain entities
with attribute sets as similar as possible. The resulting partitioning is independent of
a particular workload.

The online partitioning problem applies to many different database architectures
and to various levels in an architecture. Most obviously in distributed databases or
distributed file systems, partitions are distributed among the nodes. In modern main-
memory database systems running on a large shared-memory NUMA system, partitions
resemble the local memory of each CPU core. In traditional disk-based systems, pages
may represent a partition granularity where solving the online partitioning problem
can help to increase the query efficiency on universal tables.

3.2 Related Work

Naturally, the online partitioning problem of universal physical entity domains is
related to partitioning techniques traditionally applied in database systems. Other
related research fields are schema mining, inferring hidden schemas, and hypergraph
partitioning. We dicuss all three in the following.

3.2.1 Traditional Partitioning

Partitioning is a well-known means of physical design. An entity set can be either
partitioned vertically or horizontally. Vertical partitioning decomposes entities along
attribute subsets, so that every partition contains all entities but each entity only
with a disjoint subset of its values. In contrast, horizontal partitioning groups
entities into partitions, so that every partition contains complete entities but only a
disjoint subset of the complete entity set. There are two principal ways of horizontal
partitioning. Range partitioning groups entities according to given value ranges on
specified attributes; entities with values in the same value range end up in the same
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partition. Hash partitioning groups entities according to a given hash function on
specified attributes; entities with the same hash value end up in the same partition.

Automatic selection of a partitioning optimal for a given workload has been an
active research field since the 1970s [Hoffer and Severance, 1975, March and Severance,
1977]. Partitioning advisor tools became a popular research topic along with the
research on index advisor tools [Rao et al., 2002, Agrawal et al., 2004, Zilio et al.,
2004]. An online partitioning tool was presented only recently [Jindal and Dittrich,
2011]. For horizontal partitioning, all these tools consider mainly range partitioning
because it is the partitioning mostly used in traditional relational database system
setups. In web-scale databases, where load balancing over a large number of node
is the main concern, hash partitioning is the common choice [Chang et al., 2006,
DeCandia et al., 2007, Lakshman and Malik, 2010]. To the best of our knowledge,
horizontal partitioning based on schema properties has not been considered so far.

3.2.2 Schema Mining

Schema mining aims at finding interesting structures and structural regularities in
databases of semi-structured data. The findings can be used to learn about unknown
data or to describe and type irregular data in a compact way. Schema mining
became a popular research topic in the second half of the 1990s, when the rise of the
Web rapidly increased the amounts of irregular, semi-structured data. Commonly,
schema mining approaches use an edge-labeled graph as in the object exchange
model [Papakonstantinou et al., 1995] to represent semi-structured data. They differ,
however, in the technique used for the actual mining.

Nestorov et al. [1998] use clustering. In the first stage of their approach they identify
the minimal set of structural types that covers the complete data set using greatest
fixpoint semantics from logical programming. For fairly irregular data, this minimal
set of structural types still encompasses a large number of types. In the second step,
the types are clustered into k groups of similar types relying on the L1 distance. Per
group, they coalesce the types into a single type, which represents the cluster in the
schema mining result.

Wang and Liu [1998, 2000], in contrast, extract frequent structures using the notion
of minimum relative support from frequent itemset mining [Agrawal et al., 1993,
Agrawal and Srikant, 1994]. Given a set of data objects and a minimum relative
support of x percent, they identify all structures that occur in at least x percent of the
data objects. Basically, Wang’s algorithm generates candidate structures and checks
their support; pruning techniques help reduce the candidate set. Nevertheless, the set
of frequent structures likely contains many redundancies, because for a larger frequent
structure all its substructures are frequent, too. They call these substructures weaker
since their typing information is less comprehensive. A maximally frequent structure
is frequent and not weaker than other frequent structures. By checking this condition,
Wang and Liu simply filter out all nonmaximally frequent structures. The approach
of Laur et al. follows the same lines, though they claim to achieve better results [Laur
et al., 2000].
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Although schema mining is a very closely related topic, the schema mining techniques
are not applicable to our horizontal partition problem. While schema mining finds
frequent structures in a data set, it does not unambiguously decide which data objects
belong to which frequent structure. With all of the discussed techniques, a data object
can exhibit multiple frequent structures. Schema mining does not partition the data;
it only finds representative structures.

3.2.3 Inferring Hidden Schemas

Chu et al. [2007] consider a problem very closely related to schema mining as well as
our online partitioning problem. In their approach, they also partition a universal
physical entity domain but vertically and offline. Although they called their approach
Inferring Hidden Schemas, the overall goal is identical to ours. Chu et al. use the
discovered hidden schema of a universal physical entity domain to increase retrieval
efficiency by reducing the data that has to be read, and to minimize the irregularity
per partition. Their partitioning algorithm clusters attributes based on their co-
occurrence. They measure the co-occurrence of two attributes a and b with the
Jaccard coefficient of the two sets A and B, where A is the set of tuples instantiating
attribute a and B is the set of tuples instantiating attribute b. Accordingly, the
coefficient of a and b measures as |A ∩B| / |A ∪B|. In the extreme, the coefficient
equals zero if none of the entities instantiate both attributes, or one if a and b only
occur together. With the coefficients Chu et al. create an adjacency matrix and apply
a k-nearest-neighbor clustering to obtain the partitions.

The quality of the resulting partition depends on the parameter k of the clustering
algorithm. Unfortunately, the authors do not explain how to obtain a good k for a
given data set. Without any additional knowledge about the data set k is practically
unknown. Plus, the good k may change over time while the data set evolves. For
evaluation purposes, the authors provide a measure for the quality of a partition,
which quantifies the sparseness in a partition. We could use this measure to find
a good k in two ways. First, we can compare the quality of partitionings resulting
from different settings of k. This solves the problem, but significantly increases
the computational complexity as we have to run the clustering algorithm for every
reasonable setting of k. Second, we can implement a search strategy on k and stop if
we have found a reasonably good partitioning by setting a threshold on the quality
measure. This, however, leaves us with the same kind of question: What is a good
threshold? Like a good k, a good threshold is practically unknown if we do not have
any additional knowledge about the data set.

The hidden schemas approach works offline and partitions vertically. Nevertheless it
can generally be applied to our online horizontal partitioning problem. By maintaining
the adjacency matrix incrementally and reruning the k-nearest-neighbor clustering
after any change we can turn the concept into an online algorithm. However, the
online version will come at considerable overhead, since the clustering algorithm
always runs on the complete matrix although only a small fraction of the coefficients
has changed. The clustering will basically make the same global decision over and
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over again. The other downside of the concept is that it partitions vertically. Vertical
partitions decompose entities. Depending on the irregularity of a data set, an entity
may occur in multiple partitions, which requires joins on retrieval to reconstruct the
entities. For the same reason, data manipulation operations may have to address
multiple partitions, as the authors freely admit.

We can conclude that the hidden schema concept is closely related to our problem.
Although the algorithm is applicable to our problem, it does not represent a reasonable
solution. It requires a hard-to-set parameter and comes with considerable overhead
for the partitioning itself and for query processing.

3.2.4 Hypergraph Partitioning

Graph partitioning divides the vertex set of a graph into disjoint subsets. A good
graph partitioning minimizes the number of edges that connect vertices from different
partitions. Hypergraph partitioning is common extension of graph partitioning.
Hypergraphs allow edges to connect more than two vertices. Graph partitioning
in general and hypergraph partitioning specifically are NP-hard problems. Many
heuristics and approximation algorithms have been developed in various application
areas over the years. Hypergraph partitioning is used for VLSI [Leighton et al.,
1990, Karypis et al., 1997, 1999], for sparse matrix decomposition in parallel
computing [Çatalyürek and Aykanat, 1996, 1999], and for declustering large databases
to parallel disks [Fang et al., 1986, Liu and Shekhar, 1996].

Hypergraph partitioning is also applicable to our partitioning problem. Given an
instance of the partitioning problem, we can construct a hypergraph such that the
partitioning of the vertices using the connectivity criterion yields the optimal solution
for that instance.

Figure 3.2 illustrates the optimal solution by a simple example, consisting of the
entities e1, . . . , e6 and the queries a, . . . , f . For each query only a subset of entities is
relevant, e.g. for query e only entity e4 and e6 are relevant. In the hypergraph, each
vertex represents an entity and each hyperedge represents a query, such that the edge
connects exactly those vertices that are relevant for the query. For the partitioning,
the connectivity criterion minimizes the total number of partitions all hyperedges
connect. In the context of entity partitioning, the connectivity corresponds to the
number of distinct partitions that can contain relevant entities for a query. In the
example of Figure 3.2, the optimal partitioning of the entities e1, . . . , e6 for given
queries is {{e1, e2, e3} , {e4, e5, e6}}. The other partitioning shown in the figure has a
high connectivity and therefore is not an optimal solution.

The construction of the graph is based on a specific workload, hence, the result of the
partitioning will be tailored for this workload. We call it the workload-based solution
to the problem. Whenever a workload is not available, or where the solution should
be more general and robust, we can base the hypergraph on the schema properties
of the entities. The procedure is similar to the one shown in Figure 3.2, except that
a, . . . , f are schema properties, i.e. entity 4 and 6 feature schema properties e. We call
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Figure 3.2: Optimal Solution using hypergraph partitioning.

the partitioning scheme resulting from such a hypergraph the schema-properties-based
solution to the problem.

To solve the online partitioning problem, workload-based or schema-properties-
based, we could create the hypergraph for all entities including the one affected by
the modification, and determine the partitioning. Unfortunately, this is unfeasible in
practical scenarios as hypergraph partitioning is NP-hard [Garey and Johnson, 1979].
Even with heuristic hypergraph partitioning algorithms, the solution comes with
considerable overhead for two reasons. First, the approach represents each individual
entity in the hypergraph, which causes an enormous amount of data accesses. Second,
it recalculates the complete partitioning with each modification operation, although
most of the entities remain unchanged. A practical solution to the online partitioning
problem has to exhibit small overhead, such that the overhead does not exceed the
benefit achieved by the partitioning scheme.

3.3 ADOM

ADOM is specifically designed for the Online Partitioning Problem. It consists of two
main components: (1) the partitioning maintenance algorithm and (2) the partition
rating. We detail both in the following.

3.3.1 Partitioning Maintenance

ADOM works incrementally. It relies on the basic assumption that the data is already
well partitioned. Triggered by a modification operation, ADOM merely adjusts the
partitioning so that the modified entity fits in well. ADOM creates partitions of a
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Figure 3.3: Insert procedure.

fixed maximum size. Partitions that reach their capacity limit are reorganized with a
split operation. Since, among the common data modification operations, inserts affect
the partitioning most, we will focus the discussion of ADOM on the insert operation.
ADOM can create a workload-based as well as an schema-properties-based solution.
For simplicity in the discussion, we will assume the schema-properties-based setup.

The basic insert procedure is illustrated in Figure 3.3. Given two partitions
cataloged with their partition synopses and a new entity, ADOM scans the partition
catalog to find the partition which fits best to the entity. Every partition is rated
and the entity is inserted to the partition with the highest rating. We will discuss the
rating in detail in Section 3.3.2. There are two possible exceptions from this basic
procedure, illustrated on the left and the right of Figure 3.3. First, the rating can
become negative, indicating that the new entity fits none of the existing partitions
well. In this case, ADOM creates a new partition for the new entity. Second, the
highest rated partition has reached the maximum capacity B. Here, ADOM splits
the partition into two new partitions.

For the split the insert procedure maintains a pair of so-called split starters for
each partition in the system catalog. The split starters are two entities from a given
partition that differ as much as possible in their synopses. The first two entities
added to a partition form the initial pair of split starters. With every additional
entity added, the insert procedure checks whether this entity would make a better,
i.e. more differential, starters pair with one of the original starter entities. If that is
the case the insert procedure updates the partition’s pair of split starters accordingly.
The difference between entity synopses e1 and e2 is calculated as the number of
different schema properties |e1 ⊕ e2|. This incremental maintenance heuristically tries
to maximize the difference of the split starters. It does not guarantee to yield the
most differential pair of entities in a partition, but it avoids the cubic effort necessary
to determine the most differential pair.

To split a partition, the insert procedure creates two new partitions and moves each
of the two split starter entities to one of the new partitions. The remaining entities
are assigned to the new partitions using the insert procedure itself, while limiting
the set of possible target partitions to the two new partitions. The procedure does
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not necessarily result in a balanced split; the result strictly depends on the schema
properties of the involved entities. The recursive use of the insert procedure can result
in a split cascade. Neither will such a split cascade be very long nor is it a very likely
event.

Algorithm 1 lists the complete insert routine. First, ADOM iterates over the
partition catalog to find the partition rated best for the entity to insert (lines 4–8).
Then, depending on the best rating, the algorithm either creates a new partition for
the entity (lines 10–14), splits the best rated partition (lines 27–34), or simply inserts
the entity into the best rated partition (line 37). In the case of a split or a normal
insert, ADOM updates the pair of split starters to reflect the new entity (lines 16–25).
Specifically, the new entity will replace one of the split starters if it has a difference
to the other split starter larger than the difference between the original split starters.

As can be seen, the complexity of finding the best rated partition depends on the
number of partitions and the cardinality of the synopses. For a split, the complexity
depends on the partition size and, again, the cardinality of the synopses. However, in
I/O bound systems the runtime will be dominated by the moving of the actual entities
from partition to partition. Consequently, the split, although linear in complexity, is
the most expensive part of the algorithm.

The adjustment routines that ADOM performs for the other modification operations
rely on the insert routine. Upon deletes, ADOM merely removes the deleted entity
from its partition. The partitioning itself remains unchanged. Empty partitions will
be deleted. Upon updates, ADOM also runs the insert routine but without actually
inserting. In case the updated entity is assigned to a new partition it is moved.
Otherwise, ADOM updates the entity in place.

Assigning entities to partitions during insert and split relies on the rating of how
well an entity and a partition fit together. The next section explains this rating in
more detail.

3.3.2 Partition Rating

ADOM’s partition rating compares an entity synopsis with a partition synopsis to
determine how well the entity would fit in the partition. We first discuss the local
rating, which is not comparable among partitions, and then present how ADOM
obtains a comparable global rating from the local rating.

Figure 3.4 illustrates the idea of the local rating r′. The rating takes positive
evidence as well as negative evidence into account. Positive evidence is the amount
of regularly structured data a partition will contain if the entity is added. We refer
to this postive evidence also as homogeneity between entity and partition. ADOM
determines the evidence as the number of attributes that can be found in both entity
and partition, multiplied with the sum of the size of the partition and the size of the
entity.

Homogeneity score: homo(e, p) = (Size(p) + Size(e)) · |e ∧ p|
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Algorithm 1 Online horizontal partitioning.

1: procedure InsertEntity(e, se, C) � e: entity

2: � se: entity synopsis

3: � C: catalog with partition synopses

4: rbest ← −∞
5: for (sp, p) ∈ C do � scan partition synopses in catalog

6: r ← Rate(se, sp) � calculate rating

7: if rbest < r then � if rating is the best so far

8: rbest ← r; pbest ← p � save current best

9: � if best rating is negative

10: if rbest < 0 then
11: pbest ← CreateNewPartition()
12: pbest.Add(e) � add entity to new partition

13: pbest.eA ← e � set entity as first split starter

14: return
15: � update split starters of partition rbest

16: if pbest.eB = Null then � if second split starter is missing

17: pbest.eB ← e � set entity as second split starter

18: else � check if new entity is a better split starter

19: reA ← Diff(e, pbest.eA)
20: reB ← Diff(e, pbest.eB)
21: rAB ← Diff(pbest.eA, pbest.eB)
22: if reA = Max(reA, reB, rAB) then
23: pbest.eB ← e � e becomes split starter B

24: else if reB = Max(reA, reB, rAB) then
25: pbest.eA ← e � e becomes split starter A

26: � if partition is full, split

27: if Size(pbest) + Size(e) >MaxSize then
28: pA ← CreateNewPartition()
29: pB ← CreateNewPartition()
30: pA.Add(pbest.eA); pbest.Remove(pbest.eA)
31: pB.Add(pbest.eB); pbest.Remove(pbest.eB)
32: for esplit ∈ pbest do � split remaining entities

33: InsertEntity(esplit, sesplit
, {pA, pB})

34: pbest.Remove(esplit)

35: return
36: � normal case: just add entity to partition rbest

37: pbest.Add(e)
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Figure 3.4: ADOM’s local rating.

Negative evidence is the amount of irregularly structured data that will result from
adding the entity to a partition – in Figure 3.4 indicated by the black circles. There are
two kinds of negative evidence. The first one is heterogeneity on the part of the entity
and originates from attributes the partition has but the entity lacks. Analogously to
the homogeniety, we measure this entity heterogeneity as the number of the entity’s
missing attributes multiplied by the size of the entity.

Entity heterogeneity score: heteroe(e, p) = Size(e) · |¬e ∧ p|

The second negative evidence is heterogeneity on the part of the partition and
originates from attributes the entity has but the parition lacks. We measure this
partition heterogeneity as the number of the partition’s missing attributes multiplied
by the size of the partition.

Partition heterogeneity score: heterop(e, p) = Size(p) · |e ∧ ¬p|

Note that ADOM heuristically assumes that the partitions it creates are rather
homogeneous. Irregularity already existing in a partition is not considered since this
would require more information than the simple synopses.

To get a local rating r′, ADOM subtracts the total of the negative evidence from
the positive evidence.

r′(e, p) = w · homo(e, p)− (1− w) · (heteroe(e, p) + heterop(e, p))

The weight w allows the DBA to balance between the influence of positive and negative
evidence. For a given dataset, weights greater than 0.5 result in a smaller number of
more heterogeneous partitions, while weights less than 0.5 result in a larger number of
rather homogeneous partitions. In the extreme setting of w = 0, any heterogeneity will
result in a negative rating. As a result, ADOM creates only perfectly homogeneous
partitions like in a normal database for regularly structured data. The other extreme
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setting of w = 1 results in partitions similarly heterogeneous as the original universal
entity domain. Our experimental results suggest that a weight between 0.3 and 0.6 is
a reasonable setting.

The local rating r′ is not comparable between partitions because the amount of
data and size of the attribute set varies from partition to partition. To compensate
for this, ADOM uses the global rating r which is normalized with the partition size
and the number of the involved attributes:

r(e, p) =
r′(e, p)

(Size(p) + Size(e)) · |e ∨ p|
.

3.4 Evaluation

We created a prototypical implementation of ADOM and studied ADOM’s performance
on the irregularly structured data of DBpedia. Additionally, we used the TPC-H
benchmark to evaluate ADOM on regularly structured data. In this section, we first
discuss the setup, which contains details on the used implementation, and then present
the results.

3.4.1 Setup

We implemented ADOM in PostgreSQL 9.3 using views, triggers, and stored
procedures. In our implementation, a universal table simulates a universal physical
entity domain. Each data manipulation operation on the universal table triggers a
stored procedure, which implements the ADOM algorithms. The prototype creates a
regular table for each partition as well as a single catalog table for the metadata of
all partitions. ADOM uses the metadata to rewrite incoming queries to a UNION ALL

over all relevant partitions. The prototype provides transparent data access through
ADOM, as the user inserts data to the universal table using regular SQL statements.

Hardware platform for our experiments was a Windows 8 computer with an i7 CPU
and 8 GB of memory. We executed two kinds of experiments. With data taken from
DBpedia, we evaluated how much selective queries on irregularly structured data can
benefit from ADOM. We also studied the influence of ADOM’s two main parameters,
the partition size limit B and the weight w in the DBpedia setup. With the TPC-H
benchmark, we investigated the effect of ADOM on regularly structured data. In the
following, we detail the two experiments on irregularly and regularly structured data.

3.4.2 Irregularly Structured Data

DBpedia [Auer et al., 2007] is a large database of irregularly structured data, created
by a diversity of web users. Given DBpedia’s heterogeneity, selective queries can
benefit from horizontal partitioning by early elimination of irrelevant partitions from
data access. For this experiment, we extracted 100 000 person entities with a total of
100 attributes. Although we limit the data set to person records, it exhibits the typical
long tail distribution of irregularly structured data. Figure 3.5 shows the distribution
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Figure 3.5: Attribute distribution in the DBpedia data set.

of the attribute in the data set. In particular, Figure 3.5(a) shows the distribution
of the attribute frequency, i.e. how many entities of the data set instantiate a given
attribute. As can be seen, two attributes are extremely common and appear on
almost every entity. Eleven attributes are fairly common and appear on over 30 %
of the entities, while 85 % of the attributes appear on less than 10 % of the entities.
Figure 3.5(b) shows the distribution of the number of attributes per entity. While the
majority of entities have between two and 15 attributes, a few entities have up to 30
attributes.

We inserted the data into an ADOM-partitioned universal table, under different
settings of partition size limit and weight. The DBpedia person entities were
inserted in random order. In the process, we measured the execution of the
inserts; afterwards we recorded metrics about the partitioning ADOM had created in
the particular setting and measured the execution time of selective queries. For
this purpose, we generated a synthetic workload since there is no common or
standardized DBpedia workload. The goal was to obtain queries with different
selectivity to evaluate the effect of ADOM according to the query selectivity. We
created multiple sets of attributes. Each of the individual attributes forms an
attribute set. Additionally, we combined the 20 most frequent attributes to pairs
and triples. For each of these attribute sets we generated a query of the form
SELECT a1, a2, ... FROM universalTable

WHERE a1 IS NOT NULL OR a2 IS NOT NULL ...

where {a1, a2, . . .} is the corresponding attribute set. Each of these queries returns
only entities that instantiate the given attributes. The selectivity of the queries
varies depending on the attributes queried. We collected representative queries to
reasonably cover the range of possible selectivities; three representative queries for
each selectivity.
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Figure 3.6: Average query execution time for different partition size limits B.

We start the discussion of the results with the measurements of query execution
time. This is followed by a more detailed study of the influence of the weight in the
partition rating on the resulting partitioning. Finally, we discuss the measurements
of insert execution time.

Query Execution Time

For the representative queries of our synthetic workload, we measured the execution
time using different partition size limits and, for comparison, the execution time on
the original universal table. Neither the ADOM partitions nor the universal tables
had an index on any column. Figure 3.6 shows the average query execution times
depending on the selectivity for a partition size limit of 500, 5000, and 50 000 entities.
The weight was set to 0.5. As expected, the query execution time increases with a
decreasing selectivity of the queries since more data has to be read. In contrast, the
query execution time increases only slightly on the original universal table. Regardless
of the actual selectivity, queries have to scan the whole table here. Consequently,
ADOM achieves a significant speedup for very selective queries (selectivity < 0.04).
In general, the more entities a query reads the smaller the benefit of horizontal
partitioning is. For queries of medium selectivity (> 0.04 and < 0.4), ADOM achieves
lower or about the same query execution time as with the original universal table.
Queries of low selectivity (> 0.4) are likely to access every partition and do not profit
from ADOM. With our prototype, these queries show a longer execution time with
ADOM than on the universal table. We attribute large parts of this overhead to
the implementation of our prototype. For instance, during the union operation, the
database system has to project all tuples of every involved partition to the common
schema. This cost can be avoided by an implementation directly in a FRDM database
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Figure 3.7: Average query execution time for different weights w.

engine with a native presentation for irregular data. There, we expect low selectivity
queries not to suffer more than queries suffer from normal range or hash partitioned
tables. Nevertheless, the aim of ADOM is to speed up selective queries and it is seen
to be capable of doing so.

Figure 3.6 also shows the impact of the partition size limit on ADOM’s benefit. Given
a data set, a smaller partition size limit allows ADOM to build more homogeneous
partitions. This leads to a lower query execution time, particularly for queries of
medium selectivity. On the downside, a smaller partition size limit also results in a
larger number of partitions necessary to host the data. This requires less selective
queries to unite more partitions, which increases the overhead for such queries.
Consequently, the partition size limit should be set lower for very selective workloads
and higher for less selective workloads.

Figure 3.7 shows the impact of the weight of the partition rating on ADOM’s benefit.
We see a similar picture here. Higher weights typically result in fewer but larger
partitions. For very selective queries, a lower weight is benefical, while queries of very
low selectivity profit from a higher weight. However, the optimal weight depends
more on the irregularity of data set than on the workload. For the DBpedia data
set we used in the evaluation, 0.2 is seen to be a good balance between positive and
negative evidence in the partition rating. For other data sets with another irregularity
another weight is likely to be optimal.

Influence of Weight on Partitioning

For a more detailed picture of the influence of the weight w on ADOM’s partitioning,
we partitioned the DBpedia data set with ADOM using different settings for the weight.
For each of the resulting partitionings, we recorded (1) the number of partitions, (2)
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Figure 3.8: Influence of the weight w on the partitioning of the DBpedia data set.
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the number of entities per partition, (3) the number of attributes per partition, and
(4) the sparseness per partition. The maximum partition size limit B was set to 5000.
Figure 3.8 illustrates the results.

As Figure 3.8(a) clearly shows, the lower the weight the more partitions ADOM
creates. Particularly with a weight less than 0.2 the number of partitions explodes.
With a very low weight, the homogeneity score loses its influence on the partition
rating. As a result, most entity–partition pairs get a negative rating, causing ADOM
to create a new partition even for entities that have a large overlap with the schema of
existing partitions. In the extreme case of w = 0 all created partitions are completely
homogeneous.

Naturally, the number of entities in the partitions behave the opposite way, as
shown in Figure 3.8(b). Higher weights allow more heterogeneity within partitions, so
that more entities are assigned to the partitions. With a very low weight (w < 0.2),
all partitions remain very small. Medium weights produce a few partitions filled
to the maximum capacity, although the majority is less than half full. The large
spread results from the attribute distribution. On the one hand, a large fraction of
entities has only a small number of attributes and many of these attributes are also
the most common attributes. Hence, these entities pile up in a large partition. On
the other hand, a very small fraction of entities has a large number of very uncommon
attributes. These entities result in very small partitions.

Figure 3.8(c) shows the number of attributes per partition. Again, the higher the
weight the more heterogeneity per partition is allowed and the higher the number of
attributes. However, in all settings all partitions have significantly fewer attributes
than the universal table has. This clearly shows how ADOM facilitates the pruning
of irrelevant data. The lower the number of attributes the higher the probability that
a partition can be pruned from query processing.

Since the number of entities and the number of attributes per partition increase
with the weight, the sparseness per partition has to increase as well for a given data
set. Figure 3.8(d) shows this effect for the DBpedia data set. For the homogeneity-
preserving setting of w = 0, the sparseness per partition is obviously zero. In
contrast, higher weights (w > 0.6) do not form any partition of very low sparseness.
With all medium weight settings, ADOM forms mainly partitions with a sparseness
considerably lower than the sparseness of the original data set.

All results in Figure 3.8 underline that medium weights produce the most reasonable
results. A perfect partitioning has to reach contradicting goals. On the one hand a
small number of partitions that are well filled up to the partition size limit minimizes
the overhead for queries of low selectivity. On the other hand very dense partitions
with small attribute sets facilitate the highest speedup for very selective queries.
Medium weights balance between these contradicting goals.
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Figure 3.9: Insert execution time for different partition size limits B.

Insert Execution Time

We also measured the execution time of the insert operations, when we loaded the
data set. Figure 3.9 shows the results1 for different partition size limits and a weight
of 0.5. As can be seen, the majority of insert operations finishes in between 1 ms and
10 ms. With a lower partition size limit and a larger number of partitions, the inserts
take a little longer, because the size of the partition catalog increases. A small fraction
of inserts needs considerably longer, though. These are insert operations where a
partition split occurs. As Figure 3.9 clearly shows, the number of insert operations
with a split decreases with an increasing partition size limit. With a partition size
limit of 500 entities, ADOM performs a split 448 times, for a limit of 5000 entities 100
times, and for a limit of 50 000 no split occurs. At the same time, the cost of a split
increases with the partition size limit, because more entities have to be reassigned
and physically moved during a split.

Figure 3.10(a) shows the number of splits occurring with the DBpedia dataset
depending on partition size limit and weight. While there is no clear tendency for
the influence of the weight, the partition size limit is seen to be the main influence
on the number of splits. As we have seen before, the lower the partition size limit
the more splits. The total cost of the splits forms a different picture, as depicted in
Figure 3.10(b). Fewer splits do not necessarily translate into less overhead. Since
the cost of an individual split increases drastically with the partition size limit, the
total cost of all splits is also higher for larger partition size limits. Note that lazy

1For values below 0.4 s, the figure shows only a 10 % sample. For every 50 inserts of the same setting
the sample includes five values – the maximum, the minimum, and three other randomly picked
values.
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Figure 3.10: Influence of partition size B and weight w on splits.

maintenance strategies known from materialized views [Zhou et al., 2007] can help to
ease the effect that a high split cost has on a productive database system.

3.4.3 Regularly Structured Data

The TPC-H benchmark [Transaction Processing Performance Council, 2013] has, in
contrast to DBpedia, a concrete specification of the workload. For this experiment,
we loaded TPC-H data with a scale factor of 0.5 into an ADOM-partitioned universal
table. Views on the partitions created by ADOM emulated the standard TPC-H
tables. The TPC-H data is perfectly regular. While inserting this data into an
ADOM-partitioned universal table, ADOM should be able to find a partitioning
which is similar to the TPC-H table schema. Any partitioning different from the
TPC-H schema would result in a significantly higher execution time for the TPC-H
queries. Accordingly, we measured the execution time of the benchmark’s queries on
the TPC-H-schema-emulating views using different partition sizes and, for comparison,
the execution time on the regular tables of the TPC-H schema.

Table 3.1 shows the results. The table lists the total execution time of the 22
TPC-H queries in four scenarios. One scenario is the normal TPC-H benchmark
without ADOM and provides the baseline. The other three scenarios show ADOM
with different settings for the partition size. As can clearly be seen, the presence of
ADOM adds only a small overhead to the query execution time on regularly structured
data. In fact, ADOM finds only partitions which exactly fit the TPC-H schema in any
of the three settings. Again, we see that a larger partition size decreases the cost of
the additionally necessary union operations for queries that span multiple partitions.

58



3.5 Summary

Table 3.1: Query execution time on regular data (TPC-H).

Scenario Partition size limit Total query execution time

Standard TPC-H – 24.23 s (100.00 %)
ADOM I 500 entities 26.38 s (108.87 %)
ADOM II 2000 entities 25.61 s (105.69 %)
ADOM III 10 000 entities 24.54 s (101.27 %)

3.5 Summary

Universal physical entity domains are a common setup in databases involving a
significant share of irregular, self-descriptive entities. Horizontal partitioning can
help to increase the efficiency of queries on such universal physical entity domains.
Maintaining such partitioning poses an optimization problem in the field of physical
design. We defined this as the Online Partitioning Problem for heterogeneous data.
With ADOM, we proposed an autonomous online algorithm for horizontal partitioning
of self-descriptive entities. ADOM separates entities into partitions of fixed maximum
size, which can be used as physical entity domains in a database management system.
ADOM creates the partitioning based on the schema properties of the entities, which
allows queries to prune partitions of irrelevant entities from processing before actually
touching them. In the evaluation, ADOM was seen to be capable of significantly
increasing the query efficiency over a universal physical entity domain for selective
queries. We therefore consider ADOM a good autonomous solution to automatically
determine physical entity domains for FRDM data.
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4 FASE – A Freely Adjustable Storage
Engine

Future users of large data banks must be protected from having to know how
the data is organized in the machine (the internal representation).

Edgar Frank Codd [Codd, 1970]

Irregular, self-descriptive data with variable schema requires an alternative physical
data organization. The physical data layout has to provide flexibility for frequent
schema changes and for highly irregularly structured data. Several physical data
layouts suitable for irregular data have been proposed in the literature [Boncz and
Kersten, 1999, Agrawal et al., 2001, Cunningham et al., 2004, Beckmann et al., 2006,
Chu et al., 2007, Ooi et al., 2007, Abadi et al., 2007, Weissman and Bobrowski, 2009].
All of them have their advantages and disadvantages. The physical data layout that
is optimal for a given database very much depends on the workload and the actual
irregularity of the data. Data irregularity, however, is a variable characteristic of data.
Different data sets typically show different degrees of data irregularity, depending
on the application domain, the original data source, and how the data is integrated
or inserted into the database. Something similar holds true within a single data
set. Typically, certain parts of the data exhibit high irregularity while others are
regularly structured. In database systems where data is integrated and consolidated,
irregularity can also vary over time. Consequently, there is no single apriori physical
data layout that is optimal for schema-comes-second databases.

FASE is a storage engine that is configurable in respect of the physical data layout.
It does not implement a single physical data layout, but can be set up to a number
of different layouts. FASE builds on a declarative storage description language for
the macroscopic characteristics of the physical data layout – the FASE notation.
The FASE notation allows expressing of the grouping and clustering of data. Once
configured accordingly, FASE shows the same fundamental performance tradeoffs of
the different physical data layouts as hard-coded implementations – all within a single
system. In the evaluation, we show how the performance of FASE varies depending
on the configured physical data layout and how different types of queries benefit from
certain physical data layouts.

FASE does not aim to compete with hard-coded data layouts for performance
but strives for generality. Although achieving top-level performance, specialized
database management systems increase the complexity of every IT landscape. With
the additional complexity and cost they bring, specialized systems are not affordable
to every extent and for every customer. They are only worthwhile where absolute top
performance is needed. In most cases, a single system with a configurable physical
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Figure 2: Results of the experimental evaluation.

tion (ColOpt in the figure). The table below summarizes the average
relative performance ofRow(MV) compared toColOpt:

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row(MV) = 4x↑ 2x↑ 250x↓ 2.5x↑ 1.2x↑ 1,400x↓

Using materialized views forQ2 results in a plan that is 4x slower
than the lower bound for C-stores, and forQ7 in a plan that is 1,400
times better than the best possible C-store implementation. These
results are interesting, since, as we discussed earlier, the time for
ColOpt only considers reading the compressed input values, but
does not take into account and subsequent query processing. For
instance, we measuredQ2 for the Row(MV) case and found that
roughly 40% of the execution time is spent grouping and aggre-
gating results (in some form or another, that overhead must also
be present in any implementation of C-stores, bringing the already
modest speedup further down). In conclusion, while some queries
could beexecuted at most 2-4 times more efficiently in a C-store
implementation, others can be hundreds or even thousands of times
more efficient by using materialized views.

While the performance of the workload using materialized views
is impressive (and could be made even more efficient by using
the compressed representation of row-stores proposed in [10]), the
main drawback is generality. While materialized views can answer
queries that are slightly different from the view definition (e.g.,
changing a constant value for another) they would not match other
common modifications. This might not be an issue in scenarios that
contain mostly reporting queries (and it should be, in fact, the right
approach), but can become a significant problem for application
that issue significant number of ad-hoc queries. We next explore
a different approach for simulating C-store benefits inside a row-
store without modification to traditional engines.

2.2 Varying the Logical Design
So far we discussed two extreme physical designs. On one hand,

single-column indexes are flexible for varying workloads, but gen-
erally result in inefficient executions [6]. On the other hand, ma-
terialized views are extremely efficient but a bit narrow in scope.
We now present a technique that is based on changing thelogical
database design, requires no modification to current query engines,
and results in efficient executions (close to those of C-stores) with-
out suffering from the specificity of materialized views.

2.2.1 Logical Database Design using C-Tables
The main idea of our approach is to extend the vertical partition

approach in [6] to explicitly enable the RLE encoding of tuple val-
ues. Concretely, consider a tableT with columnsa, b, andc, as
shown in Figure 3(a). Also, suppose that we want to simulate the

(virtual) id a b c
1 1 1 1
2 1 1 4
3 1 2 4
4 1 2 5
5 1 2 5
6 2 1 1
7 2 1 1
8 2 3 1
9 2 3 2
10 2 3 2
11 2 3 3
12 2 3 4

Ta f v c
1 1 5
6 2 7

Tb f v c
1 1 2
3 2 3
6 1 2
8 3 5

Tc f v
1 1
2 4
3 4
4 5
... ...

(a) Original Table. (b) Logical Representation.
Figure 3: Logical database design for row-stores.

(a) Original table.
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tion (ColOpt in the figure). The table below summarizes the average
relative performance ofRow(MV) compared toColOpt:

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row(MV) = 4x↑ 2x↑ 250x↓ 2.5x↑ 1.2x↑ 1,400x↓

Using materialized views forQ2 results in a plan that is 4x slower
than the lower bound for C-stores, and forQ7 in a plan that is 1,400
times better than the best possible C-store implementation. These
results are interesting, since, as we discussed earlier, the time for
ColOpt only considers reading the compressed input values, but
does not take into account and subsequent query processing. For
instance, we measuredQ2 for the Row(MV) case and found that
roughly 40% of the execution time is spent grouping and aggre-
gating results (in some form or another, that overhead must also
be present in any implementation of C-stores, bringing the already
modest speedup further down). In conclusion, while some queries
could beexecuted at most 2-4 times more efficiently in a C-store
implementation, others can be hundreds or even thousands of times
more efficient by using materialized views.

While the performance of the workload using materialized views
is impressive (and could be made even more efficient by using
the compressed representation of row-stores proposed in [10]), the
main drawback is generality. While materialized views can answer
queries that are slightly different from the view definition (e.g.,
changing a constant value for another) they would not match other
common modifications. This might not be an issue in scenarios that
contain mostly reporting queries (and it should be, in fact, the right
approach), but can become a significant problem for application
that issue significant number of ad-hoc queries. We next explore
a different approach for simulating C-store benefits inside a row-
store without modification to traditional engines.

2.2 Varying the Logical Design
So far we discussed two extreme physical designs. On one hand,

single-column indexes are flexible for varying workloads, but gen-
erally result in inefficient executions [6]. On the other hand, ma-
terialized views are extremely efficient but a bit narrow in scope.
We now present a technique that is based on changing thelogical
database design, requires no modification to current query engines,
and results in efficient executions (close to those of C-stores) with-
out suffering from the specificity of materialized views.

2.2.1 Logical Database Design using C-Tables
The main idea of our approach is to extend the vertical partition

approach in [6] to explicitly enable the RLE encoding of tuple val-
ues. Concretely, consider a tableT with columnsa, b, andc, as
shown in Figure 3(a). Also, suppose that we want to simulate the
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(b) Run-length encoded.

Figure 4.1: Run-length encoding in a row store. Source: [Bruno, 2009]

data layout comes at a much lower total cost of ownership (TCO), but is still able to
serve a diverse range of workloads well enough. This is what FASE addresses.

The remainder of this chapter is organized as follows. After discussing related
approaches in Section 4.1, we will illustrate the modeling of physical data layouts
with the help of examples in Section 4.2. Based on these preliminaries, Section 4.3
defines the FASE notation, and Section 4.4 gives an overview of the architecture of
FASE. We detail the implementation concepts of FASE in Section 4.5 and 4.6 before
presenting evaluation results in Section 4.7. Section 4.8 summarizes the chapter.

4.1 Related Work

FASE aims at supporting a wider range of applications in a single system by offering
a configurable specialization of the physical data layout. Most prominently, OLTP
workloads favor a row-oriented data layout while OLAP workloads benefit from a
column-oriented layout. Supporting these two workloads in a single system has
been the aim of multiple projects in recent years. One group of approaches tries to
improve the execution time of OLAP workloads on row stores by extending them with
column-oriented query processing capabilities. Typically, newly developed hybrid
row–column stores integrate both in a more balanced way. Some of these hybrid
systems generalize the row store and column store layout into a configurable concept
called column groups. A final group of related work aims more generally, like FASE,
at increasing the physical data independence of database management systems. In
the following, we discuss the different concepts and ideas in more detail.
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The results are shown in Table 1. The column store index 
improves performance dramatically: the query consumes 13 times 
less CPU time and runs 25 times faster with a cold buffer pool and 
10 times faster with a warm buffer pool. SQL Server column store 
technology gives subsecond response time for a star join query 
against a 1.44 billion row table on a commodity machine. This 
level of improvement is significant, especially considering that  
SQL Server has efficient and competitive query processing 
capabilities for data warehousing, having introduced star join 
query enhancements in SQL Server 2008. 

The machine used has a high-throughput I/O system (10GB/sec) 
which favors the row store. On a machine with a weaker I/O 
system, the relative improvement in elapsed time would be even 
higher.   

The rest of the paper provides more detail about column store 
indexes. Section 2 describes how they are stored including how 
they are compressed. Section 3 describes extensions to query 
processing and query optimization to fully exploit the new index 
type. Section 4 provides some experimental results and section 5 
summarizes related work. 

2. INDEX STORAGE 
SQL Server has long supported two storage organization: heaps 
(unordered) and B-trees (ordered), both row-oriented. A table or a 
materialized view always has a primary storage structure and may 
have additional secondary indexes. The primary structure can be 
either a heap or a B-tree; secondary indexes are always B-trees. 
SQL Server also supports filtered indexes, that is, an index that 
stores only rows that satisfy a given selection predicate.  

Column store capability is exposed as a new index type: a column 
store index. A column store index stores its data column-wise in 
compressed form and is designed for fast scans of complete 
columns. While the initial implementation has restrictions, in 
principle, any index can be stored as a column store index, be it 
primary or secondary, filtered or non-filtered, on a base table or 
on a view. A column store index will be able to support all the 
same index operations (scans, lookups, updates, and so on) that 
heaps and B-tree indices support. All index types are functionally 
equivalent but they do differ in how efficiently various operations 
can be performed.  

2.1 Column-Wise Index Storage 
We now outline how a column store index is physically stored. 
Figure 1 illustrates the first step that converts rows to column 
segments. The set of rows to be stored is first divided into row 
groups, each group consisting of, say, one million rows. Each row 
group is encoded and compressed independently. The result is one 
compressed column segment for each column included. Figure 1 
shows a table divided into three row groups where three of the 
four columns are included in the column store index. The result is 
nine compressed column segments, three segments for each of 
columns A, B, and C. 

The column segments are then stored using existing SQL Server 
storage mechanisms as shown in Figure 2. Each column segment 
is stored as a separate blob (LOB). Segment blobs may be large, 
requiring multiple pages for storage, but this is automatically 
handled by the existing blob storage mechanisms.  A segment 
directory keeps track of the location of each segment so that all 
segments of a given column can be easily located. The directory is 
stored in a new system table and visible through the catalog view 
sys.column_store_segments. The directory also contains 

additional metadata about each segment such as number of rows, 
size, how data is encoded, and min and max values.  

Storing a column store index in this way has several important 
benefits. It leverages the existing blob storage and catalog 
implementation - no new storage mechanisms are needed – and 
many features are automatically available. Locking, logging, 
recovery, partitioning, mirroring, replication and other features 
immediately work for the new index type.  

2.2 Data Encoding and Compression 
Data is stored in a compressed form to reduce storage space and 
I/O times. The format chosen allows column segments to be used 
without decompression in query processing. Compressing the 
columns in a segment consists of three steps. 

1. Encode values in all columns. 
2. Determine optimal row ordering. 
3. Compress each column  

2.2.1 Encoding 
The encoding step transforms column values into a uniform type: 
a 32-bit or 64-bit integer. Two types of encoding are supported: a 
dictionary based encoding and a value based encoding.  

The dictionary based encoding transforms a set of distinct values 
into a set of sequential integer numbers (data ids). The actual 

Figure 1: Converting rows to column segments 

Figure 2: Storing column segments 
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Figure 4.2: Column segment of column store index. Source: [Larson et al., 2011]

4.1.1 Column-Oriented Processing for Row Stores

The basic ways allow emulating column-oriented processing in a row store, as discussed
in [Abadi et al., 2008]. The first way is to fully vertically partition a relation –
originally described as the decomposed storage model [Copeland and Khoshafian,
1985]. Although very easy to implement, it is incomplete since every partition will
include the primary key of the relation (or at least a surrogate key). For their
superior performance, native column store implementations typically rely heavily
on compression to increase cache utilization. Common compression techniques are
run-length encoding [Schuegraf, 1976] and dictionary compression [Westmann et al.,
2000]. Within the vertical partitioning approach run-length encoding can be emulated
as well with the same performance benefits [Bruno, 2009]. The idea is illustrated in
Figure 4.1. With this approach, we sort the original relation according to a given
sorting schema, which encompasses all columns of the relation, and add a surrogate
key (id). For each column, we generate a run-length encoded vertical partition. Each
partition consists of the columns f , v, and c, where each tuple encodes a sequence of
value v with the length c starting at the tuple with the surrogate f in the original
relation. For instance, in the figure, the tuple (1, 1, 5) in partition Ta encodes the
sequence of five 1 in column a of the original relation running from tuple 1 to tuple
5. This approach considerably improves the performance of the vertical partitioning;
however, it lacks the original simplicity.

The second way is index-only plans. In addition to the base relation, it adds
an unclustered B+Tree index on every column. Containing rid–value pairs, the
resulting indexes are similar to Binary Association Tables used by MonetDB [Boncz
and Kersten, 1999]. With the help of index intersection, the database system can then
answer queries without reading the base relation [Mohan et al., 1990, Raman et al.,
2007]. Its efficiency can be further increased by exploiting the parallel processing
capabilities of modern hardware [El-Helw et al., 2011].

Microsoft exploits the idea of column-oriented processing on indexes to the extreme
by introducing a dedicated column store index [Larson et al., 2011]. A column store
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each query, the optimizer would decide which copy is
best and the corresponding representation would be used
to execute the query. The main disadvantage of this
approach is that if the query workload is skewed towards
one of the two representations, the two disks will not be
utilized uniformly. Another problem is that random seeks
cannot be distributed between the mirrors. This is because
NSM and DSM do not have similar performance when it
comes to index lookups. NSM can retrieve the entire tuple
in one access, while DSM must retrieve the additional
attributes by means of additional index lookups using the
ID. Hence the load on the two disks will not be
symmetric. It is, however, possible to place each storage
model on hardware specifically tuned for the model. This
is an idea to explore in the future.

   Figure 1: Data placement based on storage model.

A solution to this problem is the notion of fractured
mirrors, in which data is placed on the mirrors in the
following fashion. Consider a system with two disks. As
shown in Figure 2, the NSM copy is declustered across
the two disks using a round-robin based scheme into two
equal sized fragments NSM0 and NSM1. On disk 1, along
with NSM0, we store the tuples of NSM1 in DSM format
and along with NSM1 on disk 2, we store the tuples of
NSM0 in DSM format. Since both disks have NSM0 and
NSM1 in some data format, they both have a complete
copy of the data. Hence this constitutes a valid mirroring
scheme. Even if the query workload is skewed towards
one representation, since both storage formats are
represented on each disk, accesses will be uniformly
distributed across both disks. More importantly, we can
now partition random seeks between disks in a symmetric
fashion. Since the NSM copy is declustered, on average,
one half of the random page accesses will be handled by
each disk, a key property that the original mirroring
scheme guarantees [5].

An important issue is the choice of an appropriate de-
clustering algorithm [13]. It is essential that the tuples be
distributed uniformly using round-robin declustering
between the two disks, and not using a deterministic

scheme like hashing or range-partitioning. In some ways
fractured mirrors are similar to RAID 10, which first
mirrors an entire file and then declusters blocks between
mirrors for higher bandwidth. The significant difference,
of course being the presence of multiple storage
representations. Another fundamental difference between
the proposed system and RAID schemes is that RAID
schemes usually are implemented by the disk controller in
hardware. Fractured mirrors have to be implemented in
software, which may lead to some inefficiency.

Given a query the database system can now select the
storage format most appropriate for evaluating the query.
Issues in generating query plans for the mirrors are
discussed in Section 4. In the following section we
present some experimental results executing queries from
the TPC-H suite on this system.

    Figure 2: Data placement for fractured mirrors.

3.3 Experiments on the TPC_H Suite

A prototype relational system was built using Shore [6] as
the underlying storage manager and included the normal
relational operators such as scan, join, split, merge etc
along with operators to implement functionality for the
chunk algorithm. The experiments were run on a Pentium
III dual processor machine (550 MHz) with 1 GB of main
memory running Linux 7.1. Three disks (sequential
bandwidth 15-20 Mbytes/s) were used for storing data:
two Shore volumes were stored on the first two for the
fractured mirrors, and the third disk was used to hold the
Shore log file. The Shore buffer pool size was set to 128
MB. A page size of 32 KB was used. 1 GB of TPC-H data
was generated using the data generator. This data was
converted into a tuple representation and stored on the
two volumes as shown in Figure 2. The queries were run
and their results were validated as indicated in the
benchmark specification [24]. All reported times are cold
times and are the average of three runs. The Shore buffer
pool was flushed between queries by dismounting and
remounting the disks between runs. All running times are
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each query, the optimizer would decide which copy is
best and the corresponding representation would be used
to execute the query. The main disadvantage of this
approach is that if the query workload is skewed towards
one of the two representations, the two disks will not be
utilized uniformly. Another problem is that random seeks
cannot be distributed between the mirrors. This is because
NSM and DSM do not have similar performance when it
comes to index lookups. NSM can retrieve the entire tuple
in one access, while DSM must retrieve the additional
attributes by means of additional index lookups using the
ID. Hence the load on the two disks will not be
symmetric. It is, however, possible to place each storage
model on hardware specifically tuned for the model. This
is an idea to explore in the future.
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memory running Linux 7.1. Three disks (sequential
bandwidth 15-20 Mbytes/s) were used for storing data:
two Shore volumes were stored on the first two for the
fractured mirrors, and the third disk was used to hold the
Shore log file. The Shore buffer pool size was set to 128
MB. A page size of 32 KB was used. 1 GB of TPC-H data
was generated using the data generator. This data was
converted into a tuple representation and stored on the
two volumes as shown in Figure 2. The queries were run
and their results were validated as indicated in the
benchmark specification [24]. All reported times are cold
times and are the average of three runs. The Shore buffer
pool was flushed between queries by dismounting and
remounting the disks between runs. All running times are

     NSM       DSM

    NSM0
    DSM1

      DSM0
      NSM1

(b) Multiple physical layouts per replica.

Figure 4.3: Fractured Mirrors. Source: [Ramamurthy et al., 2002]

index can be created on any number of columns of a relation. The index virtually
partitions the relation into row groups resulting in one column segment per indexed
column and row group, as shown in Figure 4.2. Each column segment is compressed
and stored in a blob utilizing the existing blob storage mechanisms. A system table
keeps the locations of the blobs and allows the database system to locate them quickly
for query processing.

Trojan Columns [Jindal et al., 2013] follows the same line but omits the base
relation completely. Here the data is also stored in blobs using the same kind of
segmentation. However, the logical view of the relation is only emulated by user-
defined table functions (UDFs). For query processing efficiency, the concept includes
various UDFs which implement different levels of operator push-down.

From a practical standpoint, the column index seems the most appealing approach
for implementing column-oriented processing in row stores. Here, the column
processing is seamlessly integrated; it can barely be seen from the outside and reuses
much of the existing functionality. Still, the column index remains an OLAP-focused
add-on to a row-oriented database system.

4.1.2 Hybrid Row–Column Stores

Hybrid row–column stores try to integrate row and column orientation in a single
engine to support OLTP and OLAP workload equally well. Hybrid engines can run
solely OLTP or OLAP workloads, as well as mixed workloads efficently.

A very early approach of combining OLTP and OLAP is Fractured
Mirrors [Ramamurthy et al., 2002]. Fractured Mirrors leverages the fact that disk-
based databases usually replicate data to multiple disks, as illustrated in Figure 4.3. If
the replicas hold the data in different physical layouts, queries can access the data in
their preferred physical layouts. In the basic setup, the database system uses a single
physical layout per replica (Figure 4.3(a)). Let us assume one replica uses the row
store layout (NSM) and the other uses the column store layout (DSM). Aware of this
setup, the query optimizer can easily route each query to its preferred physical data
layout. The basic setup has two essential drawbacks. First, queries can only exploit
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subsequent transactions in the queue. This prohibits any kind
of interactive transactions, e.g., requesting user input or syn-
chronously invoking a credit card check of an external agency.
This, however, does not constitute a real limitation as our
experience with high-performance business applications, such
as SAP R/3 [28], [29] reveals that these kinds of interactions
occur outside the database context in the application servers.1

B. OLAP Snapshot Management

If we simply allowed complex OLAP-style queries to be
injected into the OLTP workload queue they would clog the
system, as all subsequent OLTP transactions have to wait
for the completion of such a long running query. Even if
such OLAP queries finish within, say, 30 ms they lock the
system for a duration in which possibly thousands of OLTP
transactions could have completed. To achieve our goal of
architecting a main-memory database system that

• processes OLTP transactions at rates of tens of thousands
per second, and, at the same time,

• processes OLAP queries on up-to-date snapshots of the
transactional data

we exploit the operating systems functionality to create virtual
memory snapshots for new, duplicated processes. In Unix, for
example, this is done by creating a child process of the OLTP
process via the fork() system call. To guarantee transac-
tional consistency, the fork() should only be executed in
between two (serial) transactions, never in the middle of one
transaction. In section IV-F we will relax this constraint by
utilizing the undo log to convert an action consistent snapshot
(created in the middle of a transaction) into a transaction
consistent one.

The forked child process obtains an exact copy of the parent
processes address space, as exemplified in Figure 2 by the
overlayed page frame panel. This virtual memory snapshot that
is created by the fork()-operation will be used for executing
a session of OLAP queries – as indicated on the right hand
side of Figure 2.

The snapshot stays in precisely the state that existed at
the time the fork() took place. Fortunately, state-of-the-
art operating systems do not physically copy the memory

1Nevertheless, we are currently devising an optimistic lock-less concurrency
scheme for long-running transactions being executed in our system.
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segments right away. Rather, they employ a lazy copy-on-
update strategy – as sketched out in Figure 3. Initially,
parent process (OLTP) and child process (OLAP) share the
same physical memory segments by translating either virtual
addresses (e.g., to object a) to the same physical main memory
location. The sharing of the memory segments is highlighted in
the graphics by the dotted frames. A dotted frame represents a
virtual memory page that was not (yet) replicated. Only when
an object, like data item a, is updated, the OS- and hardware-
supported copy-on-update mechanism initiate the replication
of the virtual memory page on which a resides. Thereafter,
there is a new state denoted a′ accessible by the OLTP-process
that executes the transactions and the old state denoted a, that
is accessible by the OLAP query session. Unlike the figure
suggests, the additional page is really created for the OLTP
process that initiated the page change and the OLAP snapshot
refers to the old page – this detail is important for estimating
the space consumption if several such snapshots are created
(cf. Figure 4).

Another intuitive way to view the functionality is as follows:
The OLTP process operates on the entire database, part of
which is shared with the OLAP module. All OLTP changes
are applied to a separate copy (area), the Delta – consisting of
copied (shadowed) database pages. Thus, the OLTP process
creates its working set of updated pages on demand. This is
somewhat analogous to swapping pages into a buffer pool –
however, the copy on demand of updated pages is three to
four orders of magnitude faster as it takes only 2 µs to copy a
main memory page instead of 10 ms to handle a page fault in
the buffer pool. Every “now and then” the Delta is merged
with the OLAP database by forking a new process for an
up-to-date OLAP session. Thereby, the Delta is conceptually
re-integrated into the (main snapshot) database. Unlike any
software solution for merging a Delta back into the main
database, our hardware-supported virtual memory merge (fork)
can be achieved very efficiently in subseconds.

The replication (into the Delta) is carried out at the granular-
ity of entire pages, which usually have a default size of 4 KB.
In our example, the state change of a to a′ induces not only the
replication of a but also of all other data items on this page,
such as b, even though they have not changed. This is the price
we opt to pay in exchange for relying on the very effective
and fast virtual memory management by the OS and the
processor, such as ultra-efficient VM address transformation
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subsequent transactions in the queue. This prohibits any kind
of interactive transactions, e.g., requesting user input or syn-
chronously invoking a credit card check of an external agency.
This, however, does not constitute a real limitation as our
experience with high-performance business applications, such
as SAP R/3 [28], [29] reveals that these kinds of interactions
occur outside the database context in the application servers.1

B. OLAP Snapshot Management

If we simply allowed complex OLAP-style queries to be
injected into the OLTP workload queue they would clog the
system, as all subsequent OLTP transactions have to wait
for the completion of such a long running query. Even if
such OLAP queries finish within, say, 30 ms they lock the
system for a duration in which possibly thousands of OLTP
transactions could have completed. To achieve our goal of
architecting a main-memory database system that

• processes OLTP transactions at rates of tens of thousands
per second, and, at the same time,

• processes OLAP queries on up-to-date snapshots of the
transactional data

we exploit the operating systems functionality to create virtual
memory snapshots for new, duplicated processes. In Unix, for
example, this is done by creating a child process of the OLTP
process via the fork() system call. To guarantee transac-
tional consistency, the fork() should only be executed in
between two (serial) transactions, never in the middle of one
transaction. In section IV-F we will relax this constraint by
utilizing the undo log to convert an action consistent snapshot
(created in the middle of a transaction) into a transaction
consistent one.

The forked child process obtains an exact copy of the parent
processes address space, as exemplified in Figure 2 by the
overlayed page frame panel. This virtual memory snapshot that
is created by the fork()-operation will be used for executing
a session of OLAP queries – as indicated on the right hand
side of Figure 2.

The snapshot stays in precisely the state that existed at
the time the fork() took place. Fortunately, state-of-the-
art operating systems do not physically copy the memory

1Nevertheless, we are currently devising an optimistic lock-less concurrency
scheme for long-running transactions being executed in our system.
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segments right away. Rather, they employ a lazy copy-on-
update strategy – as sketched out in Figure 3. Initially,
parent process (OLTP) and child process (OLAP) share the
same physical memory segments by translating either virtual
addresses (e.g., to object a) to the same physical main memory
location. The sharing of the memory segments is highlighted in
the graphics by the dotted frames. A dotted frame represents a
virtual memory page that was not (yet) replicated. Only when
an object, like data item a, is updated, the OS- and hardware-
supported copy-on-update mechanism initiate the replication
of the virtual memory page on which a resides. Thereafter,
there is a new state denoted a′ accessible by the OLTP-process
that executes the transactions and the old state denoted a, that
is accessible by the OLAP query session. Unlike the figure
suggests, the additional page is really created for the OLTP
process that initiated the page change and the OLAP snapshot
refers to the old page – this detail is important for estimating
the space consumption if several such snapshots are created
(cf. Figure 4).

Another intuitive way to view the functionality is as follows:
The OLTP process operates on the entire database, part of
which is shared with the OLAP module. All OLTP changes
are applied to a separate copy (area), the Delta – consisting of
copied (shadowed) database pages. Thus, the OLTP process
creates its working set of updated pages on demand. This is
somewhat analogous to swapping pages into a buffer pool –
however, the copy on demand of updated pages is three to
four orders of magnitude faster as it takes only 2 µs to copy a
main memory page instead of 10 ms to handle a page fault in
the buffer pool. Every “now and then” the Delta is merged
with the OLAP database by forking a new process for an
up-to-date OLAP session. Thereby, the Delta is conceptually
re-integrated into the (main snapshot) database. Unlike any
software solution for merging a Delta back into the main
database, our hardware-supported virtual memory merge (fork)
can be achieved very efficiently in subseconds.

The replication (into the Delta) is carried out at the granular-
ity of entire pages, which usually have a default size of 4 KB.
In our example, the state change of a to a′ induces not only the
replication of a but also of all other data items on this page,
such as b, even though they have not changed. This is the price
we opt to pay in exchange for relying on the very effective
and fast virtual memory management by the OS and the
processor, such as ultra-efficient VM address transformation
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Figure 4.4: Snapshot isolation in HyPer. Source: [Kemper and Neumann, 2011]

either the parallelism of the underlying hardware resources or exclusively use their
preferred physical data layout, but not both at the same time. Second, workloads
skewed towards one kind of physical data layout do not uniformly utilize the replicas.
In the advanced setup, the database system uses multiple physical layouts per replica
(Figure 4.3(b)). Given the system supports two phyiscal data layouts, the data is
partitioned into two partitions and the partitions are replicated. The system makes
sure that each replica of a partition has a different layout and that all partition
replicas assigned to a hardware resource (a disk or a node) have a different layout.
This allows exploiting the parallelism of the hardware resources, as well as a uniform
utilization of these resources. As presented, Fractured Mirrors supports exactly the
two representations, row store and column store. Both are implemented as different
scan operators in the database engine. Generally, the idea is orthogonal to FASE.
While the focus of FASE is to support various layouts within a single engine, Fracture
Mirrors aims at exploiting replication to have the same data materialized in different
layouts. Both concepts would make an appealing combination.

HyPer [Kemper and Neumann, 2011] is a main memory database system with
OLTP and OLAP support. It runs OLAP queries concurrently and isolated from the
OLTP queries, by utilizing hardware-supported page shadowing. More specifically,
HyPer serially executes OLTP queries on the master copy of the data in a single
process. To run OLAP queries in parallel and isolated from the OLTP workload,
HyPer creates virtual memory snapshots that are transactional consistent with the
OLTP queries. It does this by simply forking the OLTP process exactly between two
OLTP queries. The virtual memory snapshot functionality of the operating system
does not copy the complete address space of the OLTP process for the new OLAP
process. Instead, the operating system reroutes memory access via virtual memory to
the original physical memory block as shown in Figure 4.4(a). In case a concurrent
OLTP transaction updates a memory block, the operating system creates a physical
copy to keep the snapshot consistent – illustrated in Figure 4.4(b). In combination
with the sequential execution of OLTP operations, this isolation mechanism eliminates
the need for locking or any other kind of concurrency control, resulting in outstanding
transaction throughput and query response times. However, the physical data layout
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4 FASE – A Freely Adjustable Storage Engine
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to specific records by indicating the record number next
to the attribute name. Using the PAX storage model, a
cache miss is incurred upon reading the first priority
attribute. After the first cache miss, the priority at-
tributes of the next eight records are read without incur-
ring any additional cache misses. Because the predicate on
the priority attribute is true for one record out of ev-
ery eight records accessed, reading the location and the
usage attributes incurs two additional cache misses per
eight records. The resulting cost of the select operator is
approximately 1/8+2/8 = 0.375 cache misses per record.
This is a significant improvement over the traditional N-ary
storage model.

While the PAX storage model performs better than the
N-ary storage model, the number of cache misses can
be reduced even further. Recognizing that the usage
and location attributes are always accessed collec-
tively, the record should be partitioned into four zones:
the priority attribute in one zone, the usage and
location attributes in a second zone, the id attribute
in a third zone, and the remaining attributes in a fourth
zone, as shown in Figure 4. Similar to the PAX layout, the
priority attribute from eight consecutive records can be
read while incurring only a single cache miss. For every
value of the priority attribute that is less than 12, the
usage and location attributes are read. Because the
usage and location attributes were located in different
cache blocks in the PAX layout, two cache misses were in-
curred to read both of the attributes. When using the group
layout (Figure 4), however, a single cache miss is incurred
to read the first usage attribute, and the location at-
tribute is then read from the cache. Using this particular
grouping, the number of cache misses per record shrinks to
two cache misses per eight records, or 0.25 cache misses
per record.

As the example demonstrates, partitioning the records’
attributes into non-contiguous zones can significantly re-
duce the number of processor cache misses. Determin-
ing the attribute partition for a single query is not difficult;
however, choosing a partition that reduces the total amount
of cache misses for the entire query workload is much more
complex. In addition, the query workload may change over

Variable Definition

A The set of all attributes in relation R =
{a1, a2, · · · , an}

group A subset of the set of attributes, group ⊆ A
partition A collection of groups

zone The area of a slotted page where all instances
of a group are written

zone-record An instance of the attributes in a particular
group

G The set of all possible groups
|G| The number all possible groups
P The set of all unique partitions
|P | The number of all unique partitions

Table 1: Definitions

time, so the optimal layout may change accordingly. The
Data Morphing technique presented in this paper provides
a method to calculate a cache-efficient partition for a given
workload of queries, and also provides a method to reor-
ganize data to dynamically adapt to a changing workload.
Before the Data Morphing technique is presented, the fol-
lowing section provides the definitions to the terms used in
the discussion.

3 Definitions

For the presentation of the Data Morphing technique, the
following definitions apply. A group represents a set of
attributes that are written to consecutive memory addresses
on a page. A partition is a set of groups that uniquely
defines the position of every attribute in a relation. A zone
defines the area of a page where all instances of a particular
group are written. A zone-record defines an instance of
the attributes in a particular group. These definitions are
summarized in Table 1.

To further illustrate the concepts in this section suc-
cinctly, we will use a simplified version of the previous
example. The new example relation and the correspond-
ing query are shown in Figure 5. As before, the predicate
on the priority attribute has a selectivity of 12.5%, and
all of the attributes are four bytes in size.

(a) Row store.

1 Cache Line − 32 bytes (Pentium III)

locid pri

address

usage name

id:2id:1 id:3 id:4 id:5 id:6 id:7 id:8

use:3 use:4 use:5 use:6 use:7 use:8use:1 use:2

pri:1 pri:2 pri:3 pri:4 pri:5 pri:6 pri:7 pri:8

loc:1 loc:3loc:2 loc:4 loc:5 loc:6 loc:7 loc:8

1 Cache Line − 32 bytes

name:1

address:1

Mini−Page 1

Mini−Page 2

Mini−Page 3

Mini−Page 4

Mini−Page 5

Mini−Page 6

pri:1 pri:2 pri:3 pri:4 pri:5 pri:6 pri:7 pri:8

1 Cache Line − 32 bytes

name:1

address:1

use:1 loc:1 use:2 loc:2 use:3 loc:3 use:4 loc:4

Zone 1

Zone 2

Zone 3
id:1 id:2 id:3 id:4 id:5 id:6 id:7 id:8

Zone 4

Figure 2: N-ary Storage Model Figure 3: PAX (Vertical Decomp.) Figure 4: Attribute Grouping

to specific records by indicating the record number next
to the attribute name. Using the PAX storage model, a
cache miss is incurred upon reading the first priority
attribute. After the first cache miss, the priority at-
tributes of the next eight records are read without incur-
ring any additional cache misses. Because the predicate on
the priority attribute is true for one record out of ev-
ery eight records accessed, reading the location and the
usage attributes incurs two additional cache misses per
eight records. The resulting cost of the select operator is
approximately 1/8+2/8 = 0.375 cache misses per record.
This is a significant improvement over the traditional N-ary
storage model.

While the PAX storage model performs better than the
N-ary storage model, the number of cache misses can
be reduced even further. Recognizing that the usage
and location attributes are always accessed collec-
tively, the record should be partitioned into four zones:
the priority attribute in one zone, the usage and
location attributes in a second zone, the id attribute
in a third zone, and the remaining attributes in a fourth
zone, as shown in Figure 4. Similar to the PAX layout, the
priority attribute from eight consecutive records can be
read while incurring only a single cache miss. For every
value of the priority attribute that is less than 12, the
usage and location attributes are read. Because the
usage and location attributes were located in different
cache blocks in the PAX layout, two cache misses were in-
curred to read both of the attributes. When using the group
layout (Figure 4), however, a single cache miss is incurred
to read the first usage attribute, and the location at-
tribute is then read from the cache. Using this particular
grouping, the number of cache misses per record shrinks to
two cache misses per eight records, or 0.25 cache misses
per record.

As the example demonstrates, partitioning the records’
attributes into non-contiguous zones can significantly re-
duce the number of processor cache misses. Determin-
ing the attribute partition for a single query is not difficult;
however, choosing a partition that reduces the total amount
of cache misses for the entire query workload is much more
complex. In addition, the query workload may change over

Variable Definition

A The set of all attributes in relation R =
{a1, a2, · · · , an}

group A subset of the set of attributes, group ⊆ A
partition A collection of groups

zone The area of a slotted page where all instances
of a group are written

zone-record An instance of the attributes in a particular
group

G The set of all possible groups
|G| The number all possible groups
P The set of all unique partitions
|P | The number of all unique partitions

Table 1: Definitions

time, so the optimal layout may change accordingly. The
Data Morphing technique presented in this paper provides
a method to calculate a cache-efficient partition for a given
workload of queries, and also provides a method to reor-
ganize data to dynamically adapt to a changing workload.
Before the Data Morphing technique is presented, the fol-
lowing section provides the definitions to the terms used in
the discussion.

3 Definitions

For the presentation of the Data Morphing technique, the
following definitions apply. A group represents a set of
attributes that are written to consecutive memory addresses
on a page. A partition is a set of groups that uniquely
defines the position of every attribute in a relation. A zone
defines the area of a page where all instances of a particular
group are written. A zone-record defines an instance of
the attributes in a particular group. These definitions are
summarized in Table 1.

To further illustrate the concepts in this section suc-
cinctly, we will use a simplified version of the previous
example. The new example relation and the correspond-
ing query are shown in Figure 5. As before, the predicate
on the priority attribute has a selectivity of 12.5%, and
all of the attributes are four bytes in size.
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Figure 2: N-ary Storage Model Figure 3: PAX (Vertical Decomp.) Figure 4: Attribute Grouping

to specific records by indicating the record number next
to the attribute name. Using the PAX storage model, a
cache miss is incurred upon reading the first priority
attribute. After the first cache miss, the priority at-
tributes of the next eight records are read without incur-
ring any additional cache misses. Because the predicate on
the priority attribute is true for one record out of ev-
ery eight records accessed, reading the location and the
usage attributes incurs two additional cache misses per
eight records. The resulting cost of the select operator is
approximately 1/8+2/8 = 0.375 cache misses per record.
This is a significant improvement over the traditional N-ary
storage model.

While the PAX storage model performs better than the
N-ary storage model, the number of cache misses can
be reduced even further. Recognizing that the usage
and location attributes are always accessed collec-
tively, the record should be partitioned into four zones:
the priority attribute in one zone, the usage and
location attributes in a second zone, the id attribute
in a third zone, and the remaining attributes in a fourth
zone, as shown in Figure 4. Similar to the PAX layout, the
priority attribute from eight consecutive records can be
read while incurring only a single cache miss. For every
value of the priority attribute that is less than 12, the
usage and location attributes are read. Because the
usage and location attributes were located in different
cache blocks in the PAX layout, two cache misses were in-
curred to read both of the attributes. When using the group
layout (Figure 4), however, a single cache miss is incurred
to read the first usage attribute, and the location at-
tribute is then read from the cache. Using this particular
grouping, the number of cache misses per record shrinks to
two cache misses per eight records, or 0.25 cache misses
per record.

As the example demonstrates, partitioning the records’
attributes into non-contiguous zones can significantly re-
duce the number of processor cache misses. Determin-
ing the attribute partition for a single query is not difficult;
however, choosing a partition that reduces the total amount
of cache misses for the entire query workload is much more
complex. In addition, the query workload may change over

Variable Definition

A The set of all attributes in relation R =
{a1, a2, · · · , an}

group A subset of the set of attributes, group ⊆ A
partition A collection of groups

zone The area of a slotted page where all instances
of a group are written

zone-record An instance of the attributes in a particular
group

G The set of all possible groups
|G| The number all possible groups
P The set of all unique partitions
|P | The number of all unique partitions

Table 1: Definitions

time, so the optimal layout may change accordingly. The
Data Morphing technique presented in this paper provides
a method to calculate a cache-efficient partition for a given
workload of queries, and also provides a method to reor-
ganize data to dynamically adapt to a changing workload.
Before the Data Morphing technique is presented, the fol-
lowing section provides the definitions to the terms used in
the discussion.

3 Definitions

For the presentation of the Data Morphing technique, the
following definitions apply. A group represents a set of
attributes that are written to consecutive memory addresses
on a page. A partition is a set of groups that uniquely
defines the position of every attribute in a relation. A zone
defines the area of a page where all instances of a particular
group are written. A zone-record defines an instance of
the attributes in a particular group. These definitions are
summarized in Table 1.

To further illustrate the concepts in this section suc-
cinctly, we will use a simplified version of the previous
example. The new example relation and the correspond-
ing query are shown in Figure 5. As before, the predicate
on the priority attribute has a selectivity of 12.5%, and
all of the attributes are four bytes in size.

(c) Data Morphing.

Figure 4.5: PAX and Data Morphing. Source: [Hankins and Patel, 2003]

is not the authors’ main concern. HyPer uses the same physical layout for all data;
globally configured to either row-oriented or column-oriented. Other physical data
layouts are not supported.

SAP HANA [Färber et al., 2011, 2012] is another hybrid main memory database
system for OLTP and OLAP. It builds on a multi-engine query processing environment.
Next to a text processing engine and a graph processing engine, HANA features a
relational engine. The relational engine combines SAP’s row store database engine
P*Time and SAP’s column store engine TREX. The column store engine heavily uses
compression and is highly optimized for OLAP and data mining workloads [Legler
et al., 2006, Lemke et al., 2010]. HANA’s academic sidekick [Schaffner et al., 2008,
Plattner, 2009] uses MaxDB as row store engine. The setup, though, is the same:
two relational engines wired to the same query processor. During table creation
the DBA decides which engine manages the table. The physical organization of
a table is transparent for SQL queries, which can seamlessly combine row- and
column-oriented tables. The SAP HANA approach differs considerable from FASE.
Instead of supporting a hard-coded set of physical data layouts, FASE aims at a freely
configurable physical data layout implemented in a single engine.

Generally, the possible physical data layouts of hybrid row–column stores remain
limited to either row or column orientation per database table. FASE wants to offer
broad range of physical data layout instead.

4.1.3 Column Groups

Column groups generalize the idea of combining row store and column store in a
hybrid database system. Here a database system partitions a table vertically into
configurable column groups. Depending on the partitioning, the resulting physical
layout resembles either a row store or a column store, or something in between.

Data Morphing was the first approach to use the idea of bundling columns that are
typically accessed [Hankins and Patel, 2003]. It is an extension of PAX [Ailamaki
et al., 2001]. Like PAX, Data Morphing addresses page-oriented database systems and
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consideres the placement of values within a page. Figure 4.5 illustrates the difference
of PAX and Data Morphing compared to the row store layout. The traditional row
store layout subsequently places records in a page including all their values – depicted
in Figure 4.5(a). Typically, fixed-length values come first and variable-length values
are moved to the end. At the corresponding positions in the series of fixed-length
values, a reference points to the actual position of the variable-length values. PAX
organizes pages differently – depicted in Figure 4.5(b). For considerably better cache
performance on OLAP queries, PAX lays out every page like a column store. For
a table with six columns, a page is subdivided into six mini pages, each containing
only the values of a single column. In the figure, the first mini page contains only id
values, the second page only priority (pri) values and so on. While scanning data in a
PAX page, queries that read only values of a single column receive considerably less
cache misses because each cache line is packed only with values of interest. However,
if multiple values of a record are accessed together, PAX’s positive effect on cache
performance disappears. Data Morphing improves that by exploiting column groups –
depicted in Figure 4.5(c). Here, pages are organized in zones. Each zone stores one
column group in the row store layout. If the column groups are designed properly,
single column queries as well as multiple column queries will experience good cache
performance.

HYRISE [Grund et al., 2010] is a main memory storage engine, which also makes
use of column groups. However, it stores each column group dictionary compressed
as if it is a single column. Although this is easy to implement, it could result in very
large dictionaries, particularly if the columns in a column group are uncorrelated.
Hence, at its heart, HYRISE is a main memory column store, which can merely be
configured to mimic a row store or mixed layouts. As a distinctive feature HYRISE
features an advisor that recommends a column group design for a given workload.
Besides, HYRISE focuses on OLTP and OLAP workloads like HyPer and SAP HANA.
Workloads favoring other physical data layouts are not considered.

4.1.4 Increased Physical Data Independence

While the majority of the related research work concentrates on the combination
of OLTP and OLAP workloads, there is also research taking a broader hold on
the topic and aiming at increased physical data independence. Physical data
independence allows the DBA to adapt the physical representation of data to the
performance requirements of the workload without influencing the logical model of the
data [ANSI/X3/SPARC, 1975, Brodie and Schmidt, 1982]. This is a crucial feature
of database management systems. However, traditional database systems do not
support it to the full extent because their elementary physical data layout is typically
hard-coded.

GENESIS [Batory, 1985, Batory et al., 1988] is an early project devoted to
identifying common elements and structure in database storage systems. The project
developed detailed storage models for database systems including aspects of the
physical data layout. In GENESIS, a database storage system is visually modeled
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queries, expressed as psj-queries over structures in the logi-
cal schema, into relational expressions over the gmaps. We
also show how this translation can be integrated into a con-
ventional query optimizer.

One of the benefits of our approach is that gmaps may
store redundant data to improve the performance of queries.
Thus, updates may need to change multiple gmaps in a con-
sistent manner. We show how a simple modification of the
query translation algorithm can produce plans to perform
these updates. We also demonstrate how this flexibility can
be used in several other areas, e.g., acceleration of bulk load-
ing of the database and acceleration of updates of complex
objects.

All of the algorithms presented in this paper have been
implemented in a prototype system. We report on experi-
ments with a test database that illustrates that for a plausible
mix of queries and updates, our techniques allow the physi-
cal representation to be tuned to provide better performance
than what could be achieved through standard relational or
object-oriented methods. We conclude this paper by iden-
tifying the areas that need further development before our
technique can be widely used in a practical setting.

2 The gmap definition language

In this section, we introduce our data model and the corre-
sponding data definition language (DLL). The DDL has two
parts, thelogical DDL, which defines the logical schema
capturing the conceptual organization of the data, and the
physical DDL, which defines the storage structures contain-
ing the data that instantiate the logical schema. We present
the model in two notations, a semantic one (resembling the
ER model) and a formal relational one. The two notations are
equivalent; the semantic notation is more intuitive as a user
interface, but all of our algorithms manipulate the relational
forms of schemas.

2.1 The logical data definition language

In the semantic notation, schemas are depicted as graphs.
Throughout this paper we illustrate our approach with an
example database describing a university and its personnel
(see Fig. 1). The textual form of the schema is given in Ap-
pendix A using ODL (Catel 1993).

Nodes in Fig. 1 represent domains, and solid edges repre-
sent relationships between them. Leaves represent primitive

domains such as integers, character strings, or real num-
bers. Internal nodes represent domains populated with iden-
tity surrogates (tuple or object identifiers). In our example
schema, these domains areDept (department),Faculty,
Student, Course, and TA (teaching assistant). To reduce
clutter in the figures, these domain names are abbreviated to
their initials. Functional dependencies are indicated by arrow
heads. Inclusion dependencies (formally defined in Sect. 3)
can also be expressed but are not shown for simplicity.IsA
associations are denoted by dashed arcs pointing to the su-
pertype. For our purposes, they are simply relationships with
certain functional and inclusion dependencies implied by de-
fault. A name of the formD.d is used to denote both a prim-
itive domain and its relationship to an internal domain. For
example,Course.level names both a primitive domain
of integers and its relationship to theCoursedomain.

In the relational form of the data model, each edge of a
schema graph from domainA to domainB is represented
as a binary relation with attributesA and B. Because of
this correspondence, we often use the term “attribute” as
a synonym for “domain” (node in the graph) and the term
“base relation” as a synonym for “relationship” (edge). Our
algorithms operate on the (binary) relational form of the
schema, so they apply to any semantic model that can be
represented by binary relations with functional and inclusion
dependencies.

2.2 The physical data definition language

In our system, all physical storage structures are defined as
gmaps. A gmap consists of a set of records (thegmap data),
a query that indicates the semantic relationships among the
attributes of these records (thegmap query), and a descrip-
tion of the data structure used to store the records (thegmap
structure). Although the actual database stores gmap data
rather than the base relations, the gmap data may be thought
of as the result of running the gmap query on the base rela-
tions.

Gmap queries are expressed in a simple SQL-like lan-
guage. For example, the gmap

def_gmap cs_faculty_by_area as btree by
given Faculty.area
select Faculty
where Faculty works_in Dept and

Dept = cs_oid

stores a set of pairs containingFaculty identifiers and
the corresponding area names. Only faculty members in
the computer science department (identified by the constant
cs oid) are included. The gmap structure is a B+-tree in-
dexed byFaculty.area. The entire by clause defines the
gmap query. Attributes following thegiven and select
keywords are calledinput andoutputattributes, respectively,
and the predicateDept = cs oid is called aselection. In-
put attributes form the search key for gmap structures that
allow associative access.

The gmap query can also be expressed graphically as a
subgraph of the schema graph called thequery graph(see
Figs. 2–9). Shaded edges correspond to relationships or IsA
associations explicitly mentioned in thewhere clause or

(a) Logical schema.
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the faculty domain. A structure for accelerating such path
expressions is called anested index(Maier and Stein 1986;
Bertino and Kim 1989), which allows indexing on a nested
attribute of a domain. Such an index is easily specified as a
gmap (Fig. 5):

def_gmap faculty_nested_index as btree
by given Dept.name select Faculty
where Faculty works_in Dept.

In the previous examples, the gmap data included all
Faculty instances. However, there are cases where we
frequently access only some instances of a domain. Object-
oriented systems that store instances in explicit collections
rather than class extents (Carey et al. 1988; Maier and Stein
1986; Orenstein et al. 1992) allow the creation of collection
indices, which provide fast access paths only to the subsets
of the domains that are included in the collection. Our gmap
definition language is powerful enough to express such in-
dices by using restrictions. For example, if we would like
to modify the previously defined index on faculty area so
that it keeps only data for faculty in the computer science
department, the definition would be as follows (Fig. 6):

def_gmap faculty_index_on_area as btree
by given Faculty.area select Faculty
where Faculty works_in Dept and

Dept = cs_oid

wherecs oid is the object identifier of the computer sci-
ence department.

Field replication and path indexing techniques typically
impose restrictions related to the logical schema. For exam-
ple, in field replication, the nested attribute is required to
be a nestedpart of the object in which it is replicated. Fur-
thermore, the object must functionally determine the nested
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Fig. 7. Replication of a non-functional nested attribute

attribute. Similar restrictions hold for path indexing. Our no-
tion of queries enables one to describe any schema subgraph,
independently of the edge properties. The extra freedom al-
lows specification of several useful novel structures:

– A storage structure that replicates nested attributes that
are non-functionally determined. For example, we can
extend thefaculty data structure (Fig. 2) by repli-
cating the names of the advised students (Fig. 7):

def_gmap faculty_field_with_snames
as heap by given Faculty

select Faculty.name, Faculty.area,
Dept, Student, Course, Student.name
where Faculty works_in Dept and

Faculty advises Student and
Faculty teaches Course

– A cross between a path index and an index on a com-
posite key. It allows each component of the key to be
supplied by a separate path. For example, the following
gmap builds an index that maps area/course-level pairs
to faculty in that area that teaches such courses (Fig. 8):

def_gmap faculty_multi_field as btree
by given Faculty.area, Course.level
select Faculty
where Faculty teaches Course.

– An arbitrary decomposition of data in the inheritance
hierarchy. For example, the following gmap clusters a
teaching assistant’s name together with other teaching
assistant attributes that do not pertain to arbitrary stu-
dents (Fig. 9):

def_gmap ta_with_sname as heap by
given TA

(b) Access path data.
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implicitly mentioned as part of primitive attribute names.
Input attributes are indicated by small arrows, and output
attributes are indicated by double circles around nodes. Re-
strictions are described as annotations on the corresponding
nodes.

Each query expressible in this language is equivalent to
a restricted psj query on the relational form of the logical
schema:

Q = πAσS(R1 on R2 on · · · on Rn)

In the above example,

Q = πF,F.area σD=cs oid (F.area on works in).

Expressible queries obey the following restrictions:

1. they are range-restricted, i.e., all attributes inS andA
are attributes of the relationsRi

2. each attribute of the relationsRi appears at most once
in the projection listA

3. selections are conjunctions of comparisons (=, >,≥, <
,≤) between attributes and constants

4. joins are natural, i.e., only attributes with the same name
are joined and all attributes maintain their name in the
result. In particular, self-joins are not allowed.

In the remainder of the paper, we use the termpsj-queryto
refer to a query that conforms to these restrictions.

2.3 The query language

We often use the term “logical query” to refer to queries
posed on the logical schema. In this paper, we consider only
logical queries written in the same language that is used for
gmap queries. That is, they must be restricted psj-queries.
In addition, each query must be translatable into a psj-query
over gmaps or projections of them. Thus, we do not han-
dle cases where logical queries need to be translated into
unions or arbitrary sequences of psj-queries. Note that trans-
lated logical queries involve relations with arbitrary arity (the
gmap data), while gmap queries involve binary relations only
(corresponding to relationships).

2.4 Examples

gmaps can be used to define arbitrary physical representa-
tions, including those of a conventional normalized relational
database, an object-oriented database, or any combination of
the two.

To illustrate the object-oriented approach, suppose we
want to cluster together all information about each faculty
member. Given the object identifier of aFaculty object,
we should be able to retrieve personal information as well
as the object identifiers of the faculty member’s department,
advisees, and courses taught.

A gmap that meets these specifications may be defined
as follows (Fig. 2):

def_gmap faculty_data as heap by
given Faculty select Student, Dept,
Course, Faculty.area, Faculty.name
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where Faculty works_in Dept and
Faculty advises Student and
Faculty teaches Course

A secondary index in a relational system can also be
defined easily in our language. For example, an index on
the faculty area is defined as follows (Fig. 3):

def_gmap faculty_index_on_area as btree
by given Faculty.area select Faculty

Note that the index is not defined in terms of the previous
gmap, as would be the case in a relational database, but in
terms of the logical schema.

In thefaculty data example, it might be desirable to
include in a faculty member’s record the department name in
addition to the department id, because for example, the de-
partment name is frequently printed along with the name
of the faculty member. The department name is, in this
case, anested attributeof theFaculty domain. This essen-
tially implementsfield replication(Kato and Masuda 1992;
Shekita and Carey 1989), which has been shown to offer
several advantages. The only change necessary is to add
“Dept.name” to the select clause. Only a slight modi-
fication of the earlier gmap definition is required (Fig. 4):

def_gmap faculty_field_repl as heap by
given Faculty
select Faculty.name, Faculty.area,
Dept, Student, Course, Dept.name
where Faculty works_in Dept and

Faculty advises Student and
Faculty teaches Course

Similarly, suppose applications frequently ask for the
listing of the faculty of a specific department. In this case
we need a fast access path from the department name to

(c) Access path definition.

Figure 4.6: Gmap. Source: [Tsatalos et al., 1996]

with three kinds of diagrams: data structure diagrams, field definition diagrams, and
instance diagrams. Files, links, records types, and fields are the building blocks of
these diagrams. For instance, a data structure diagram defines files and how they
are linked. Storage systems involve different levels of abstraction. Each level can
be described with the diagrams, so that the diagrams form a hierarchical building
plan of the described database storage systems. The aim of GENESIS was not to
strengthen the physical data independence of database systems but to speed up their
development. Consequently, GENESIS models physical data structures in a very
detailed way. GENESIS’ technical level of detail is that of database system developers
rather than that of DBAs. FASE takes a different approach. Instead of providing an
exhaustive description of a database system’s storage layer, it focuses on capturing
its macroscopic characteristics.

Another notable approach to increase physical data independence is Gmap [Tsatalos
et al., 1994, 1996]. Gmap offers a physical data definition language for access paths.
Where traditional access paths are fixed to the logical data model, Gmap defines the
data stored in an access path with query-like statements. Figure 4.6 illustrates the
concept by example. Given a logical database schema (Figure 4.6(a)), we can define
an access path to store parts of the data (Figure 4.6(b)). The access path definition
(Figure 4.6(c)) lists the name (faculty field repl), the type of data structure used
(heap), the search key of the gmap structure (Faculty), and a query (select ...).
The projection clause of the query determines which data field will be included in
the access path (Faculty.name, Faculty.area, Dept, ...); the selection clause
joins the data (Faculty works in Dept and Faculty ...) and filters the data (not
shown in the example). Gmap provides great flexibility in the physical design for
the DBA. Next to the physical data definition language, the authors discuss query
processing. They present algorithms to optimize queries on a gmap-structured physical
storage so that the queries use a minimal set of benefical access paths. The focus of
the gmap concept is to allow the consolidation of associated entities from different
domains in a single access path. At the same time, gmap also allows the replication
of entities over multiple access paths. Gmap offers a great way to define subsets of
the data which require different physical data layouts. In that respect, Gmap and
FASE complement each other perfectly.
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4.2 Modeling Physical Data Layouts

RodentStore is the most recent work on physical data layout that we found [Cudré-
Mauroux et al., 2009]. Like FASE, RodentStore envisions a freely configurable data
layout, but with a different focus than FASE. RodentStore describes the physical data
layout as nested lists of values. How the lists are nested and which values they contain
can be configured with a storage algebra building on nested list comprehensions.
Given a table Product with columns name, price, and weight , the list comprehension

[[r.name, r.price, r.weight ] | \r ← Product ]

describes a row store data layout. In constrast, list comprehension

[[r.name | \r ← Product ] , [r.price | \r ← Product ] , [r.weight | \r ← Product ]]

describes a column store data layout. This allows a wide range of physical data layouts.
With the focus rather on spatial data, RodentStore includes some representations not
covered by FASE, such as the utilization of space filling curves. The RodentStore
concept assumes strictly regular relational data, though, and does not consider the
role of schema specifiers in the data representation. Hence, it lacks support for
physical data layouts suitable for irregular data. Unfortunately, the presentation of
RodentStore is rather visionary and lacks details on how queries and standard CRUD
operations are processed in RodentStore. The prototype used by the authors for a
case study appears to be rather limited. Nevertheless, it would be interesting to see
how both concepts, RodentStore and FASE, can be combined.

4.2 Modeling Physical Data Layouts

Structured data consists of entities, which represent a set of attribute–value pairs each
and are categorized into entity types. Physical storage, in contrast, is a consecutive
one-dimensional sequence of bytes. The physical data layout represents the mapping
between these two formats. Traditionally, DBMSs hardcode this mapping and the
mapping is not configurable.

Commonly, structured data models organize values with the user-given specifiers
entity types, entities, and attributes. A physical data layout defines how these
elements of structured data (entity types, entities, attributes, and values) and the
logical relations between them are stored physically. The most simple layout is a
set of quadruples, illustrated in Figure 4.7. The layout is also know as vertical
schema [Friedman et al., 1990, Agrawal et al., 2001, Cunningham et al., 2004]. A
quadruple lists an entity type, an entity, and an attribute together with the value that
belongs to the specific combination. In Figure 4.7, the first quadruple lists Smith as
the value of the attribute customer for the entity o1 with type Order . In the FASE
notation, we denote the structure of such a quadruple as T,E,A →V , where T is
an element of the domain of entity types, E is an element of the domain of entities,
A is an element of the domain of attributes, and V is an element of the domain
of values. The arrow → indicates that T,E,A uniquely identify a quadruple and
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( Order o1 customer Smith )

( Order o1 date 12/04/12 )

( Order o2 customer Meyer )

( City . . . )
...

T E A V

T,E,A→V

〈T,E,A→V 〉

Figure 4.7: Data layout quadruples.

o1 Smith

o2 Meyer
...

...

Order .customer

o1 12/04/12
...

...

Order .date

...
...

City . . .T, A

E →V

〈E →V 〉

〈T,A 〈E →V 〉〉

Figure 4.8: Data layout BATs.

functionally determine V in this mental model. To represent another value, we need
another quadruple. For instance, in Figure 4.7, the second quadruple lists the value
of the attribute date of Order o1. Each value will have its own quadruple, resulting
in a whole set of quadruples to represent a complete data set. In the FASE notation,
we denote such a set of quadruples as 〈T,E,A→V 〉. Chevrons 〈X〉 indicate the
repetition of the embedded structure X and denote that the order among instances
of the embedded structure is insignificant. The commas in the FASE notation do not
have a particular meaning but serve better visual separation of the domain symbols.

For obvious reasons quadruples are not commonly used as the physical data layout.
As another example of physical data layouts let us have a look at binary association
tables (BATs) instead. The columnar database system MonetDB uses BATs very
successfully as physical data layout [Boncz and Kersten, 1999]. Figure 4.8 shows
the same data represented in BATs. A database consists of multiple BATs and each
BAT contains the values of a single attribute. In Figure 4.8, the first BAT from the
left hosts all values belonging to the attribute customer of Order entities. Hence,
we can denote the header of a BAT in the FASE notation as T,A. Each row of a
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customer . . .

Smith . . .

Meyer . . .

o1

o2

Order

. . .

...

CityT

[E]

[V ]
〈A [V ]〉

〈T [E] 〈A [V ]〉〉

Figure 4.9: Data layout column store.

BAT contains an entity id and the corresponding value, where the entity id uniquely
identifies the row. For instance, the first row in the first BAT of Figure 4.8 represents
value Smith of attribute customer of Order o1. In the FASE notation, the body of
a BAT can be denoted as 〈E →V 〉. Correspondingly, a single BAT, consisting of
header and body, is described with T,A 〈E →V 〉 in the FASE notation. The complete
physical data layout used by MonetDB is then denoted as 〈T,A 〈E →V 〉〉.

While BATs explicitly associate entities and values with each other, many other
columnar database systems rely on the physical order of the values in each column.
We refer to this physical data layout as column store. Figure 4.9 shows the example
data in the column store layout. The content of each column is physically organized
as a list of values, where the physical order of the values matters. We denote this in
the FASE notation as [V ]. The brackets [. . .] indicate the repetition of the embedded
structure and denote that the order among instances of the embedded structure is
significant. A complete table of the column store layout consists of multiple columns
including the attribute as column header. We denote this as 〈A [V ]〉. The value lists
in all columns of a table are ordered such that values belonging to the same entity
appear at the same position. Additionally, the column store requires to know which
position belongs to which entity, cf. Figure 4.9. We denote this in the FASE notation
with a list of entity ids [E], which is also part of the table. The entity type forms
the table header, so that we can describe the column store data layout completely as
〈T [E] 〈A [V ]〉〉.

The physical data layout of traditional row stores is pretty similar, as shown in
Figure 4.10. Here, the rows of a table are represented with an entity id and an ordered
list of values. As positional counterpart to the value lists, each table has an ordered
list of attributes. The entity type forms the table header, so that the row store data
layout denotes as 〈T [A] 〈E [V ]〉〉.

4.3 FASE Notation

The FASE notation allows describing various physical data layouts for structured data,
specifically the macroscopic aspects of the physical data layouts. The last section
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customer date

Smith 12/04/12

...
...

o1

...

Order

. . .

...

CityT

[A]

[V ] 〈E [V ]〉

〈T [A] 〈E [V ]〉〉

Figure 4.10: Data layout row store.

<collection> ::= <ordered> | <unordered>
<ordered> ::= ‘[’ <domain> ‘]’

<unordered> ::= ‘〈’ <header> <include>? <nesting>? ‘〉’
<header> ::= <domain>+
<include> ::= ‘→’ <domain>+
<nesting> ::= <collection>+
<domain> ::= <specifier> | <values>
<specifier> ::= ‘T ’ | ‘E’ | ‘A’
<values> ::= ‘V ’

Figure 4.11: FASE grammar.

already illustrated the notation with the example of four data layouts. We will now
discuss the grammar and the semantics of the FASE notation in detail.

A FASE expression describes a particular physical data layout, i.e. the schema
in which a data set should be arranged physically on storage. To be valid, a FASE
expression has to follow the grammar shown in Figure 4.11. The central element
is the collection definition (<collection>). A collection can be defined as ordered
(<ordered>) or as a collection without particular order (<unordered>). Ordered
collections are defined on single domains. Further, ordered collections are only allowed
in pairs in FASE expressions, where one of the two ordered collections has to be defined
on the domain of values V . Normal collection definitions consist of header domains
(<header>), included domains (<include>), and nested collections (<nesting>).
There must be at least one header domain; included domains and nested collections
are optional. Among the four domains, we distinguish between the specifier domains –
entity types T , entities E, and attributes A – and the values domain V . We are not
considering values to have an identity of their own; value identity comes from the
entity type, the entity, and the attribute a value belongs to. Consequently, V is only
allowed in ordered collections or as an included domain in unordered collections.

When parsed, a FASE expression results in an abstract syntax tree of collection
definitions as shown in the upper half of Figure 4.12. These collection definitions
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provide the necessary information to physically arrange and retrieve data from storage.
Like the collection definitions, the physical layout described by the expression is
hierarchical. At each hierarchy level the collection definition is instantiated with
one or more collections, so that each collection is typed by a particular collection
definition from the abstract syntax tree. The topmost collection definition is only
instantiated once, while lower-level collection definitions are likely to be instantiated
multiple times, depending on the data in the system.

Collections, the instances of collection definitions, contain one or multiple groups.
The groups contain data elements and may nest lower-level collections. The collection
definition of a collection defines the internal structure of its groups. For instance,
in a collection of the definition 〈E [V ]〉, all groups take the form (e,X ), where e is
an entity and X is a collection of the definition [V ]. All groups in a collection are
uniquely identified by their headers, i.e. their elements from the header domains in
the definition. In the example, all groups are uniquely identified by the data element
e. A group’s data elements from the included domains in the collection’s definition
form the group include.

As an example, Figure 4.12 illustrates the collections resulting from the row store
layout 〈T [A] 〈E [V ]〉〉 given our example data. In the figure, the rounded rectangles
mark collections, while the vertical lines separate groups within collections. The
topmost collection T is an instance of 〈T [A] 〈E [V ]〉〉 as indicated by the arrow pointing
from the collection to its collection definition. Consequently, it contains groups
consisting of an entity type as header and two nested collections of the form [A] and
〈E [V ]〉. T contains two such groups: (Order ,AOrder , EOrder ) and (City ,ACity , ECity).
The order of these two groups as given in the figure is insignificant. Further down in
the hierarchy, for instance, the collection EOrder is of the form 〈E [V ]〉 and contains
the groups (o1,Vo1) and (o2,Vo2). Vo1 and Vo2 are both ordered collections of the form
[V ], each containing a pair of groups, (Smith), (12/04/12) and (Meyer), (12/05/12),
respectively. Here, the order of the groups is essential since it allows connecting the
values to their attributes stored in the ordered collection AOrder .

Table 4.1 lists a sample of physical data layouts that can be denoted with the
FASE notation. Next to the layouts already discussed in Section 4.2, the table lists
the interpreted record layout [Beckmann et al., 2006, Chu et al., 2007], the Bigtable
layout [Chang et al., 2006, 2008] and a layout that organizes the data like XML
tags [W3C, 2008]. Each data layout is shown with its respective FASE expression
and an example of the resulting collections.

4.4 FASE Architecture

FASE, as a storage engine, implements a configurable physical data layout that can be
specified using the FASE notation. Figure 4.13 shows its principal architecture. At the
bottom, FASE builds on a physical record interface that provides record containers.
At the top, FASE provides a logical data interface with basic CRUD operations.
FASE itself is two-layered. It consists of a collection formation layer and a collection
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Collection Formation

Collection Materialization

Physical Record
Interface

SelectRecord(container,key)
InsertRecord(container,key,record)
DeleteRecord(container,key)
UpdateRecord(container,key,record)

Internal Collection
Interface

SelectGroup(collection,header)
InsertGroup(collection,group,pos)
DeleteGroup(collection,header)
UpdateGroup(collection,oldgrp,newgrp)

Logical Data
Interface

Select(qualifier)
Insert(data)
Delete(qualifier)
Update(qualifier,data)

Figure 4.13: FASE architecture.

materialization layer. Collection formation organizes the data in the hierarchical
layout specified by a FASE expression. Collection materialization maps the collections
and the groups they contain to containers and records. Internally, the two layers are
separated by the collection interface. We will first discuss the interfaces from the
bottom up, and then elaborate on collection formation and collection materialization
in the following two sections in more detail.

Physical Record Interface The physical record interface provides the basic storage
routines for FASE. It offers storage containers for records, i.e. byte strings. Containers
can be created and deleted via the interface. The key is either provided together with
the record or generated by the container. The record interface allows creating and
dropping containers as well as selecting (SelectRecord), inserting (InsertRecord),
deleting (DeleteRecord), and updating (UpdateRecord) records in a given
container.

Internal Collection Interface Collections of groups provide the central data
representation format during processing within FASE. The collection interface allows
operating with collections and groups. Collections can be created and dropped.
On a given collection, four major operations allow handling the groups of the
collection. (1) SelectGroup retrieves all groups from a collection that have a
header matching a given header predicate. Header predicates have the same elements
as the header, but additionally allow wildcards, such as ’∗’, which matches any
element. (2) InsertGroup appends a new group to a collection. For ordered
collections, a numeric index can be specified to insert the group at a specific position.
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4.4 FASE Architecture

(3) DeleteGroup removes all groups with a header matching a given header predicate.
Ordered collections also allow positional deletions. (4) UpdateGroup updates a
given group.

Logical Data Interface The logical data interface offers fundamental CRUD
operations to manage data values with their specifiers: entity types, entities, and
attributes. The user can Select, Insert, Delete, and Update data in a database.

Select retrieves values from the database. Provided with a qualifier triple (t, e, a),
a select retrieves only the values that have specifiers matching the given triple. The
wildcard ’∗’ matches any element. For instance, (Order , ∗, ∗) retrieves all values of
all entities of the entity type Order. (Order , oi, ∗) yields the values of the particular
order oi, whereas (Order , ∗, date) returns all values belonging to attribute date for all
entities of entity type Order .

Insert adds data to a database. Given a quadruple (t, e, a, v), an insert adds
each value v for the given specifiers t, e, and a. An insert also accepts a list of such
quadruples. In case a list of quadruples is given, successively reoccurring specifiers can
be replaced with ’%’ for simplicity. For example, the list (Order , o1, customer ,Smith),
(%,%, date, 12/04/12), (%, o2, customer,Meyer), (%,%, date, 12/05/12) inserts the
data shown in Table 4.1.

Delete removes values from the database. Similar to select, a delete takes a qualifier
triple and deletes all values with matching specifiers. For instance, (Order , ∗, ∗) deletes
all values belonging to entity type Order . (Order , oi, ∗) deletes the particular order
oi, and (Order , ∗, date) would delete all values belonging to attribute date.

Update changes values in the database. Given a qualifier triple, an update changes
all values with matching specifiers to a given data quadruple. The wildcard ’∗’ is
allowed in the qualifier triple. In the target quadruple, ’%’ indicates that matching
data elements should remain unchanged. Note that a change can affect a value itself
or its specifiers. For instance, an update (Order , o1, date) → (%,%,%, 12/05/12)
changes the date of order o1 to the 5th December. Whereas, (Order , ∗, date) →
(%,%, orderdate,%) renames attribute date for entity type Order to orderdate.

To achieve data independence in FASE, the logical data interface functionally
behaves irrespectively of the chosen data layout. However, the interface’s non-
functional behavior, i.e. the performance of operations, depends strongly on the
physical data layout in use. For instance, a column-oriented access, such as
(Order , ∗, date) will be favored by a column-oriented physical layout such as
〈T [E] 〈A [V ]〉〉. This way, FASE allows optimizing of the database performance,
without changing existing application code or even the query processing infrastructure
of a database management system.

To summarize FASE’s architecture: Collection formation translates the operations
of the data interface to collection operations. Collection materialization translates
collection operations to record container operations. In the following two sections, we
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will present in detail how these translations are done in the corresponding parts of
FASE.

4.5 Collection Formation

Collection formation forms the upper layer in the archtiecture of FASE. It translates
the operations of the logical data interface into operations of the collection interface.
The general procedure for all operations starts with the topmost collection and
recursively treats collections nested in groups. The following subsections detail the
algorithm for each of the four operations of the logical data interface.

4.5.1 Select

The select algorithm performs two tasks. First, it retrieves the queried values and
their specifiers. Second, it reassembles the data back into the representation-agnostic
format of the logical data interface. Both tasks are done in a single run.

Retrieval is simple. The algorithm filters each collection for the groups that match
the query predicate. It is important that the filtering is done before the algorithm
reads nested collections to avoid unnecessary reading collections. The filter predicate
of a collection is obtained by projecting the query predicate to the collection’s header.

Reassembling the data is more complex and done in three steps. First, if a group
has multiple nested collections, the matching groups found in the nested collections
have to be joined. If ordered collections are involved, groups are joined by shared
domains and their order. Second, group header and group include are added to each
of the groups resulting from the join. Conceptually, this is a cross product. Finally,
the results from all groups in a collection are united into a single result set.

Figure 4.14 illustrates the reassembling process by example. The figure shows the
query (Order , ∗, ∗), which retrieves all entities of entity type Order with all their
attributes. It is executed on the example data used throughout this chapter. The
data is organized according to the FASE expression 〈T [A] 〈E [V ]〉〉, which reassembles
a row store. Considering only the Order part of the data, the data layout results
in the five collections T , ROrder , COrder , Vo2 , and Vo2 similar to Figure 4.12. The
reassembling process runs bottom up. As can be seen, the algorithm combines the
groups of the most nested collections Vo1 and Vo2 with the header of their respective
parent group from collection EOrder . For instance, the two groups (1,Smith) and
(2, 12/04/12) from the collection Vo1 are combined with (o1) to (1, o1, Smith) and
(2, o1, 12/04/12). In the process, the algorithm maintains the order of the groups from
the ordered collections Vo1 and Vo2 , illustrated by the integers preceding the data
elements in the groups. Next, the results of the two combinations are united to form
the result for the collection EOrder . The collection EOrder and its sibling collection
AOrder are nested in the same group. Their respective results are ordered and do
not share any domains. Hence, the algorithm joins the results of EOrder and AOrder

according to their order. The group (1, customer) pairs with the groups (1, o1,Smith)
and (1, o2,Meyer) and so on. Afterwards, the algorithm combines the result of the join
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{
(1, Smith)
(2, 12/04/12)

}Vo1

{(o1,Vo1)}

×

{
(1, o1, Smith)
(2, o1, 12/04/12)

}

{
(1,Meyer)
(2, 12/05/12)

}Vo2

{(o2,Vo2)}

×

{
(1, o2,Meyer)
(2, o2, 12/05/12)

}
EOrder

∪


(1, o1, Smith)
(2, o1, 12/04/12)
(1, o2,Meyer)
(2, o2, 12/05/12)


{

(1, customer)
(2, date)

}
AOrder

1


(o1, customer , Smith)
(o1, date, 12/04/12)
(o2, customer ,Meyer)
(o2, date, 12/05/12)



{(Order ,AOrder , EOrder )}

T

×


(Order , o1, customer , Smith)
(Order , o1, date, 12/04/12)
(Order , o2, customer ,Meyer)
(Order , o2, date, 12/05/12)



Figure 4.14: Query (Order , ∗, ∗) on 〈T [A] 〈E [V ]〉〉.

with the header of the nesting group (Order , . . .). Since this group is in the topmost
collection T , the reassembling is complete.

Algorithm 2 summarizes the recursive select procedure performed on every collection
S. First, the algorithm filters the collection (lines 4–7). Therefore, it determines
the header predicate h by projecting the qualifier triple q to the collection’s header
domains. Here, S.H and S.I represent the header domains and included domains of the
collection S, respectively. Second, the algorithm retrieves all matching groups from
the collection. Additionally, all qualifying groups are filtered for matching includes.
Naturally, this filtering is only effective if the groups in the current collection have
includes. Third, the algorithm performs the reassembling routine for every qualifying
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Algorithm 2 Select from collections.

1: procedure Select(S, q) � S: collection to query

2: � q: qualifier triple (t, r, c)

3: RS ← ∅ � init collection result

4: h← πS.H (q) � project qualifier to header

5: l← πS.I (q) � project qualifier to include

6: for all G ∈ SelectGroup (S, h) do � find group

7: if G.I matches l then � filter on include

8: if G.N 6= ∅ then � if group has nestings

9: RJ ← 1U∈G.N Select (U , q) � join

10: RG ← ({G.H} × {G.I})×RJ � combine

11: RS ← RS ∪RG � unite

12: return RS � return collection result

group (lines 8–11): (1) join results from nested collections (line 9), (2) combine with
group header and group include (line 10), and (3) unite with results from other groups
of the same collection (line 11). Obviously, if a group does not have any nested
collections, the first two steps are omitted (line 8). Finally, the algorithm returns the
collection result.

Although join, cross product, and union seem to be expensive operations, FASE
implements the reassembling process efficiently. The join of ordered results is
implemented as a sort-merge join. Joining shared domains requires a hash join.
The combination of the join result with group header and group include is efficient
too, since the operation always has a single group as its left operand. Further, the
uniqueness of group headers within a collection guarantees that the group results are
free of duplicates. Hence, the union simply appends the group results to the collection
result and expensive duplicate elimination is not required.

4.5.2 Insert

The insert algorithm arranges the data as described by the used FASE expression.
Depending on what should be inserted and which data is already in the database, the
algorithm has to create new groups or even new collections. We discuss unordered
and ordered collections separately.

Let us consider normal (unordered) collections first. Unordered collections either
already contain a group that matches the data to insert or they do not. In the
first case, the insert algorithm selects the matching group and propagates the insert
operation to all collections nested in the discovered group. In the second case, the
insert algorithm creates a new group and adds it to the collection. If the new group
has to have nested collections, these are created as well as and the insert is propagated
to them.

As an example, let’s consider the normal collection T as shown in Figure 4.12.
For the insert (City , c3,name,New York), the algorithm selects the group
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(City ,ACity , ECity) from T and recursively propagates the insert to the two nested
collections, ACity and ECity . In contrast, for inserting (Supplier , s3,name,Tools Inc.),
the algorithm appends a new group (Supplier ,ASupplier , ESupplier ) to T . It also creates
the two new collections, ASupplier and ESupplier and propagates to them.

Algorithm 3 Insert into unordered collections.

1: procedure Insert(S, d) � S: collection

2: � d: data quadruple (t, r, c, v)

3: h← πS.H (d) � project data to header

4: l← πS.I (d) � project data to include

5: G← SelectGroup (S, h) � find matching group

6: if G exists then
7: check l = G.I � check for matching include

8: else
9: N ← {U|U = CreateCol (T ) ∧ T ∈ S}

10: G← (h, l,N) � create new group

11: InsertGroup (S, G) � insert into collection

12: for all U ∈ G do � propagate insert

13: Insert (U , d) � to nested collections

Algorithm 3 lists the basic insert algorithm for unordered collections. First, the
algorithm projects the data that should be inserted to the header and the included
domains of the current collection (lines 3–4). Then, the insert algorithm tries to find a
matching group (line 5). If a matching group G exists in the collection, the algorithm
checks if the include of G matches the data to insert (line 7). To avoid storing the
value with wrong specifiers, the insert is declined with an error if the include does not
match. If a matching group does not exist in the collection, the algorithm creates a
new group G and adds it to the collection (lines 9–11). This involves creating nested
collections in the group if the used FASE expression requires so. By now, the data to
insert in the current collection is definitely present in group G; it either already existed
or has been created. Finally, the insert algorithm propagates the insert operation to
collections nested in G (lines 12–13).

Ordered collections are more complicated to handle. Valid FASE expressions require
pairs of ordered collections, where one of the two ordered collections is defined on
the values domain V and the other on a specifier domain. We refer to them as value
collection and specifier collection, respectively. While adding new data, the insert
algorithm has to keep the order of a pair of ordered collections in sync. It achieves
this by handling them in pairs, as if they were a single collection. Thus, the specifier
collection defines the shared order and the value collection follows it.

Let’s assume that the two ordered collections are AOrder = [customer | date]
and Vo1 = [Smith | 12/04/12], as shown in Figure 4.12, and the insert request is
(Order , o1, status, finished). To keep both ordered collections in sync, the insert
algorithm adds status to the specifier collection AOrder at the first free position (in the
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example, third position in the list). Then the algorithm inserts the value finished in Vo1

at exactly the same position. The insert results in AOrder = [customer | date | status]
and Vo1 = [Smith | 12/04/12 | finished].

Note that the algorithm has to keep AOrder and Vo2 = [Meyer | 12/05/12] in sync,
too. After the first insert, AOrder is one element longer than Vo2 . Still, both collections
are in sync because all values in Vo2 are correctly related to their specifiers. Let’s
assume a second insert operation (Order , o2, status, open). Again, the insert algorithm
handles AOrder first. Since status is already in AOrder the algorithm only takes its
position to insert the value open in Vo2 . Accordingly, the result of that second insert
is Vo2 = [Smith | 12/05/12 | open].

An insert may lead to gaps in a value collection. For instance, assume the
second insert operation is (Order , o2, priority , high). This would result in AOrder =
[customer | date | status | priority ] and Vo2 = [Smith | 12/05/12 |� | high], where �
marks the new gap. The group materialization has to handle these gaps appropriately
so that the positions of the values remain unaffected.

Ordered collections are handled in pairs. While recursively descending the hierarchy
of nested collections, the insert algorithm postpones the handling of an ordered
collection until it passes its mate. In the example of Figure 4.12, the algorithm
postpones the handling of AOrder until it reaches Vo1 or Vo2 . During postponing, the
algorithm simply keeps a reference to the respective collection. Once a pair of ordered
collections is found, the data is inserted appropriately. After the actual insert, the
algorithm keeps the reference to the specifier collection to pair it with the other value
collections. In the example, after processing the pair AOrder–Vo1 , the algorithm keeps
AOrder for handling Vo2 .

Algorithm 4 Insert into ordered collections.

1: procedure Insert(SS , SV , d) � SS : specifier collection

2: � SV : value collection

3: � d: data quadruple (t, e, a, v)

4: hS ← πSS .H (d) � project data to SS
5: hV ← πSV .H (d) � project data to SV
6: G← SelectGroup (SS , hS) � find matching group

7: if G not exists then � if group not found

8: G← (hS) � create new specifier group

9: InsertGroup (SS , G) � insert into collection

10: check that G.Pos is free in SV � check position

11: InsertGroup (SV , (hV ) , G.Pos) � insert value

Algorithm 4 shows the insert into a pair of ordered collections. After projecting the
data to the respective collections (lines 4–5), the algorithm looks for a matching group
in the specifier collection (line 6). If none is found, an appropriate group is created
and inserted to the specifier collection (lines 7–9). Afterwards the algorithm checks if
the position that the specifier group has in the corresponding specifier collection is
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free in the value collection and inserts a new value group at that position (lines 10–11).
If the position is not free, the insert is rejected since it represents a duplicate.

4.5.3 Delete

The delete algorithm removes all values that have specifiers matching the given
qualifier. Therefore, the algorithm descends the hierarchy of nested collections to the
values in question by finding the matching group on each level. Once the values are
found, the algorithm deletes the groups containing them.

Furthermore, the algorithm also has to remove orphaned specifiers, which are
not related to a value anymore. This is done when the algorithm climbs back up
the hierarchy of nested collections. If a group is deleted from a collection, the
algorithm checks if the collection is empty. If so, it deletes the empty collection as
well. As a consequence, the algorithm can also delete the group that contained the
empty collection. This procedure will remove all orphaned specifiers from unordered
collections.

Ordered collections are trickier regarding orphaned specifier removal. With ordered
collections, the groups containing the specifiers do not nest the groups containing the
related values. It does not become implicitly clear whether a specifier is orphaned
or is still needed. For instance, to delete the specifier date in AOrder , the algorithm
has to ensure that both collections, Vo1 and Vo2 have no values at the corresponding
position. Scanning all value collections related to a single specifier collection can
become very costly. In comparison, the chances that a specifier actually is orphaned
are rather low. Hence, FASE does not delete orphaned specifier in ordered specifiers
collections implicitly. They have to be deleted explicitly by the user.

4.5.4 Update

An update operation can affect values, their specifiers, or both. The general procedure
for updates is to delete all qualifying data and reinsert the updated version. Naturally,
the algorithm retrieves the qualifying data during the delete to obtain the updated
version. However, this delete–insert pattern can result in unnecessary data movement,
e.g. if only an entity type is renamed. FASE’s update algorithm tries to avoid the
basic delete–insert pattern where possible.

The extent to which data movement can be avoided depends on the
FASE configuration. For instance, consider the update (Order , ∗, date) →
(Timeline,%,%,%), which moves all values belonging to the attribute date to
another entity type. In the rows store layout 〈T [A] 〈E [V ]〉〉, this update
requires deleting all corresponding values from the ROrder collections within the
(Order ,AOrder , EOrder ) group and inserting these values in the RTimeline collection of
a (Timeline,ATimeline , ETimeline) group. The same has to be done for the specifier
date. In contrast, the BAT layout 〈T,A 〈E →V 〉〉 requires only an in place update of
Order to Timeline in the (Order , date, . . .) group of the topmost collection.
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To avoid unnecessary data movement, the update algorithm diverges from the
general delete–insert pattern in situations formulated in the following three update
optimization rules. (1) If the current collection has no nested collection that needs a
direct update, the update algorithm stops its recursion. (2) If the current collection
does not require a direct update but nested collections do, the update algorithm
descends to all nested collections without any changes to the current collection. (3) If
the current collection has no nested collection that requires a selection, the update
algorithm changes the current collection in place.

Which collections require direct updates and selections can be determined from the
qualifier triple and the target quadruple. A collection requires a direct update if one
of its header domains and included domains is unequal to ’%’ in the target quadruple.
Whereas, a collection requires a selection if one of its header domains and included
domains is unequal to ’∗’ in the qualifier triple. Note that the values domain V is not
present in the qualifier triple, so it is implicitly equal to ’∗’.

Ordered collections require special attention during the updates. If a group has a
nested ordered collection, the algorithm does not apply the first update optimization
rule to all collections nested in this group. This is necessary to propagate the update
to both sides of a pair of ordered collections. In-place updates on the specifier
collection of a pair of ordered collections are only possible if the qualifier selects all
value collections that pair with the specifier collection in question. Value collections
are always updated in-place in case the update algorithm descended that far without
previously having switched to the delete–insert pattern before.

4.6 Collection Materialization

Collection materialization forms the lower layer in the architecture of FASE, cf.
Figure 4.13. It translates operations of the internal collections interface to operations
of the physical record interface. The record interface provides logically unrelated
containers for the storage of untyped records. In contrast, collections form a well-
typed, hierarchically nested structure. There are two general ways to materialize
nested collections in containers. In this section, we discuss both ways and present an
automatic procedure used in FASE to switch between them.

4.6.1 Dedicated vs. Embedded

Dedicated materialization stores a collection in a dedicated container. Every group in
the collection is mapped to a record. The topmost collection of a database is always
stored using dedicated materialization. In contrast, embedded materialization stores
a whole collection with all its groups embedded in the record that materializes the
group that nests the collection. Naturally, embedded materialization is only possible
for nested collections.

Figure 4.15 shows the collection materialization of the example data using the
FASE configuration 〈T [A] 〈E [V ]〉〉. In the figure, the upper half shows the data
transformed into collections and groups similar to Figure 4.12, while the lower half
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shows the data materialized in containers and records. As can be seen, the topmost
collection T of type 〈T [A] 〈E [V ]〉〉 is materialized in the dedicated container c(T ).
Similarly, EOrder and ECity are materialized in the dedicated containers c(EOrder ) and
c(ECity), respectively. For the remaining collections AOrder , Vo1 , Vo2 , ACity , and Vc2
FASE uses embedded materialization. For instance, the collection AOrder completely
gets materialized in the record of its nesting group (Order ,AOrder , EOrder ). In the
same record, in place of EOrder , FASE stores a reference to the dedicated container
c(EOrder ).

4.6.2 Automatic Dislodgment

None of the two materialization strategies is universally superior to the other. While
embedded materialization can increase locality and reduce the number of references to
resolve, Dedicated materialization avoids very large records and allows selective queries
reading only necessary data. Consequently, a fixed decision on which collections should
be embedded and which not may lead to suboptimal read performance.

For instance, the embedding strategy used in Figure 4.15 is absolutely reasonable
for regular relational data. In typical regular relational data, entities are only a few
hundred bytes in size and we have orders of magnitude more entities than attributes.
However, with a very large number of attributes or large blob values the embedded
collections AOrder , Vo1 , Vo2 , etc. would be significantly larger. If so, a different
embedding strategy may be more efficient.

FASE implements an automatic dislodgment algorithm to avoid the embedding
of very large collections. With automatic dislodgment, FASE automatically moves
collections to dedicated containers once they are getting too large. When a database
is created, FASE starts with a single container for the topmost collection. All other
collections are materialized in an embedded way. As more data is inserted, the
collections grow. Every collection that has embedded materialization size exceeding a
configured threshold, e.g. the size of a memory page or a disk block, will be dislodged.

The dislodgment procedure involves four steps. First, FASE creates a new container.
Second, it splits the embedded materialization into chunks, one for each group of
the collection. Each chunk is split into group header and the other parts of the
group (includes and nesting). Third, FASE inserts each chunk as a record into
the new container. The group header becomes the key and the other parts of the
group become the actual record. Finally, FASE replaces the original embedded
materialization with a reference to the new container by updating the original record.
The dislodgment happens entirely within in the collection materialization layer of
FASE. Since FASE uses the same byte representation of groups in embedded and
dedicated materializations, it can directly copy the chunks to records on byte level,
minimizing interpretation overhead. This makes the dislodgment procedure very
efficient. In any case, the dislodgment procedure is applied automatically only to
relatively small collections (just above the threshold), so that operational overhead is
small.
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Table 4.2: Physical data layouts used in the experiments.

Data layout Layout definition

Row store 〈T [A] 〈E [V ]〉〉
Interpreted record 〈T 〈E 〈A→V 〉〉〉
Column store 〈T [E] 〈A [V ]〉〉
BATs 〈T,A 〈E →V 〉〉
Bigtable 〈T 〈E,A→V 〉〉
XML-like 〈E →T 〈A→V 〉〉

4.7 Evaluation

We evaluated FASE in a series of experiments. The focus of FASE is the configurability
of the physical data layout. Once configured for a specific data layout, we expect FASE
to exhibit similar runtime behavior as a hard-coded implementation of this physical
data layout. Note that the aim is not to achieve top-level performance. A specialized
implementation targeting a specific field of application can always achieve better
performance than a general system built for a broader range of applications. The aim
is to increase configurability, physical data independence, and to make specialized
physical data layouts available in general systems. In the evaluation we investigated
if FASE lives up to this expectation. We start by giving an overview of our prototype
and describe the setup of the experiments in Section 4.7.1. In Sections 4.7.2 and 4.7.3,
we present the database file size and the load time, respectively. We measured both for
the databases that we created with different combinations of data set characteristics
and physical data layout. On these databases we ran different workloads and measured
their runtime. These results are presented in Section 4.7.4.

4.7.1 Setup

We implemented FASE in Java and ran our experiments with the Java 7 Update 5,
64 bit VM on a machine with an AMD Opteron CPU at 2.6 GHz, 512 KB L2 cache,
DDR II memory, and a SATA disk. The prototype is strictly single threaded. All
specifiers, i.e. entity types, entity ids, and attributes, are dictionary-encoded as 8-byte
integers. Record containers are implemented as disk-based B-trees. In a container,
the B-trees indexes the keys under which the records are stored. For unordered
collections, the group header becomes the key. For ordered collections, the order (as
4-byte integer) becomes the key. Besides these container B-trees, there are no other
indexes involved. The B-trees use pages 8 KB in size and a shared buffer of 8192
pages, i.e. 64 MB in size. This disk-oriented setup mimics the situation of traditional
general purpose database systems. Nevertheless, disk-orientation is not essential for
the concepts of FASE, and neither are B-trees. A FASE-based data layout could also
be implemented for main memory and with other data structures, or with a mixture
of data structures.
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Table 4.3: Data sets used in the experiments.

Number of

Data set Entity types Entities per type Attributes Sparse Raw size

256K-entities 1 262 144 16 1.0 64 MB
512K-entities 1 524 288 16 1.0 128 MB
1024K-entities 1 1 048 576 16 1.0 256 MB

0%-sparse 1 1 048 576 16 1.0 256 MB
50%-sparse 1 1 048 576 32 0.5 256 MB
80%-sparse 1 1 048 576 80 0.2 256 MB

512-types 512 2048 16 1.0 256 MB
1024-types 1024 1024 16 1.0 256 MB
2048-types 2048 512 16 1.0 256 MB

Table 4.4: Workloads used in the experiments.

Data set Number of queries Query pattern

row-oriented 100 (Rnd,Rnd, ∗)
column-oriented 1 (Rnd, ∗,Rnd)

entity-oriented number of entities per type (∗,Rnd, ∗)
entity type-oriented 1 (Rnd, ∗, ∗)

In multiple experiments, we configured FASE with the FASE expressions shown in
Table 4.2. In each configuration, we load the different data sets and measured the
load time as well as the resulting database file size. For the resulting databases, we
measured the execution time of different workloads.

To obtain data with specific properties, we generated nine synthetic data sets. Each
data set consists of a given set of entity types, each with the same number of entities.
From a given set of attributes, each entity instantiates an individually and randomly
chosen subset. The size of the subset depends on a given fill factor, e.g. for a fill factor
of 0.5 half of the attributes are instantiated, while for a fill factor of 1.0 all attributes
are instantiated. The fill factor allows creating sparse data sets. Table 4.3 lists the
nine data sets we generated with their respective parameters. All values are randomly
generated 16-byte character strings, so that the resulting raw data size (values only)
is as shown in the table. Note that the data sets 1024K-entities and 0%-sparse are
equal. We distinquish these two solely for presentation purposes.

We used four synthetic workloads in total. All workloads consist of a given number
of randomly generated queries, i.e. calls of the Select operation of the logical data
interface of FASE (cf. Section 4.4). The generated qualifier triple for each Select
call contains at each position either a randomly selected specifier or the wildcard ∗
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Figure 4.16: Database file size for different data sets and physical data layouts in
FASE.

depending on the query pattern given for the workload. Table 4.4 lists the four
workloads with the number of queries each workload encompasses and the workload’s
query pattern. In the query patterns, Rnd indicates a randomly selected specifier.

4.7.2 Database File Size

To investigate the influence of the physical data layout on the database file size,
we measured the database file size for all data sets and all physical data layouts
after the data had been loaded. Figure 4.16 shows the database file size in MB for
each combination of data set and physical data layout. As can be seen, the physical
data layout has a notable influence on the database file size. In general, the row
store layout is the most space-efficient one, followed by interpreted record, column
store, BATs, and XML-like with medium space efficiency and Bigtable as the least
space-efficient layout. Row store is the most space-efficient layout because it uses
order to relate values to specifiers, and thereby avoids redundancy. All layouts without
ordered collections, namely interpreted record, BATs, XML-like, and Bigtable have
to store specifiers multiple times. Interpreted record has redundancy on the attribute
specifiers, BATs on the entity specifiers, XML-like on the entity type specifiers and
attribute specifiers, and Bigtable on the entity specifiers and attribute specifiers.

Judging from the specifier redundancy, the column store layout and the Bigtable
layout should be at least as space-efficient as the row store layout and as the XML-
like layout, respectively. However, this is not the case because our prototype solely
uses B-Trees as container implementation. On the column store layout, automatic
dislodgment results in dedicated materialization of the ordered collections, in contrast
to the row store layout. The order is the key of ordered collections, so that dedicated
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Figure 4.17: Load time for different data set and physical data layouts.

materialization of ordered collections stores the order as integer in the B-tree key,
which reduces the space efficiency. In a more mature implementation, one would use a
different data structure for ordered collections, which would store the order implicitly.
The Bigtable layout stores all values belonging to the same entity type in a single
collection with a composite header (E and A). In a B-tree, this translates into keys
twice as long as the keys of collections with a header consisting of a single specifier.
Larger keys reduce the fanout of a B-tree and lower its space efficiency.

The obvious exception from the general picture are the data sets 512-types, 1024-
types, and 2048-types and here in particular the column-oriented data layouts column
store and BATs. In both layouts, the number of entity types and the number of
entities per type have considerable influence. Note that the total number of entities
and the total number of values is the same in all three data sets. The more entity types
are in the database, the higher the number of collections that hold the values and the
smaller these collections are. Basically, a larger number of entity types results in a
finer partitioning of the values. With the column-oriented layouts, these collections
are materialized as B-trees. A B-tree needs additional space for the directory pages.
The smaller the B-tree is, the larger its share of directory pages gets. Consequently,
the space efficiency of the column-oriented layouts is inversely proportional to the
number of entity types for a fixed number of entities.

4.7.3 Load Time

We also measured the load time for all data sets and all physical data layouts. The
data sets were loaded with the Insert operation of the logical data interface of
FASE (cf. Section 4.4). Each Insert call takes 16 quadruples. For the column store
layout and the BATs layout, quadruples were grouped attribute-wise and ordered
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within a group according to the entity. For the other layouts, quadruples were grouped
entity-wise and ordered within a group according to the attribute. Of course, this
is an idealized situation and differs from a normal write-intensive workload, where
quadruples would show up in a more randomized fashion. Nevertheless, the load
time allows drawing conclusions about the general write performance of the different
layouts. Figure 4.16 shows the load time relative to the 256K-entities data set with
the row store layout. Generally, we see that the load time follows the database file
size. When we have more raw data or where the data layout requires more bytes to
be stored the load time is higher.

The main exception from this general picture is the column store layout. To insert
a single value in the column store layout, FASE has to find the matching entity in
the [E] collection of the corresponding entity type to determine the position of the
value in its [V ] collection. Since [E] collections are typically stored in a dedicated
container, our prototype scans the leaves of the corresponding B-tree to find the
matching entity. This imposes a considerable cost on the insert operation if the
column store layout is used. The cost is even higher than the data is sparse. Our
implementation cancels the scan over the entities as soon as it has found matches
for all quadruples that have to be inserted. On dense data, values for each attribute
are inserted in the same order regarding their entity, so that [E] collection also has
that order and the scan is canceled early for most of the insert calls. On sparse data,
by contrast, entities that do not instantiate the first attributes end up further down
in the entity collection than they appear in the inserts of the attributes that these
entities have instantiated. As a result, there are fewer opportunities to cancel the
scan early. This dramatically illustrates the fact that the column store layout is not a
write-optimized layout. In a more mature implementation, however, entity specifiers
could be assigned not by the user but by the database system. In this case, the order
itself can be used as an implicit entity specifier. Implicit entity specifiers remove the
necessity of explicitly storing and scanning [E] collections and significantly improve
the runtime performance of the Insert operation on the column store layout.

4.7.4 Workload Runtime

As is well-known from hard-coded implementations of physical data layouts, certain
workloads and data set characteristics favor certain physical data layouts. To
investigate if FASE is able to reflect this, we measured the runtime of different
kinds of workloads on different data sets and different physical data layouts. FASE
should exhibit a considerably lower workload runtime for the favorable combinations.
We show the workload runtime relative to the lowest runtime measured for a given
workload among the considered settings. In other words, each plot shows how
much longer the displayed workload took to be processed compared to the fastest
combination of data set and physical data layout. Specifically, we investigated two
pairs of workloads: (1) the row-oriented workload vs. the column-oriented workload,
and (2) the entity-oriented workload vs. the entity type-oriented workload. The results
are presented in the following for each pair separately.
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Figure 4.18: Row-oriented and column-oriented workloads on regular data.

Row-oriented vs. Column-oriented Workloads

We measured the row-oriented workload and the column-oriented workload (cf.
Table 4.4) first on the regular data sets 256K-entities, 512K-entities, and 1024K-
entities, and second on the irregular data sets 0%-sparse, 50%-sparse, and 80%-
sparse (cf. Table 4.3). The row-oriented workload retrieves randomly chosen entities
of a given entity type, while the column-oriented workload retrieves all values of a
randomly chosen attribute of a given entity type. Hence, the row-oriented workload
favors physical data layouts that (1) cluster all values of an individual entity and (2)
allow fast lookups of an entity type specifier and an entity specifier. In contrast, the
column-oriented workload favors physical data layouts that (1) cluster all values of
the same attribute and the same entity type, and (2) allow fast lookups of an entity
type specifier and an attribute specifier.

Figure 4.18 shows the results for the regular data sets; Figure 4.18(a) for the
row-oriented workload and Figure 4.18(b) for the column-oriented workload. The
row-oriented workload is significantly slowed down by the column-oriented layouts,
and in particular by the column store layout. The column store layout is the only
of the tested layouts that neither groups values per entity, nor provides a fast entity
lookup. Consequently, the row-oriented workload needs two orders of magnitude
longer to be processed on column store layout than on any other layout. Note that this
difference is mainly caused by scans of [E] collections necessary to lookup an entity
specifier. Again, implicit entity specifiers would significantly improve the performance
here (cf. Section 4.7.3). The column-oriented workload shows the opposite picture.
Here, all row-oriented layouts (row store, interpreted record, Bigtable, and XML-like)
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Figure 4.19: Row-oriented and column-oriented workloads on irregular data.

show a one order of magnitude longer workload runtime than the column-oriented
layouts (column store and BATs). This is as expected, as these layouts do not cluster
values by attribute and require FASE to read over the complete data set to retrieve
the values that belong to a single attribute.

Figure 4.19 shows the results for the irregular data sets; Figure 4.19(a) for the
row-oriented workload and Figure 4.19(b) for the column-oriented workload. On
irregular data, we see the same general patter as on regular data; a row-oriented
workload benefits from a row-oriented layout and a column-oriented workload benefits
from a column-oriented workload. However, the sparseness of the data affects the
different layouts differently. As all three irregular data sets have the same raw data
size, the same number of entities, and the same average number of attributes per
entity, the total number of attributes increases to allow for sparser data sets. This
explains the visible effects on the workload runtime.

With the row-oriented workloads, the negative effect of the column-oriented layouts
gets worse with increasing sparseness. With every additional attribute, FASE has to
check an additional B-tree if it contains a value of the entities to retrieve. At the
same time, however, the number of values per attribute decreases with increasing
sparseness. If the number of values is small enough so that the B-tree requires fewer
levels of directory nodes, the cost of an individual B-tree seek decreases, too. As
we can see for 80%-sparse data set with the column store layout, this decrease of
individual seek cost can compensate the increase in the number of required seeks. We
do not see this effect for the BATs layout because the BATs layout uses the 8-byte
long entity specifier as key in the value B-trees, while the column store layout has
the only 4-byte long order as B-tree key. The larger keys reduce the fanout of the
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B-trees in the BATs layout so that 80%-sparse data set is not sparse enough to allow
the compensation effect.

With the column-oriented workload, the performance of the row store layout is
negatively affected by increasing sparseness more than the other row-oriented layouts.
The row store layout has to represents missing attributes explicitly for each entity.
Although, this does not require much additional space compared to the size of a value,
it increases the size of the entities enough to reduce blocking factor of the leave pages
of the B-tree that stores the 〈E [V ]〉 collection. As a consequence, FASE has to scan
more pages read all entities. Additionally, the larger number of attributes increases
the interpretation overhead for each entity.

Entity-oriented vs. Entity Type-oriented Workloads

We measured the entity-oriented workload and the entity type-oriented workload (cf.
Table 4.4) on the data sets 512-types, 1024-types, and 2048-types (cf. Table 4.3).
The entity-oriented workload retrieves entities regardless of their entity type, while
the entity type-oriented workload retrieves all entities of a given entity type. To
be comparable in the amount of data both workloads retrieve, the entity-oriented
workload queries as many randomly chosen entities as there are entities per type. For
instance, in the data set 512-types, both workloads retrieve 2048 entities in total. The
three data sets differ in their entity-type–entity ratio, but have the same total number
of entities and the same raw data size. For the entity-oriented workload, physical
data layouts are expected to be beneficial that (1) cluster all values of an individual
entity, and (2) that allow fast lookups of an entity specifier. In contrast for the entity
type-oriented workload, physical data layouts are expected to be beneficial that (1)
cluster all entities of an individual entity type, and (2) that allow fast lookups of an
entity type specifier.

The results are shown in Figure 4.20; Figure 4.20(a) for the entity-oriented workload
and Figure 4.20(b) for the entity type-oriented workload. Similar to the results of the
entity type-oriented workload, the column store layout shows the worst performance
on the entity-oriented workload. Again, the reason for the drastic difference is the
necessary scan over [E] collections to find an entity. Naturally, the workload runtime
on the column store layout gets better the fewer entities per entity type the data set
has. The entity type-oriented workload shows the opposite picture. Here, the purely
entity-oriented XML-like layout considerably slows the workload down. To find all
entities of a given type on the XML-like layout, FASE has to read all entities. With
more entity types and fewer entities per entity type in the data set, less data has to
be retrieved by the entity type-oriented workload. While the workload runtime on all
other layouts decreases with the number of entities per entity type, it remains the
same for the XML-like layout. This underlines that the XML-like layout is simply
not designed for type-oriented retrievals.
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Figure 4.20: Entity-oriented and entity-type-oriented workloads.

4.8 Summary

There is not a single optimal physical data layout for the irregular, self-descriptive
data of schema-comes-second data management. FASE is a storage engine that can be
configured to various data layouts using the FASE notation. The FASE notation allows
describing of the macroscopic characteristics of physical data layouts, i.e. how data
elements are grouped in the physical storage. More specifically, a FASE expression
describes a hierarchical structure of nested collections, which contain groups of data
elements and thereby determine how data elements can be selected and scanned. The
FASE notation can express common physical data layouts, such as row store, column
store, BATs as well as data layouts such as interpreted record or vertical schema,
which were designed for irregular data. Beside the FASE notation, we discussed the
principal architecture of FASE and how it implements fundamental CRUD operations.
In the evaluation, we showed that FASE exhibits the performance characteristics
of the physical data layout it was configured for. FASE is not meant to provide
top-level performance but to allow combining the characteristics of various physical
data layouts in a single system. Although our prototype is far away from providing
productivity-ready performance, it allows demonstrating the benefits of the FASE
concept. In the evaluation, we have seen that FASE is able to provide the benefit
certain layouts have for certain workloads. We have not evaluated the overhead that
has to be paid for the configurability of FASE. Such an evaluation requires a more
mature implementation, which is more comparable to hard-coded implementations of
different physical data layouts than our prototype is. Undeniably, the configurability
of FASE comes to the price of additional interpretation overhead. However, code
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generation techniques such as micro specialization [Zhang et al., 2012a,b] can help
to remove interpretation overhead from a database system. A combination of FASE
and micro specialization can retain the flexibility of FASE but achieve performance
at the level of hard-coded implementations. As we have also seen in the evaluation,
the configurability of FASE is particularly useful with the irregularly structured,
self-descriptive data of a FRDM database, as there is no single physical data layout
optimal for every data set and every workload.
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B-trees are by far the most important access path structure in database and
file systems.

Jim Gray and Andreas Reuter [Gray and Reuter, 1993]

Indexes are the most fundamental technique to speed up queries in database systems.
Based on the usage, and independent of the specific structure of an index, we can
distinquish two basic types of indexes. Primary indexes are not part of the primary
store that organizes the payload data as we have seen in Chapter 4. Secondary
indexes, in contrast, are auxiliary structures that store additional information about
the physical location of data to facilitate fast access to this data. A typical secondary
index redundantly stores values of the indexed attribute. The internal structure of an
index allows quick finding of values that match a given query predicate. Each value is
associated with the identifiers of the entities that instantiate the indexed attribute
with that value. If other values of the matching entities need to be retrieved, they
have to be fetched from the primary store.

In the FASE termininology of Chapter 4, we can describe a secondary index as an
additional collection of type 〈V →E〉, which exists in addition to and in sync with
the primary store. The totality of all indexes created in a database is often called the
index configuration of the database. Simplifying, we can denote an index configuration
as 〈A′ 〈V →E〉〉, where A′ is a subset of A. Creating an index configuration essentially
requires determining A′. Since each individual secondary index supports only a fraction
of the database’s workload while requiring resources to be stored and maintained,
creating an index configuration is an optimization problem. With changing data and
shifting workloads, the optimum is a moving target, though. As a secondary data
structure, indexes always constitute a trade-off between increased query performance
on the one hand and storage resources and maintenance cost on the other hand. Index
information that is beneficial today may be unprofitable tomorrow, while another
index may have become very useful at the same time. Index optimization is not a
decision made at a single point in time, but remains a continuous effort. Self-managed
indexing, where index optimization is an integral part of the database system, can
relieve the DBA permanently of this burden.

Also schema-comes-second databases have to rely on secondary indexing for efficient
query processing. In schema-comes-second databases, however, determining A′

manually becomes even more complicated since A is not fixed and not necessarily
known in advance. In other words, with the schema being practically unknown at
design time, it is hard to create a reasonable index configuration in the first place.
A schema constantly in flux compromises the effectiveness of a traditional index
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configuration over a longer time period. Each schema change by the database user
requires the DBA to retune the index configuration. Hence, self-managed indexing
without the DBA in the loop is an essential requirement for schema-comes-second
database management systems.

Self-Managing Indexes (SMIX) are a novel, adaptive, fine-grained, autonomous
indexing infrastructure. It builds on a novel access path that automatically collects
useful index information, discards useless index information, and competes with its
kind for resources. In contrast to existing technologies for adaptive indexing, the
SMIX concept is able to grow and shrink indexes dynamically, instead of incrementally
enhancing the index granularity. With its autonomous adaptability, SMIX is suitable
for databases with very dynamic workloads as well as schema-comes-second databases
with dynamic schemas.

In the Section 5.1, we review existing index tuning and adaptation techniques. In
Section 5.2, we give an overview of the SMIX concept, followed by more detailed
discussions in Sections 5.3 and 5.4. Section 5.5 presents an extension to the core idea
of SMIX. Then, we elaborate evaluation results in Section 5.6 und summarize the
chapter in Section 5.7.

5.1 Related Work

Substantial research has been done in the field of automatic index tuning. First
research in this area dates back to the late 1970s. Nowadays commercial database
management systems offer index tuning tools, which recommend an index configuration
for a given workload and storage bound the configuration has to fit into. Since the
configurations recommended by all of these state-of-the-art tools do not consider that
database workloads may change over time, they can be called static configurations.
There are also dynamic configurations, i.e. configurations that adapt the chosen set of
index structures over time. Research has addressed dynamic index recommendations
in the last decade. Static as well as dynamic index configurations consider only
full-column indexes completely created or dropped at a time. In more recent years,
research index tuning turned to partial indexing. Here, the database system does not
have a configured set of indexes, but a subset of tuples indexed in each column.

It is also possible to distinguish between on-line, off-line, and inherent index
tuning techniques. On-line tools continuously monitor the workload. They base
their decisions on the knowledge gained from the recently observed workload. By
contrast, off-line tools do not monitor the workload. Their input may be a monitored
workload, but it may be a manually constructed workload, too. Both on-line and
off-line share the property that the index tuning is implemented in a dedicated tool or
component, which exists separately from the query processing engine. With inherent
index tuning, indexing becomes an integral part of the query processing and index
tuning dissolve as a separate entity. The workload is not monitored to feed some
configuration component, but queries actively build indexes while they are processed
by the database system.
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off-line (tool) on-line (tool) inherent

static (complete) advisor alerter -
dynamic (complete) dynamic advisor auto-tuning -
partial - partial tuning adaptive indexing

Table 5.1: Classification of index tuning techniques.

Static/dynamic/partial and on-line/off-line/inherent are two dimensions of
orthogonal sense. Together, both form a meaningful classification of automatic
index tuning techniques as shown in Table 5.1.

Today’s commercial index advisor tools realize static, off-line tuning. The DBA runs
these tools off-line and obtains an index configuration. A advisor is unquestionably
of great help. But the DBA still has a significant share of work to do to tune the
system and keep it tuned. He has to run the advisor, monitor the system constantly
and eventually run the advisor again if the index configuration turns out to be no
longer optimal. At this point, an alerter is the tool of choice. It is a static, on-line
tool, constantly checking whether the current index configuration is still acceptable
and alerting the DBA if not. By putting the functionality of both advisor and alerter
together, we obtain auto-tuning. An auto-tuning facility constantly checks the current
index configuration and changes it to a more adequate one if necessary. It therefore
belongs to the class of dynamic, on-line techniques. Auto-tuning is appealing because
it attempts to automatically adjust the index configuration to account for changes in
the workload over time. However, being an on-line mechanism, it can consider only
the workload that it has already observed and has to predict the future based on this
observation. Where the workload changes over time but in a well-defined manner, a
dynamic, off-line tuning tool achieves better results. Such a dynamic advisor gets the
workload as a sequence of database statements (rather than as a set of statements) and
recommends a sequence of index configurations. If the workload is not well-defined,
though, one has to live with auto-tuning. Traditional auto-tuning creates and drops
complete indexes, i.e. configuration changes and wrong tuning decisions are costly. A
partial, on-line tuning tool tries to reduce the cost by making tuning decisions on a
tuple basis rather than on a column basis. Each tuning decision, then, causes only
small incremental changes to the index configuration. As a positive side effect, partial
indexing avoids spending indexing resources on tuples that are never queried with an
index. The small incremental changes to what is indexed have such a low cost that it
is even possible to directly integrate them into the query processing. The resulting
partial, inherent index tuning is often referred to as adaptive indexing. SMIX is in
the class of adaptive indexing.

In the following, we present an overview of the work existing in each of the six
classes of index tuning.
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5.1.1 Advisor

Research in the area of physical design in general and index tuning specifically started
early and already included the question of how certain tuning decisions can be made
automatically. A survey of the early research in the field of physical design tuning can
be found in [Schkolnick, 1978]. With the relational database model [Codd, 1970], the
B*-Tree [Comer, 1979], and relational database systems setting out to conquer the
database world the question of an adequate index configuration for a given workload
became an essential part of the lives of DBAs. Later, when large distributed database
systems and data warehouse systems became widely popular, materialized views and
partitioning became an important part, too.

Early on, Comer [1978] proved optimal index tuning to be an NP-complete problem;
even in a very restricted setup. The complexity of the problem arises because every
subset of the set P of possible indexes is a potential solution. Each of those 2P

possible solutions needs to be checked to find the optimal one.

While much research focused on appropriate decision models particularly for
secondary index selection [Ip et al., 1983, Bonnano et al., 1985, Hatzopoulos and
Kollias, 1985], Finkelstein et al. [1988] were the first to actually build an index selection
tool. To be in aligned with the decision model of the database system they developed
a technique nowadays well known as what-if utility [Chaudhuri and Narasayya, 1998].
This utility takes a configuration and a query. It manipulates the system catalog to
simulate the configuration and asks the optimizer for the estimated cost of the query.
Afterwards, it cleans up the system catalog again and returns the cost of the query.
The what-if utility is capable of determining the estimated execution cost of a query
under a certain index configuration without creating the indexes.

However, what-if calls are expensive, so minimizing their number is an essential
goal. Unfortunately, in the presence of common join methods, such as nested loop
and sort merge, we cannot judge every index separately. Finkelstein et al. solved this
with the idea of atomic configurations. Atomic configurations have only one index per
table. If a query execution plan uses exactly one access path for each appearance of a
table in the query, the cost of the query using a configuration that is assembled from
atomic configurations can be derived from the query’s cost using atomic configurations
individually.

Although atomic configurations reduce the number of what-if calls, they do not
reduce the search space. Finkelstein et al. used two techniques to reduce the search
space. First, the search space can be reduced constructively; instead of generating
all possible atomic configurations, we consider only columns that are plausible for
indexing. For instance, a column that is not referenced by a query at all is implausible
to be indexed for that query. Second, the search space can be reduced deconstructively;
if we know how much cost the atomic configurations save for which statement, we
can use heuristics to prune indexes of low value for the complete workload.

In the global picture Finkelstein’s index tuning tool, which later became IBM’s
Relational Design Tool, looks as follows. The tool begins by scanning the workload.
Thereafter, it finds the referenced tables and columns plausible for indexing for
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each statement, creates all atomic configurations of indexes on plausible columns
and determines the statement’s execution cost under these configurations. Finally, it
removes heuristically less cost-saving indexes from the set of candidates and enumerates
the remaining search space to find the optimal configuration.

All the concepts described in the previous paragraphs – atomic configuration, what-
if interface, constructive reduction, destructive reduction and enumerating candidates
– can be found in modern design tools. Of course, the tools differ in how the concepts
are implemented and put together. Nevertheless, those concepts are the fundamental
building blocks of today’s advisors.

Incrementally, steps were made toward more general design advisors. The
first index selection tool for Microsoft’s SQL Server also considers multi-column
indexes Chaudhuri and Narasayya [1997]. Later it was extended to materialized
views [Agrawal et al., 2000]. By adding partitioning [Agrawal et al., 2004] Microsoft
completed its Database Tuning Advisor. In the meantime IBM redeveloped their
index advisor tool for DB2, bound it tighter to the optimizer [Valentin et al., 2000] and
extended it to a general design tool [Rao et al., 2002, Lightstone and Bhattacharjee,
2004, Zilio et al., 2004]. Dageville et al. [2004] did the same for Oracle.

All state-of-the-art index advisors work well. Nevertheless, researchers stayed with
the topic and examined new approaches. Two are worth mentioning.

Chaudhuri and colleagues defined the operations merge and reduce to combine
and transform, respectively, indexes to other indexes. Both operations work with
materialized views, too. The resulting index of each of the two operations needs
equal or less space than the input does. Merge and reduce allow refining an
optimal configuration that violates the space constraint step by step to smaller
configurations until the space constraint is met. A smaller configuration is usually
less good than a larger one. Each transformation is a trade-off between space saving
and query performance. The whole process is called design refinement or design
relaxation [Chaudhuri and Narasayya, 1999, Bruno and Chaudhuri, 2005, 2006a,
2007b].

IBM showed that it is worth binding the design tool tighter to the optimizer [Valentin
et al., 2000]. Bruno and Chaudhuri drove this idea a bit further. They implemented a
new interface to the optimizer, which allows extracting of which single-table requests
the optimizer considers. Because there is a limited number of possible access-paths
for a given single-table request, they are able to simulate all possible access-paths for
that request in the system catalog and let the optimizer decide which is the most
cost-effective one. With this they are able to determine the best overall configuration
– without regarding any space bound – for one query with only one optimizer call.
Combined with a design refinement algorithm, this provides a new approach to
building an index advisor [Bruno and Chaudhuri, 2005]. Further work also aims
at binding the advisor tighter to the optimizer and reduce the number of what-if
round-trips [Papadomanolakis et al., 2007, Bruno and Nehme, 2008].

There is a number of other publications about index selection, which we will not
discuss in further detail, e.g. [Choenni et al., 1993, Caprara et al., 1995, Gupta et al.,
1997, Chaudhuri et al., 2004].
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Figure 5.1: Usage of the design alerter. Source: [Bruno and Chaudhuri, 2006b]

5.1.2 Alerter

Index advisors are a good choice if the database workload and the data in the database
are rather static. However, the workload or the data may change from time to time.
The DBA needs to know at which point in time he has to retune the system. Since
index advisors make many optimizer calls during one tuning session, they cause a
significant load on the database system. Thus, the advisor is not the right to tell
the DBA whether he has to retune the system or not. Although auto-tuning would
run continuously, it is also not ideal for workloads that change infrequently. Most of
the time, an auto-tuning tool would consume computing power only to find out that
nothing has changed. In such situations an alerter is the tool of choice.

Alerters have only scarcely been considered so far. Only Bruno and Chaudhuri
[2006b] proposed a solution. Figure 5.1 shows how such an alerter basically works.
The alerter monitors the database and runs its diagnostics periodically, for example
triggered by a scheduled job. In case the index configuration is unprofitable it posts
an alert message, so that a new tuning session can take place. Bruno and Chaudhuri
used their optimizer instrumentalization (cf. page 101) to implement their design
alerter. With this instrumentalization of the query optimizer, they are able to log
detailed information about the workload and how the optimizer deals with it. In
particular, they log which alternate single-table access paths the optimizer has to
satisfy a single-table access, and the cost of these access paths. By modifying the
workload’s access plans with these paths locally, the alerter can find out whether
a more profitable configuration exists. It is a low-overhead procedure that avoids
additional optimizer calls.

5.1.3 Auto-Tuning

As explained before, an alerter is a useful tool to inform the DBA when a usually
static database system needs a new index configuration. Obviously, alerters become
impractical if the workload or the data or both are highly dynamic. Assume that
a database requires a new index configuration once a day on average. Under such
circumstances, being heavily involved in the index tuning is undesirable for the DBA.
This would devour too much of valuable working time. What is needed is auto-tuning
of the index configuration.
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Hammer and Chan [1976] considered auto-tuning ahead of time. At the end of
the 1970s the database world was not ready for the topic yet. Researchers became
highly interested in index auto-tuning two and a half decades later when more and
more IT vendors hopped on IBM’s autonomous computing wagon [Kephart and Chess,
2003, IBM, 2001]. Several researcher groups worked on the topic. All auto-tuning
approaches have in common that they build on an Observation-Prediction-Reaction-
cycle [Weikum et al., 1994]. We present three of these approaches in the following
paragraphs.

COLT (Continuous On-Line Tuning) is “a self-tuning framework that continuously
monitors the incoming queries and adjusts the database design in order to maximize
query performance” [Schnaitter et al., 2006, 2007]. It uses a modified query optimizer
as depicted in Figure 5.2 as Extended Query Optimizer. The extended optimizer
evaluates the cost saving by materialized and hypothetical indexes for the current
query. In other words, it implements an on-line what-if interface. COLT’s other
essential component is the Self-Tuning Module. The Self-Tuning Module does the
actual tuning iteratively. In each round it profiles index candidates and maintains
the current configuration. First, it profiles a subset of all candidate indexes for a
certain number of queries by using the on-line what-if interface. Afterwards, the
Self-Tuning Module decides which of the indexes it profiles in the next round and if the
configuration has to be changed. It triggers the changes if necessary. The Self-Tuning
Module’s decisions are based on cost the materialized and the hypothetical indexes
saved or would have saved, respectively. Most of COLT’s processing overhead arises
when it calls the on-line what-if interface. The Self-Tuning Module is able to lower
its overhead by adjusting the number of indexes that it profiles per query. It profiles
only the most promising indexes. If the system is well-tuned the number of promising
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indexes is low. The fewer indexes the Self-Tuning Module profiles, the less overhead
it generates. When the workload shifts and retuning becomes necessary, the number
of promising indexes grows and COLT gets more aggressive.

Sattler’s index auto-tuning approach [Sattler et al., 2003, 2004, 2007] is quite
similar to COLT. The main tuning component works iteratively, too. It watches
the queries coming in and determines the potential cost saving by several candidate
indexes. At the end of each round the component decides whether it has to change
the index configuration or not. Its decisions are based on a cost model and heuristics.
Sattler’s work differs from COLT in two essential points. The first difference concerns
the on-line what-if interface. Sattler and colleagues did not modify the optimizer
for cost determination. Instead, they call the optimizer twice for each query, once
without considering any indexes, and then considering all index candidates. This
does not allow them to adapt the tuning overhead to the dynamic of the workload,
as COLT can do. The second difference is in regards to index creation. Sattler and
colleagues adapted the idea of Graefe [2000] and integrated index creation with the
query processing. Therefore, they implemented two new plan operators. The new
operators allow a query that misses a useful index to create this index while it reads
the data. As a result, the data is read only once, the query has the index present for
its next execution and index creation cost is significantly lower.

Bruno and Chaudhuri [2007a] developed an auto-tuning facility based on their
design alerter (see Section 5.1.2). Like the alerter, the auto-tuning facility uses their
optimizer instrumentalization and local plan transformation to evaluate alternate
single-table access-paths for incoming queries without additional optimizer calls.
Based on this evaluation they decide whether the index configuration needs to be
changed or not. Furthermore, Bruno and Chaudhuri propose to suspend an index
instead of deleting it. A suspended index is not updated and cannot help query
processing, although, it occupies storage. The later restart of the index is done by
propagating changes from the log to the index. Bruno and Chaudhuri claim this
procedure to be generally faster than a full rebuild.

5.1.4 Dynamic Advisor

Auto-tuning (Section 5.1.4) and alerters (Section 5.1.2) are an appropriate choice
if the database workload fluctuates unevenly and does not follow any regular
pattern. However, if workload changes follow a known pattern on-line techniques are
unnecessary for two reasons: (1) They put an extra load on the database system only
to rediscover what is already known. (2) They cannot predict a workload shift; they
can only react to the shift. Thus, if the DBA knows about patterns in the workload,
a dynamic advisor is desirable.

The idea of a dynamic advisor, in contrast to a normal index advisor, is to exploit
the ordering of the statements in the given workload and to recommend a sequence
of index configurations that reflects the fluctuations in the workload. Agrawal
et al. [2006] were the first to propose such a dynamic advisor [Agrawal et al., 2006].
In Agrawal’s approach the recommended index configuration sequence assigns a
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particular configuration to each statement in the input workload. In other words,
the recommendation fits a certain sequence of statements. This works fine if an
application only runs a predetermined set of queries in a predetermined order against
the database system, for instance a dedicated data mart that automatically generates
analytic reports on a daily basis. In situations like this, we can tailor the index
configuration to the needs of the predetermined query sequence of the application.
The recommended configuration sequence might indicate that a particular index
should be created prior to the execution of a specific query in the sequence, and then
dropped in favor of a different index for a subsequent query.

However, other common applications, such as online shops or any kind of multi-user
applications with concurrent transactions do not have an exactly predetermined
sequence of statements that they will run against the database. For this type of
application we do not know in advance which sequence of statements the system
will be faced with. Consequently, a workload is a sample rather than an exact
representation. The productive workload is expected to show deviations from the
sample. This fact can be taken into account to recommend a suitable configuration
sequence by restricting the number of configuration changes [Voigt et al., 2008]. Still
it is up to the optimization algorithm to find out where the changes should be made
to minimize the workload execution cost.

5.1.5 Partial Indexing

Partial indexing is a concept first introduced in the late 1980s [Stonebraker, 1989].
Instead of indexing all values in a column, a partial index covers a subset of values
given by a predicate. For a given query the database system can check if the query
predicate is covered by the predicate that defines the partial index. In case the partial
index can answer the query, it is up to the DBA to decide which partial indexes are
useful. The original idea is to create partial indexes along the query predicates that
can be found in the workload. Nevertheless, database optimizers typically decide
to use an index only if the query predicate is selective enough. Consequently, it is
reasonable to use partial indexing also to avoid the indexation of values that will never
be accessed with the help of an index [Seshadri and Swami, 1995]. To be able also
to take this into consideration, a DBA or a tuning tool has to look at the workload
and at the data distribution. Seshadri and Swami outlined such a predicate selection
procedure for partial indexing. Apart from that, partial indexes did not gain much
attention in the field of automatic index tuning.

More recently, however, Wu and Madden [2011] proposed an auto-tuned partial
indexing tool called Shinobi. In essence, the idea is to range partition tables into
interesting tuples and uninteresting tuples and index only the partition of interesting
tuples. Like an auto-tuning component, Shinobi continuously monitors the workload
of a database system. As partitions are considerably smaller than the whole table,
index creation time and cost are significantly lower with Shinobi compared to normal
auto-tuning approaches. Shinobi represents partitioning of a table with a tree of
subsequent split operations. The root node of the tree represents the whole table and
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the leaf nodes represent the actual partitions. Each inner node of the tree describes a
split into two partitions defined with predicates that can include all columns of the
table. Based on a cost model, Shinobi regularly checks for all parents of leaf nodes if
it is beneficial to merge their partitions and for all leaf nodes if it is beneficial to split
them.

The idea of Shinobi is appealing, because it effectively avoids unnecessary indexing
of data in a very simple way. However, implementing partial indexing based on range
partitions also has drawbacks. First, the relevance of a tuple regarding a specific
index is not necessarily a function of the values of the tuple. For example, the name
of a product alone does not drive the interest in the product; it is the advertisement
behind it. Second, a tuple is not likely to be equally interesting in each column. In
the same example, cheap products may often be queried by price, whereas specifically
advertised products may often be queried by their name. With Shinobi, the index
tuning of all columns of a table is based on the partitioning of the table. This can
make it hard for Shinobi to find an appropriate partitioning, and may result in a very
large partitioning tree with very small partitions.

5.1.6 Adaptive Indexing

Adaptive indexing integrates index creation, maintenance, and tuning directly into
query processing. Queries themselves build indexes incrementally. An active tuning
component becomes obsolete; only a supervisor component is necessary to keep control
of indexes’ resource consumption. Instead of analyzing the workload for index tuning
decisions, adaptive indexing lets the workload actively drive the index tuning.

The first adaptive indexing approach was developed for binary association tables
(BATs) – the in-memory storage primitive of the columnar database MonetDB [Boncz
and Kersten, 1999, Manegold et al., 2000]. The technique has become widely known
as database cracking [Kersten and Manegold, 2005, Idreos et al., 2007]. Initially, BATs
are unordered, so that point and range queries have to scan the complete BAT to find
all matching entries. The idea of database cracking is to make use of what a query
finds out to help subsequent queries. Specifically, a query range partitions (cracks)
the BAT it scans. The query predicate is used as the partitioning predicate. The
BAT is not partitioned physically but partially ordered to reflect the partitioning. All
partition definitions are maintained in a so called cracker index, which is typically a
tree structure. In memory, cracking poses only a small overhead on the query but
immediately helps subsequent queries, which can exploit the partitioning to reduce
scanning cost. Subsequent queries continue cracking the partitions they have to scan,
so that the partitioning refines where the BAT is queried most. Depending on the
value ranges queried, the cracker index converges to a partial or full index.

An extension called sideways cracking helps to keep the partitioning of multiple
BATs of a table in sync [Idreos et al., 2009]. Particularly in a column store, this
is necessary to reduce the tuple reconstruction cost if queries project to additional
columns and if queries have predicates on multiple columns of a table. Similarly to
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2011]

Shinobi, sideways cracking makes the index tuning of a single column depending on
the other columns of the table, with the same drawbacks.

A more recent work addresses the decision making of database cracking. It aims
at achieving an index that is more robust towards workload changes. Instead of a
strictly query-driven cracking, the so called stochastic cracking [Halim et al., 2012]
introduces partially arbitrary decisions into the cracking process. Generally, cracking
is designed for in-memory column stores and its concepts cannot be readily transferred
to block-oriented disk-based database systems.

Inspired by database cracking, Graefe and Kuno developed adaptive merging as
an adaptive indexing technique for disked-based database systems [Graefe and Kuno,
2010a,b]. Adaptive merging builds on B-trees [Bayer and McCreight, 1972], the most
common kind of index structure in disk-based database systems. The concept can
be applied to primary as well as secondary indexes. The starting point of adaptive
merging is a partitioned B-tree [Graefe, 2003]. Each partition is sorted. In the
beginning, the tree will typically have many partitions, all with overlapping key
ranges. For instance, the system could create one index partition per disk page. Such
an initial index creation is considerably cheaper than the creation of a complete
unpartitioned B-tree. Queries that use a partitioned B-tree can efficiently find the
matching values within a partition, but have to scan all partitions to find all matches.
With adaptive merging, queries incrementally refine the partitioned B-tree by merging
the matching index entries into a clean partition. This can be done very efficiently by
scanning the B-tree partitions in an interleaved way. Query after query, the clean
partition grows into a complete index. If the workload addresses only a subset of
values, the clean partition will resemble a partial index. However, the other partitions
remain and queries still have to check them. Storage-wise a partitioned B-tree also
eats up as much space as a complete index.
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Database cracking and adaptive merging share some commonalities. Most obviously,
both techniques work on partitions. They create initial partitions and then refine
them with every query towards a complete index. Both concepts differ, however,
in the operations they use for refinement. Database cracking relies on cracking of
partitions while adaptive merging builds on sorting. Radix clustering is a third
operation that could be used for refinement. These observations suggest a set of
hybrid approaches as presented in [Idreos et al., 2011]. All hybrid techniques have
the same base procedure. Developed for the main-memory column store database
MonetDB, they started splitting a column into initial unsorted partitions. Every
query refines the existing partitions, extracts the matching entries and merges them
into a new final partition. The hybrids differ in which refinement operations they
apply to initial partitions and final partitions: cracking, radix clustering, or sorting.
Depending on the choice, the hybrids exhibit different performance in initial overhead
and convergence speed towards a complete index, as shown in Figure 5.3(a). With a
combination of cracking and sorting (HCS/CS) the authors claim to get very close to
an ideal hybrid regarding initial overhead and convergence; illustrated in Figure 5.3(b).

Database cracking, adaptive merging, and their hybrids are very apealing techniques.
They embed incremental index creation directly into the query processing, allowing
a database system to create indexes when and where needed along the way, with
reasonable overhead. For a complete self-managed index infrastructure, however,
these approaches miss two essential things. First, there is no index selection; an
index is simply created on any column which is queried. Second, the techniques do
not provide any possibility to incrementally discard index information, once it is not
needed anymore. In the long run this will result in a large number of complete indexes.
In the main-memory column store setting, where all indexes are primary indexes,
the number of indexes is limited to the number of columns and only the directory
part of the index requires additional storage space. For secondary indexes, though,
the techniques are not feasible. Every secondary index would start with a complete
copy of the column it indexes, effectively doubling the required storage resources. An
unreasonable large number of secondary indexes also increases the index maintenance
cost significantly.

5.1.7 Summary

Of all index tuning techniques, adaptive indexing techniques, i.e. database cracking,
adaptive merging, and their hybrids as well as the partial indexing tool Shinobi are the
most promising approaches for a self-managed indexing infrastructure. Nevertheless,
they do not provide a satisfying solution. Database cracking and adaptive merging
have two considerable drawbacks. First, they lack a supervisor component, which sets
priorities on where to invest the limited system resources on indexing. Second, they
are a cul-de-sac with complete indexes at its end. Shinobi is a more comprehensive
approach in this respect. It allows de-indexing tuples and is suitable for secondary
indexes. However, being based on partitioning of tables, Shinobi makes the index
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Figure 5.4: Indexing hot and cold data.

tuning on a single column depending on the other columns of the table. The self-
managed index infrastructure that we propose avoids these drawbacks.

5.2 SMIX Overview

We propose a novel, adaptable, fine-grained, autonomous indexing infrastructure for
secondary indexes in disk-based row stores. It is based on the Self-Managing Index
(SMIX), a new access path that partially indexes the column it is working on. Like a
table scan, a SMIX is available on every column by default. Like an index, it maintains
access information in a secondary data structure for faster predicate evaluation. To
remain lean, a SMIX constantly adapts the set of indexed tuples to the workload.

The partial index information helps to speed up queries in two ways:

Indexing hot data If all tuples that fulfill the queried predicate are indexed, the
tuples answering the query can be directly discovered with the index. This is
the desired case, because a table scan can be avoided. The more queries fall
into this category, the better the partial index is adapted to the workload.

Indexing cold data If all tuples in a page are indexed in a partial index, a table scan
can skip this fully indexed page. To make sure all tuples matching the queried
predicate are found, the database system has to combine the table scan’s result
set with the result set of the partial index. Hence, skipping a lot of pages during
a table scan helps to lower query execution cost in situations where the partial
index is not well adapted to the workload and many table scans are necessary
to answer queries.

Figure 5.4 illustrates the two cases. The SMIX access path covers both cases by
completely indexing (1) the most queried values, to answer most of the common
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queries efficiently, and (2) a proportion of pages, to speed up table scans; both in
separate index structures. This way, a SMIX is able to adapt to a workload while
quickly leveraging collected index information.

As the SMIX is a default access path, it automatically collects index information
on potentially every column. Two principles keep the SMIX population of a database
from exceeding a configurable global resource limit. (1) Every SMIX has an individual
resource quota and it is able to displace less queried index entries to lower its resource
usage. (2) All SMIXs compete for the globally granted resources, so that infrequently
accessed index information automatically drops out of the system.

The SMIX indexing infrastructure comes with only a very few configuration knobs,
mainly the amount of resources that can be used for indexing. SMIXs distribute
the heavy lifting of index creation over time and focus index creation on the data of
interest. Furthermore, the approach does not involve expensive what-if calls to the
query optimizer. This way, SMIXs reduce the required user interaction dramatically
without sacrificing performance by missing indexing opportunities or imposing too
much overhead on the DBS.

The remainder of this chapter is structured as follows. We continue this overview
with an introductory example to illustrate our approach (Section 5.2.1) and an outline
of the general SMIX architecture (Section 5.2.2). We detail the SMIX concepts
in the following two sections. Section 5.3 details the SMIX access path; how it
collects, maintains, and displaces index information. Section 5.4 discusses the global
management of all SMIXs present in a system. An extension to SMIX that improves
the management of cold data indexing is presented in Section 5.5. We conducted
experiments to evaluate the SMIX approach and present the results in Section 5.6.

5.2.1 Introductory Example

Before outlining the details of the SMIX approach, we illustrate the general idea of
the SMIX access path with an example. A SMIX consists of three data structures:
two tree-structured indexes – the Partial Index and the Index Buffer – and a list of
counters – the Counter Table. We describe all three in detail later.

For the example shown in Figure 5.5, we use a table for smartphone sales of cities
in the US. Let this table consist of 13 tuples stored in six pages. The table was not
queried before and is now hit by three consecutive queries on the same column for
which the optimizer decides to use a SMIX scan. All three queries select a new value,
not queried before. Before the first query, the SMIX is uninitialized and the data
structures do not exist at all and will be created with the first query. The figure
shows the state of the SMIX’s data structures after every query.

For the first query on NY, the SMIX scans the complete table. While scanning the
table, the SMIX inserts the three qualifying tuples into the Partial Index. During the
first table scan, the SMIX neither skips any pages nor indexes pages into the Index
Buffer, instead it initializes the Counter Table with the number of tuples remaining
unindexed in each page.
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Figure 5.5: SMIX example.

For the second query on LA, three tuples qualify and are indexed into the Partial
Index. Since none of the pages is fully indexed yet, no page can be skipped during the
table scan. However, with the Counter Table now set, the SMIX can decide before the
table scan for which pages it wants to complete the indexation; let it decide on pages
1, 2, and 4. In consequence, the SMIX additionally indexes the two non-qualifying
tuples in these pages in the Index Buffer. After the second SMIX scan, six tuples
are indexed in the Partial Index, two tuples are indexed in the Index Buffer, and the
three pages 1, 2, and 4 are completely indexed. The Counter Table has been updated
accordingly.

For the third query on PHX, the SMIX again scans the table. This time, the table
scan can skip the completely indexed pages 1, 2, and 4. In the remaining pages, the
scan finds two qualifying tuples and indexes them in the Partial Index. Additionally,
the SMIX decides to complete indexation for page 5, which has only one unindexed
tuple left. The SMIX also scans the Index Buffer, to check for qualifying tuples that
may be missed during the table scan by skipping pages. Both resulting tuple streams
– of the table scan and the Index Buffer scan – are merged together to form the result
of the SMIX scan. Since all tuples found by the Index Buffer scan are qualifying
tuples for the queried value, the SMIX removes them from the Index Buffer and adds
them to the Partial Index. In the example, this is the case for the second tuple in
page 4. After the third SMIX scan, eight tuples are indexed in the Partial Index,
two tuples are indexed in the Index Buffer, and the four pages 1, 2, 4, and 5 are
completely indexed.

As can be seen in the example, skipping of pages does not result in false negatives.
Only completely indexed pages are skipped. For completely indexed pages, all tuples
are indexed either in the Partial Index or in the Index Buffer. The Partial Index is
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Figure 5.6: SMIX in database architecture.

always scanned; the Index Buffer will be scanned additionally if the Partial Index was
negative. Consequently, matching tuples will be discovered no matter where they are
indexed.

5.2.2 Architecture

The core idea of SMIX is a new default access path that adapts itself to the workload.
This requires two novel components in the database architecture shown in Figure 5.6.
The first component is the SMIX itself, the new self-managing access path. The
second component is the SMIX manager, which supervises the SMIX population in
the system.

A SMIX combines the abilities of a traditional table scan and a traditional index
scan in a single access path. Like a traditional table scan, a SMIX acts as a default
built-in access path, which is available on every column and does not have to be
created explicitly. Like a traditional index, a SMIX incorporates index information,
which allows reducing page accesses for queries significantly. Implementation-wise, a
SMIX even reuses the logic of these traditional access paths. A SMIX autonomously
collects index information based on the tuples that are accessed by the workload.
It directly leverages this collected information for the next accesses, even if these
accesses relate to other tuples. Additionally, a SMIX not only collects new index
information, a SMIX also discards index information that turns out to be less useful.
Therefore, a SMIX adapts to the data workload and is also able to control its use of
storage and memory resources.

SMIXs co-exist with traditional access paths in the system. The query optimizer
still decides which access path to take for a specific query. It applies two general rules
for the access path selection: (1) It always chooses a SMIX scan over a table scan, if
the optimizer would take a traditional index on this column, because a SMIX can
quickly adapt to better performance. (2) It always chooses a traditional index scan
over the SMIX scan if a traditional index is present to avoid creating redundant index
information. If multicolumn indexes are present on the queried column, the optimizer
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relies on traditional statistics-based decision rules. In order to accomplish that, every
SMIX maintains statistics about itself in the system catalog, similar to traditional
index and table statistics.

SMIXs are query-driven; they are not created explicitly. A SMIX that was never
accessed does not consume any space. Each indexable column has a catalog entry
indicating if it has an initialized SMIX present. As the SMIX scan is a default
access-path a query can utilize a SMIX scan on a column even if the column’s SMIX
has not been initialized. The first SMIX scan on a column will initialize the SMIX on
that column.

The SMIX manager is the supervisor component for all SMIXs in the system. Since
SMIXs are automatically created and allocate new storage and memory resource on
their own, they need to be controlled to not exceed globally available resources. The
SMIX manager collects access statistics for every SMIX. Based on these statistics, it
defines resource quotas for SMIXs and enforces them.

The globally available resources for indexing are storage spaces, where the index
information is stored. For SMIXs, we distinguish two types of storage spaces: (1)
the index space, (2) the buffer space. The index space represents disk resources; it
offers persistency and supports crash recovery. A SMIX stores its established indexing
information here, which has proven valuable for the workload. In contrast, the buffer
space represents main memory resources; it is transient and does not support crash
recovery. A SMIX stores supporting structures that contain less valuable indexing
information in the buffer space. Especially when a SMIX is barely adapted to the
workload, it makes heavy use of these supporting structures. Hence, the main-memory-
based buffer space allows a faster adaptation at lower cost compared to disk. The
SMIX manager assigns quotas for index space and buffer space to each SMIX, while
the absolute size of index space and buffer space is configured by the DBA.

Next, in Section 5.3, we dive into detail on the SMIX design, especially which data
structures it uses and how it operates. Section 5.4 provides a detailed description
of the SMIX manager, on how quotas are determined and enforced. Additionally,
we discuss an extension of the SMIX concept exploiting partitioned Index Buffers in
Section 5.5.

5.3 SMIX Access Path

In this section we describe the functioning of the adaptive indexation logic of a single
SMIX, which works on a single column of a relation. First we introduce the data
structures that are utilized for the indexation process. This is followed by the state
model, which specifies the different modes of operation a SMIX can be in. Then
we show how the data structures and the state model work together. Further, we
discuss how to reverse the indexation process, displace index information and free
resources, which then can be claimed by other SMIXs. Finally, we outline how SMIX
are maintained during DML operations.
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5.3.1 Data Structures

A SMIX consists of three data structures: the Partial Index, the Index Buffer, and
the Counter Table. Depending on their usage, each of these structures is either stored
inside the index space or the buffer space, as illustrated in Figure 5.7. The following
describes the three data structures and their usage in more detail.

Partial Index The Partial Index is a conventional B*-tree [Comer, 1979], which
resides in the index space. The Partial Index completely indexes the most queried
values. For values with qualifying tuples, the Partial Index holds references on all these
qualifying tuples. For values without any qualifying tuples, the Partial Index holds
a single null reference. Either way, the SMIX can serve queries on values present in
Partial Index by a single Partial Index scan. The SMIX inserts values into the Partial
Index when they are queried. To control its size, the SMIX also removes infrequently
queried values from the Partial Index. By indexing only the most frequently queried
values, the Partial Index reflects the current workload of the database – similar to a
cache or a buffer. Thus, once adapted to the workload, the SMIX serves the majority
of its queries by a single efficient Partial Index scan.

Index Buffer The Index Buffer is also a conventional B*-tree and is stored inside the
transient buffer space. The Index Buffer completely indexes the remaining tuples of a
page that are not already indexed by the Partial Index. This way, the Index Buffer
complements the Partial Index; all tuples of pages referenced in the Index Buffer
are indexed either in the Partial Index or in the Index Buffer. To avoid redundant
indexing information, the tuple reference set of the Partial Index and the Index Buffer
are disjoint. With the help of the Index Buffer, the SMIX can increase the number of
completely indexed pages significantly. The SMIX can safely skip these completely
indexed pages during a table scan without risking false negatives. All potential result
tuples missed in the table scan can be discovered by a Partial Index or an Index
Buffer scan. While still adapting to the workload, the SMIX uses the Index Buffer to
speed up the table scans still required for a large share of queries. Thus, the Index
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Buffer serves as a temporary supporting structure in times of workload changes. The
Index Buffer can be seen also as a specialized buffer pool, which buffers data in a
processing-oriented form.

Counter Table The Counter Table is a list of counters located inside the buffer
space. The list contains a counter for each page of the table the SMIX serves. Each
counter indicates how many tuples in its corresponding page are neither indexed by
the Partial Index nor by the Index Buffer. The Counter Table serves two purposes:
(1) it helps to quickly identify pages that are most worthwhile to be indexed in the
Index Buffer (pages with a low counter greater than zero); (2) it allows to easily
identify pages that can be skipped by a table scan (pages with a counter equal to
zero). The SMIX initializes the Counter Table with the first table scan it has to
perform. Subsequently, the SMIX maintains the Counter Table incrementally. The
memory the Counter Table consumes depends on the accuracy with which pages
are monitored a, the maximum number of tuples that fit in a page n, and the total
number of pages p, so that the size of the Counter Table equals N log2(n)

a . Note that
the accuracy a = 1

x with x being a positive integer.

Please note that conventional B*-trees are not a necessity for the SMIX concept.
A Partial Index or an Index Buffer built as a hash index, a spatial index, or the use
of cache-optimized index structures such as the CSB+-Tree [Rao and Ross, 2000] is
equally suitable.

5.3.2 State Model

The operational mode of a SMIX depends on its need to adapt itself to the workload.
A SMIX is well adapted to the workload if it can serve the majority of queries with
an efficient Partial Index scan, i.e. if its behavior resembles that of a standard index.
Accordingly, we define the percentage of the recent queries that could be answered
with a Partial Index scan as the Partial Index hit rate. If the Partial Index hit rate
of a SMIX is low, the SMIX will operate in unstable mode and try to adapt to the
workload. If the Partial Index hit rate is above a given threshold θ, the SMIX operates
in stable mode. Depending on its Partial Index hit rate, a SMIX switches between
both states. A SMIX measures its Partial Index hit rate h using a ring bitmap B
with a configurable time frame t so that h = |{x|x ∈ B ∧ x = 1}| · t−1. Table 5.2
summarizes the most important characteristics of the two operational states.

Unstable State In the unstable state, the SMIX has a low Partial Index hit rate,
which results directly from the low number of SMIX accesses that are processed by a
Partial Index scan. This means that the index needs to adapt to the current workload.
The SMIX builds up and maintains the Partial Index and the additional Index Buffer
to temporarily speed-up the high number of table scans. In effect, the SMIX occupies
resources in the index space as well as in the buffer space. To force the SMIX into
the stable state in a reasonable amount of time, the SMIX desists displacing entries
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Table 5.2: State characteristics of a SMIX.

Unstable Stable

Partial Index hit rate low high
% index scans low high
% table scans high low
Need to adapt high low
Index Buffer present yes no
Counter Table present yes no
Partial Index build-up yes yes
Automatic displacement on Partial Index no yes

from the Partial Index automatically. (Nevertheless, the SMIX displaces Partial Index
entries if it is forced to by the SMIX manager.)

Stable State The stable state is characterized by a high Partial Index hit rate, which
means that the SMIX serves most queries with an efficient Partial Index scan. This
implies a low probability of expensive table scans. Therefore, the SMIX discards the
Index Buffer and the Counter Table and solely relies on the Partial Index. In effect,
the SMIX occupies resources in the index space only. The SMIX further builds up
the Partial Index, in case unindexed values are queried. Additionally, it automatically
displaces the most infrequently accessed Partial Index entries. Since these entries
obviously do not fit the current workload anymore, they are not worth keeping. The
goal of a SMIX is to get into the stable state, to serve the current workload most
efficiently.

5.3.3 SMIX Scan

Traditionally, the database system accesses the requested data either via a full table
scan or by scanning a full-column index. Our approach combines both access paths in
a single SMIX scan. During the SMIX scan, the Partial Index and the Index Buffer
gather indexing information, which is used to speed up subsequent SMIX scans.

A SMIX scan consists of two phases. In the first phase, the SMIX scans the Partial
Index for the queried value. If the value is found in the Partial Index, the result of
the Partial Index scan answers the query. In our implementation, the Partial Index
scan is a traditional index scan over a B*-Tree. In the second phase, the SMIX scans
the Index Buffer and the table for the queried value in case the Partial Index scan
was negative. Like the Partial Index scan, the Index Buffer scan is a traditional index
scan over a B*-Tree in our case. The table scan, though, performs three additional
actions besides searching for tuples with the queried value. (1) The table scan skips
all pages with a Counter Table entry equal to zero. (2) The table scan indexes all
unindexed tuples of pages with the lowest Counter Table entries in the Index Buffer.
(3) The table scan indexes all qualifying tuples in the Partial Index.
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Algorithm 5 SMIX scan.

1: procedure SmixScan(R, q, IX , B, C) � R: set of pages to scan

2: � q: queried predicate

3: � IX : Partial Index

4: � B: Index Buffer

5: � C: Counter Table

6: Q← IX .Scan(q) � Partial Index scan

7: if Q = ∅ then � If no matches found in Partial Index

8: I ← SelectPagesForIndexBuffer(C) � Select pages for Index Buffer

9: for t ∈ B do � Index Buffer scan

10: if q(t) then � If tuple matches predicate

11: Q← Q ∪ {t} � Add tuple to result set

12: B.Remove(t) � Remove tuple to Index Buffer

13: IX .Add(t) � Add tuple to Partial Index

14: for p ∈ R with C[p] > 0 do � Table scan

15: for t ∈ p do � Page scan

16: if q(t) then � If tuple matches predicate

17: Q← Q ∪ {t} � Add tuple to result set

18: IX .Add(t) � Add tuple to Partial Index

19: C[p] -- � Decrement Counter Table

20: else if p ∈ I ∧ t /∈ IX then � If page should be indexed

21: B.Add(t) � Add tuple to Index Buffer

22: C[p] -- � Decrement Counter Table

23: return Q � Return result set

Algorithm 5 shows the SMIX scan in detail. Given is a query with predicate q,
operating on the pages in R, the Partial Index IX , the Index Buffer B, and the
Counter Table C. The algorithm has two phases. In the first phase, the SMIX scans
its Partial Index (line 6). If the Partial Index contains entries matching q, the SMIX
scan is done and returns the result of the Partial Index scan. If the Partial Index
result is empty instead, the SMIX performs the second phase. As preparation, the
SMIX determines the pages that should be fully indexed during this scan (line 8).
Thereafter, the SMIX scans its Index Buffer (line 9) and the table (line 14). Index
Buffer and table can be scanned in parallel. However, this may cause touching tuples
twice, because the table scan adds entries to the Index Buffer. The Index Buffer
scan adds all qualifying tuples to the result and moves them to the Partial Index.
The table scan also adds all qualifying tuples to the result and to the Partial Index.
Additionally, if the scanned page was selected to be completely indexed, the table
scan adds all non-qualifying tuples that are not already indexed in the Partial Index
to the Index Buffer. For all tuples added to either of the indexes, the scan decrements
the page’s counter in the Counter Table. Finally, the SMIX returns the result.
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A SMIX scan operates in the unstable state as described. In the stable state, the
SMIX performs only a table scan in case the Partial Index scan was negative. It does
not scan or maintain an Index Buffer. For range predicates the SMIX scan always has
to perform a table scan, because the Partial Index may not cover the complete range.

The number of pages the SMIX indexes in the Index Buffer in each table scan
depends on the Partial Index hit rate. The lower the Partial Index hit rate is, the
more table scans require speedup, the more pages we want to be completely indexed
after the next table scan. Accordingly, the SMIX determines the number of pages
as θ−h

θ ·
b
x , where h is the SMIX’s current Partial Index hit rate, θ is the configured

threshold for the stable state, b is the total number of pages in the table, and x is
a damping factor. For x = 1 the SMIX would complete the indexing of all pages
in the first scan after initialization, for x = 2 it is half of the pages, for x = 3 one
third and so on. We found x = 2 to be a practical setting. Note that this approach
quickly increases the number of pages that can be skipped in the table scan; it has
no influence on the improvement of the Partial Index hit rate, nor does it facilitate
reaching the stable state.

5.3.4 Displacement

While SMIXs grow incrementally, SMIXs are also able to shrink. Shrinking is crucial
for the constant adaptation to a shifting workload. By displacing index entries that are
not worth keeping for the current workload or an evolved schema, SMIX frees storage
and maintenance resources, which can be spent on index entries that are more valuable
for the current workload. Displacement is triggered in two ways: forced displacement
and automatic displacement. The SMIX manager orders forced displacement to keep
a SMIX within its resource quotas. Every time a SMIX indexes new data and requires
more space, the SMIX manager checks the quotas and triggers a forced displacement
if required. The SMIX itself performs automatic displacement to remove scarcely used
index information. With every query a SMIX processes in the stable state, the SMIX
checks if some index information can be displaced. A SMIX implements different
displacement strategies for its Partial Index and its Index Buffer. Both strategies are
explained in the following.

Partial Index Displacement The Partial Index contains the index entries most
valuable to the current workload. Once the SMIX is in the stable state, it reflects the
current workload and serves the majority of queries. However, when the workload
shifts, Partial Index entries created in the previous workload episode may not be
valuable to the current workload episode. To discard these entries from the Partial
Index in an efficient way, the SMIX can remove the least frequently accessed leaf
nodes from the Partial Index. Discarding a leaf node removes the range of values
from the Partial Index that have their entries in that node. This may also include
valuable entries, but the overhead of tracking the value of single entries would be
prohibitively high and truly valuable entries will return soon.
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Table 5.3: SMIX maintenance.

t ∈ IX t /∈ IX
t′ ∈ IX t′ /∈ IX t′ ∈ IX t′ /∈ IX

IX .Update(t, t′) IX .Remove(t) IX .Add(t′) -

p ∈ B p′ ∈ B - B.Add(t′) B.Remove(t) B.Update(t, t′)
p′ /∈ B - C[p′]++ B.Remove(t) B.Remove(t), C[p′]++

p /∈ B p′ ∈ B - B.Add(t′) C[p]-- B.Add(t′), C[p]--
p′ /∈ B - C[p′]++ C[p]-- C[p]--, C[p′]++

More specifically, the Partial Index discards a leaf node in five steps. (1) It selects
the leaf node that should be displaced. (2) It removes the referencing entry from
the leaf node’s parent node. (3) It frees the page the leaf node was stored in. (4)
It removes overlapping entries from the neighboring leaf nodes. (5) It increments
Counter Table entries accordingly for every page that is referenced in the leaf node
and the overlapping entries.

The crucial step is the selection of the leaf node to discard. To discard the leaf
node that is of least worth to the current workload, the SMIX selects the node least
recently used by a query. For that purpose the SMIX maintains the historic mean
access interval (∆) and the current mean access interval (∆̂) for all leaf nodes of its
Partial Index. The higher both measures, the less a node was recently used. Both
measures are explained in detail in Section 5.4.1. For forced displacement, the SMIX
removes the leaf nodes with the highest ∆̂ values. For automatic displacement, the
SMIX removes leaf nodes whose ∆̂ exceed its ∆ by a factor α: ∆̂/∆ > α. The factor
α controls the aggressiveness of automatic displacement on Partial Indexes; the lower
α, the more aggressively the SMIX discards leaf nodes.

Index Buffer Displacement The Index Buffer is a supporting structure held in
memory only, which helps a SMIX during time of adaptation. More specifically, its
index entries are gap fillers to complement the entries of the Partial Index so that
the pages are fully indexed and can be skipped in a table scan. Discarding a whole
node of Index Buffer entries would cause many pages not to be completely indexed
anymore, which would defeat the purpose of the Index Buffer without freeing many
resources. Thus such a fine-grained displacement is not possible for the Index Buffer.
In consequence, the SMIX simply discards the whole Index Buffer. Discarding the
Index Buffer does not hurt the stability of a SMIX, it merely slows the SMIX on the
next table scans, because it can skip less pages. A SMIX discards its Index Buffer
if it is ordered to do so by the SMIX manager (forced displacement), or if it enters
the stable state (automatic displacement), since a SMIX does not maintain an Index
Buffer in the stable state (cf. Section 5.3.2).

119



5 SMIX – Self-Managing Indexes

5.3.5 Maintenance

A SMIX maintains the Partial Index, Index Buffer, and Counter Table during inserts,
updates, and deletes. Which operation the SMIX has to perform depends on (1) if
the old tuple t was in the Partial Index, (2) if the updated tuple t′ will be in the
Partial Index, (3) if the old page p that contained the updated tuple is covered by the
Index Buffer, and (4) if the new page p′ that will contain the new tuple is covered by
the Index Buffer. Table 5.3 lists the different maintenance scenarios with necessary
operations.

5.4 SMIX Manager

With the SMIXs acting individually and independent from each other, the SMIX
manager takes on the task of supervising the whole population of SMIXs present in a
system. The main goal of the SMIX manager is to ensure that the globally granted
resources for SMIXs are not exceeded. The SMIX manager determines resource quotas
for every SMIX and enforces these quotas.

5.4.1 Resource Quotas

Resource quotas define how much storage and memory each SMIX can occupy in the
index space and the buffer space, respectively. Depending on its state, a SMIX gets
a specific share of both storage and memory (unstable), or only of storage (stable).
For each SMIX, the SMIX manager continuously calculates the shares. The shares of
a SMIX reflect (1) how often the SMIX is used and (2) the size of the column the
SMIX indexes.

We determine the usage of a SMIX with the same measures used for the displacement
in a Partial Index: the historic mean access interval ∆ and the current mean access
interval ∆̂. For both, consider Figure 5.8. Looking at a history of all accesses to
all SMIXs in a system, we can determine how frequently a particular SMIX is used
by averaging the length of the intervals between accesses to this SMIX. For this,
the SMIX manager maintains a history H = [δ1, . . . , δl] of the recent access interval
lengths δi for each SMIX, so that δ1 presents the most recent access interval and l is
the maximum history length maintained. Additionally, every SMIX has a counter
δnow, which the SMIX manager increases with every access to any of the other SMIXs.
If a SMIX is accessed, its δnow becomes the new first entry of the history, so that
H = [δnow, δ1, . . . , δl−1]. The historic mean access interval ∆ of a SMIX is the mean
of its history, ∆ = (δ1 + . . .+ δl) · l−1. The smaller ∆, the more frequently a SMIX is
accessed. In the example shown in Figure 5.8, the considered SMIX has a history of
[7, 3, 8, 6], δnow = 4 and ∆ = 6.

The historic mean access interval ∆ already gives a good measure of how frequently
a SMIX is used. However, ∆ only reflects the past, i.e. accesses that happened. If
a SMIX is not accessed anymore because of a workload change, it will keep a small
∆. To consider also a SMIX’s current interval between the last access and the next
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Figure 5.8: Mean access interval measures.

access to come, we distinguish two cases: either (1) the expected point for the next
access is still to come (δnow ≤ ∆), or (2) has already past (δnow > ∆). In the first
case, we stick with the expected interval and assume the current interval to equal ∆.
In the second case, we know the expectation is wrong and the current interval is at
least as long as δnow. The current mean access interval ∆̂ of a SMIX is the mean of
its history including the current interval:

∆̂ =

{
∆ δnow ≤ ∆
δnow+δ1+...+δh

h+1 δnow > ∆

The size s of the SMIX indexed column is calculated from the number of tuples k
in the corresponding table and the column width l: s = kl. A SMIX is worth higher
shares than other SMIXs if it is accessed more frequently and if it has to cover a
larger amount of data compared to other SMIXs. Hence, in a SMIX population P ,
the share of a SMIX is:

ω =
∆̂−1s∑
P ∆̂−1s

The population P encompasses all SMIXs for the index space and all unstable SMIXs
for the buffer space, resulting in two shares ωIS and ωBS, respectively. Based on these
two shares, the SMIX manager grants each SMIX a number of pages in the index
space and in the buffer space as resource quotas.

5.4.2 Quota Enforcement

With the help of the quotas, the SMIX manager determines which SMIX can grow
and which SMIX has to shrink. However, because of the different displacement
characteristics, the enforcement of the individual quotas for index space and buffer
space differs too. In the following, we describe the enforcement for both spaces in
detail.

Quota Enforcement in Index Space The index space hosts Partial Indexes only.
Partial Indexes grow and shrink moderately, which allows an optimistic enforcement
of the quotas. Requests for new Partial Index pages are always granted to a SMIX
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regardless of its quota. If the available index space is exhausted, the SMIX manager
will order forced single-page displacements until the required number of pages is
free. For every displacement, the SMIX manager selects a SMIX following two rules:
(1) If SMIXs exceed their quota, the SMIX manager will pick the SMIX with the
largest relative excess. (2) If multiple SMIXs have the same relative excess, the SMIX
manager will pick the least recently used SMIX among them (highest ∆̂). The selected
SMIX decides which specific page it will displace (see Section 5.3.4).

Quota Enforcement in Buffer Space The buffer space hosts unstable SMIXs,
specifically Counter Tables and Index Buffers. Both account for the quota of a
SMIX. Counter Tables change their size only in case of inserts to the table, and are
only displaced if the SMIX reaches the stable state. In case the quota of a SMIX is
too low to fit its Counter Table, the SMIX manager removes Index Buffer and Counter
Table completely. However, the manager keeps determining the SMIX’s quota, so
that the SMIX may be allowed to initialize again later. In contrast to Counter Tables,
Index Buffers change their size rapidly. On the one hand, an Index Buffer grows
rapidly if the SMIX is below its quota in the buffer space and completes indexing
for many pages in each table scan. On the other hand, an Index Buffer shrinks
suddenly to zero size if the SMIX manager forces its displacement. In consequence,
the SMIX manager enforces the buffer space quotas pessimistically to avoid excessive
displacement. Requests for new Index Buffer pages are granted to a SMIX as long as
the SMIX does not exceed its quota. This strategy prevents a SMIX from actively
exceeding its quota. However, a SMIX can passively exceed its quota should the
quota change. After each recalculation of the buffer space quotas, the SMIX manager
determines which SMIXs exceed their quota and orders a forced displacement of one
of them. To select the SMIX that will have to displace its Index Buffer, the SMIX
manager applies the same two rules as in the index space (largest relative excess and
least recently used). A more elaborate management of Index Buffers as an extension
to SMIX is discussed in the following section.

5.5 Partitioned Index Buffer

With various SMIXs in a database, multiple Index Buffers are created over time. All
Index Buffers reside in the buffer space, which is a share of the database buffer of
limited size. The SMIX manager assigns to each SMIX a quota for its Index Buffer. If
Index Buffers exceed their quotas, the SMIX manager removes one of them completely
from the buffer space with a forced displacement. Obviously, this is not an ideal
strategy as many still useful Index Buffer entries are discarded. Partitioned Index
Buffers allow the SMIX manager (1) to enforce the quotas with less radical means,
and (2) always to have the most benefical entries in an Index Buffer. The general
procedure of quota enforcement remains the same, though. The SMIX manager
controls the total size of the buffer space before SMIXs add new entries with a tables
scan. In case the new entries would cause the buffer space to exceed its allowed size,
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the SMIX manager discards index information from the buffer space to maintain the
limit.

5.5.1 Precise and Efficient Index Buffer Displacement

The purpose of the Index Buffer is to allow page skipping during a table scan. A
single entry in the Index Buffer can reference multiple pages. Further, a single page
can be referenced by multiple index entries. Hence, discarding a single entry from
the Index Buffer has a double negative effect. First, one or more pages obtain an
unindexed tuple and cannot be skipped anymore. Second, all other entries in the
Index Buffer referencing these pages occupy memory in the buffer space without
creating any benefit. In consequence, discarding single entries from the Index Buffer
contradicts the buffer’s purpose. Discarding the complete Index Buffer, in contrast,
is overacting; an excessive management intervention that goes beyond that what is
actually necessary.

For the precise and efficient discarding of entries from an Index Buffer, we partition
the B*-Tree of an Index Buffer. Each partition covers P pages of the table, so that,
the partitions are disjoint in the sets of pages they reference. For instance, if an index
entry in partition 3 references page 8, all other Index Buffer entries that reference
page 8 are in partition 3, too. In case the SMIX manager decides to discard index
information, it always drops complete partitions from the buffer space. This efficiently
discards all entries that reference a set of pages.

Figure 5.9 shows an example with two Index Buffers in the buffer space. The first
Index Buffer belongs to the SMIX on column X and is partitioned in three partitions.
Each partition indexes P = 2 pages. For instance, partition 1 indexes the three tuples
in page 1 and page 7 that are not covered by the Partial Index. The second Index
Buffer belongs to the SMIX on column A and is partitioned in two partitions. Note
that, similar to normal secondary indexes, it is insignificant for the separation of
Index Buffers whether the columns are in the same table or not.

5.5.2 Management of Buffer Space

The buffer space is managed based on the benefit and the size of index information.
New index information can discard old index information of the same or larger size
if it provides more benefit than the old index information. The benefit of index
information in the Index Buffer is determined by on two factors: (1) the number of
pages covered by the index information, and (2) how frequently the index information
is used. The higher these factors are, the more pages the workload can skip. The size
of the index information is the amount of memory it requires to be stored. Generally,
the number of entries in an index determines the size of the index.

The frequency with which an Index Buffer is used is determined by its current
mean access intervals (cf. Section 5.4.1). For the partitioned Index Buffer, the SMIX
manager maintains current mean access intervals for Partial Index and Index Buffer
with separate access histories. ∆̂IX is the current mean access interval for a Partial
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Figure 5.9: Partitioned Index Buffers.

Index, used for the quota determination in the index space. It reflects every access to
a SMIX, regardless whether a query hit the Partial Index or not. In contrast, the
current mean access interval for an Index Buffer ∆̂B reflects only access to the Index
Buffer of a SMIX. ∆̂B does not take into account queries that a SMIX can answer
with the Partial Index because they do not utilize the Index Buffer. To emphasize
the difference beween the two, Table 5.4 summarizes the operations performed on the
access histories of the SMIXs according to whether the Partial Index of the queried
column is hit or not. For simplicity, H[0] takes the role of δnow here. As a consequence
of the separate histories, a heavily used, stable SMIX with a well adapted Partial
Index will have a low ∆̂IX but a high ∆̂B. While for an unstable SMIX ∆̂IX and ∆̂B

will be alike. Note, ∆̂IX is never larger than ∆̂B.

Further, let the number of pages covered by a partition p be Xp. Then, the benefit
of partition p results from bp = Xp · ∆̂−1B where B is the Index Buffer the partition
belongs to. Accordingly, the benefit of an Index Buffer B is the sum of the benefits of
its partitions:

bB =
∑
p∈B

bp .
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Table 5.4: Operations on access histories.

SIMX of queried column SMIX of other columns

Partial Index hit
shift(HIX , +1); HIX [0] = 0 HIX [0]++
HB[0]++ HB[0]++

no Partial Index hit
shift(HIX , +1); HIX [0] = 0 HIX [0]++
shift(HB, +1); HB[0] = 0 HB[0]++

Similar to partitions, the benefit of new index information results from bI = |I| · ∆̂−1I ,

where I is the set of pages to index and ∆̂I is the mean access interval of the Index
Buffer that will accommodate the new index information.

For the size of index information, we denote the number of entries in a partition
p as np. Analogously, the size of new index information results from the number of
entries to add, denoted as nI . Based on the counters for unindexed tuples in pages,
the system can easily determine nI as

∑
s∈I

C[s] .

Further, let nF be the free space left in the buffer space.

Before the system adds new index information to the Index Buffer, it has to select
the pages it wants to index. At that point the SMIX manager also checks the space
bound of the buffer space and triggers displacement of old index information if required.
The page selection routine ensures that there is enough buffer space available to index
the pages it returns.

The management strategy of the partitioned Index Buffer wants to achieve two
conflicting goals. On the one hand the Index Buffer should index as many pages as
possible to be useful quickly. On the other hand existing index information should
stay in the Index Buffer as long as possible to be present if needed. To balance
between both goals, the SMIX manager indexes precisely the right number of pages
so that the resulting new index information is more benefical than the old index
information that the SMIX manager must discard to clear the space required for the
new index information. Additionally, there is a configurable upper bound for new
index information per table scan.

Algorithm 6 shows the page selection routine for partitioned Index Buffers. It
returns the set I of pages for indexation (line 20) and discards a set D of partitions
to ensure that enough space is available (line 19). To determine I and D, the routine
iteratively adds partitions to D (line 11). In each iteration the algorithm performs
three steps. First, the algorithm determines the available space in the Index Buffer –
total size of the partitions in D plus free space (line 8). Second, it selects the set of
pages I so that the new index information will fit in the available space (lines 12–17).
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Algorithm 6 Select pages for indexation.

1: procedure SelectPagesForIndexBuffer(R, C, S)
2: � R: set of pages to scan

3: � C: counter table

4: � S: set of all partitions in buffer space

5: D′ ← ∅ � D′: set of collected candidate partitions

6: I ′ ← ∅ � I ′: set of collected candidate pages for Index Buffer

7: repeat � Partition selection loop

8: nA ← nF +
∑

p∈D′ np � Determine available space

9: bI′ ← |I ′| · ∆̂−1I′ � Determine benefit of candidate pages

10: D ← D′ � D: set of partitions to remove

11: D′ ← D′ ∪ {SelectNextPartition(S)} � Add next candidate partition

12: I ← I ′ � I: set of pages for Index Buffer

13: I ′′ ← I ′ � I ′′: set of candidate pages for page selection loop

14: repeat � Page selection loop

15: I ′ ← I ′′

16: I ′′ ← I ′′ ∪ {SelectNextPage(C,R)} � Add next page candidate

17: until nI′′ > nA ∨ |I ′′| > IMAX
� As long as space is available

18: until bI′ ≤
∑

p∈D′ bp ∨ I ′ = I � As long as benefit increases

19: DropPartitions(D) � Remove partitions

20: return I � Return set of pages for Index Buffer

Specifically, the algorithm adds pages in ascending order of the counter C as long as

nI ≤ nF +
∑
p∈D

np .

At most the SMIX indexes IMAX pages during one table scan. Third, the algorithm
determines the benefit of the new index information bI resulting from an indexation
of the pages in I (line 9). The algorithm repeats the three steps as long as the benefit
of indexing the pages in I is higher than the benefit of the partitions in D

bI >
∑
p∈D

bp

or until I does not change anymore (line 18).

The SMIX manager selects each partition in D following a two-staged selection
algorithm. In the first stage, the algorithm randomly selects an Index Buffer B with
the probability

b−1B∑
B′∈S\BN

b−1B′
,

where S is the set of all Index Buffers in the buffer space, and BN is the Index Buffer
the new entries should be added to. Index Buffers with a low benefit are more likely
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Table 5.5: SMIX base configuration.

Parameter Value

Size of index space 64 MB
Size of buffer space 128 MB
Threshold θ 95 %
Time frame t 200
Displacement factor α ∞
History length n 3

to be picked. In the second stage, the algorithm selects a partition from that Index
Buffer. A possible incomplete partition (Xp < P ) has the lowest benefit within an
Index Buffer and will be picked first. Afterwards, complete partitions are picked in
descending order of their size (np), beause they have the same benefit.

5.6 Evaluation

To evaluate the SMIX infrastructure, we conducted a series of experiments. This
section presents the results of this evaluation. We start giving an overview of our
prototype and describe the setup that we used for our experiments in Section 5.6.1. In
Section 5.6.2, we present a basic experiment to illustrate the behavior and the inner
workings of a single SMIX, especially its ability to adapt to a changing workload. Based
on this experiment, we investigate the influence of the different SMIX parameters in
Section 5.6.3. In Section 5.6.4, we evaluate a set of common workload patterns for a
single SMIX. To evaluate the SMIX manager, we extend these workload patterns in
Section 5.6.5 to a more complex scenario, which involves multiple SMIXs. All these
experiments are based on the basic version of SMIX using an unpartitioned Index
Buffer. We evaluated the partitioned Index Buffer separately; results are presented in
Section 5.6.6.

5.6.1 Setup

We implemented our prototype of SMIX in PostgreSQL 9.0.2. In the prototype, SMIXs
are the new default access path available by default on every column. Implementation-
wise, our prototype reuses the existing heap scan code and B*-Tree code of PostgreSQL
as much as possible. We ran all experiments on an Intel Core i7 processor at 3.4 GHz
with 8 GB of DDR3 main memory and a 1 TB hard drive. We used Microsoft
Windows 7 64 bit edition as the operating system.

For all experiments, we used a common data setup, which consists of a single table
with three INTEGER columns A, B, and C for indexing and one VARCHAR(512)
column as payload. The integer columns are the column queried. The payload data
represents descriptive attributes of the entities not used in selection predicates. All
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Figure 5.10: Query execution time and Partial Index hit rate.

three integer columns are populated with random values uniformly distributed from 1
to 50 000. The size of the payload values is also uniformly distributed from 1 to 512
byte. We filled the table with 5 000 000 tuples, resulting in an effective table size of
1.5 GB on disk. In the base configuration, the database system is configured to use
256 MB of shared buffers. Furthermore, the base configuration encompass an initial
setting for all the parameters listed in Table 5.5. The base configuration applies to all
experiments unless stated otherwise.

5.6.2 General Performance

Our initial experiment illustrates the general behavior and performance of a single
SMIX and how it adapts to a changing workload. In the experiment we run a workload
consisting of two subsequent episodes. Each workload episode is a set of 5000 queries
in the form of SELECT COUNT(*) FROM R WHERE c=x. For every query, we pick x
randomly from an equally distributed continuous range of the domain of column c. In
the first episode x ∈ [1000, 2000] and in the second episode x ∈ [25 000, 26 000]. We
used the base configuration, except the size of the buffer space was reduced to 64 MB.
For all 10 000 queries, we measured the execution time, the Partial Index hit rate, the
Partial Index size, and the Index Buffer size. We compare our measurements with
two baselines: the traditional table scan and the traditional full-column index.

Figure 5.10 shows the execution time and the Partial Index hit rate over the course
of the workload. The traditional table scan and the traditional full-column index
exhibit a constant execution time over the complete workload of about 1200 ms and
1 ms, respectively. The execution time remains constant, since the two traditional
access paths treat every query equally and do not adapt to the workload. In contrast,
the execution time of the SMIX varies over the course of the workload. The figure
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shows the exact execution time of each query (thin blue line without markers) and
the sliding average of 100 queries (green line with circle markers). With the first
query, the SMIX initializes its Counter Table and indexes the first value in the Partial
Index. With the second query, the SMIX indexes about half of the table into the main
memory-based Index Buffer because it has a low Partial Index rate and plenty of
buffer space available in the beginning. In consequence, the SMIX execution times of
the first two queries (1250 ms and 4880 ms, respectively) exceed the traditional table
scan. From the third query on, the execution time of the SMIX is significantly lower
than the table scan. When the SMIX has to perform a table scan, it takes about
650 ms to answer the query because the SMIX, still in its unstable state, can leverage
the Index Buffer and skip pages during the table scan. Otherwise, if the query hits
the Partial Index, the execution time is below 1 ms and therefore comparable to a
traditional index. Over the course of the workload, the SMIX collects an increasing
share of the queried values in the Partial Index. Consequently, the Partial Index hit
rate increases and the average execution time drops quickly below 100 ms.

With query 3196, the Partial Index hit rate exceeds the threshold θ and the SMIX
changes into the stable state. Within the process, the SMIX discards its Index Buffer
and Counter Table. Without its two helping structures, the SMIX cannot skip pages
to speed up the table scan. Consequently, the SMIX execution time in the case of a
table scan jumps to 1200 ms. When already well adapted to the current workload,
though, the SMIX can answer the majority of queries with a Partial Index scan. The
average execution time stays at the low level and drops even further below 50 ms as
the SMIX keeps indexing new values in the Partial Index. As is clearly visible in the
figure, the decreasing number of spikes indicates that the SMIX has to perform table
scans less frequently towards query 5000.

With query 5000, the workload switches to the next episode. None of the values
indexed in the SMIX’s Partial Index is queried anymore. The Partial Index hit rate
drops instantly below the threshold and the SMIX changes into the unstable state
again. Within a few queries, the SMIX rebuilds its Index Buffer. The adaptation
process repeats.

Figure 5.11 shows the cumulative execution time for the SMIX and the two
traditional access paths in comparison. As can be seen, the SMIX quickly becomes
worthwhile. With the 10th query, its cumulative execution time falls below the table
scan. The bump at query 5000 reflects the cost of re-adaptation. As expected, the
traditional full-column index requires less execution time – aside from its creation.
In our experimental setting a full-column index on column A requires approximately
107 MB disk space. In comparison, the Partial Index consumes about 3 MB after the
first workload episode and 6 MB after the second episode, as illustrated in Figure 5.12.
In total, the Partial Index consumes about 10 % of the configured 64 MB available
index space. Figure 5.12 shows the amount of memory consumed by the Index Buffer
over the course of the workload. Following its nature as an intermediate supporting
structure, the Index Buffer consumes all the available buffer space of 64 MB while the
SMIX is in the unstable state. In this experiment, the SMIX shows a good adaptation
behavior and proves its ability to quickly detect and adapt to workload changes.
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Figure 5.12: Size of Partial Index and Index Buffer.

5.6.3 Parameter Impact

In the next set of experiments we want to investigate the impact of three important
SMIX parameters: the size of the buffer space, the stability threshold θ and the Partial
Index displacement aggressiveness factor α. All three parameters have influence on
the overall adaptation performance. We used the base SMIX configuration (Table 5.5)
and the same workload episodes as in the previous experiment. In the following we
describe the effects of different settings for each parameter.
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Figure 5.13: Query execution time for different buffer space sizes.

Size of Buffer Space Figure 5.13 shows the execution times (smoothed over a period
of 100 queries) for three different sizes of the buffer space. We configured the buffer
space with 16 MB, 64 MB, and 128 MB. If Index Buffer indexes all remaining tuples
of the relation it would take up to 140 MB. Hence, the buffer space is truely limited
in any of the three settings. Because the buffer space is only utilized if a SMIX is in
the unstable state, we see big differences in the early adaptation stage. The 128 MB
configuration shows the best performance for the first queries of an episode because
the Index Buffer is able to index many of the remaining tuples quickly, which allows
subsequent table scans to skip most of the pages. At this point, the SMIX operates
close to the speed of an index scan. The opposite can be observed at the 16 MB
setting. Here, the Index Buffer is able to index merely 1 % of the remaining tuples.
This results in a much longer execution time in the early adaptation stage. The often
necessary table scans are not able to skip many pages. The larger the buffer space,
the better the adaptation behavior. Nevertheless, memory is a costly resource and
the buffer space size should be set carefully.

Stability Threshold θ In Figure 5.14 we visualized the smoothed execution times for
various settings of the stability threshold θ. We ran the experiments for a threshold
of 50 %, 75 %, and 95 %. For this experiment, we see differences as soon as the SMIX
enters the stable state. The main observation is that a low threshold of 50 % leads
to higher execution times in the early stable stage. This poor performance happens
because only 50 % of the queried values hit the Partial Index. Thus, the SMIX needs
to invoke a table scan for the other 50 % of the queries, which are not able to skip any
pages since the Index Buffer was dropped when the SMIX entered the stable state.
In our experiments, a threshold value of 95 % turned out to be the best solution.
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Figure 5.14: Query execution time for different stability thresholds θ.
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Figure 5.15: Partial Index size for different settings of α.

Partial Index Displacement Aggressiveness α In this experiment we investigated
the influence of the automatic displacement, which was disabled in all previous
experiments for reasons of simplicity. Because automatic displacement is only allowed
in the stable state, we see differences only in the stable stages of the experiment.
Figure 5.15 shows the Partial Index size of the SMIX for the settings of 5, 10, and 15.
A low α means a high aggressiveness. With α set to 15, we observe a slow displacement
of unused Partial Index entries at the end of the second episode. For settings of
10 and 5, the experiment shows a much faster displacement in the second episode.
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Figure 5.16: Query execution time and Partial Index hit rate on widening workload.

However, the more aggressive displacement also leads to displacements in the first
episode, where it affects Partial Index entries that are used by the workload. As a rule
of thumb, we recommend α = 15 because it is not critical to perform an automatic
displacement of stale index information as soon as possible.

5.6.4 Workload Patterns

In this set of experiments, we analyzed the adaptation process for a set of typical
workload types. We start with a workload that extends the range of queried values in
a single blow. The next workload moves its value range slowly to another position.
And finally we investigated a workload that queries a set of scattered values.

Widening Workload In the first episode this workload queries a continuous range
of x ∈ [1000, 2000]. The following episode doubles this range to x ∈ [1000, 3000]
and still includes the range of the first episode. Both episodes execute 5000 queries.
Figure 5.16 shows the measured execution time and the corresponding Partial Index
hit rate. After the first episode the SMIX is well adapted to the workload. As soon as
the workload extension happens, the Partial Index hit rate drops below the threshold
and ends near 50 % because the Partial Index already indexed half of the value range
during the first episode. This falling Partial Index hit rate puts the SMIX into the
unstable state, where it uses an Index Buffer to boost the necessary table scans. After
query number 9282, the Partial Index hit rate passed the threshold and the SMIX
re-enters the stable state and the adaptation to the workload extension is finished.

Shifting Workload This workload consists of three episodes. (1) 3000 queries on
a continuous range of x ∈ [1000, 2000]. (2) 6000 queries on a continuous range that
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Figure 5.17: Query execution time and Partial Index hit rate on shifting workload.

slides linearly from x ∈ [1000, 2000] to x ∈ [1500, 2500]. (3) 1000 queries on the final
range of the previous episode. Figure 5.17 visualizes execution time and Partial Index
hit rate for this workload. At the end of the first episode, the SMIX is well adapted.
With the beginning of the next episode, the queried range starts to move slowly. It
takes about 1000 queries for the SMIX to detect this slow workload change. After
this detection period, the SMIX rebuilds an Index Buffer to support the adaptation
process. Once the workload shift is done at the end of the second episode, the SMIX
is back in the stable state.

Scattered Workload In many cases, queries are executed on scattered values rather
than continuous ranges. Again, the workload consists of two episodes. Each episode
consists of 5000 queries on randomly preselected values. Figure 5.18 shows the
experimental results. Compared to previous experiments on continuous ranges, we
observe a faster rising Partial Index hit rate, but no other visible difference to a
workload on a continuous value range.

5.6.5 Complex Scenario

We evaluated the SMIX manager using a more complex workload that involves SMIXs
on columns A, B, and C of the table R. The workload executes a total of 15 000 queries
and each query has a given probability to hit one of the three columns that changes
after 7500 queries. These probabilities are shown in Figure 5.19(a). Furthermore, a
query on a specific column addresses a value from a uniformly distributed range of 500
continuous values. We used two disjunct value ranges, where each SMIX starts with
the first value range and after a specific number of queries switches over to the second
value range. This mapping is visualized in Figure 5.19(b). For instance, query number
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Figure 5.18: Query execution time and Partial Index hit rate on scattered workload.
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Figure 5.21: Buffer space occupancy in the complex scenario.

8000 has a probability of 60 % to hit SMIXC , and when that occurs x is a random
value in the first value range. For the experiment, we set the size of the buffer space
to 256 MB. The execution time (averaged over a period of 100 queries) is shown in
Figure 5.20. Figure 5.21 shows the corresponding size of the Index Buffer for all three
SMIXs. At the beginning, all SMIXs start in the unstable state. For that reason,
every SMIX builds up an Index Buffer to speed up table scans. Because of the limited
buffer space, all three SMIXs have to compete for the available memory. Therefore,
the SMIX manager assigns a buffer space share to each SMIX. This share mainly
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depends on the access frequency of a SMIX. Consequently, SMIXA receives twice as
much buffer space than SMIXB and SMIXC . After query number 2725 SMIXA is
mostly in the stable state and not involved in the buffer space distribution anymore.
Thus, SMIXB and SMIXC are able to grow and speed up their table scans until
all SMIXs are finally stable after query number 6899. With query 7501, the column
access distribution changes and the value range for column C changes. Therefore,
this SMIX builds up its Index Buffer again. It does not have to compete with other
SMIXs since all of them are stable. 1000 queries later, SMIXB also changes its value
range and starts to compete with SMIXC . Finally, SMIXA joins this competition,
too. Shortly afterwards SMIXC becomes stable again, so that only SMIXA and
SMIXB are left to compete for buffer space.

5.6.6 Partitioned Index Buffer

The evaluation of the partitioned Index Buffer was done in a different setup. We
implemented the Index Buffer concept prototypically in the H2 Database Engine
1.3 [Mueller, 2012]. We ran all experiments on a machine with an Intel Core 2 Duo
processor at 1.6 GHz, 4 GB of DDR3 main memory, and a 128 GB Samsung SSD. We
used Microsoft Windows 7 64 bit edition as the operating system and Java SE 6 as
the runtime environment.

For all experiments on the partitioned Index Buffer, we again used a single table with
three INTEGER columns A, B, and C for indexing and one VARCHAR(512) column as
payload. The integer columns are populated with random values uniformly distributed
from 1 to 50 000. The size of the payload values is also uniformly distributed, but
ranges from 1 to 512 bytes. We filled the table with 500 000 tuples, resulting in an
effective table size of 220 MB on disk. To isolate the effects of the partitioned Index
Buffer, we turned off the other SMIX features. In each column, the Partial Index
indexes a fixed subset of values, specifically the top 10 % of the value range, i.e. values
from 1 to 5000. In experiments 1, 2, and 3 we queried the unindexed values randomly.
Experiment 4 shows the case where queries also address values covered by the Partial
Index. In each experiment the workload consists of 200 queries.

The first experiment illustrates the basic behavior of a single Index Buffer.
Accordingly, we queried only column A. The buffer space was set to unlimited size,
IMAX = 5000 pages were indexed at most during a table scan, and each Index Buffer
partition indexed a maximum of P = 10 000 pages. For each query, we measured
the execution time of individual queries, the total number of entries in the Index
Buffer, and the number of pages that were skipped. Figure 5.22 shows the results.
For comparison, the figure also shows the execution time of the same queries without
the Index Buffer. As can be seen, the first couple of queries exhibit a slightly high
execution time, but quickly the execution time drops below the level of the table scan.
The obvious reason is the Index Buffer, which indexed an increasing number of tuples.
The table scans are quickly able to skip a large number of pages. Since the buffer
space is of unlimited size in this experiment, all pages are completely indexed after 20
queries. At that point, the query execution time is the same at that of an index scan.
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Figure 5.22: Query execution time with Index Buffer (IMAX = 5000).
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Figure 5.24: Size of three Index Buffers with limited space.

The second experiment shows the influence of the maximum number of pages
indexed per table scan IMAX and the space bound of the buffer space L. We ran this
experiment with the same setting as the first experiment, except that we varied IMAX

and L. The effects of IMAX and L are independent from each other. As Figure 5.23
shows, IMAX determines how aggressively the Index Buffer indexes new pages. The
higher IMAX, the more pages are indexed during one scan. In consequence, the query
execution time drops more quickly within the first 15 queries with higher IMAX. Of
course, the Index Buffer also occupies buffer space more quickly with higher IMAX

(not shown in the figure). The size of the buffer space limits the maximum number
of entries and with it the number of pages that can be skipped. As Figure 5.23 also
shows, the smaller the buffer space, the less the Index Buffer can speed up table scans.

The third experiment shows the Index Buffer management. We ran the workload
of 200 queries on all three columns. Half of the queries select tuples on column A,
one third on column B, and one sixth on column C. After 100 queries, we switched
the query mix to: One sixth on column A, one third on column B, and one half on
column C. The buffer space was limited to 800 000 entries, at most IMAX = 5000
pages were indexed during each table scan, and each Index Buffer partition indexed a
maximum of P = 10 000 pages. Figure 5.24 shows the number of entries in each of the
three Index Buffers. In the first workload period the Index Buffer on SMIX A occupies
more than half of the buffer space. The Index Buffer on SMIX B occupies most
of the remaining buffer space, while the Index Buffer on SMIX C only sporadically
accumulates entries. After the change of the query mix, the situation quickly turns
around. In the second workload period, the Index Buffer on SMIX C rapidly grows to
roughly 55 % of the buffer space and the Index Buffer on SMIX A shrinks practically
to zero.
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Figure 5.25: Size of three Index Buffers with limited space and Partial Index hits on
the SMIX of column A.

The fourth experiment considers the Index Buffer management under the influence of
different Partial Index hit rates. The general setting is similar to the third experiment
except that the queries on column A also query values covered in the Partial Index
on that column. To show the influence of the Partial Index hits on the allocation
of buffer space, we switch the set of values indexed in the Partial Index after 100
queries. Among the first 100 queries, queries on column A hit the Partial Index with
a probability of 80 %. During the following 100 queries the partial index hit rate for
column A queries is only 20 %. The query distribution is fixed during the complete
workload. Specifically, half of the queries run against column A, one third against
column B, and one sixth against column C. The buffer space settings were the same
as in the third experiment. The maximum number of pages to index in one table
scan is IMAX = 10 000 and the maximum number of pages an Index Buffer partition
can index was set to P = 10 000. Figure 5.25 shows the three Index Buffers and their
entries in the buffer space. After the buffer space is filled the Index Buffers competed
for space. For the first period the Partial Index of SMIX A was hit frequently and
the SMIX manager decided to give less space to this Index Buffer. Thus, SMIX B
and SMIX C gain more buffer space, though they are queried less often. This state
changes after 100 queries and the Index Buffer of SMIX A is used more often than in
the first period. As can be seen, the Index Buffer of SMIX A gets more buffer space
and grows quickly after the Partial Index hit rate changes, whereas the Index Buffers
of SMIX B and SMIX C shrink.
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5.7 Summary

With SMIX we have proposed a novel, adaptable, fine-grained, autonomous indexing
infrastructure. It builds on a novel default access path, also called SMIX, which
combines the traditional table scan with index structures. A SMIX exhibits two key
features: First, it automatically indexes the most frequently queried values completely,
and additionally completes indexing of pages during periods of workload adaptation
to lower the cost of necessary table scans. Second, it is able to discard index entries
if they become less useful. With these two features, SMIXs continuously adapt to
the database workload and the database schema and control their resource usage
at the same time. All SMIXs within a SMIX population compete for resources; the
most frequently used SMIX gets the most resources. The SMIX manager component
supervises this competition by continuously determining resource quotas for every
SMIX depending on its usage. The partitioned Index Buffer is an extension to the
SMIX concept that allows an even more subtle management of the resources used for
indexing. In a series of experiments, we evaluated how SMIXs operate and perform.
SMIXs showed significantly better performance than traditional scans. In periods of
constant workload, SMIXs reach the same performance plateau as traditional indexes,
while requiring fewer storage resources if the workload is focused. During periods of
changing workloads or evolving schemas, SMIXs consume additional memory resources
to boost query performance. We strongly believe that the SMIX approach points into
a new direction of how we can build the autonomous indexing infrastructures of the
future, to lower the total cost of indexing in FRDM databases.
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An increasing number of application areas of data management technology demands
flexible and agile schema-comes-second data management. Agile analytics and agile
software development are just two examples. Driven by the restlessness of the Web
and mobile applications, software in general is considered an agile and vivid artifact
constantly in flux. Relational database systems are by far the most successful, popular,
and mature data management technology. Their design, however, originates from
the 1970s when schema-comes-first was common and appropriate for the database
applications at the time. This led to the prescriptive nature relational database systems
still exhibit today. Since prescriptive schema-comes-first thinking is unsuitable in
many application areas today and simply not in vogue anymore, relational database
technology is increasingly perceived as anachronistic. Striving for more flexibility,
developers often favor so called NoSQL systems. Although NoSQL systems throw
off the chains of schema-comes-first thinking, they also give up many of the good
principles of database technology that have been established in over thirty years of
research and development in the field.

In this thesis, we took an evolutionary approach for flexible database management
systems. We tried to build on the mature and proven technology of relational database
management systems and make them ready for the flexibility- and agility-demanding
schema-comes-second data management of today. In adapting relational database
technology towards descriptive schema-comes-second data management, we aimed
at bridging the gap between the persistent prevalence of relational technology in
organizations and its decreasing reputation among developers. In the thesis we
presented four technological concepts that contribute to this goal:

FRDM – A Flexible Relational Data Model FRDM is descriptive and free of
implicit constraints. It allows the representation of entities with irregular
attribute sets and logical domain memberships. Attributes and logical entity
domains are independent from each other, as are attributes and technical types.
All this gives FRDM the flexibility necessary for schema-comes-second data
management. Where more regularly structured data is dominant and the
database management should help to establish and ensure data quality, the
constraint framework FRDM-C explicitly allows restricting FRDM’s flexibility.
FRDM combines its flexible data representation with the processing power of
the relational algebra. FRDM is compatible and interoperable with relational
data.

ADOM – Autonomous Physical Entity Domains ADOM is a means to avoid
storing irregularly structured schema-comes-second data in a universal physical
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domain. ADOM continuously and autonomously partitions irregularly structured
entities into multiple homogenous physical entity domains. The partitioning
is based on the entities’ schema properties. This allows queries to prune
physical entity domains of irrelevant entities before touching the actual data.
Compared to a universal physical entity domain, ADOM helps to increase
retrieval performance on irregularly structured data, as we were able to show
experimentally. ADOM works online and is designed for low overhead. We have
published a paper on ADOM in an early version in Herrmann et al. [2014] and,
in the version of the thesis, got accepted for publication on the 9th International
Workshop on Self-Managing Database Systems 2014.

FASE – A Freely Adjustable Storage Engine FASE allows configuring of the
physical data layout with the help of the FASE notation. The FASE notation
is a description language to specify the macroscopic characteristics of physical
data layouts, i.e. how data elements are grouped on the physical storage layer.
For schema-comes-second database systems FASE is particularly useful. On the
one hand, irregularly structured data requires a different physical data layout
than regularly structured data. On the other hand, the degree of irregularity
is very variable. With FASE, the physical data layout is not hard-coded but
part of the physical design, and can be adjusted to the irregularity properties of
an evolving data set, and to the requirements of a changing workload. FASE
increases the physical data independence of database systems.

SMIX – Self-managed Indexing SMIX takes the DBA out of the loop of index tuning.
In schema-comes-second databases, attributes available in a database are not
known in advance and change with the data. The schema and workload are
both dynamic in many of today’s databases. Optimizing the configuration
of secondary indexes in such databases becomes a constant challenge. SMIX
autonomously indexes the most queried tuples in a database and keeps the
amount of secondary index information in a given resource bound. To achieve
this, SMIX is built on a novel access path, which combines the traditional tables
scan and the traditional index scan. When used, the access path collects index
information to speed up subsequent retrievals. To stay within the given resource
limits, SMIX discards infrequently used index information. By these means,
SMIX can continuously adapt the set of index information in a database to
dynamic workloads, as well as to dynamic schemas. We have published a paper
on SMIX internationally in Voigt et al. [2013], Kissinger et al. [2012], and Voigt
et al. [2012].

We are confident that these four contributions help pave the way to a more flexible
future for relational database management technology.
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This thesis can serve as a starting point for further interesting research on the flexibility
and manageability aspects of data management. In the following, we sketch three
possible future projects.

NF2 Semantics in FRDM Compared to many other data models currently in vogue
in investigative analytics and web application development, FRDM lacks
hierarchical structures. We argued that hierarchical structures are merely
a limited way of referencing. From a pure data representation perspective,
hierarchical referencing is redundant if a data model offers more powerful
and more flexible referencing mechanisms, such as value-based referencing.
Nevertheless, hierarchical structures gained a certain popularity, because they
are very handy when the entities and facts that should be represented are of
inherently hierarchical nature. Examples are event data, document-like data,
and CAD and GIS data. Of a very similar nature are so-called multi-valued
attributes, i.e. where lists or sets of values are allowed as instances of value
domains. Multi-valued attributes do not increase expressiveness of a data model
such as FRDM but make it simpler to represent certain information. Examples
of multiple values belonging to a single attribute are a person’s hobbies or the
supported connectivity standards of a smartphone. Non-First Normal Form
(NF2) relations already introduced multi-valued attributes and hierarchical
structures to the relational data model in the 1980s [Schek and Pistor, 1982,
Jaeschke and Schek, 1982, Pistor and Andersen, 1986]. Because of its relational
nature, the basic concept of NF2 is similarly applicable to FRDM. However, NF2

was developed for the prescriptive schema-comes-first world. Its concepts have to
be adapted to the descriptive nature of schema-comes-second data management
to be of any value in FRDM. This raises many questions, such as: How much
schema flexibility is allowed for entities nested under the same attribute? How
are nested entities of variable schema handled in queries? Introducing NF2

semantics to FRDM is not well understood yet, but a field well worth of being
researched.

A Common Database Programming and Execution Layer Although the relational
data model is still the dominant data model in the field of data management,
other data models are gaining ground. In particular, graph models or document
models are very popular in certain application domains. Some relational systems
offer support for models such as XML [Cheng and Xu, 2000, Schmidt et al.,
2001, Nicola and der Linden, 2005, Acharya et al., 2008]) or JSON [Monash,
2013b]. SAP goes a step further. SAP HANA integrates multiple engines
for relational data, text data [Färber et al., 2011, 2012], graph data [Rudolf
et al., 2013], and matrix data [Kernert et al., 2013]. All these engines are
based on the same main-memory column store technology, i.e. they share the
same storage layout. Another trend in database technologies is engines that
support multiple storage layouts, as we have described in Chapter 4. It would
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be worthwhile to allow both multiple models and multiple data layouts in a
single engine. To make architectural sense, such a diverse database engine
needs a common architectural layer, which serves as the core programming and
execution environment [Habich et al., 2011]. FASE can be the nucleus of such a
common layer. As presented, FASE is built around the following four domains:
entity types T , entities E, attributes A and values V , which originate from the
relational model. Using other domains would allow the natural representation
of other forms of data. For instance, the four domains nodes, edges, attributes,
and values could serve as a basis for graph data, while the three domains x, y,
and values are sufficient to represent matrix data. The operations FASE offers
work on any such domain sets. Specific engines on top realize the complete
support of a given data model. Nevertheless, these specific engines can share
the powerful functionality and the adaptable data layout of FASE. While this
is an appealing vision, its realization requires additional research. Particularly,
data models and their typical operation sets have to be studied to understand
what features they have in common and how they can be generalized. FASE
can serve as a good starting point for such an endeavor.

Self-managed Storage Engine Another interesting research direction that emanates
from FASE is the field of self-managed data stores. Although FASE and other
hybrid data stores support various data layouts, they still require a DBA to
configure the physical data layout. The only work we are aware of that points
in the direction of automating this is HYRISE [Grund et al., 2010]. HYRISE
features a design advisor to recommend optimal column groups for a given
workload. However, it is desirable for future data stores to autonomously
choose the data layouts best suited for a database. This should also involve
mixed data layouts. Additionally, the data store should adapt the layout to
workload changes over time. On the way to such a self-managed storage engine
various problems have to be investigated and solved, for instance: How can we
model the access characteristics that favor certain data layouts, and how can
these characteristics be detected in a workload? How can a running system
incrementally and efficiently change the physical data layout without impairing
the ongoing query processing? What is a reasonable granularity for mixed
layouts, which offers high adaptability but still allows exploiting of the positive
characteristics of a particular layout?
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Lee Tan, editors, ICDE’11, Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 99–110. IEEE Computer Society, 2011.
ISBN 978-1-4244-8958-9. doi: 10.1109/ICDE.2011.5767872.

David E. Avison and Guy Fitzgerald. Where Now for Development Methodologies? Communications
of the ACM, 46(1):79–82, 2003. doi: 10.1145/602421.602423.

Don S. Batory. Modeling the Storage Architectures of Commercial Database Systems. ACM
Transactions on Database Systems, 10(4):463–528, 1985. doi: 10.1145/4879.5392.

Don S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, and T. E.
Wise. GENESIS: An Extensible Database Management System. IEEE Transactions on Software
Engineering, 14(11):1711–1730, 1988. doi: 10.1109/32.9057.

Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large Ordered Indices.
Acta Informatica, 1:173–189, 1972. doi: 10.1007/BF00288683.

148



Bibliography

Kent Beck. Embracing Change with Extreme Programming. IEEE Computer, 32(10):70–77, 1999.
doi: 10.1109/2.796139.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,
James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C.
Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for Agile
Software Development. http://agilemanifesto.org/, 2001.

Jennifer L. Beckmann. The CNET E-Commerce Data Set. Technical report, University of Wisconsin,
Madison, July 2005.

Jennifer L. Beckmann, Alan Halverson, Rajasekar Krishnamurthy, and Jeffrey F. Naughton. Extending
RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage Format. In Ling
Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang, editors, ICDE’06, Proceedings of the
22nd International Conference on Data Engineering, 3-8 April 2006, Atlanta, GA, USA, page 58.
IEEE Computer Society, 2006. doi: 10.1109/ICDE.2006.67.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American, pages
34–43, May 2001.

Tim Berners-Lee, Roy Goldfinger Fielding, and Larry Masinter. Uniform Resource Identifier (URI):
Generic Syntax, RFC 3986. http://tools.ietf.org/html/rfc3986, January 2005.

Philip A. Bernstein. Synthesizing Third Normal Form Relations from Functional Dependencies. ACM
Transactions on Database Systems, 1(4):277–298, 1976. doi: 10.1145/320493.320489.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
Collaboratively Created Graph Database For Structuring Human Knowledge. In Jason Tsong-Li
Wang, editor, SIGMOD’08, Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, Vancouver, British Columbia, Canada, June 10-12, 2008., pages 1247–1250,
2008. ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376746.

Peter A. Boncz and Martin L. Kersten. MIL Primitives for Querying a Fragmented World. The
VLDB Journal – The International Journal on Very Large Data Bases, 8(2):101–119, 1999. doi:
10.1007/s007780050076.

R. Bonnano, Dario Maio, and Paolo Tiberio. An Approximation Algorithm for Secondary Index
Selection in Relational Database Physical Design. The Computer Journal, 28(4):398–405, 1985.
doi: 10.1093/comjnl/28.4.398.

Robert Bosak, Richard F. Clippinger, Carey Dobbs, Roy Goldfinger, Renee B. Jasper, William
Keating, George Kendrick, and Jean E. Sammet. An Information Algebra: Phase 1 Report –
Language Structure Group of the CODASYL Development Committee. Communications of the
ACM, 5(4):190–204, April 1962. doi: 10.1145/366920.366935.

Gilad Bracha and William R. Cook. Mixin-based Inheritance. In Akinori Yonezawa, editor,
OOPSLA/ECOOP’90, Conference on Object-Oriented Programming Systems, Languages, and
Applications / European Conference on Object-Oriented Programming (OOPSLA/ECOOP), Ottawa,
Canada, October 21-25, 1990, Proceedings, pages 303–311. ACM, 1990. ISBN 0-89791-411-2. doi:
10.1145/97945.97982.

Michael L. Brodie and Jason T. Liu. OTM’10 Keynote: The Power and Limits of Relational
Technology In the Age of Information Ecosystems. In OTM’10, On the Move to Meaningful
Internet Systems: Confederated International Conferences, Hersonissos, Crete, Greece, October
25-29, 2010, Proceedings, volume 6426 of Lecture Notes in Computer Science, pages 2–3. Springer,
2010. ISBN 978-3-642-16933-5. doi: 10.1007/978-3-642-16934-2 2.

149

http://agilemanifesto.org/
http://tools.ietf.org/html/rfc3986


Bibliography

Michael L. Brodie and Joachim W. Schmidt. Final Report of the ANSI/X3/SPARC DBS-SG
Relational Database Task Group. SIGMOD Record, 12(4):i–62, 1982.

Nicolas Bruno. Teaching an Old Elephant New Tricks. In CIDR’09, Fourth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings,
2009.

Nicolas Bruno and Surajit Chaudhuri. Automatic Physical Database Tuning: A Relaxation-based
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Naumann, Anastasia Ailamaki, and Fatma Özcan, editors, EDBT’10, 13th International Conference
on Extending Database Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings, volume
426 of ACM International Conference Proceeding Series, pages 371–381. ACM, 2010a. ISBN 978-1-
60558-945-9. doi: 10.1145/1739041.1739087.

Goetz Graefe and Harumi A. Kuno. Adaptive indexing for relational keys. In SMDB’10, 5th
International Workshop on Self Managing Database Systems, March 1, 2010, Long Beach,
California, USA, pages 69–74. IEEE, 2010b. doi: 10.1109/ICDEW.2010.5452743.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
1993.
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Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Srikumar Rangarajan,
Aleksandras Surna, and Qingqing Zhou. SQL Server Column Store Indexes. In Timos K.
Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis, editors, SIGMOD’11,
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011, pages 1177–1184. ACM, 2011. ISBN 978-1-4503-0661-4.
doi: 10.1145/1989323.1989448.

Pierre-Alain Laur, Florent Masseglia, and Pascal Poncelet. Schema mining: Finding structural
regularity among semistructured data. In Djamel A. Zighed, Henryk Jan Komorowski, and Jan M.
Zytkow, editors, PKDD’00, Principles of Data Mining and Knowledge Discovery, 4th European
Conference, PKDD 2000, Lyon, France, September 13-16, 2000, Proceedings, volume 1910 of
Lecture Notes in Computer Science, pages 498–503. Springer, 2000. ISBN 3-540-41066-X. doi:
10.1007/3-540-45372-5 57.

Neal Leavitt. Will NoSQL Databases Live Up to Their Promise? IEEE Computer Magazine, 43(2):
12–14, 2010. doi: 10.1109/MC.2010.58.

156

http://www.kurzweilai.net/the-law-of-accelerating-returns


Bibliography

Thomas Legler, Wolfgang Lehner, and Andrew Ross. Data Mining with the SAP Netweaver BI
Accelerator. In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M.
Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, VLDB’06, Proceedings
of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12-15,
2006, pages 1059–1068. ACM, 2006. ISBN 1-59593-385-9.

Wolfgang Lehner. Datenbanktechnologie für Data-Warehouse-Systeme: Konzepte und Methoden.
dpunkt-Verlag Heidelberg, September 2002. ISBN 3-8986-4177-5.

Wolfgang Lehner and Kai-Uwe Sattler. Web-Scale Data Management for the Cloud, chapter 2.4:
Schema Virtualization. Springer, March 2013. ISBN 978-1-4614-6855-4.

Tom Leighton, Fillia Makedon, and Spyros Tragoudas. Approximation Algorithms for VLSI Partition
Problems. In ISCAS’90, IEEE International Symposium on Circuits and Systems, New Orleans,
LA, 1-3 May, 1990, 1990. doi: 10.1109/ISCAS.1990.112608.

Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexander Zeier. Speeding Up Queries in
Column Stores – A Case for Compression. In DaWak’10, Data Warehousing and Knowledge
Discovery, 12th International Conference, DAWAK 2010, Bilbao, Spain, August/September 2010.,
volume 6263 of Lecture Notes in Computer Science, pages 117–129. Springer, 2010. ISBN 978-3-
642-15104-0. doi: 10.1007/978-3-642-15105-7 10.

Sam Lightstone and Bishwaranjan Bhattacharjee. Automating the design of multi-dimensional
clustering tables in relational databases. In Mario A. Nascimento, M. Tamer Özsu, Donald
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