
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

I/O performance evaluation with Parabench –
programmable I/O benchmark

Olga Mordvinovaa, Dennis Runza, Julian M. Kunkelb, Thomas Ludwigc

aRuprecht-Karls-Universität Heidelberg, Department of Computer Science
Im Neuenheimer Feld 348, 69120 Heidelberg, Germany

bGerman Climate Computing Center
Bundesstraße 45a, 20146 Hamburg, Germany

cUniversität Hamburg and German Climate Computing Center, Department of Informatics
Bundesstraße 45a, 20146 Hamburg, Germany

Abstract

Choosing an appropriate cluster file system for a specific high performance computing application is challenging
and depends mainly on the specific application I/O needs. There is a wide variety of I/O requirements: Some im-
plementations require reading and writing large datasets, others out-of-core data access, or they have database access
requirements. Application access patterns reflect different I/O behavior and can be used for performance testing.

This paper presents the programmable I/O benchmarking tool Parabench. It has access patterns as input, which
can be adapted to mimic behavior for a rich set of applications. Using this benchmarking tool, composed patterns can
be automatically tested and easily compared on different local and cluster file systems. Here we introduce the design
of the proposed benchmark, focusing on the Parabench programming language, which was developed for flexible
pattern creation. We also demonstrate here an exemplary usage of Parabench and its capabilities to handle the POSIX
and MPI-IO interfaces.

Keywords: I/O Performance Evaluation, Access Pattern Modeling, MPI-IO, POSIX

1. Introduction

The broad range of applications in high-performance computing (HPC) have a large range of I/O requirements:
some applications need to read and write large amounts of data in a serial fashion, some perform large out-of-core
simulations, and others maintain large databases and have to update large datasets. Considering this specific I/O
behavior is essential when looking for a suitable back-end, which is usually a cluster file system.

I/O benchmarking tools help during this decision making process. However, the available benchmarks to test
parallel I/O are quite dissimilar. They typically have various reporting and timing mechanisms as well as varying

Email addresses: mordvinova@informatik.uni-heidelberg.de (Olga Mordvinova), dennis.runz@gmx.de (Dennis Runz),
kunkel@dkrz.de (Julian M. Kunkel), ludwig@dkrz.de (Thomas Ludwig)

URL: http://pvs.informatik.uni-heidelberg.de (Olga Mordvinova), http://www.dkrz.de (Julian M. Kunkel),
http://www.dkrz.de and http://wr.informatik.uni-hamburg.de (Thomas Ludwig)

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 2125–2134

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.238

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.238
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 2

access pattern coverage. Results are not standardized and not easy to compare with each other, which complicates
assessment of I/O performance.

The motivation for this work was to develop a generic I/O performance analysis tool, that closes this gap. With
its interpreter based approach, Parabench is such a tool. Unlike most of the I/O benchmark tools currently avail-
able, e.g. [1–5], Parabench is exceptional because its behavior can be programmed by adjusting the input file access
patterns.

Advantages of this solution over just running the application directly on the cluster are that these patterns can be
shared without licensing or confidence problems that might come along with the application code. The Parabench
code itself has few dependencies, whereas the application of interest might involve a high build complexity due to
library dependencies. Therefore, it is much easier to port and evaluate I/O performance with Parabench. Since it has
a modular architecture and is Open Source, our benchmark can be easily extended and adjusted by the community.

The remainder of this paper is organized as follows. After reviewing the latest concepts in the performance
evaluation field in section 2, we introduce the design of the proposed concept and outline the Parabench programming
language, which was designed for flexible pattern composition. In section 4, we present an exemplary use of Para-
bench and its capabilities to handle the POSIX and MPI-IO interfaces. To show this, we conducted some tests on
a testbed with the file systems PVFS2 and ext3: synthetic tests for the parallel I/O and emulation of a specific data
intensive application on the field of business intelligence. In section 5, we summarize our work and conclude with an
outlook on future development.

2. State-of-the-art and Related Work

There are several tools to examine I/O performance on HPC systems. They differ in pattern coverage (wide
range of access patterns or only specific workloads), evaluated intefaces (POSIX, MPI-IO, or both), or test scenario
(synthetic tests or emulation of specific, real I/O workloads). We summarize prominent examples as follows.

Popular I/O benchmarks for local and network file systems like IOZone [1] or FileBench [2] are tools with syn-
thetic I/O access patterns. Generally they are not relevant to HPC applications as they either do not have parallel
implementations, or they exercise access patterns that are not common in that application field.

The IOR [3] benchmark is also a synthetic benchmark that supports POSIX and MPI-IO. POSIX handles files
primarily as a stream of bytes, while MPI-IO offers mechanisms that allow transparent representation of file regions
as a data type. IOR exercises concurrent read/write on one file or on separate files (one-file-per-processor). The
benchmark is highly parameterized and can mimic a wide variety of access patterns. However, it is difficult to relate
the data collected from it back to the original application requirements [5].

b eff io [4] brings together several file access patterns. Similar to IOR, the benchmark makes the test config-
uration precise by using different parameter groups [6, 7], but its main requirement is to give a statement about I/O
performance after a defined time period to reduce the time spent on a production system. Even if b eff io is a powerful
benchmark, adding new access patterns to the framework was found to be troublesome. It is also difficult to relate its
performance back to applications, or to compare results with other available benchmarks.

In comparison to previous tools the MADbench2 [5] benchmark is an application-derived approach. Derived from
a scientific application on the field of Cosmic Microwave Background data analysis, it allows studies to be made of the
architectural-system performance under realistic I/O demands and communication patterns. MADbench2 emulates
only this particular I/O behavior, and can only be used for testing applications with similar I/O requirements and
therefore it can not be used generally.

Although it is in an early stage of implementation, the file system I/O Test Program BWT [8] provides a possibility
to adjust testing use cases for POSIX I/O. The parameters for executing tests have to be specified in input files and
cover the majority of file system access patterns. Although this program is a step forward to provide a standardized test
suite, its support of parallel I/O commands is limited: process coordination is done via the barrier command, which
is implemented by using IP multicast. Published shortly after our project was started, it provides a close approach to
Parabench.

Existing testing tools differ in their design goals and tested file access patterns. Test tools, based on synthetic
patterns, are well portable, but they do not reflect the real I/O workload. Some of them even provide obsolete patterns.
In contrast, application driven benchmarks work with real access patterns, but are designed for a specific workload

2126 O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 3

and are hard to change. Concluding, there is still a lack of portable benchmarks working with application specific
access patterns. The main contribution of this paper is therefore the development of a portable I/O benchmarking
tool Parabench, which input is easy adaptable to several application needs and which results are easy to compare.
The designed benchmark programming language allows easy modeling of a wide range of input patterns, that the
benchmark can be easily adapted to resemble application behavior, for which the system is to be used.

3. Parabench

3.1. Benchmark Design

To achieve our design goal, development of a portable and easy-to-use benchmarking tool with adjustable test
patterns, we implemented Parabench as an interpreter of access patterns in the C programming language. Since we
wanted to create a tool, that enables a wide range of flexibility, we decided to design our own programming language
– the Parabench programming language (PPL). PPL covers different I/O patterns and provides support for MPI and
parallel I/O on cluster and parallel computers. To process PPL, beside the interpreter layer there is also a layer for
language lexical analysis (scanner), and a layer for its grammatical analysis (parser). The scanner, based on the open
source scanner Flex [9], recognizes lexical patterns and reduces them to tokens. The parser receives a sequence of
tokens from the scanner and generates a parse list for the interpreter. To make the design less complex, and because
Parabench has only linear grammar constructs, we hold the output as a list and not as a tree. We build the parser with
the open source parser generator Bison [10]. Finally, the interpreter processes the generated parse list. We implement
the interpretation by using structures from the Gnome Library [11]. Because of this modularity in design the tool
becomes more clear and easily upgradeable.

Figure 1 shows design and functioning of Parabench. The input files, composed in PPL, are processed and dumped
to the result files in CSV1 format, which can be post processed by any analysis tool. There is also the Parabench com-
munication scheme with MPI in figure 1, when several benchmark processes are in use. In the multiprocess scenario,
all Parabench processes execute commands equally and the master process gathers the results. This communication
scheme is chosen to make output also to the prompt possible.

Figure 1: Parabench design and Parabench communication, when several clients are involved

Master Process

Execution

Grouping

Patterns

Commands

MPI I/O

POSIX I/O

Parallel I/O
communication

Syncronization
during interpretation

Scanner Parser Commit MPI types
during parsing

CSV

PPL

Process

Execution

Grouping

Patterns

Commands

MPI I/O

POSIX I/O

ScannerParser
PPL

Gather results
during finalization

In
te

rp
re

te
r Interpreter

Finalization Finalization

1Comma-Separated Values

O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134 2127

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 4

3.2. Benchmark Programming Language

To achieve flexibility and extensibility we designed the Parabench programming language (PPL) to control bench-
mark workflow and design necessary access patterns. Listing 1 demonstrates the PPL grammar definition, which is
done according to the syntax of the popular in software development Go programming language [12]. Single braces
({) indicate that the rule can be repeated many times and quoted literals ("{") represent plain text tokens in the pro-
gramming language. String is a regular expression for a standard C-type string, while Variable and Number are
expressions for integers or variables defined either by user or locally. For the IntegerExpression statement we can
use any arithmetic expressions in infix notation like + - * / ^ %. The Expression is a placeholder for any kind
of expressions. Dots (...) indicate that further definitions are spared for readability reasons and the String type
parameter for the barrier statements is used to refer to process groups.

Listing 1: Simplified PPL grammar definition

Program = Defines StatementList

UserVariable = "$"[A-Za -z][A-Za -z0 -9]*
InternalVariable = "$$"[A-Za -z][A-Za -z0 -9]*
Variable = UserVariable | InternalVariable

GroupTag = Number
SubgroupTag = Number
Group = String ":" GroupTag "/" SubgroupTag
GroupList = Group { "," Group }

Defines = { DefineGroups | DefineParameters | DefinePattern }
DefineGroups = "define groups" "{" GroupList "}"
DefineParameters = "define params" String Variable String
DefinePattern = "define pattern" "{" String , Number , Number , Number "}"

Expression = IntExpression | StringExpression
IntExpression = Number "+" Number | ...
StringExpression = String "+" String | ...

Statement = RepeatStatement | TimeStatement | GroupStatement | Assign |
Command | Function

StatementList = { Statement }
Block = "{" StatementList "}"

Label = "[" String "]" | /* empty */

RepeatStatement = "repeat" Variable IntExpression Block
TimeStatement = "time" Label Block | "time" Label Statement
GroupStatement = "group" String Block
Assign = Variable "=" Expression ";"

ParameterList = Expression { "," Expression } | /* empty */

Command = CommandIdentifier "(" ParameterList ");"
CommandIdentifier = "read" | "write" | ...

Function = Variable "=" FunctionIdentifier "(" ParameterList ");"
FunctionIdentifier = "fopen" | "pfopen" | ...

2128 O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 5

We classify two groups of the Parabench programming language constructs: I/O language constructs and auxiliary
language constructs.

3.2.1. I/O Language Constructs
The I/O language constructs provide a basis for a proper access pattern composition and can be classified into

POSIX I/O [13] and parallel I/O, for which MPI-IO [14, 15] is used. For both interfaces we distinguish explicit file
handles i.e. when an open and close needs to be issued manually, and implicit file handles i.e. when the user just
specifies file or folder names (see table 1). The provided constructs for explicit file handles are prefixed with f.

Table 1: Parabench I/O language constructs

POSIX I/O

implicit handle

read(<filename>, <size>, [<offset>])
write(<filename>, <size>, [<offset>])
append(<filename>, <size>)
rename(<filename>, <filename>)
create(<filename>), delete(<filename>)
lookup(<filename>) , stat(<filename>)
mkdir(<dirname>) , rmdir(<dirname>)

explicit handle

<handle> = fopen(<filename>, <mode>)
fclose(<handle>)
fread(<handle>, <size>, [<offset>])
fwrite(<handle>, <size>, [<offset>])

MPI I/O

implicit handle
pread(<filename>, <mode>, <pattern>, [<group>])
pwrite(<filename>, <mode>, <pattern>, [<group>])

explicit handle

<handle> = pfopen(<filename>, <mode>, [<group>])
pfclose(<handle>)
pfread(<handle>, <pattern>)
pfwrite(<handle>, <pattern>)

File data accessible for each process, can be specified in a pattern. Internally an MPI file view is set on the file
according to the pattern specification. Currently we support the array data type, i.e. each process gets a chunk of data
in round-robin fashion. Also, only individual file pointers are implemented. In the future we will extend the support.

As shown in table 1, the parallel read and write commands expect a pattern as parameter, which describes how
the parallel I/O is achieved. This pattern is defined using define pattern construct by an identifier name, the
number of iterations, the number of elements and the level of parallelism, which can be level 0 (non-collective calls,
contiguous data access), 1 (collective calls, contiguous data access), 2 (non-collective calls, non-contiguous data
access) or 3 (collective calls, non-contiguous data access). Listing 2 gives an example of pattern definitions, each with
100 iterations and 10 ∗ 1024 ∗ 1024 elements per process for a level 3 parallelism. As a result, each process gets a
10 MB part of the file, since one element has the size of 1 byte. The total file size depends on the number of processes
N, attending in the read or write call (N ∗ 10 MB).

To create more complex test programs, processes can be grouped and commands can be executed on process
groups. Groups can be defined with the construct define groups. It allows having single groups (neither other
groups overlap nor ungrouped processes are part of) and disjoint groups of processes by specifying an option after
definition. Disjoint groups can also have disjoint subgroups. In the listing 2, the option :D defines two disjoint groups
”writers” and ”readers”. The size of each group is set by command line options. The barrier construct is used for
synchronization of processes or process groups.

O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134 2129

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 6

3.2.2. Auxiliary Language Constructs
The auxiliary language constructs are repeat, time and print. Control flow statement repeat enables execution

of code blocks in a loop and reduces replication in the test specification. The construct time allows time measurement
of every command of the programming language. These commands have a special syntactic role, since they can be
used as a prefix of every other command or as a code block. For easier tracking of timing commands, it is possible
to assign text labels. The auxiliary construct print controls text output on stdout. Listing 2 demonstrates a small
parallel test program, where all groups of PPL constructs are used.

Listing 2: Exemplary parallel program in PPL

define groups {" writers ":D, "readers ":D};
define pattern {"100 x10MiB", 100, (10*1024*1024) , 3};

group "writers" {
time[" write"] repeat 100 append (" file$$rank", 10*1024*1024);
time[" pwrite "] pwrite (" pfile", "100 x10MiB ");

}

barrier;

group "readers" {
$fh = fopen(" file$$rank", "r+");
time["read"] repeat 100 fread($fh , 10*1024*1024);
fclose($fh);
time[" pread"] pread(" pfile", "100 x10MiB ");

}

4. Evaluation

To show Parabench usage and its ability to work with different I/O interfaces we performed two experiments: a
simulation of I/O behavior of a state-of-the-art online analytic processing engine SAP NetWeaver BW Accelerator [16]
over POSIX, and synthetic I/O tests with MPI-IO.

Our testbed was the cluster systems of the Research Group Parallel and Distributed Systems of the Ruprecht-
Karls-Universität Heidelberg2. This is a 32 bit Ubuntu 8.04 cluster consisting of 7 nodes with COTS components and
Gigabit Ethernet interconnect. For a qualitative evaluation precise hardware details are unnecessary and thus spared.

4.1. OLAP Engine over POSIX

Systems for online analytic processing (OLAP) need to handle growing volumes of time-critical data and also
deliver fast response times for complex or ad hoc queries. Modern memory-based OLAP engines are designed to
meet these challenges. By holding and processing data in main memory, they can execute queries over large volumes
of structured data and reliably deliver subsecond response times. OLAP engines do not belong to the actual HPC
area, but this is a data intensive (data intensive supercomputing [17]) application. To achieve desirable performance,
OLAP engines like [16] provide a distributed server architecture and run on a cluster. As basis for persistence [16]
uses reliable HPC storage technologies like network attached storage (NAS) or storage area network (SAN) with a
cluster file system (e. g. GPFS [18]). Another persistence option is an integrated distributed persistence layer with
proper redundancy and high availability mechanisms [19]. This distributed persistence layer runs on a node’s local
file system. We used this configuration on ext3 for our experiment, to show the POSIX-I/O capabilities of Parabench.

The minimum logical units of operation of the engine are indexes [20]. Indexes are semantically linked and
hierarchically organized in namespaces. The most interesting I/O operations are: creation and deletion of indexes,

2http://pvs.informatik.uni-heidelberg.de

2130 O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 7

and indexing – the process of filling an index with data. All these operations have complex I/O patterns reflecting
application semantics. We could analyze them using the application’s built-in tracing capability of the engine’s data
server [19]. The relevant information was exported to files and by means of a parser script converted to the PPL test
programs, used for the following tests.

During index creation several directories and files are created, in which application relevant data is written. Table 2
shows the lower I/O operations during creation and deletion of 100 indexes, measured in IOop/s (I/O operation per
second) on a single host.

Table 2: Performance for creating and deleting of 100 indexes on a single host [IOop/s], emulated with Parabench

Write Append Read Lookup Delete Mkdir Rmdir Create Rename
2900 1700 500 300 3300 401 200 1200 800

Table 3 presents results of indexing a huge data cube [20] in a small cluster with 7 hosts. Each data server had
an overall volume of approx. 3 GiB, where 279155 write, 117317 read and 1485 meta data operations have been
performed by all hosts together. We modeled the load imbalances of the 7 different data servers by using one group
for each process. Since we traced every data server individually, each of them had its own set of instructions, which
were executed concurrently.

Table 3: Distributed indexing performance with 7 hosts, emulated with Parabench

Data Open/Close Write Read Delete Rename Mkdir Total Time
Server [IOop/s] [IOop/s] [IOop/s] [IOop/s] [IOop/s] [IOop/s] [s]
Host 1 433 297 136 1 1 0.20 145.962
Host 2 607 416 191 1 1 0.05 103.637
Host 3 595 408 187 1 1 0.07 105.841
Host 4 527 406 121 1 1 0.06 97.340
Host 5 612 420 192 1 1 0.05 102.180
Host 6 662 458 204 3 1 0.06 101.655
Host 7 601 412 189 1 1 0.05 51.901

This experiment shows the POSIX interface support of Parabench. We also see its capability in modeling such
complex patterns as OLAP engines and in providing a basis for performance analysis and performance optimiza-
tion. An obvious advantage of such a modeling is the possibility to port constructed tests to other systems without
installing the application itself and taking care for necessary test data. Furthermore, it makes testing and comparison
of proprietary systems like SAP NetWeaver BW Accelerator [16] possible.

In this development stage, there are still some questions about the validity of the presented simulation. We con-
sider, that by executing the test with the same parameters (same access patterns with same parameters and amount of
processed data, same order, same client number) the validity is given implicitly. To evaluate the difference between
real application I/O and I/O simulation by Parabench, we need to repeat our tests on a cluster, certified and verified for
the OLAP application. Here we plan to determine the confidence interval of deviance to real application and evaluate
impact of possible error sources like access pattern definition or access pattern processing.

4.2. MPI-IO
For demonstrating the MPI-IO capabilities, we measured parallel reads and writes with different numbers of

processes and file access levels. The used test cluster is set up with PVFS2 [21], where three nodes are configured as
data and meta data servers. We executed Parabench on the remaining four nodes to have disjoint sets of nodes acting
as I/O and client nodes.

We tested two different patterns, where the data in memory and in the files is contiguous. Each process writes
and reads 100 MiB of data with the granularities E ∗ S , where E represents the number of elements and S the size
of one element. The granularities 102400*1KiB and 10*10MiB were tested. Listing 3 shows an excerpt from the
PPL program, used to create the MPI-IO performance example. First, all parallel I/O patterns are defined followed by
parallel writes and reads for both patterns in level 0 to level 3 of parallelism.

O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134 2131

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 8

Listing 3: Synthetic MPI-IO test program in PPL

define pattern {"102400*1k-lvl0", 102400 , (1 * 1024), 0};
... // Code for level 1 to 3 pattern define spared
define pattern {"10*10m-lvl0", 10, (10 * 1024 * 1024), 0};
... // Code for level 1 to 3 pattern define spared

$p = "pvfs2 :// pvfs2";

barrier;
// Parallel write for pattern "102400*1k-lvl0"
time[" Write 102400*1k L0"] pwrite ("$p/lvl0", "102400*1k-lvl0");
... // Code for level 1 to 3 parallel write spared

barrier;
// Parallel read for pattern "102400*1k-lvl0"
time["Read 102400*1k L0"] pread("$p/lvl0", "102400*1k-lvl0");
... // Code for level 1 to 3 parallel read spared

barrier;
// Parallel write for pattern "10*10m-lvl0"
time[" Write 10*10m L0"] pwrite ("$p/lvl0", "10*10m-lvl0");
... // Code for level 1 to 3 parallel write spared

barrier;
// Parallel read for pattern "10*10m-lvl0"
time["Read 10*10m L0"] pread("$p/lvl0", "10*10m-lvl0");
... // Code for level 1 to 3 parallel read spared

For each labeled time command Parabench creates one result file. Listing 4 exemplifies the results of the first
time command with the label "Write 102400*1k L0" and 16 processes. The first number represents the process
rank, followed by the time command ID and the wall clock time spent while executing pwrite for the pattern
"102400*1k-lvl0".

Listing 4: Result file generated by Parabench for 16 processes and label "Write 102400*1k L0"

0 42 750.102450
1 42 853.492694
2 42 867.392600
3 42 828.677785
...
14 42 863.404965
15 42 804.127985

The results of the tests described above are illustrated in figures 2 and 3. We can see the impact of different access
levels on pattern granularities for both parallel read and write using MPI-IO. There is also an effect of two-phase
I/O, write-back and caching, since for simplicity we did not do cold testing. To analyze the results, we imported the
generated result files into an spreadsheet application and created the graphs below. In the future we plan to develop a
visualization functionality to enable easy and straightforward evaluation of benchmark results.

5. Conclusion and Future Work

We developed a programmable pattern based benchmarking tool for local and cluster file systems. It supports
POSIX and parallel I/O. Since it includes an own programming language, Parabench allows easy access pattern ad-
justment. Therefore, this benchmark can be geared toward a rich variety of high-performance computing applications.

2132 O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 9

Figure 2: MPI write performance with patterns 102400*1KiB (left) and 10*10MiB (right)

0 MiB/s

22 MiB/s

44 MiB/s

66 MiB/s

88 MiB/s

110 MiB/s

132 MiB/s

154 MiB/s

176 MiB/s

198 MiB/s

220 MiB/s

Level 0 Level 1 Level 2 Level 3

16P 8P 4P 2P 1P

0 MiB/s

22 MiB/s

44 MiB/s

66 MiB/s

88 MiB/s

110 MiB/s

132 MiB/s

154 MiB/s

176 MiB/s

198 MiB/s

220 MiB/s

Level 0 Level 1 Level 2 Level 3

16P 8P 4P 2P 1P

Figure 3: MPI read performance with patterns 102400*1KiB (left) and 10*10MiB (right)

0 MiB/s

22 MiB/s

44 MiB/s

66 MiB/s

88 MiB/s

110 MiB/s

132 MiB/s

154 MiB/s

176 MiB/s

198 MiB/s

220 MiB/s

Level 0 Level 1 Level 2 Level 3

16P 8P 4P 2P 1P

0 MiB/s

22 MiB/s

44 MiB/s

66 MiB/s

88 MiB/s

110 MiB/s

132 MiB/s

154 MiB/s

176 MiB/s

198 MiB/s

220 MiB/s

Level 0 Level 1 Level 2 Level 3

16P 8P 4P 2P 1P

We also demonstrated the usage of Parabench and its capabilities to handle different I/O interfaces and emulate real
application access patterns.

In the future we will extend the pattern support for truly parallel I/O, for example to allow easy modeling of
non-contiguous data and holes in files. This enables us to create more complex patterns with a small amount of basic
patterns. There are also more language constructs we want to provide, which will make it possible to mimic even more
complex control flows of real applications. A sleep command to cause certain processes to wait, a master command
to let only the master process of a certain group execute special code, or a more advanced timing functionality to
eliminate interpreter overhead are just examples here. Another issue is making our benchmarking tool more user-
friendly. The current Parabench version requires a test file according to the PPL grammar as input. As output it
provides ASCII files, for which other post processing and visualization tools currently have to be applied. To make
the input easier and less error-prone and to automate the output analysis, a graphical interface has to be developed.
Furthermore, we plan to establish an open platform, where patterns can be exchanged and their results can be evaluated
and compared.

Acknowledgment

The authors would like to thank the members of the SAP development team TREX, in particular to Christian
Bartholomä and Oleksandr Shepil for their technical advices in studing OLAP I/O, and to Roland Kurz and Arne
Schwarz for their organizational support. We also thank to Max Gerashchenko and Andrew Ross for their help in
improving numerous details in this paper.

O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134 2133

O. Mordvinova et al. / Procedia Computer Science 00 (2010) 1–10 10

References

[1] IOzone Filesystem Benchmark, http://www.iozone.org/.
[2] FileBench, http://hub.opensolaris.org/bin/view/Community+Group+performance/filebench.
[3] The ASCI I/O Stress benchmark, http://www.llnl.gov/asci/purple/benchmarks/limited/ior/.
[4] b eff io Benchmark, https://fs.hlrs.de/projects/par/mpi/b eff io/.
[5] J. Borrill, L. Oliker, J. Shalf, H. Shan, Investigation of leading HPC I/O performance using a scientific-application derived benchmark, in:

SC ’07, ACM, 2007, pp. 1–12.
[6] R. Rabenseifner, A. E. Koniges, Effective file-I/O bandwidth benchmark, in: Proc. of Euro-Par ’00, Springer-Verlag, 2000, pp. 1273–1283.
[7] R. Rabenseifner, A. E. Koniges, Effective communication and file-I/O bandwidth benchmarks, in: Proc. of PVM/MPI ’01, Springer-Verlag,

2001, pp. 24–35.
[8] Filesystem IO Test Program BWT, http://people.web.psi.ch/stadler h/.
[9] Flex, http://flex.sourceforge.net.

[10] Bison, http://www.gnu.org/software/bison/.
[11] Gnome Library, http://library.gnome.org.
[12] The Go Programming Language, http://golang.org/.
[13] IEEE POSIX Certification Authority, http://standards.ieee.org/regauth/posix/.
[14] Message Passing Interface Forum, MPI: A message-passing interface standard. Version 2.1 (June 2008).
[15] W. D. Gropp, E. L. Lusk, R. B. Ross, R. Thakur, Using MPI-2: Advanced features of the message passing interface, in: CLUSTER, IEEE

Computer Society, 2003.
[16] A. Ross, SAP NetWeaver BI Accelerator, Galileo Press, 2009.
[17] R. Bryant, Data-intensive supercomputing: The case for DISC, Tech. rep., CMU (2007).
[18] F. Schmuck, R. Haskin, GPFS: A shared-disk file system for large computing clusters, in: Proc. of FAST ’02, USENIX Association, 2002,

pp. 231–244.
[19] O. Mordvinova, O. Shepil, T. Ludwig, A. Ross, A strategy for cost efficient distributed data storage for in-memory OLAP, in: Proc. IADIS

Int. Conf. Applied Computing 2009, Vol. I, IADIS Press, 2009, pp. 109–117.
[20] T. Legler, W. Lehner, A. Ross, Data mining with the SAP NetWeaver BI Accelerator, in: Proc. of VLDB ’06, VLDB Endowment, 2006, pp.

1059–1068.
[21] PVFS2, http://www.pvfs.org/.

2134 O. Mordvinova et al. / Procedia Computer Science 1 (2012) 2125–2134

