224 research outputs found

    An extensive research survey on data integrity and deduplication towards privacy in cloud storage

    Get PDF
    Owing to the highly distributed nature of the cloud storage system, it is one of the challenging tasks to incorporate a higher degree of security towards the vulnerable data. Apart from various security concerns, data privacy is still one of the unsolved problems in this regards. The prime reason is that existing approaches of data privacy doesn't offer data integrity and secure data deduplication process at the same time, which is highly essential to ensure a higher degree of resistance against all form of dynamic threats over cloud and internet systems. Therefore, data integrity, as well as data deduplication is such associated phenomena which influence data privacy. Therefore, this manuscript discusses the explicit research contribution toward data integrity, data privacy, and data deduplication. The manuscript also contributes towards highlighting the potential open research issues followed by a discussion of the possible future direction of work towards addressing the existing problems

    Design and Development of an Energy Efficient Multimedia Cloud Data Center with Minimal SLA Violation

    Get PDF
    Multimedia computing (MC) is rising as a nascent computing paradigm to process multimedia applications and provide efficient multimedia cloud services with optimal Quality of Service (QoS) to the multimedia cloud users. But, the growing popularity of MC is affecting the climate. Because multimedia cloud data centers consume an enormous amount of energy to provide services, it harms the environment due to carbon dioxide emissions. Virtual machine (VM) migration can effectively address this issue; it reduces the energy consumption of multimedia cloud data centers. Due to the reduction of Energy Consumption (EC), the Service Level Agreement violation (SLAV) may increase. An efficient VM selection plays a crucial role in maintaining the stability between EC and SLAV. This work highlights a novel VM selection policy based on identifying the Maximum value among the differences of the Sum of Squares Utilization Rate (MdSSUR) parameter to reduce the EC of multimedia cloud data centers with minimal SLAV. The proposed MdSSUR VM selection policy has been evaluated using real workload traces in CloudSim. The simulation result of the proposed MdSSUR VM selection policy demonstrates the rate of improvements of the EC, the number of VM migrations, and the SLAV by 28.37%, 89.47%, and 79.14%, respectively

    C-NEST: cloudlet based privacy preserving multidimensional data stream approach for healthcare electronics.

    Get PDF
    The Medical Internet of Things (MIoT) facilitates extensive connections between cyber and physical "things" allowing for effective data fusion and remote patient diagnosis and monitoring. However, there is a risk of incorrect diagnosis when data is tampered with from the cloud or a hospital due to third-party storage services. Most of the existing systems use an owner-centric data integrity verification mechanism, which is not computationally feasible for lightweight wearable-sensor systems because of limited computing capacity and privacy leakage issues. In this regard, we design a 2-step Privacy-Preserving Multidimensional Data Stream (PPMDS) approach based on a cloudlet framework with an Uncertain Data-integrity Optimization (UDO) model and Sparse-Centric SVM (SCS) model. The UDO model enhances health data security with an adaptive cryptosystem called Cloudlet-Nonsquare Encryption Secret Transmission (C-NEST) strategy by avoiding medical disputes during data streaming based on novel signature and key generation strategies. The SCS model effectively classifies incoming queries for easy access to data by solving scalability issues. The cloudlet server measures data integrity and authentication factors to optimize third-party verification burden and computational cost. The simulation outcomes show that the proposed system optimizes average data leakage error rate by 27%, query response time and average data transmission time are reduced by 31%, and average communication-computation cost are reduced by 61% when measured against state-of-the-art approaches

    Coordinate Memory Deduplication and Partition for Improving Performance in Cloud Computing

    Full text link
    [EN] Both limited main memory size and memory interference are considered as the major bottlenecks in virtualization environments. Memory deduplication, detecting pages with same content and being shared into one single copy, reduces memory requirements; memory partition, allocating unique colors for each virtual machine according to page color, reduces memory interference among virtual machines to improve performance. In this paper, we propose a coordinate memory deduplication and partition approach named CMDP to reduce memory requirement and interference simultaneously for improving performance in virtualization. Moreover, CMDP adopts a lightweight page behavior-based memory deduplication approach named BMD to reduce futile page comparison overhead meanwhile to detect page sharing opportunities efficiently. And a virtual machine based memory partition called VMMP is added into CMDP to reduce interference among virtual machines. According to page color, VMMP allocates unique page colors to applications, virtual machines and hypervisor. The experimental results show that CMDP can efficiently improve performance (by about 15.8 percent) meanwhile accommodate more virtual machines concurrently.This work was supported by "Qing Lan Project", "the National Natural Science Foundation of China under Grants 61572172, 61401147, and 61572164", " the Natural Science Foundation of Jiangsu Province of China, Nos. BK20131137 and BK20140248", "Zhejiang provincial Natural Science Foundation Nos. LQ14F020011 and LQ12F02003", by Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Covilha Delegation, Portugal and by National Funding from the FCT Fundacao para a Ciencia e a Tecnologia through the UID/EEA/500008/2013 Project. Guangjie Han is the corresponding author.Jia, G.; Han, G.; Rodrigues, JJPC.; Lloret, J.; Li, W. (2019). Coordinate Memory Deduplication and Partition for Improving Performance in Cloud Computing. IEEE Transactions on Cloud Computing. 7(2):357-368. https://doi.org/10.1109/TCC.2015.25117383573687

    Big data reduction framework for value creation in sustainable enterprises

    No full text
    Value creation is a major sustainability factor for enterprises, in addition to profit maximization and revenue generation. Modern enterprises collect big data from various inbound and outbound data sources. The inbound data sources handle data generated from the results of business operations, such as manufacturing, supply chain management, marketing, and human resource management, among others. Outbound data sources handle customer-generated data which are acquired directly or indirectly from customers, market analysis, surveys, product reviews, and transactional histories. However, cloud service utilization costs increase because of big data analytics and value creation activities for enterprises and customers. This article presents a novel concept of big data reduction at the customer end in which early data reduction operations are performed to achieve multiple objectives, such as a) lowering the service utilization cost, b) enhancing the trust between customers and enterprises, c) preserving privacy of customers, d) enabling secure data sharing, and e) delegating data sharing control to customers. We also propose a framework for early data reduction at customer end and present a business model for end-to-end data reduction in enterprise applications. The article further presents a business model canvas and maps the future application areas with its nine components. Finally, the article discusses the technology adoption challenges for value creation through big data reduction in enterprise applications

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones

    Get PDF
    The exceptional rise in usages of mobile devices such as smartphones and tablets has contributed to a massive increase in wireless network trac both Cellular (3G/4G/LTE) and WiFi. The unprecedented growth in wireless network trac not only strain the battery of the mobile devices but also bogs down the last-hop wireless access links. Interestingly, a signicant part of this data trac exhibits high level of redundancy in them due to repeated access of popular contents in the web. Hence, a good amount of research both in academia and in industries has studied, analyzed and designed diverse systems that attempt to eliminate redundancy in the network trac. Several of the existing Trac Redundancy Elimination (TRE) solutions either does not improve last-hop wireless access links or involves inecient use of compute resources from resource-constrained mobile devices. In this research, we propose TailoredRE, a personalized cloud-based trac redundancy elimination system. The main objective of TailoredRE is to tailor TRE mechanism such that TRE is performed against selected applications rather than application agnostically, thus improving eciency by avoiding caching of unnecessary data chunks. In our system, we leverage the rich resources of the cloud to conduct TRE by ooading most of the operational cost from the smartphones or mobile devices to its clones (proxies) available in the cloud. We cluster the multiple individual user clones in the cloud based on the factors of connectedness among users such as usage of similar applications, common interests in specic web contents etc., to improve the eciency of caching in the cloud. This thesis encompasses motivation, system design along with detailed analysis of the results obtained through simulation and real implementation of TailoredRE system

    Monitoring and Failure Recovery of Cloud-Managed Digital Signage

    Get PDF
    Digitaal signage kasutatakse laialdaselt erinevates valdkondades, nagu näiteks transpordisüsteemid, turustusvõimalused, meelelahutus ja teised, et kuvada teavet piltide, videote ja teksti kujul. Nende ressursside usaldusväärsus, vajalike teenuste kättesaadavus ja turvameetmed on selliste süsteemide vastuvõtmisel võtmeroll. Digitaalse märgistussüsteemi tõhus haldamine on teenusepakkujatele keeruline ülesanne. Selle süsteemi rikkeid võib põhjustada mitmeid põhjuseid, nagu näiteks vigased kuvarid, võrgu-, riist- või tarkvaraprobleemid, mis on üsna korduvad. Traditsiooniline protsess sellistest ebaõnnestumistest taastumisel hõlmab sageli tüütuid ja tülikaid diagnoose. Paljudel juhtudel peavad tehnikud kohale füüsiliselt külastama, suurendades seeläbi hoolduskulusid ja taastumisaega.Selles väites pakume lahendust, mis jälgib, diagnoosib ja taandub tuntud tõrgetest, ühendades kuvarid pilvega. Pilvepõhine kaug- ja autonoomne server konfigureerib kaugseadete sisu ja uuendab neid dünaamiliselt. Iga kuva jälgib jooksvat protsessi ja saadab trace’i, logib süstemisse perioodiliselt. Negatiivide puhul analüüsitakse neid serverisse salvestatud logisid, mis optimaalselt kasutavad kohandatud logijuhtimismoodulit. Lisaks näitavad ekraanid ebaõnnestumistega toimetulemiseks enesetäitmise protseduure, kui nad ei suuda pilvega ühendust luua. Kavandatud lahendus viiakse läbi Linuxi süsteemis ja seda hinnatakse serveri kasutuselevõtuga Amazon Web Service (AWS) pilves. Peamisteks tulemusteks on meetodite kogum, mis võimaldavad kaugjuhtimisega kuvariprobleemide lahendamist.Digital signage is widely used in various fields such as transport systems, trading outlets, entertainment, and others, to display information in the form of images, videos, and text. The reliability of these resources, availability of required services and security measures play a key role in the adoption of such systems. Efficient management of the digital signage system is a challenging task to the service providers. There could be many reasons that lead to the malfunctioning of this system such as faulty displays, network, hardware or software failures that are quite repetitive. The traditional process of recovering from such failures often involves tedious and cumbersome diagnosis. In many cases, technicians need to physically visit the site, thereby increasing the maintenance costs and the recovery time. In this thesis, we propose a solution that monitors, diagnoses and recovers from known failures by connecting the displays to a cloud. A cloud-based remote and autonomous server configures the content of remote displays and updates them dynamically. Each display tracks the running process and sends the trace and system logs to the server periodically. These logs, stored at the server optimally using a customized log management module, are analysed for failures. In addition, the displays incorporate self-recovery procedures to deal with failures, when they are unable to create connection to the cloud. The proposed solution is implemented on a Linux system and evaluated by deploying the server on the Amazon Web Service (AWS) cloud. The main result of the thesis is a collection of techniques for resolving the display system failures remotely
    corecore