11,621 research outputs found

    Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey

    Get PDF
    Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current informatio

    A nonlinear high temperature fracture mechanics basis for strainrange partitioning

    Get PDF
    A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction

    Strainrange partitioning: A total strain range version

    Get PDF
    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range - life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach

    Cyclic structural analysis of air-cooled gas turbine blades and vanes

    Get PDF
    The creep fatigue behavior of a fully impingement cooled blade for four cyclic cases was analyzed by using the Elas 55, finite element, nonlinear structural computer program. Expected cyclic lives were calculated by using the method of strainrange partitioning for reversed inelastic strains and time fractions for ratcheted tensile creep strains. Strainrange partitioning was also applied to previous results from a one dimensional cyclic analysis of a film impingement cooled vane. The analyses indicated that strainrange partitioning is more applicable to a constrained airfoil such as the film impingement cooled vane than to the relatively unconstrained fully impingement cooled airfoil

    Progress in materials and structures at Lewis Research Center

    Get PDF
    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed

    Materials and structural aspects of advanced gas-turbine helicopter engines

    Get PDF
    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed

    Creep fatigue life prediction for engine hot section materials (isotropic)

    Get PDF
    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data

    Application of strainrange partitioning to the prediction of MPC creep-fatigue data for 2 1/4 Cr-1Mo steel

    Get PDF
    Strainrange partitioning is used to predict the long time cyclic lives of the metal properties council (MPC) creep-fatigue interspersion and cyclic creep-rupture tests conducted with annealed 2 1/4 Cr-1Mo steel. Observed lives agree with predicted lives within factors of two. The strainrange partitioning life relations used for the long time predictions were established from short time creep-fatigue data generated at NASA-Lewis on the same heat of material

    A partitioned model order reduction approach to rationalise computational expenses in multiscale fracture mechanics

    Get PDF
    We propose in this paper an adaptive reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No \textit{a priori} knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.Comment: Submitted for publication in CMAM

    Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188

    Get PDF
    High temperature thermomechanical and bithermal fatigue behavior was investigated for two superalloys: cast nickel-base B1900+Hf and wrought cobalt-base Haynes 188. Experimental results were generated to support development of an advanced thermal fatigue life prediction method. Strain controlled thermomechanical and load-controlled, strain-limited, bithermal fatigue tests were used to determine the fatigue crack initiation and cyclic stress-strain response characteristics of superalloys. Bithermal temperatures of 483 and 871 C were used for B1900+Hf, and 316 and 760 C for Haynes 188. Thermomechanical fatigue tests were conducted by using maximum and minimum temperatures corresponding to those for the bithermal experiments. Lives cover the range from about 10 to 3000 cycles to failure. Isothermal fatigue results obtained previously are also discussed
    corecore