4,428 research outputs found

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Damage characterisation using Sentinel-1 images:Case study of bridges in Ukraine

    Get PDF
    Bridges are vital infrastructure assets, ensuring the economic activity during the adverse times of conflict. Notwithstanding, there is insignificant research regarding their damage characterization with the use of remote approaches for post-conflict recovery. Monitoring and remote sensing is a promising technology for identification of damages caused by war-induced hazards, including artillery fire, explosions and shelling, and hence facilitate accurate and rapid evaluations of capacity and functionality loss, providing valuable information for reliable risk assessments at emergency and normal circumstances. The geospatial analysis, based on Interferometric SAR (InSAR) products of coherence, calculated between SAR images recorded at different dates could serve as a mean to characterize the level of damage, as demonstrated in this research. The main findings of study include the use fully open-access and remote data for assessment of critical infrastructure damages

    Rapid post-disaster infrastructure damage characterisation enabled by remote sensing and deep learning technologies -- a tiered approach

    Get PDF
    Critical infrastructure, such as transport networks and bridges, are systematically targeted during wars and suffer damage during extensive natural disasters because it is vital for enabling connectivity and transportation of people and goods, and hence, underpins national and international economic growth. Mass destruction of transport assets, in conjunction with minimal or no accessibility in the wake of natural and anthropogenic disasters, prevents us from delivering rapid recovery and adaptation. As a result, systemic operability is drastically reduced, leading to low levels of resilience. Thus, there is a need for rapid assessment of its condition to allow for informed decision-making for restoration prioritisation. A solution to this challenge is to use technology that enables stand-off observations. Nevertheless, no methods exist for automated characterisation of damage at multiple scales, i.e. regional (e.g., network), asset (e.g., bridges), and structural (e.g., road pavement) scales. We propose a methodology based on an integrated, multi-scale tiered approach to fill this capability gap. In doing so, we demonstrate how automated damage characterisation can be enabled by fit-for-purpose digital technologies. Next, the methodology is applied and validated to a case study in Ukraine that includes 17 bridges, damaged by human targeted interventions. From regional to component scale, we deploy technology to integrate assessments using Sentinel-1 SAR images, crowdsourced information, and high-resolution images for deep learning to facilitate automatic damage detection and characterisation. For the first time, the interferometric coherence difference and semantic segmentation of images were deployed in a tiered multi-scale approach to improve the reliability of damage characterisations at different scales

    Development of inventory datasets through remote sensing and direct observation data for earthquake loss estimation

    Get PDF
    This report summarizes the lessons learnt in extracting exposure information for the three study sites, Thessaloniki, Vienna and Messina that were addressed in SYNER-G. Fine scale information on exposed elements that for SYNER-G include buildings, civil engineering works and population, is one of the variables used to quantify risk. Collecting data and creating exposure inventories is a very time-demanding job and all possible data-gathering techniques should be used to address the data shortcoming problem. This report focuses on combining direct observation and remote sensing data for the development of exposure models for seismic risk assessment. In this report a summary of the methods for collecting, processing and archiving inventory datasets is provided in Chapter 2. Chapter 3 deals with the integration of different data sources for optimum inventory datasets, whilst Chapters 4, 5 and 6 provide some case studies where combinations between direct observation and remote sensing have been used. The cities of Vienna (Austria), Thessaloniki (Greece) and Messina (Italy) have been chosen to test the proposed approaches.JRC.G.5-European laboratory for structural assessmen

    Hydrogeomorphological analysis and modelling for a comprehensive understanding of flash-flood damage processes: the 9 October 2018 event in northeastern Mallorca

    Get PDF
    [EN] A flash-flood event hit the northeastern part of Mallorca on 9 October 2018, causing 13 casualties. Mal- lorca is prone to catastrophic flash floods acting on a sce- nario of deep landscape transformation caused by Mediter- ranean tourist resorts. As global change may exacerbate dev- astating flash floods, analyses of catastrophic events are cru- cial to support effective prevention and mitigation measures. Field-based remote-sensing and modelling techniques were used in this study to evaluate rainfall¿runoff processes at the catchment scale linked to hydrological modelling. Continu- ous streamflow monitoring data revealed a peak discharge of 442 m³ s¿¹ with an unprecedented runoff response. This ex- ceptional behaviour triggered the natural disaster as a com- bination of heavy rainfall (249 mm in 10 h), karstic features and land cover disturbances in the Begura de Salma River catchment (23 km²). Topography-based connectivity indices and geomorphic change detection were used as rapid post- catastrophe decision-making tools, playing a key role dur- ing the rescue search. These hydrogeomorphological preci- sion techniques were combined with the Copernicus Emer- gency Management Service and ¿ground-based¿ damage as- sessment, which showed very accurately the damage-driving factors in the village of Sant Llorenç des Cardassar. The main challenges in the future are to readapt hydrological modelling to global change scenarios, implement an early flash-flood warning system and take adaptive and resilient measures on the catchment scale.This research was supported by the Spanish Ministry of Science, Innovation and Universities, the Spanish Agency of Research (AEI) and the European Regional Development Fund (ERDF) through the project CGL2017-88200-R "Functional hydrological and sediment connectivity at Mediterranean catchments: global change scenarios -MEDhyCON2".Estrany, J.; Ruiz-Perez, M.; Mutzner, R.; Fortesa, J.; Nacher Rodriguez, B.; Tomas-Burguera, M.; Garcia-Comendador, J.... (2020). Hydrogeomorphological analysis and modelling for a comprehensive understanding of flash-flood damage processes: the 9 October 2018 event in northeastern Mallorca. Natural Hazards and Earth System Sciences. 20(8):2195-2220. https://doi.org/10.5194/nhess-20-2195-2020S21952220208Adamovic, M., Branger, F., Braud, I., and Kralisch, S.: Development of a data-driven semi-distributed hydrological model for regional scale catchments prone to Mediterranean flash floods, J. Hydrol., 541, 173–189, https://doi.org/10.1016/j.jhydrol.2016.03.032, 2016.Agisoft Lens: Agisoft PhotoScan User Manual. Professional Edition, Version 1.4, available at: https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf (last access: 12 September 2019), 2018.Ajuntament de Sant Llorenç des Cardassar: Minutes of the Plenary Session of Sant Llorenç des Cardassar City Council, Sant Llorenç des Cardassar, available at: https://ovac.santllorenc.es/absis/idi/arx/idiarxabsaweb/catala/asp/dlgVisor.asp?codigoVerificacion=176102aec9d248aab3b72deaad1e0beb001 (last access: 15 May 2020), 2018.Alfieri, L., Berenguer, M., Knechtl, V., Liechti, K., Sempere-Torres, D., and Zappa, M.: Flash Flood Forecasting Based on Rainfall Thresholds, in Handbook of Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Wood, A., Cloke, H. L., and Schaake, J. C., 1–38, Springer, 2015.Álvaro, M., Del Olmo, P., and Anglada, E.: Mapa Geológico de España, 1:50 000, Hoja 700 (MANACOR), Madrid, available at: http://info.igme.es/cartografiadigital/datos/magna50/pdfs/d7_G50/Magna50_700.pdf (last access: 30 July 2020), 1991.Amirebrahimi, S., Rajabifard, A., Mendis, P., and Ngo, T.: A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration, Int. J. Digit. Earth, 9, 363–386, https://doi.org/10.1080/17538947.2015.1034201, 2016.Amponsah, W., Marchi, L., Zoccatelli, D., Boni, G., Cavalli, M., Comiti, F., Crema, S., Lucía, A., Marra, F., and Borga, M.: Hydrometeorological Characterization of a Flash Flood Associated with Major Geomorphic Effects: Assessment of Peak Discharge Uncertainties and Analysis of the Runoff Response, J. Hydrometeorol., 17, 3063–3077, https://doi.org/10.1175/JHM-D-16-0081.1, 2016.Amponsah, W., Ayral, P.-A., Boudevillain, B., Bouvier, C., Braud, I., Brunet, P., Delrieu, G., Didon-Lescot, J.-F., Gaume, E., Lebouc, L., Marchi, L., Marra, F., Morin, E., Nord, G., Payrastre, O., Zoccatelli, D., and Borga, M.: Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods, Earth Syst. Sci. Data, 10, 1783–1794, https://doi.org/10.5194/essd-10-1783-2018, 2018.Artinyan, E., Vincendon, B., Kroumova, K., Nedkov, N., Tsarev, P., Balabanova, S., and Koshinchanov, G.: Flood forecasting and alert system for Arda River basin, J. Hydrol., 541, 457–470, https://doi.org/10.1016/j.jhydrol.2016.02.059, 2016.Barbosa, S., Silva, Á., and Narciso, P.: Analysis of the 1 November 2015 heavy rainfall episode in Algarve by using weather radar and rain gauge data, Nat. Hazards, 93, 61–76, https://doi.org/10.1007/s11069-017-3065-2, 2018.Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards, 42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007.BOE: Boletín Oficial del Estado (BOE No. 283) (23/11/2018). Decreto-ley 2/2018, de 18 de octubre, por el que se establecen ayudas y otras medidas urgentes para reparar las pérdidas y los daños producidos por las lluvias intensas y las inundaciones del día 9 de, Spain, available at: https://www.boe.es/boe/dias/2018/11/23/pdfs/BOE-A-2018-15970.pdf (last access: 15 May 2020), 2018.BOE: Boletín Oficial del Estado (BOE, No. 12) (26/01/2019), Real Decreto Ley 2/2019 de 25 de enero, por el que se adoptan medidas urgentes para paliar los daños causados por temporales y otras situaciones catastróficas, Spain, 2019.Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrometeorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps, J. Hydrometeorol., 8, 1049–1067, https://doi.org/10.1175/jhm593.1, 2007.Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash floods: gauging the ungauged extremes, Hydrol. Process., 22, 3883–3885, https://doi.org/10.1002/hyp.7111, 2008.Borselli, L., Cassi, P., and Torri, D.: Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment, CATENA, 75, 268–277, https://doi.org/10.1016/j.catena.2008.07.006, 2008.Braud, I., Ayral, P.-A., Bouvier, C., Branger, F., Delrieu, G., Le Coz, J., Nord, G., Vandervaere, J.-P., Anquetin, S., Adamovic, M., Andrieu, J., Batiot, C., Boudevillain, B., Brunet, P., Carreau, J., Confoland, A., Didon-Lescot, J.-F., Domergue, J.-M., Douvinet, J., Dramais, G., Freydier, R., Gérard, S., Huza, J., Leblois, E., Le Bourgeois, O., Le Boursicaud, R., Marchand, P., Martin, P., Nottale, L., Patris, N., Renard, B., Seidel, J.-L., Taupin, J.-D., Vannier, O., Vincendon, B., and Wijbrans, A.: Multi-scale hydrometeorological observation and modelling for flash flood understanding, Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, 2014.Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., Calvo-Cases, A., and Estrany, J.: Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment, Geomorphology, 318, 162–171, https://doi.org/10.1016/j.geomorph.2018.06.011, 2018.Calvo-Cases, A., Gago, J., Ruiz-Pérez, M., García-Comendador, J., Fortesa, J., Company, J., Nácher-Rodríguez, B., Vallés-Morán, F. J., and Estrany, J.: Spatial distribution of geomorphic changes after an extreme flash-flood compared with hydrological and sediment connectivity, in European Geosciences Uninon General Assembly 2020, Copernicus Publications, 2020.Cassola, F., Ferrari, F., Mazzino, A., and Miglietta, M. M.: The role of the sea on the flash floods events over Liguria (northwestern Italy), Geophys. Res. Lett., 43, 3534–3542, https://doi.org/10.1002/2016GL068265, 2016.Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments, Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013.CCS: Estudio Siniestralidades 2018, Inundación extraordinaria Mallorca: Sant Llorenç des Cardassar. Consorcio de Compensación de Seguros. Ministerio de Economía y Empresa. Gobierno de España, available at: https://www.consorseguros.es/web/inicio (last access: 15 May 2020), 2018.Chapon, B., Delrieu, G., Gosset, M., and Boudevillain, B.: Variability of rain drop size distribution and its effect on the Z–R relationship: A case study for intense Mediterranean rainfall, Atmos. Res., 87, 52–65, https://doi.org/10.1016/j.atmosres.2007.07.003, 2008.Collier, C. G.: Flash flood forecasting: What are the limits of predictability?, Q. J. Roy. Meteor. Soc., 133, 3–23, https://doi.org/10.1002/qj.29, 2007.Copernicus Emergency Management Service: [EMSR323] Flood in Balearic Island, Spain, available at: https://emergency.copernicus.eu/mapping/list-of-components/EMSR323 (last access: 15 May 2020), 2018.Copernicus Emergency Management Service: Directorate Space, Security and Migration, European Commission Joint Research Centre, available at: https://emergency.copernicus.eu/ (last access: 14 August 2019), 2019.Corine Land Cover: Copernicus Land Monitoring Service, available at: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (last access: 15 May 2020), 2018.Crema, S. and Cavalli, M.: SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity, Comput. Geosci., 111, 39–45, https://doi.org/10.1016/j.cageo.2017.10.009, 2018.Defossez, S. and Leone, F.: Assessing Vulnerability to Flooding: Progress and Limitations, Floods, 241–257, https://doi.org/10.1016/B978-1-78548-268-7.50014-6, 2017.Duo, E., Trembanis, A. C., Dohner, S., Grottoli, E., and Ciavola, P.: Local-scale post-event assessments with GPS and UAV-based quick-response surveys: a pilot case from the Emilia–Romagna (Italy) coast, Nat. Hazards Earth Syst. Sci., 18, 2969–2989, https://doi.org/10.5194/nhess-18-2969-2018, 2018.ESRI: Arc Hydro Tools, available at: https://www.esri.com/en-us/home (last access: 15 May 2020), 2019.Estrany, J. and Grimalt, M.: Catchment controls and human disturbances on the geomorphology of small Mediterranean estuarine systems, Estuar. Coast. Shelf Sci., 150, 1–12, https://doi.org/10.1016/j.ecss.2014.03.021, 2014.Estrany, J., Garcia, C., and Batalla, R. J.: Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain, Geomorphology, 106, 292–303, https://doi.org/10.1016/J.GEOMORPH.2008.11.008, 2009.Estrany, J., Ruiz, M., Calsamiglia, A., Carriquí, M., García-Comendador, J., Nadal, M., Fortesa, J., López-Tarazón, J. A., Medrano, H., and Gago, J.: Sediment connectivity linked to vegetation using UAVs: High-resolution imagery for ecosystem management, Sci. Total Environ., 671, 1192–1205, https://doi.org/10.1016/j.scitotenv.2019.03.399, 2019.Estrany, J., Ruiz-Pérez, M., Mutzner, R., Fortesa, J., Nácher-Rodríguez, B., Tomàs-Burguera, M., García-Comendador, J., Peña, X., Calvo-Cases, A., and Vallés-Morán, F. J.: Discharge data series of Begura de Salma River (Mallorca, Spain): January 2015–October 2018, PANGAEA, https://doi.org/10.1594/PANGAEA.921411 2020a.Estrany, J., Ruiz-Pérez, M., Mutzner, R., Fortesa, J., Nácher-Rodríguez, B., Tomàs-Burguera, M., García-Comendador, J., Peña, X., Calvo-Cases, A., and Vallés-Morán, F. J.: Monthly precipitation and runoff series of Begura de Salma River (Mallorca, Spain): January 2015–October 2018, PANGAEA, https://doi.org/10.1594/PANGAEA.921412, 2020b.Fortesa, J., García-Comendador, J., Calsamiglia, A., López-Tarazón, J. A., Latron, J., Alorda, B., and Estrany, J.: Comparison of stage/discharge rating curves derived from different recording systems: Consequences for streamflow data and water management in a Mediterranean island, Sci. Total Environ., 665, 968–981, https://doi.org/10.1016/j.scitotenv.2019.02.158, 2019.Fulton, R. A., Breidenbach, J. P., Seo, D.-J., Miller, D. A., and O'Bannon, T.: The WSR-88D Rainfall Algorithm, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2, 1998.García-Hernández, J., Jordan, J., Dubois, J., Boillat, J., and Schleiss, A.: Routing System II: Flow modelling in hydraulic systems, Communication, 32, 1661–1179, 2007.Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A compilation of data on European flash floods, J. Hydrol., 367, 70–78, https://doi.org/10.1016/J.JHYDROL.2008.12.028, 2009.Gaume, E., Borga, M., Llasat, M. C., Maouche, S., Lang, M., and Diakakis, M.: Mediterranean extreme floods and flash floods, in The Mediterranean Region under Climate Change. A Scientific Update, edited by: French National Alliance for Environmental Research – ALLENVI, 133–144, available at: https://hal.archives-ouvertes.fr/hal-01465740v2/document (last access: 15 May 2020), 2016.Georgakakos, K. P.: On the Design of National, Real-Time Warning Systems with Capability for Site-Specific, Flash-Flood Forecasts, B. Am. Meteorol. Soc., 67, 1233–1239, https://doi.org/10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2, 1986.Germann, U. and Joss, J.: Operational Measurement of Precipitation in Mountainous Terrain, Springer, Berlin, Heidelberg, 52–77, 2004.GOIB: Mapas de peligrosidad y riesgo de inundación en la demarcación hidrográfica de Baleares. Conselleria de Medi Ambient, Agricultura i Pesca-Direcció General de Recursos Hídrics, available at: https://www.caib.es/sites/aigua/es/plan_de_ gestion_ del_riesgo_ de_ inundacion_de_ la_ demarcacion_hidrografica_ de_ las_islas_ baleares/ (last access: 15 May 2020), 2016.GOIB: Boletín Oficial de las Islas Baleares (BOIB No. 130) (18/10/2018), Decreto-ley 2/2018, de 18 de octubre, por el que se establecen ayudas y otras medidas urgentes para reparar las pérdidas y los daños producidos por las lluvias intensas y las inundaciones, available at: http://www.caib.es/eboibfront/pdf/ca/2018/130/101958 (last access: 15 May 2020), 2018.GOIB: El Govern ja ha abonat 30,4 milions d'euros en ajuts i actuacions de preparació de danys produïts per les inundacions del Llevant, English version: The Balearic Government has already paid 30.4 million euros in aid and actions for the damage caused by the floods in the Llevant county, available at: https://www.caib.es/pidip2front/jsp/ca/fitxa-convocatoria/strongel-govern-ja-ha-abonat-304-milions-drsquoeuros-en-ajuts-i-actuacions-de-reparacioacute-de-danys-produiumlts-per-les-inundacions-del-llevantstrongnbsp (last access: 15 May 2020), 2019.Gourley, J. J., Giangrande, S. E., Hong, Y., Flamig, Z. L., Schuur, T., and Vrugt, J. A.: Impacts of Polarimetric Radar Observations on Hydrologic Simulation, J. Hydrometeorol., 11, 781–796, https://doi.org/10.1175/2010JHM1218.1, 2010.Guijarro, J. A.: Contribución a la Bioclimatología de Baleares, Universitat de les Illes Balears, PhD thesis, available at: http://hdl.handle.net/20.500.11765/5369 (last access: 30 July 2020), 1986.Hardy, J., Gourley, J., Kirstetter, P., Hong, Y., Kong, F., and Flamig, Z.: A method for probabilistic flash flood forecasting, J. Hydrol., 541, 480–494 2016.Harrison, D., Driscoll, S., and Kitchen, M.: Improving precipitation estimates from weather radar using quality control and correction techniques, Meteorol. Appl., 7, 135–144, https://doi.org/https://doi.org/10.1017/S1350482700001468, 2000.Instituto Geográfico Nacional: Digital Terrain Model for Spain obtained from lidar flights, available at: http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en (last access: 15 May 2020), 2014.Jordan, F.: Modèle de prévision et de gestion des crues-optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue, Laboratory of Hydraulic Construction, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2007.Kalantari, Z., Cavalli, M., Cantone, C., Crema, S., and Destouni, G.: Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications, Sci. Total Environ., 581–582, 386–398, https://doi.org/10.1016/J.SCITOTENV.2016.12.147, 2017.Langhammer, J. and Vacková, T.: Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry, Pure Appl. Geophys., 175, 3223–3245, https://doi.org/10.1007/s00024-018-1874-1, 2018.Laudan, J., Rözer, V., Sieg, T., Vogel, K., and Thieken, A. H.: Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods, Nat. Hazards Earth Syst. Sci., 17, 2163–2179, https://doi.org/10.5194/nhess-17-2163-2017, 2017.Li, Z., Xu, X., Zhu, J., Xu, C., and Wang, K.: Effects of lithology and geomorphology on sediment yield in karst mountainous catchments, Geomorphology, 343, 119–128, https://doi.org/10.1016/j.geomorph.2019.07.001, 2019.Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.: Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project, Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, 2013.Lorenzo-Lacruz, J., Amengual, A., Garcia, C., Morán-Tejeda, E., Homar, V., Maimó-Far, A., Hermoso, A., Ramis, C., and Romero, R.: Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain), Nat. Hazards Earth Syst. Sci., 19, 2597–2617, https://doi.org/10.5194/nhess-19-2597-2019, 2019.Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints, Vancouver, available at: https://robo.fish/wiki/images/5/58/Image_Features_ From_ Scale_Invariant_ Keypoints_ Lowe_2004.pdf (last access: 11 September 2019), 2004.Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of selected extreme flash floods in Europe and implications for flood risk management, J. Hydrol., 394, 118–133, https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with size, J. Meteorol., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.Merheb, M., Moussa, R., Abdallah, C., Colin, F., Perrin, C., and Baghdadi, N.: Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrolog. Sci. J., 61, 2520–2539, https://doi.org/10.1080/02626667.2016.1140174, 2016.Miao, Q., Yang, D., Yang, H., and Li, Z.: Establishing a rainfall threshold for flash flood warnings in China's mountainous areas based on a distributed hydrological model, J. Hydrol., 541, 371–386, https://doi.org/10.1016/j.jhydrol.2016.04.054, 2016.Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., AghaKouchak, A., Sanders, B., Koren, V., Cui, Z., and Smith, M.: A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling, J. Hydrol., 541, 401–420, https://doi.org/10.1016/j.jhydrol.2015.10.047, 2016.Petrus, J. M., Ruiz, M., and Estrany, J.: Interactions between Geomorphology and Urban Evolution since Neolithic Times in a Mediterranean City, in: Urban Geomorphology, Landforms and Processes in Cities, edited by: Thornbush, M. J. and Allen, C. D., 9–35, https://doi.org/10.1016/B978-0-12-811951-8.00002-3, 2018.Piaggesi, D., Sund, K. J., and Castelnovo, W.: Global strategy and practice of e-governance?: examples from around the world, Information Science Reference, available at: https://www.igi-global.com/book/global-strategy-practice-governance/46168 (last access: 30 July 2020), 2011.Plank, S.: Rapid Damage Assessment by Means of Multi-Temporal SAR – A Comprehensive Review and Outlook to Sentinel-1, Remote Sens., 6, 4870–4906, https://doi.org/10.3390/rs6064870, 2014.PNOA: Plan Nacional de Ortofotografía Aérea, Instituto Geográfico Nacional, Ministerio de Fomento, Gobierno de España, available at: https://pnoa.ign.es/productos_lidar (last access: 15 May 2020), 2015.Pol, J.: Informe INUNBAL Llevant Mallorca 2018, ISO 271/2018, available at: http://www.caib.es/pidip2front/jsp/adjunto?codi=2243620&idioma=ca (last access: 30 July 2020), Marratxí, 2019a.Pol, J.: Predicción y Gestión de Emergencias por Inundaciones, in: International Seminar of Planning and Management of Flood Risks in Mediterranean Environments, INAGEA, University of the Balearic Islands, Palma, 2019b.Pons Esteva, A.: Evolució dels usos del sòl a les illes Balears, 1956–2000, Territoris, 4, 129–145, 2003.Schaefli, B., Hingray, B., Niggli, M., and Musy, A.: A conceptual glacio-hydrological model for high mountainous catchments, Hydrol. Earth Syst. Sci., 9, 95–109, https://doi.org/10.5194/hess-9-95-2005, 2005.Segura-Beltrán, F., Sanchis-Ibor, C., Morales-Hernández, M., González-Sanchis, M., Bussi, G., and Ortiz, E.: Using post-flood surveys and geomorphologic mapping to evaluate hydrological and hydraulic models: The flash flood of the Girona River (Spain) in 2007, J. Hydrol., 541, 310–329, https://doi.org/10.1016/J.JHYDROL.2016.04.039, 2016.Seo, B. C., Krajewski, W. F., and Qi, Y.: Utility of Vertically Integrated Liquid Water Content for Radar-Rainfall Estimation: Quality Control and Precipitation Type Classification, Atmos. Res., 236, 104800, https

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Development of an Operational Satellite-Based Flood Monitoring Model for Tanzania

    Get PDF
    Timely information during water related disasters is of utmost importance for flood preparedness and risk reduction. Real time observation and monitoring of flooded areas is an expensive and time-consuming exercise. Satellite remote sensing is a quick and affordable approach that can be used for concurrent floods detection at different scales. This is important as it facilitates timely information for emergency response to disaster management departments, even in scarcely instrumented catchments. This study presents a novel approach for flood tracking using satellite technology to map flood affected areas. An open-source water detection algorithm is developed that employs readily available satellite images and the Google Earth Engine (GEE) platform. Dar es Salaam and Singida regions in Tanzania were used as the case study for validation of the proposed approach. Use is made of Sentinel-1 satellite images and GEE coding. The after-flood tracking GEE code was validated with the physical flood extent markers and after-event flood extent survey points of the regions provided by the Ministry of Water (MoW). The findings reveal that the approach supports mapping flood extent areas by giving promising results after the satisfaction from validated data. Relevant parameters were then coded in order to develop the flood map of Tanzania. The findings of this study demonstrate the usefulness of open-source GEE in rapid flood inundation mapping.&nbsp
    corecore