1,040 research outputs found

    Cakar ayam shaping machine

    Get PDF
    Cakar ayam (Figure 7.1) is one of the Malay traditional cookies that are made from sliced sweet potatoes deep-fried in the coconut candy. In current practice of moulding the cookies, the fried sweet potatoes are molded using traditional manual tools, which are inefficient and less productive for the mass production purposes. “Kuih cakar ayam” associated with the meaning of the idiom means less messy handwriting has a somewhat negative connotation .This cookies may just seem less attractive in shape but still likeable . In fact, this cookie is considered a popular snack even outside the holiday season. The choice of the name of this cookie is more to shape actually resembles former chicken scratches made by the paw the ground while foraging. The value of wisdom, beauty and creativity of the Malays is clearly evident through the Malay cookie. Although it is attacked by the invention of modern cakes that look far more interesting, these cakes will be able to survive a long time until now

    Fuzzy Logic Control Approach of a Maximum Power Point Employing SEPIC Converter for Standalone Photovoltaic System

    Get PDF
    AbstractThis paper presents a new fuzzy logic controller as a maximum power point tracker employing single-ended primary-inductor (SEPIC) converter. The new controller improves perturb and observe search method with rules to fuzzify and eliminate its drawbacks. An accurate and fast converging to maximum power point is offered by fuzzy logic tracker during both steady-state and varying weather conditions compared to conventional maximum power point tracking methods. The performance of the proposed maximum power point tracker is demonstrated in both simulation and experiment at different operating conditions

    A Real-Time Implementation of Novel and Stable Variable Step Size MPPT

    Get PDF
    This paper presents a complete study of a standalone photovoltaic (PV) system including a maximum power tracker (MPPT) driving a DC boost converter to feed a resistive load. Here, a new MPPT approach using a modification on the original perturb and observe (P&O) algorithm is proposed; the improved algorithm is founded on a variable step size (VSZ). This novel algorithm is realized and efficiently implemented in the PV system. The proposed VSZ algorithm is compared both in simulation and in real time to the P&O algorithm. The stability analysis for the VSZ algorithm is performed using Lyapunov’s stability theory. In this paper, a detailed study and explanation of the modified P&O MPPT controller is presented to ensure high PV system performance. The proposed algorithm is practically implemented using a DSP1104 for real-time testing. Significant results are achieved, proving the validity of the proposed PV system control scheme. The obtained results show that the proposed VSZ succeeds at harvesting the maximum power point (MPP), as the amount of harvested power using VSZ is three times greater than the power extracted without the tracking algorithm. The VSZ reveals improved performance compared to the conventional P&O algorithm in term of dynamic response, signal quality and stability

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    A modified particle swarm optimization based maximum power point tracking for photovoltaic converter system

    Get PDF
    This thesis presents a modified Particle Swarm Optimization based Maximum Power Point Tracking for Photovoltaic Converter system. All over the world, many governments are striving to exploit the vast potential of renewable energy to meet the growing energy requirements mainly when the price of oil is high. Maximum Power Point Tracking (MPPT) is a method that ensures power generated in Photovoltaic (PV) systems is optimized under various conditions. Due to partial shading or change in irradiance and temperature conditions in PV, the power-voltage characteristics exhibit multiple local peaks; one such phenomenon is the global peak. These conditions make it very challenging for MPPT to locate the global maximum power point. Many MPPT algorithms have been proposed for this purpose. In this thesis, a modified Particle Swarm Optimisation (PSO)-based MPPT method for PV systems is proposed. Unlike the conventional PSO-based MPPT methods, the proposed method accelerates convergence of the PSO algorithm by consistently decreasing weighting factor, cognitive and social parameters thus reducing the steps of iterations and improved the tracking response time. The advantage of the proposed method is that it requires fewer search steps (converges to the desired solution in a reasonable time) compared to other MPPT methods. It requires only the idea of series cells; thus, it is system independent. The control scheme was first created in MATLAB/Simulink and compared with other MPPT methods and then validated using hardware implementation. The TMS320F28335 eZDSP board was used for implementing the developed control algorithm. The results show good performance in terms of speed of convergence and also guaranteed convergence to global MPP with faster time response compared to the other MPPT methods under typical conditions (partial shading, change in irradiance and temperature, load profile). This demonstrates the effectiveness of the proposed method

    Improved performance low-cost incremental conductance PV MPPT technique

    Get PDF
    Variable-step incremental conductance (Inc.Cond.) technique, for photovoltaic (PV) maximum power point tracking, has merits of good tracking accuracy and fast convergence speed. Yet, it lacks simplicity in its implementation due to the mathematical division computations involved in its algorithm structure. Furthermore, the conventional variable step-size, based on the division of the PV module power change by the PV voltage change, encounters steadystate power oscillations and dynamic problems especially under sudden environmental changes. In this study, an enhancement is introduced to Inc.Cond. algorithm in order to entirely eliminate the division calculations involved in its structure. Hence, algorithm implementation complexity is minimised enabling the utilisation of low-cost microcontrollers to cut down system cost. Moreover, the required real processing time is reduced, thus sampling rate can be improved to fasten system response during sudden changes. Regarding the applied step-size, a modified variable-step size, which depends solely on PV power, is proposed. The latter achieves enhanced transient performance with minimal steady-state power oscillations around the MPP even under partial shading. For proposed technique's validation, simulation work is carried out and an experimental set up is implemented in which ARDUINO Uno board, based on low-cost Atmega328 microcontroller, is employed

    Hole making process of carbon fiber reinforced polymer (CFRP) using end mill cutting tool

    Get PDF
    This paper presents an alternative way of producing a hole by using a helical milling concept on a carbon fiber reinforced polymer (CFRP). Delamination is a major problem associated with making a hole by drilling on the CFRP. This study focused on helical milling technique using a vertical machining center in order to produce a hole. Various levels of cutting parameter such as cutting speed, feed rate and depth of cut have been chosen to observe the effect of trust force, delamination and surface roughness. The result will be used to determine on which cutting parameters give the best hole quality that will achieved by this new approached

    A Review on Favourable Maximum Power Point Tracking Systems in Solar Energy Application

    Get PDF
    This paper reviews different types of maximum power point tracking (MPPT) techniques for solar photovoltaic (PV) application. Since the PV output power is known affected by sun radiation and temperature, it is necessary to search for an effective method for extracting maximum amount of power from PV cell/modules. In this study, a total of seven control algorithms were selected, comprising the most popular methods among the established techniques. A comparison in terms of convergence speed, complexity, as well as the basic concept of each method had been carried out for future reference. Based on the accessible simulation results, modified Perturb and Observe (P&O) method had shown its effectiveness for obtaining actual maximum power point while solving major drawbacks of the conventional P&O. This paper also discusses typical solar MPPT system, including the pros and cons of each part of the system
    • 

    corecore