13 research outputs found

    HBMFTEFR: Design of a Hybrid Bioinspired Model for Fault-Tolerant Energy Harvesting Networks via Fuzzy Rule Checks

    Get PDF
    Designing energy harvesting networks requires modelling of energy distribution under different real-time network conditions. These networks showcase better energy efficiency, but are affected by internal & external faults, which increase energy consumption of affected nodes. Due to this probability of node failure, and network failure increases, which reduces QoS (Quality of Service) for the network deployment. To overcome this issue, various fault tolerance & mitigation models are proposed by researchers, but these models require large training datasets & real-time samples for efficient operation. This increases computational complexity, storage cost & end-to-end processing delay of the network, which reduces its QoS performance under real-time use cases. To mitigate these issues, this text proposes design of a hybrid bioinspired model for fault-tolerant energy harvesting networks via fuzzy rule checks. The proposed model initially uses a Genetic Algorithm (GA) to cluster nodes depending upon their residual energy & distance metrics. Clustered nodes are processed via Particle Swarm Optimization (PSO) that assists in deploying a fault-tolerant & energy-harvesting process. The PSO model is further augmented via use of a hybrid Ant Colony Optimization (ACO) Model with Teacher Learner Based Optimization (TLBO), which assists in value-based fault prediction & mitigation operations. All bioinspired models are trained-once during initial network deployment, and then evaluated subsequently for each communication request. After a pre-set number of communications are done, the model re-evaluates average QoS performance, and incrementally reconfigures selected solutions. Due to this incremental tuning, the model is observed to consume lower energy, and showcases lower complexity when compared with other state-of-the-art models. Upon evaluation it was observed that the proposed model showcases 15.4% lower energy consumption, 8.5% faster communication response, 9.2% better throughput, and 1.5% better packet delivery ratio (PDR), when compared with recently proposed energy harvesting models. The proposed model also showcased better fault prediction & mitigation performance when compared with its counterparts, thereby making it useful for a wide variety of real-time network deployments

    Several Categories of Energy Harvested Routing Protocols, Challenges, and Characteristics in WSN: A Review

    Get PDF
    The routing protocol is a technique for determining the most efficient channel for data transmission. The route selection procedure, which relies on the kind of network, channel conditions, and measurement systems, presents several challenges. Routing is essential in Wireless Sensor Networks (WSNs) for environmental monitoring, traffic monitoring, and other applications. WSNs are small nodes that can sense, interpret data, and communicate wirelessly. Many routing, power control, and data dissemination techniques have been developed specifically for WSNs, where energy efficiency is a crucial design factor. On the other hand, the focus has been on energy harvesting and standard routing methods, which can vary depending on the design and network architecture. In a Wireless Sensor Network (WSN), the data collected by the sensor nodes is typically transferred to the base station, which connects the sensor network to other networks (such as the internet), where it is processed and necessary action is taken. WSN has recently been developed to allow various applications, including traffic enforcement building automation, smart warfare, environmental sensing, and many more.WSN integrates several sensors or nodes deployed around a specific node to perform computational processes

    Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications

    Get PDF
    Fast development in hardware miniaturization and massive production of sensors make them cost efficient and vastly available to be used in various applications in our daily life more specially in environment monitoring applications. However, energy consumption is still one of the barriers slowing down the development of several applications. Slow development in battery technology, makes energy harvesting (EH) as a prime candidate to eliminate the sensor’s energy barrier. EH sensors can be the solution to enabling future applications that would be extremely costly using conventional battery-powered sensors. In this paper, we analyze the performance improvement and evaluation of EH sensors in various situations. A network model is developed to allow us to examine different scenarios. We borrow a clustering concept, as a proven method to improve energy efficiency in conventional sensor network and brought it to EH sensor networks to study its effect on the performance of the network in different scenarios. Moreover, a dynamic and distributed transmission power management for sensors is proposed and evaluated in both networks, with and without clustering, to study the effect of power balancing on the network end-to-end performance. The simulation results indicate that, by using clustering and transmission power adjustment, the power consumption can be distributed in the network more efficiently, which result in improving the network performance in terms of a packet delivery ratio by 20%, 10% higher network lifetime by having more alive nodes and also achieving lower delay by reducing the hop-count

    An Improved Energy-Aware Distributed Unequal Clustering Protocol using BBO Algorithm for Heterogeneous Load Balancing

    Get PDF
    With the rapid extension of IoT-based applications various distinct challenges are emerging in this area Among these concerns the node s energy efficiency has a special importance since it can directly affect the functionality of IoT-Based applications By considering data transmission as the most energy-consuming task in IoT networks clustering has been proposed to reduce the communication distance and ultimately overcome node energy wastage However cluster head selection as a non-deterministic polynomial-time hard problem will be challenging notably by considering node s heterogeneity and real-world IoT network constraints which usually have conflicts with each other Due to the existence of conflict among the main system parameters various solutions have been proposed in recent years that each of which only considered a few real-world limitations and parameter

    Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network

    Get PDF
    In this modern age, Internet of Things (IoT) and Wireless Sensor Network (WSN) as its derivatives have become one of the most popular and important technological advancements. In IoT, all things and services in the real world are digitalized and it continues to grow exponentially every year. This growth in number of IoT device in the end has created a tremendous amount of data and new data services such as big data systems. These new technologies can be managed to produce additional value to the existing business model. It also can provide a forecasting service and is capable to produce decision-making support using computational intelligence methods. In this survey paper, we provide detailed research activities concerning Computational Intelligence methods application in IoT WSN. To build a good understanding, in this paper we also present various challenges and issues for Computational Intelligence in IoT WSN. In the last presentation, we discuss the future direction of Computational Intelligence applications in IoT WSN such as Self-Organizing Network (dynamic network) concept

    E2-MACH: Energy Efficient Multi-Attribute Based Clustering Scheme for Energy Harvesting Wireless Sensor Networks

    Get PDF
    Internet of things have emerged enough due to its applications in a wide range of fields such as governance, industry, healthcare, and smart environments (home, smart, cities, and so on). Internet of things–based networks connect smart devices ubiquitously. In such scenario, the role of wireless sensor networks becomes vital in order to enhance the ubiquity of the Internet of things devices with lower cost and easy deployment. The sensor nodes are limited in terms of energy storage, processing, and data storage capabilities, while their radio frequencies are very sensitive to noise and interference. These factors consequently threaten the energy consumption, lifetime, and throughput of network. One way to cope with energy consumption issue is energy harvesting techniques used in wireless sensor network–based Internet of things. However, some recent studies addressed the problems of clustering and routing in energy harvesting wireless sensor networks which either concentrate on energy efficiency or quality of service. There is a need of an adequate approach that can perform efficiently in terms of energy utilization as well as to ensure the quality of service. In this article, a novel protocol named energy-efficient multi-attribute-based clustering scheme (E2-MACH) is proposed which addresses the energy efficiency and communication reliability. It uses selection criteria of reliable cluster head based on a weighted function defined by multiple attributes such as link statistics, neighborhood density, current residual energy, and the rate of energy harvesting of nodes. The consideration of such parameters in cluster head selection helps to preserve the node’s energy and reduce its consumption by sending data over links possessing better signal-to-noise ratio and hence ensure minimum packet loss. The minimized packet loss ratio contributes toward enhanced network throughput, energy consumption, and lifetime with better service availability for Internet of things applications. A set of experiments using network simulator 2 revealed that our proposed approach outperforms the state-of-the-art low-energy adaptive clustering hierarchy and other recent protocols in terms of first-node death, overall energy consumption, and network throughput

    Towards optimized one-step clustering approach in wireless sensor networks

    Get PDF
    This paper introduces a nonlinear integer programming model for the clustering problem in wireless sensor networks, with a threefold contribution. First, all factors that may influence the energy consumption of clustering protocols, such as cluster-heads selection and distribution, are considered implicitly in the model. Second, an innovative fitness function that directly maximizes the WSN lifetime is proposed. Finally, a global optimum of the whole network lifespan clustering schemes is targeted. The proposed model is then solved by a particle swarm optimization meta-heuristic based algorithm. This algorithm follows a centralized one-step off-line approach, in which the clustering schemes of the whole network lifetime and their associated durations are computed at the initialization of the network operations. The one-step approach is enabled by an energy prediction mechanism that allows to reduce the costs of the periodic network re-clustering. Simulation results show clear enhancement in network lifespan and number of received data packets as compared to some state-of-the-art clustering approaches

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved
    corecore