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ABSTRACT 

Designing energy harvesting networks requires modelling of energy distribution under different real-time network conditions. These networks 

showcase better energy efficiency, but are affected by internal & external faults, which increase energy consumption of affected nodes. Due to 

this probability of node failure, and network failure increases, which reduces QoS (Quality of Service) for the network deployment. To 

overcome this issue, various fault tolerance & mitigation models are proposed by researchers, but these models require large training datasets & 

real-time samples for efficient operation. This increases computational complexity, storage cost & end-to-end processing delay of the network, 

which reduces its QoS performance under real-time use cases. To mitigate these issues, this text proposes design of a hybrid bioinspired model 

for fault-tolerant energy harvesting networks via fuzzy rule checks. The proposed model initially uses a Genetic Algorithm (GA) to cluster nodes 

depending upon their residual energy & distance metrics. Clustered nodes are processed via Particle Swarm Optimization (PSO) that assists in 

deploying a fault-tolerant & energy-harvesting process. The PSO model is further augmented via use of a hybrid Ant Colony Optimization 

(ACO) Model with Teacher Learner Based Optimization (TLBO), which assists in value-based fault prediction & mitigation operations. All 

bioinspired models are trained-once during initial network deployment, and then evaluated subsequently for each communication request. After 

a pre-set number of communications are done, the model re-evaluates average QoS performance, and incrementally reconfigures selected 

solutions. Due to this incremental tuning, the model is observed to consume lower energy, and showcases lower complexity when compared 

with other state-of-the-art models. Upon evaluation it was observed that the proposed model showcases 15.4% lower energy consumption, 8.5% 

faster communication response, 9.2% better throughput, and 1.5% better packet delivery ratio (PDR), when compared with recently proposed 

energy harvesting models. The proposed model also showcased better fault prediction & mitigation performance when compared with its 

counterparts, thereby making it useful for a wide variety of real-time network deployments. 
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1. Introduction 

Energy harvesting model design for wireless networks is a 

multidomain task, that involves analysis of nodes, evaluation 

of faults, estimation of mitigation strategies, transfer of energy 

between nodes, QoS maintenance via Machine Learning 

Models, etc. To implement a high-efficiency energy 

harvesting model, researchers & network designers are 

required to analyze different network & node-specific 

parameters. For instance, a typical fault-tolerance aware 

energy harvesting model that uses Cuckoo Search 

Optimization (CSO) is depicted in figure 1, wherein deep 

reinforcement learning (DRL) is used for deployment of 

continuous training & energy optimization processes. The 

model initially uses an energy harvesting block which allows 

large scale wireless sensor networks (WSNs) to share energy 

between different nodes. This energy sharing process is 

accompanied with a pre-processing block, that assists in 

reducing probability of faults via estimation of low energy 

nodes, evaluation of high-trust nodes, and identification of 

nearby nodes for better communication performance. 
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Figure 1. Design of a typical energy harvesting model for fault tolerant wireless sensor networks 

The identified nodes are evaluated for hardware failure, via a 

deep reinforcement learning (DRL) model, that assists in 

identification of faulty nodes, and removing them from the 

communication process. Selected nodes are filtered via a 

fitness evaluation function described by equation 1, which 

assists in identification of nodes with higher energy and lower 

distance metrics, 

 

𝑓𝑖 = (
√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

𝐸𝑓𝑖𝑛𝑎𝑙 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

)

𝑖

… (1) 

Where, (𝑥, 𝑦) represents location of the nodes, while 

𝐸𝑓𝑖𝑛𝑎𝑙 , & 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  represents final & initial energy of the nodes 

involved in the communication process. Similar models are 

proposed by researchers, which assist in optimizing energy 

consumption via identification of high-trust nodes via 

different fitness functions. A review of such energy efficient 

& fault tolerant models, along with their nuances, advantages, 

limitations, and future research scopes is discussed in the next 

section of this text. Based on this discussion it was observed 

that some of these models are affected by internal & external 

faults, which increase energy consumption of affected nodes. 

While, deployment of other fault tolerant models is highly 

complex, and increases computational complexity, storage 

cost & end-to-end processing delay of the network, which 

reduces its QoS performance under real-time use cases. To 

overcome these issues, section 3 discusses design of a hybrid 

bioinspired model for fault-tolerant energy harvesting 

networks via fuzzy rule checks. The proposed model was 

evaluated in section 4, and compared in terms of different 

performance metrics with various state-of-the-art models.  

Finally, this text concludes with some interesting observations 

about the proposed model, and recommends methods to 

further improve its performance. 

 

2. Literature Review 

A wide variety of energy harvesting and fault tolerant models 

are proposed by researchers, and each of them have different 

computational characteristics, which determine their 

deployment capabilities. For instance, work in [1, 2, 3] 

proposes Radio Frequency (RF) based energy harvesting for 

IoT devices, data and energy integrated network (DEIN), and 

improved uneven clustering protocol (IUCP) for reducing 

node-level energy consumption during network 

communications. Similar models are discussed in [4, 5, 6], 

which discuss deployment of Device-Selective Energy 

Requests, Upper Confidence Bound (UCB), and time-

synchronized channel hopping (TSCH) with energy savvy 

network joining strategies. These models showcase high 

energy efficiency due to intrinsic use of energy preservation 

techniques, which assists in reducing continuous power use 

under different communication scenarios. But these models 

are highly complex, which limits their usability & scalability 

performance. To overcome this limitation, work in [7] 

proposes use of Energy-Efficient Task Offloading via 

Differential Evolution, and Edge Computing Model, which 

assists in low power, and high efficiency network 

deployments. This model uses cloud computing to perform 

highly complex tasks, and offloads low power tasks to lower 

performance nodes. Due to which, the model showcases better 

energy efficiency, with higher throughput capabilities. 

Inspired by this model, work in [8, 9, 10] proposes Energy 

Harvesting Intelligent Relay Selection Protocol (EH-IRSP), 
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Online Energy Scheduling, and dynamic programming (DP) 

that assists in improving throughput while maintaining high 

energy efficiency under different network scenarios.  

Models that utilize joint caching and user association for 

energy efficient operations [11], fast time fair energy 

allocation model (FTF) [12], Capacitor Charging Management 

Schemes [13], and Extended Hierarchical Clustering (EHC) 

[14] are also discussed by researchers, which aim at reducing 

power consumption via redundancy estimation and removal 

from wireless sensor networks. Similar models are discussed 

in [15, 16, 17], wherein researchers have proposed use of 

Threshold-Oriented and Energy-Harvesting Enabled 

Multilevel Stable Election Protocol (TEMSEP), and 

Distributed Deep Reinforcement Learning (DDRL) for 

Energy Harvesting Virtualized Small Cells. These models are 

capable of incorporating energy levels with distance and other 

measures in order to improve energy efficiency of WSN 

deployments. Extensions to these models are discussed in [19, 

20, 21], wherein Optimal Resource Allocation, Orientation-

Independent Multiple Input Energy Efficient Networks, 

Multiple Featured Actor & Critic based Relay Selection 

Model are discussed for dynamic networks. These models 

showcase utilization of both network & node related 

parameters to incorporate energy efficiency in wireless 

scenarios. 

Fault tolerant methods are also required to improve efficiency 

of wireless networks under real-time scenarios. Work in [22, 

23, 24] proposes Maximum Likelihood Event Localization 

(MLEM), fault-tolerance using repairing points in clusters, 

and Fault-Tolerant Clustering Topology (FTCT) for 

improving efficiency during different network faults. These 

models are further extended via use of node-link failure fault 

tolerance model (NLFFT) with improved quadratic minimum 

spanning tree [25], static backup and dynamic timing 

monitoring (SBDTM) [26], Kuatz Fault Tolerance [27], and 

Adaptive Fault Tolerance (AFT) [28] models that assists in 

reducing network faults via augmentation of different network 

parameters. Extensions to these models are discussed in [29, 

30, 31], which discuss use of Dual Cluster Heads Cooperation 

(CoDuch), Delay Aware Regional Fault-Tolerant Routing 

Model, and distributed node classification for improved fault 

tolerance performance under real-time conditions. These 

models showcase slower performance due to use of highly 

complex computational models. This performance can be 

improved via discrete particle swarm optimization (DPSO) 

based oft real-time fault-tolerant task allocation algorithm 

(FTAOA) [32], collaborative sensor fault detection (CSFD) 

[33], and Energy-Efficient and Cooperative Fault- Tolerant 

Communications [34], which assist in estimating network-

level faults via pattern analysis. But none of these models 

combine fault tolerance with energy harvesting, which limits 

their practical usability. To improve this usability, next 

section proposes design of a novel Hybrid Bioinspired Model 

for Fault-Tolerant Energy Harvesting Networks via Fuzzy 

Rule Checks. The proposed model was tested under different 

network conditions, and performance was compared w.r.t. 

various reviewed models for real-time analysis. 

 

3. Design of the proposed Hybrid Bioinspired Model for 

Fault-Tolerant Energy Harvesting Networks via Fuzzy 

Rule Checks 

From the literature review it can be observed that a wide 

variety of energy harvesting models with fault tolerance have 

been proposed by researchers. Each of these models have 

devised customized Machine Learning solutions for 

improving their security & QoS performance metrics. But 

these models require continuous training, which increases 

their computational complexity, storage cost & end-to-end 

processing delay, and reduces QoS performance under real-

time use cases.  

To overcome these limitations, a novel light weight model 

that uses Genetic Algorithm (GA) for distance & energy-

aware node clustering, Particle Swarm Optimization (PSO) 

for achieving fault-tolerance & energy-harvesting, and hybrid 

Ant Colony Optimization (ACO) Model with Teacher Learner 

Based Optimization (TLBO), which assists in value-based 

fault prediction & mitigation operations is discussed in this 

text. Overall flow of the proposed model is depicted in figure 

2, wherein different bioinspired models along with their 

process flows can be observed. 

http://www.ijritcc.org/
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Figure 2. Overall flow for the proposed GA, PSO, ACO & 

TLBO Model for QoS-aware fault tolerance 

From the figure it can be observed that initial clustering is 

performed by GA, which assists in delay & energy-aware 

grouping of nodes. These nodes are further processed via 

PSO-based fault tolerance model, that assists in identification 

of energy-harvesting node sets. These node sets are given to 

ACO & TLBO Model for value-based fault checking, that 

assists in continuous QoS improvement under different 

communication scenarios. Design of the proposed model is 

divided into different sub modules, and design for each of 

these modules is discussed in separate sub-sections of this 

text. This will assist readers to implement these models in 

part(s) or as a whole, depending upon their network 

requirements. 

 

3.1. Design of the GA Layer for initial clustering 

In the network, various databases are stored on router nodes, 

which includes network, node, and model databases. Each of 

these database stores an entity specific set of information, that 

assists in identification of different parameters. For instance, 

Network Database stores information about current 

bandwidth, data rate, Received Signal Strength Indicator 

(RSSI), capacity, temporal node performance, link quality, 

etc. which are related to network deployment. While, node-

level information including approximate locations, energy 

levels, energy models, capacity of nodes, etc. is stored on the 

node database. The model database stores decision 

information, which includes routing rules, energy threshold 

levels, etc. All this information is provided to the GA Model, 

which assists in estimation of initial clusters. This clustering is 

performed via the following process, 

• Initialize GA Parameters, 

o Number of iterations (𝑁𝑖) 

o Number of solutions (𝑁𝑠) 

o Learning rate (𝐿𝑟) 

o Maximum number of clusters (𝐶(𝑀𝑎𝑥)) 

• Initially mark each solution as ‘to be modified’ 

• For each iteration between 1 to 𝑁𝑖 

o For each solution between 1 to 𝑁𝑠 

▪ If the solution is marked as ‘not to be modified’, then go 

to the next solution. 

▪ Else, Generate a solution via the following process, 

• Initialize number of clusters (𝑁𝑐) stochastically via 

equation 2, 

𝑁𝑐 = 𝑆𝑇𝑂𝐶𝐻(2, 𝐶(𝑀𝑎𝑥)) … (2) 

Where, 𝑆𝑇𝑂𝐶𝐻 represents a stochastic Markovian process for 

generating stochastic numbers for different sets. 

• Based on this, divide the nodes stochastically into 𝑁𝑐 

clusters via k Means, via evaluation of distance, energy and 

node capacity-based comparison metric which is evaluated via 

equation 3, 

𝑑𝑘 =
𝐸(𝑁𝑜𝑑𝑒) ∗ 𝐶(𝑁𝑜𝑑𝑒)

√
(𝑥(𝑁𝑜𝑑𝑒) − 𝑥(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑))

2
+

(𝑦(𝑁𝑜𝑑𝑒) − 𝑦(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑))
2

… (3) 

Where, 𝑑𝑘 represents distance metric for k Means, while 

𝐸(𝑁𝑜𝑑𝑒) & 𝐶(𝑁𝑜𝑑𝑒) represents residual energy & capacity 

of the node, and (𝑥, 𝑦) represents current location of the nodes 

respectively. 

• Based on this distance metric, nodes are clustered into 𝑁𝑐 

clusters, and a fitness function is evaluated via equation 4, 

𝑓𝑖 =
∑ ∑

𝑑𝑘𝑖
−𝑑𝑘𝑗

𝑁(𝑛)𝑖

𝑁(𝑛)𝑖
𝑗=1

𝑁𝑐
𝑖=1

𝑁𝑐

… (4) 

Where, 𝑁(𝑛)𝑖 represents number of nodes present in the 𝑖𝑡ℎ 

cluster. 

▪ This fitness value is evaluated for each solution, and a 

fitness threshold is calculated via equation 5 as follows, 

http://www.ijritcc.org/
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𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑠

𝑁𝑠

𝑖=1

… (5) 

o Solutions with fitness 𝑓𝑖 > 𝑓𝑡ℎ are marked as ‘to be 

modified’, while other solutions are marked as ‘not to be 

modified’ 

• This process is repeated for 𝑁𝑖 iterations, and solution 

with minimum fitness value is selected, and its clustering 

configuration is used for final clustering of nodes. 

Based on this process, nodes are initially clustered into a set 

of 𝑁𝑐 clusters, and each cluster is processed via a PSO Model 

for fault-tolerant energy harvesting with tolerance to improve 

routing effectiveness. This process is discussed in the next 

section of this text. 

 

3.2. Designing the PSO layer for fault tolerant energy 

harvesting 

After nodes are clustered with similar energy, better capacity, 

and lower distance from centroid, which assists in 

identification of clusters that might have faults during future 

communications. To perform this task, a PSO based model is 

used, which assists in segregating node clusters, based on their 

temporal performance. This model works via the following 

process, 

• Initialize PSO parameters, 

o Number of particles (𝑁𝑝) 

o Number of iterations (𝑁𝑖) 

o Cognitive learning rate (𝐿𝑐) 

o Social learning rate (𝐿𝑠) 

• Determine energy model for each node, and evaluate the 

following parameters, 

o Energy needed for transmission (𝐸(𝑇)) 

o Energy needed for reception (𝐸(𝑅)) 

o Energy needed during idle mode (𝐸(𝐼)) 

o Energy needed for waking up from sleep mode (𝐸(𝑊)) 

o Time needed for waking up from sleep mode (𝑇(𝑊)) 

• Based on this model, generate initial particles via the 

following process, 

o For each cluster, evaluate cluster fitness via equation 6 as 

follows, 

𝐶𝑓 = ∑
𝑑𝑘𝑖

− 𝑑𝑘(ℎ𝑒𝑎𝑑)

𝑁(𝑛)

𝑁(𝑛)

𝑖=1

∗ [
𝑇(𝑊) ∗ 𝐸(𝑀𝑎𝑥)

(
𝐸(𝑇) + 𝐸(𝑅) +

𝐸(𝐼) + 𝐸(𝑊)
) ∗ 𝑀𝑎𝑥(𝑇(𝑊))

] … (6) 

Where, 𝐸(𝑀𝑎𝑥) & 𝑀𝑎𝑥(𝑇(𝑊)) represents maximum energy 

level of node, and maximum wake up time between different 

node configurations. 

o  For each particle in 1 to 𝑁𝑝, perform the following tasks, 

▪ Stochastically shift nodes with higher 𝑑𝑘 values to 

clusters with lower 𝐶𝑓 values. 

▪ Evaluate particle velocities based on these shifts via 

equation 7, 

𝑃𝑉(𝑖) = ∑ 𝐶𝑓(𝑗) ∗
𝐿𝑟

𝑁𝑐

𝑁𝑐

𝑗=1

… (7) 

▪ Initially mark, 𝑃𝐵𝑒𝑠𝑡 = 𝑃𝑉 

▪ Mark the particle with highest 𝑃𝑉 as 𝐺𝐵𝑒𝑠𝑡 via equation 

8, 

𝐺𝐵𝑒𝑠𝑡 = 𝑀𝑎𝑥 [⋃ 𝑃𝑉(𝑖)

𝑁𝑝

𝑖=1

] … (8) 

• For each iteration in 1 to 𝑁𝑖, perform the following tasks, 

o Update particle fitness via equation 9, 

𝑃𝑉(𝑁𝑒𝑤) = 𝑟 ∗ 𝑃𝑉(𝑂𝑙𝑑) + 𝐿𝑐 ∗ [𝑃𝑉(𝑂𝑙𝑑) − 𝑃𝐵𝑒𝑠𝑡]

+ 𝐿𝑠[𝑃𝑉(𝑂𝑙𝑑) − 𝐺𝐵𝑒𝑠𝑡] … (9) 

Where, 𝑟 represents a stochastic number between the range 

𝑟 ∈ (0.1, 1) 

o Based on this value of 𝑃𝑉, shift nodes between clusters to 

obtain required particle velocities. 

o Update 𝑃𝐵𝑒𝑠𝑡, if 𝑃𝐵𝑒𝑠𝑡 > 𝑃𝑉(𝑁𝑒𝑤) 

o Similarly, update 𝐺𝐵𝑒𝑠𝑡 via equation 8 to obtain new 

particle sets 

• At the end of the final iteration, identify particle with 

highest velocity, and use its configuration for the energy 

harvesting process. 

After selection of final cluster configurations, nodes in 

clusters with lowest 𝑑𝑘 values are marked as ‘faulty’ nodes, 

and are not used during communication sequences. Instead, 

these nodes are used as backup energy nodes, and are used for 

energy harvesting by nodes with higher 𝑑𝑘 values. Due to this 

process, number of nodes needed during route selection are 

minimized, which reduces communication delays. The ‘non 

faulty’ clusters are further processed via the hybrid ACO & 

TLBO Model for identification & mitigation of faults. Design 

of this model is discussed in the next section of this text. 

 

3.3. Design of the hybrid ACO & TLBO Model for 

identification & mitigation of faults 

Upon identification of ‘non-faulty’ nodes, an ACO & TLBO 

Model is deployed, which assists in value-based checking of 

nodes for fault evaluation & mitigation during different 

communications. For each communication, the initially an 

ACO Model is used to find the shortest path with highest 

residual energy via the following process, 

• Initialize the following ACO parameters, 

o Number of ants (𝑁𝑎) 

http://www.ijritcc.org/
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o Number of iterations (𝑁𝑖) 

o Number of scout ants (𝑁𝑠) 

o Pheromone regulation factor (𝛼) 

o Visibility regulation factor (𝛽) 

o Pheromone evaporation factor (𝛾) 

• For each iteration in 1 to 𝑁𝑖 

o Select 𝑁𝑠 number of ants stochastically, and for each ant 

evaluate node selection probability via equation 10 as follows, 

𝑝𝑖𝑗
𝑙 =

(𝜏𝑖𝑗)
𝛼

∗ (𝑑𝑘𝑖𝑗
)

𝛽

∑ (𝜏𝑖ℎ)𝛼 ∗ (𝑑𝑘𝑖ℎ
)

𝛽𝑁(𝑛)
ℎ=1

… (10) 

Where, 𝑗 ∈ (1, 𝑁(𝑛)), while 𝜏 represents intensity of 

pheromone trail between nodes 𝑖 & 𝑗, which is initialized by 

link quality between the nodes. 

o Based on this value of 𝑝, evaluate incremental pheromone 

update via equation 11 as follows, 

𝜕𝜏 =
𝑄

𝐿
… (11) 

Where, 𝐿 represents maximum distance between the nodes, 

while 𝑄 represents a link quality factor on the path, which is 

updated by use of network for different communications. 

o Using this incremental pheromone update level, 

reconfigure current number of pheromones on the path via 

equation 12, 

𝑝𝑖𝑗
𝑙 (𝑁𝑒𝑤) = 𝑝𝑖𝑗

𝑙 (𝑂𝑙𝑑) ∗ 𝛾 + ∑ 𝜕𝜏ℎ

𝑁𝑎

ℎ=1

… (12) 

• Repeat this process for all iterations, and identify path 

with maximum pheromones. 

Select the identified path, and use for fault-aware routing with 

high QoS performance. Nodes in the selected path are 

evaluated via a TLBO model, that assists in identification of 

fuzzy value changes during communications. This model 

works via the following process, 

• Initialize TLBO Parameters, 

o Number of iterations (𝑁𝑖) 

o Number of teachers (𝑁(𝑇)) 

o Number of learners (𝑁𝑙) 

• Teacher nodes are selected as nodes with higher energy 

levels in the path, while other nodes are marked as learner 

nodes. 

• For each iteration in 1 to 𝑁𝑖, perform the following tasks, 

o Select a stochastic Teacher Node, evaluate its sensor 

value, and convert this value into fuzzy range of Low (L=1), 

Medium (M=2), and High (H=3) 

o Based on this fuzzy value, identify difference between 

fuzzy values of any of the stochastic student nodes. 

o If difference between the fuzzy values is more than unity, 

then discard the student node, and increment its faulty count 

values (𝐹𝐶𝑉). 

• At the end of all iterations, identify fault count value 

threshold via equation 13 as follows, 

𝐹𝐶𝑉𝑡ℎ = ∑ 𝐹𝐶𝑉𝑖 ∗
𝐿𝑟

𝑁𝑙

… (13)

𝑁𝑙

𝑖=1

 

• If any node has 𝐹𝐶𝑉 > 𝐹𝐶𝑉𝑡ℎ, then mark the node as 

‘faulty’ and shift it to the ‘fault node cluster’ 

Based on this process, faulty nodes are identified, and node 

clusters are updated. Due to which, the network incrementally 

shifts nodes from normal clusters to faulty clusters, thereby 

improving overall network efficiency. This efficiency is 

further improved via use of incremental learning, for 

continuous performance improvement. Design of this 

incremental learning layer is discussed in the next section of 

this text. 

3.4. Design of the incremental learning layer for continuous 

performance improvement 

Based on sections 3.1, 3.2, and 3.3, it can be observed that 

nodes are intelligently selected for routing & harvesting based 

on their distance, energy levels, and capacity metrics. This 

selection is further improved via use of an incremental 

learning model, that iteratively improves values of 𝐿𝑟 for 

better model performance. To perform this task, a pre-set 

number of communications are performed, and QoS metrics 

are measured after each of these communication sets. These 

metrics include, end to end communication delay, 

communication energy, throughput, & packet delivery ratio, 

and are evaluated via equations 14, 15, 16 & 17 respectively, 

𝐷 = ∑
𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖

− 𝑡𝑜𝑛𝑠𝑒𝑡𝑖

𝑁𝑐

… (14)

𝑁𝑐

𝑖=1

 

Where, 𝐷, 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  & 𝑡𝑜𝑛𝑠𝑒𝑡  represents mean delay for 𝑁𝑐 

communications, completion timestamp, and onset timestamp 

for each of the communications.  

𝐸 = ∑
𝐸𝑜𝑛𝑠𝑒𝑡𝑖

− 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑖

𝑁𝑐

… (15)

𝑁𝑐

𝑖=1

 

Here, 𝐸, 𝐸𝑜𝑛𝑠𝑒𝑡 , & 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  represents mean energy 

consumption, energy levels during communication onset, and 

energy levels after completion of the communications.  

𝑇 = ∑
𝑃(𝑅𝑋)

𝑁𝑐 ∗ 𝐷
… (16)

𝑁𝑐

𝑖=1

 

Where, 𝑇 & 𝑃(𝑅𝑋) represents throughput, and number of 

packets received successfully during the communications. 
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𝑃𝐷𝑅 = ∑
𝑃(𝑅𝑋)

𝑁𝑐 ∗ 𝑃(𝑇𝑋)
… (17)

𝑁𝑐

𝑖=1

 

Where, 𝑃𝐷𝑅, & 𝑃(𝑇𝑋) represents packet delivery ratio, and 

number of packets transmitted during the communications. 

Based the newer and older values of these QoS metrics, 

evaluate new value of learning rate via equation 18 as follows, 

𝐿𝑟(𝑁𝑒𝑤)

= 𝐿𝑟(𝑂𝑙𝑑) ∗
[

𝐷(𝑂𝑙𝑑)

𝐷(𝑁𝑒𝑤)
+

𝐸(𝑂𝑙𝑑)

𝐸(𝑁𝑒𝑤)
+

𝑇(𝑁𝑒𝑤)

𝑇(𝑂𝑙𝑑)
+

𝑃𝐷𝑅(𝑁𝑒𝑤)

𝑃𝐷𝑅(𝑂𝑙𝑑)
]

4
… (18) 

After updating the value of 𝐿𝑟, if 𝐿𝑟(𝑁𝑒𝑤) > 𝐿𝑟(𝑂𝑙𝑑), that 

indicates that network’s current performance is optimum, and 

no need of retuning the parameters, otherwise the GA Model 

is re-evaluated with this new value of 𝐿𝑟 and clustering is 

performed for better performance. Due to these updates, the 

proposed model is capable of self-tuning its performance for 

better QoS under different network scenarios. Evaluation of 

this performance can be observed from the next section of this 

text. 

 

4. Results analysis & validation 

The proposed model uses a combination of different 

bioinspired optimization techniques to improve clustering, 

fault tolerance, and energy harvesting performance. To 

evaluate this performance, the proposed HBMFTEFR model 

was evaluated under different simulation conditions in terms 

of end-to-end communication delay, throughput, packet 

delivery ratio and energy consumption metrics for different 

communications. These communications were performed 

under a standard Network configuration scenario, which can 

be observed from table 1 as follows, 

Table 1. Configuration of Network for evaluation under 

different communication scenarios 

Parameter used for 

Network 

Parameter Value 

Model used for propagation Two Ray Model with Ground 

Communications 

Used MAC Protocol 802.16a 

Interface Queue Used for 

Evaluation 

Priority Queue with Drop 

Tail for excess packets 

Antenna’s Model Omni directional antenna 

Number of Nodes in the 

Network 

500 to 2000 

Underlying routing protocol DSR 

Dimensions of the Wireless 

Network 

500m x 500 m 

 

Based on these parameters, initially the network model was 

compared with various energy harvesting models as proposed 

in IUCP [3], EH IRSP [8], and TEM SEP [16], which will 

assist readers to identify network’s performance w.r.t. state-

of-the-art methods. This evaluation can be observed from 

section 4.1, and was done for 500, 1000, & 2000 nodes under 

different number of node-to-node communications. Following 

this, section 4.2 demonstrates performance of the 

HBMFTEFR model under different types of faults, wherein 

QoS metrics were compared with NL FFT [25], Co Duch 

[29], and DPSO [32], which are standard fault tolerance 

models. Based on this performance readers will be able to 

identify fault mitigation & tolerance capabilities of the 

proposed model. 

 

4.1. QoS performance when compared with various state-of-

the-art energy harvesting models 

Due to inclusion of GA, and ACO, QoS performance of the 

proposed HBMFTEFR model was observed to be superior 

when compared with IUCP [3], EH IRSP [8], and TEM SEP 

[16] deployments. This performance was evaluated by varying 

number of nodes between 500 to 2000; and estimating the 

QoS values for different number of communications (NC). 

The value of NC was varied between 200 to 2000 for 

simulating small, medium and large sized networks. The final 

QoS values are estimated by simulating network parameters 

for each communication, and then averaging them for accurate 

evaluation of performance.  As per this evaluation strategy, 

values for end-to-end delay (D) for different protocols is 

tabulated in table 2 as below. 

From this evaluation, and figure 3 it can be observed that the 

proposed model showcases 10.5% lower delay when 

compared with IUCP [3], 15.2% lower delay when compared 

with EH IRSP [8], and 18.6% lower delay when compared 

with TEM SEP [16] due to use of GA & ACO, which assists 

in estimation of shortest paths. As the number of nodes are 

increased from 500 to 1000, the delay performance is further 

optimized.  

Table 2. Average communication delay for different energy 

harvesting models (for 500 Wireless nodes) 

No. of Wireless Nodes = 500 

NC D (ms) 

IUCP 

[3] 

D (ms) 

EH IRSP 

[8] 

D (ms) 

TEM 

SEP [16] 

D (ms) 

Proposed 

200 0.94 1.07 1.18 0.67 

240 1.04 1.17 1.28 0.72 

280 1.13 1.24 1.35 0.76 

320 1.16 1.29 1.41 0.79 
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360 1.21 1.36 1.49 0.84 

400 1.29 1.45 1.60 0.92 

500 1.37 1.63 1.87 1.10 

600 1.61 2.12 2.43 1.43 

800 2.27 2.77 3.06 1.75 

900 2.81 3.16 3.43 1.95 

1000 2.98 3.39 3.73 2.14 

1100 3.23 3.81 4.21 2.41 

1200 3.75 4.35 4.76 2.71 

1400 4.22 4.79 5.28 3.02 

1600 4.55 5.44 5.98 3.30 

2000 4.64 5.64 6.15 3.36 

 

 
Figure 3. Delay performance of different models 

This can be observed from table 3 as follows 

Table 3. Average communication delay for different energy 

harvesting models (for 1000 Wireless nodes) 

No. of Wireless Nodes = 1000 

NC D (ms) 

IUCP 

[3] 

D (ms) 

EH IRSP 

[8] 

D (ms) 

TEM 

SEP [16] 

D (ms) 

Proposed 

200 1.13 1.24 1.47 0.78 

240 1.24 1.35 1.59 0.84 

280 1.34 1.43 1.67 0.88 

320 1.39 1.49 1.75 0.93 

360 1.45 1.57 1.85 0.98 

400 1.55 1.66 1.99 1.08 

500 1.63 1.86 2.33 1.29 

600 1.93 2.43 3.05 1.67 

800 2.72 3.19 3.83 2.05 

900 3.37 3.63 4.29 2.29 

1000 3.58 3.89 4.66 2.51 

1100 3.87 4.38 5.26 2.83 

1200 4.50 5.00 5.95 3.19 

1400 5.07 5.50 6.61 3.56 

1600 5.46 6.26 7.48 3.88 

2000 5.57 6.49 7.69 3.95 

 

From this evaluation it can be observed that the proposed 

model showcases 14.5% lower delay when compared with 

IUCP [3], 19.2% lower delay when compared with EH IRSP 

[8], and 20.3% lower delay when compared with TEM SEP 

[16] due to use of GA & ACO, which assists in estimation of 

shortest paths. This delay is further reduced as the number of 

nodes are increased from 1000 to 2000. This can be observed 

from table 4 as below. 

From this evaluation it can be observed that the proposed 

model showcases 16.2% lower delay when compared with 

IUCP [3], 23.1% lower delay when compared with EH IRSP 

[8], and 24.6% lower delay when compared with TEM SEP 

[16] due to use of GA & ACO, which assists in estimation of 

shortest paths. 

 

Table 4. Average communication delay for different energy 

harvesting models (for 2000 Wireless nodes) 

No. of Wireless Nodes = 2000 

NC D (ms) 

IUCP 

[3] 

D (ms) 

EH IRSP 

[8] 

D (ms) 

TEM 

SEP 

[16] 

D (ms) 

Proposed 

200 1.37 1.54 1.76 0.90 

240 1.51 1.68 1.91 0.97 

280 1.64 1.78 2.01 1.02 

320 1.69 1.85 2.10 1.07 

360 1.78 1.95 2.21 1.14 

400 1.89 2.07 2.38 1.24 

500 1.99 2.32 2.79 1.48 

600 2.35 3.02 3.65 1.93 

800 3.32 3.96 4.59 2.37 

900 4.11 4.52 5.15 2.64 

1000 4.37 4.85 5.59 2.89 

1100 4.73 5.45 6.31 3.26 

1200 5.49 6.22 7.13 3.68 

1400 6.18 6.85 7.93 4.18 

1600 6.67 7.79 8.99 4.56 
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2000 6.81 8.07 9.24 4.58 

 

Similar observations are done for energy performance, this 

can be observed for 500 nodes from table 5 as below. 

From this evaluation and figure 4, it can be observed that the 

proposed model showcases 10.3% lower energy consumption 

when compared with IUCP [3], 20.5% lower energy 

consumption when compared with EH IRSP [8], and 18.2% 

lower energy consumption when compared with TEM SEP 

[16] due to use of GA & ACO, which assists in estimation of 

shortest paths with lower residual energy levels.  

As the number of nodes are increased from 500 to 1000, the 

energy performance is further optimized. 

 

Table 5. Average energy consumption for different energy 

harvesting models (for 500 Wireless nodes) 

No. of Wireless Nodes = 500 

NC E (mJ) 

IUCP 

[3] 

E (mJ) 

EH IRSP 

[8] 

E (mJ) 

TEM 

SEP 

[16] 

E (mJ) 

Proposed 

200 2.16 3.49 3.15 1.84 

240 2.65 3.93 3.47 2.01 

280 2.77 4.12 3.64 2.12 

320 2.91 4.36 3.86 2.25 

360 3.09 4.64 4.09 2.37 

400 3.29 4.88 4.29 2.48 

500 3.42 5.07 4.45 2.58 

600 3.56 5.27 4.63 2.68 

800 3.70 5.46 4.82 2.80 

900 3.82 5.75 5.12 2.98 

1000 4.08 6.25 5.52 3.19 

1100 4.51 6.60 5.73 3.30 

1200 4.57 6.59 5.73 3.27 

1400 4.49 6.65 5.39 2.94 

1600 4.75 6.99 5.56 3.03 

2000 5.02 7.34 6.16 3.46 

 

 

 
Figure 4. Energy performance of different models 

This can be observed from table 6 as follows, 

 

Table 6. Average energy consumption for different energy 

harvesting models (for 1000 Wireless nodes) 

No. of Wireless Nodes = 1000 

NC E (mJ) 

IUCP 

[3] 

E (mJ) 

EH IRSP 

[8] 

E (mJ) 

TEM 

SEP [16] 

E (mJ) 

Proposed 

200 2.59 4.01 3.93 1.98 

240 3.18 4.53 4.34 2.17 

280 3.31 4.75 4.55 2.28 

320 3.49 5.03 4.83 2.41 

360 3.72 5.35 5.12 2.55 

400 3.95 5.61 5.35 2.67 

500 4.10 5.82 5.56 2.78 

600 4.27 6.05 5.77 2.88 

800 4.43 6.29 6.01 3.02 

900 4.59 6.63 6.40 3.22 

1000 4.91 7.20 6.90 3.45 

1100 5.42 7.60 7.17 3.55 

1200 5.49 7.59 7.18 3.52 

1400 5.53 7.80 7.42 3.64 

1600 5.89 8.23 7.80 3.86 

2000 6.11 8.53 8.08 3.99 

 

From this evaluation it can be observed that the proposed 

model showcases 15.9% lower energy consumption when 

compared with IUCP [3], 18.3% lower energy consumption 

when compared with EH IRSP [8], and 20.5% lower energy 
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consumption when compared with TEM SEP [16] due to use 

of GA & ACO, which assists in estimation of shortest paths 

with lower residual energy levels. This energy consumption is 

further reduced as the number of nodes are increased from 

1000 to 2000. This can be observed from table 7 as below. 

From this evaluation it can be observed that the proposed 

model showcases 19.5% lower energy consumption when 

compared with IUCP [3], 23.2% lower energy consumption 

when compared with EH IRSP [8], and 25.5% lower energy 

consumption when compared with TEM SEP [16] due to use 

of GA & ACO, which assists in estimation of shortest paths 

with lower residual energy levels. 

 

Table 7. Average energy consumption for different energy 

harvesting models (for 2000 Wireless nodes) 

No. of Wireless Nodes = 2000 

NC E (mJ) 

IUCP 

[3] 

E (mJ) 

EH IRSP 

[8] 

E (mJ) 

TEM 

SEP 

[16] 

E (mJ) 

Proposed 

200 3.17 5.01 4.71 2.18 

240 3.89 5.64 5.20 2.38 

280 4.06 5.91 5.46 2.51 

320 4.27 6.26 5.79 2.66 

360 4.54 6.66 6.14 2.82 

400 4.83 6.99 6.43 2.94 

500 5.02 7.27 6.67 3.06 

600 5.21 7.55 6.93 3.18 

800 5.42 7.83 7.23 3.33 

900 5.61 8.25 7.69 3.55 

1000 6.00 8.97 8.29 3.79 

1100 6.62 9.47 8.60 3.91 

1200 6.70 9.44 8.61 3.88 

1400 6.76 9.71 8.90 4.01 

1600 7.19 10.25 9.36 4.25 

2000 7.47 10.62 9.69 4.40 

 

This assists in deploying the network with better lifetime, and 

better energy efficiency under different network scenarios. 

Similar observations are done for throughput performance, 

this performance is averaged for 500, 1000 and 2000 nodes; 

and can be observed from table 8 as below. 

From this evaluation and figure 6, it can be observed that the 

proposed model showcases 28.5% higher throughput when 

compared with IUCP [3], 29.2% higher throughput when 

compared with EH IRSP [8], and 16.5% higher throughput 

when compared with TEM SEP [16] due to use of GA & 

ACO, which assists in estimation of shortest paths with lower 

residual energy levels & better rate of communication. 

Table 8. Average throughput for different energy harvesting 

models (averaged over 500, 1000 & 2000 Wireless nodes) 

Avg. nodes 500 1000 & 2000 

NC T 

(kbps) 

IUCP 

[3] 

T (kbps) 

EH IRSP 

[8] 

T (kbps) 

TEM 

SEP [16] 

T (kbps) 

Proposed 

200 317.90 332.16 384.17 484.10 

240 321.57 334.80 387.00 487.60 

280 322.89 336.88 389.67 491.20 

320 325.53 339.92 393.17 495.70 

360 328.75 343.04 396.67 500.10 

400 331.54 345.92 400.09 504.30 

500 334.33 348.80 403.51 508.50 

600 337.11 351.68 406.84 512.70 

800 339.90 354.56 410.17 516.90 

900 342.69 357.44 413.51 521.10 

1000 345.47 360.32 416.84 525.30 

1100 348.26 363.28 420.17 529.50 

1200 351.05 366.24 423.51 533.70 

1400 353.83 369.12 426.84 537.90 

1600 356.62 371.93 430.13 542.04 

2000 359.41 374.74 433.41 546.16 

 

 
Figure 6. Energy performance of different models 

Similar observations are done for packet delivery rate (P) 

performance, this performance is averaged for 500, 1000 and 

2000 nodes. This is done such that the network performance 

can be evaluated for low, medium and large number of nodes; 

and can be observed from table 9 as follows, 
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Table 9. Average packet delivery ratio performance for 

different energy harvesting models (averaged over 500, 1000 

& 2000 Wireless nodes) 

Avg. nodes 500 1000 & 2000 

NC PDR(%) 

IUCP 

[3] 

PDR (%) 

EH IRSP 

[8] 

PDR (%) 

TEM 

SEP [16] 

PDR (%) 

Proposed 

200 82.78 82.53 83.46 88.05 

240 83.74 83.17 84.08 88.70 

280 84.09 83.69 84.65 89.34 

320 84.78 84.45 85.43 90.15 

360 85.62 85.23 86.19 90.95 

400 86.34 85.94 86.92 91.72 

500 87.06 86.66 87.64 92.48 

600 87.79 87.38 88.37 93.24 

800 88.52 88.10 89.10 94.01 

900 89.24 88.82 89.82 94.78 

1000 89.96 89.54 90.55 95.54 

1100 90.69 90.26 91.28 96.30 

1200 91.42 90.97 92.00 97.07 

1400 92.14 91.70 92.72 97.84 

1600 92.87 92.42 93.45 98.61 

2000 93.60 93.12 94.16 99.36 

  

From this evaluation and figure 7, it can be observed that the 

proposed model showcases 5.5% higher PDR when compared 

with IUCP [3], 6.1% higher PDR when compared with EH 

IRSP [8], and 3.8% higher PDR when compared with TEM 

SEP [16] due to use of GA & ACO, which assists in 

estimation of shortest paths with lower residual energy levels 

& better rate of communication. These evaluations are 

extended for different number of faults in the network, and 

can be observed from the next section. 

 
Figure 7. Throughput performance of different models 

4.3. Fault tolerance performance of different 

communication models in presence different faults 

Due to inclusion of fault tolerance during trust-enabled 

routing via use of PSO & TLBO, the QoS performance of the 

proposed HBMFTEFR model is superior when compared with 

NL FFT [25], Co Duch [29], and DPSO [32] models under 

different fault types. This performance is estimated by varying 

number of faulty nodes (NF) nodes between 2% to 40%; and 

estimating the QoS values. The average QoS values are 

estimated by simulating the network for 500 communications, 

and then averaging them for each of these simulations.  Due to 

this, performance comparison, readers can identify 

characteristics of the proposed model under different fault 

conditions. As per this evaluation strategy, values for end-to-

end delay (D) for different protocols is tabulated in table 10 as 

follows, 

 

Table 10. Average end-to-end delay for different models 

(under fault) 

NF 

(%) 

D (ms) 

NL FFT 

[25] 

D (ms) 

Co Duch 

[29] 

D (ms) 

DPSO 

[32] 

D (ms) 

Proposed 

2 0.58 0.56 0.62 0.41 

4 0.63 0.61 0.66 0.44 

6 0.67 0.64 0.69 0.47 

10 0.69 0.67 0.73 0.49 

16 0.73 0.71 0.79 0.51 

20 0.78 0.78 0.89 0.57 
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22 0.89 0.95 1.10 0.68 

24 1.13 1.23 1.38 0.87 

26 1.47 1.49 1.65 1.07 

28 1.70 1.66 1.83 1.20 

30 1.83 1.82 2.02 1.31 

32 2.05 2.05 2.27 1.47 

34 2.33 2.31 2.55 1.66 

36 2.59 2.57 2.90 1.86 

38 2.88 3.10 3.52 2.19 

40 2.95 3.23 3.63 2.26 

 

 
Figure 8. Delay performance under faults 

From this evaluation and figure 8, it can be observed that the 

proposed model showcases 9.2% lower delay when compared 

with NL FFT [25], 14.5% lower delay when compared with 

Co Duch [29], and 16.8% lower delay when compared with 

DPSO [32] due to use of GA & ACO with PSO & TLBO, 

which assists in estimation of shortest paths even under faults. 

Similar observations are done for energy performance, and 

can be observed from table 11 as follows, 

 

Table 11. Average energy consumption for different models 

(under faults) 

NF 

(%) 

E (mJ) 

NL 

FFT 

[25] 

E (mJ) 

Co 

Duch 

[29] 

E (mJ) 

DPSO 

[32] 

E (mJ) 

Proposed 

2 1.27 1.12 1.32 0.82 

4 1.44 1.22 1.42 0.91 

6 1.51 1.28 1.50 0.96 

10 1.61 1.36 1.59 1.01 

16 1.70 1.44 1.68 1.07 

20 1.79 1.50 1.75 1.12 

22 1.86 1.56 1.81 1.17 

24 1.93 1.63 1.89 1.21 

26 2.01 1.71 1.99 1.27 

28 2.12 1.82 2.13 1.35 

30 2.28 1.93 2.27 1.44 

32 2.41 2.06 2.42 1.53 

34 2.58 2.23 2.62 1.65 

36 2.82 2.43 2.88 1.80 

38 3.07 2.71 3.22 2.00 

40 3.14 2.76 3.27 2.04 

 

From this evaluation and figure 9, it can be observed that the 

proposed model showcases 20.3% lower energy consumption 

when compared with NL FFT [25], 24.8% lower energy 

consumption when compared with Co Duch [29], and 15.3% 

lower energy consumption when compared with DPSO [32] 

due to use of GA & ACO with PSO & TLBO, which assists in 

estimation of shortest paths with better energy efficiency even 

under faults.  

 
Figure 9. Energy consumption of different models under fault 

conditions 

Similar observations are done for throughput performance and 

can be observed from table 12 as follows, 
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Table 12. Average throughput performance for different 

models (under faults) 

NF 

(%) 

T (kbps) 

NL FFT 

[25] 

T (kbps) 

Co Duch 

[29] 

T (kbps) 

DPSO 

[32] 

T (kbps) 

Proposed 

2 194.19 251.48 232.58 277.20 

4 195.85 253.34 234.29 279.28 

6 197.07 255.20 236.15 281.32 

10 198.77 257.51 238.27 283.87 

16 200.62 259.83 240.38 286.42 

20 202.33 261.99 242.44 288.82 

22 204.04 264.15 244.45 291.22 

24 205.74 266.36 246.46 293.61 

26 207.39 268.52 248.47 296.01 

28 209.10 270.68 250.48 298.41 

30 210.81 272.89 252.49 300.81 

32 212.46 275.10 254.50 303.20 

34 214.17 277.26 255.66 305.28 

36 215.87 276.06 245.00 301.22 

38 212.36 237.56 184.19 259.54 

40 212.74 232.15 179.92 255.76 

 

From this evaluation and figure 10 it can be observed that the 

proposed model showcases 16.2% higher throughput when 

compared with NL FFT [25], 9.4% higher throughput when 

compared with Co Duch [29], and 28.5% higher throughput 

when compared with DPSO [32] due to use of GA & ACO 

with PSO & TLBO, which assists in estimation of shortest 

paths with better energy efficiency & higher packet rates even 

under faults.  

 
Figure 10. Average throughput performance for different 

models (under faults) 

Similar observations are done for packet delivery rate (P) 

performance, and can be observed from table 13 as below. 

From this evaluation and figure 11, it can be observed that the 

proposed model showcases 18.5% higher PDR when 

compared with NL FFT [25], 26.1% higher PDR when 

compared with Co Duch [29], and 19.2% higher PDR when 

compared with DPSO [32] due to use of GA & ACO with 

PSO & TLBO, which assists in estimation of shortest paths 

with better energy efficiency & higher packet rates even under 

faults. 

 

Table 13. Average Packet Delivery Ratio performance for 

different models (under faults) 

NA 

(%) 

PDR(%) 

NL FFT 

[25] 

PDR(%) 

Co Duch 

[29] 

PDR(%) 

DPSO 

[32] 

PDR (%) 

Proposed 

2 70.37 63.86 68.88 87.17 

4 71.18 64.36 69.39 87.81 

6 71.47 64.75 69.86 88.45 

10 72.06 65.33 70.49 89.25 

16 72.77 65.93 71.13 90.04 

20 73.39 66.49 71.73 90.80 

22 74.01 67.05 72.33 91.56 

24 74.63 67.61 72.92 92.32 

26 75.24 68.16 73.52 93.07 

28 75.86 68.72 74.13 93.83 

30 76.47 69.28 74.73 94.59 

32 77.09 69.84 75.33 95.35 

34 77.71 70.39 75.93 96.10 

36 78.33 70.94 76.52 96.86 

38 78.94 71.50 77.12 97.63 

40 79.55 72.04 77.71 98.37 
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Figure 11. Average Packet Delivery Ratio performance for 

different models (under faults) 

 

Based on this performance evaluation, it can be observed that 

the proposed model has higher fault tolerance, and showcases 

better path evaluations under different network conditions, 

thereby making it useful for a wide variety of real-time 

network deployments. 

 

5. Conclusion and future work 

The proposed model uses a combination of different 

bioinspired models for optimization of different network 

parameters. Here, GA is used for initial clustering, which 

assists in identification of energy harvesting nodes, this is 

supported by PSO model, that evaluates faulty nodes, and uses 

them as backup for continuous energy harvesting process. 

These models are further extended via use of an ACO based 

TLBO Model that incorporates fuzzy rule-based value checks, 

along with delay-aware, energy-aware can capacity-aware 

nodes for routing in dense wireless network environments. 

Performance of the proposed model was evaluated w.r.t. 

various energy efficient & fault tolerant models, and it was 

observed that the proposed model showcased 14.5% lower 

delay when compared with IUCP [3], 19.2% lower delay 

when compared with EH IRSP [8], and 20.3% lower delay 

when compared with TEM SEP [16] due to use of GA & 

ACO, which assists in estimation of shortest paths. Similarly, 

it showcased 10.3% lower energy consumption when 

compared with IUCP [3], 20.5% lower energy consumption 

when compared with EH IRSP [8], and 18.2% lower energy 

consumption when compared with TEM SEP [16] due to use 

of GA & ACO, which assists in estimation of shortest paths 

with lower residual energy levels. The model also showcased 

28.5% higher throughput when compared with IUCP [3], 

29.2% higher throughput when compared with EH IRSP [8], 

and 16.5% higher throughput when compared with TEM SEP 

[16] due to use of GA & ACO, which assists in estimation of 

shortest paths with lower residual energy levels & better rate 

of communications. Under faulty conditions, the proposed 

model showcases 9.2% lower delay when compared with NL 

FFT [25], 14.5% lower delay when compared with Co Duch 

[29], and 16.8% lower delay when compared with DPSO [32] 

due to use of GA & ACO with PSO & TLBO, which assists in 

estimation of shortest paths even under faults. Similarly, the 

proposed model showcased 16.2% higher throughput when 

compared with NL FFT [25], 9.4% higher throughput when 

compared with Co Duch [29], and 28.5% higher throughput 

when compared with DPSO [32] due to use of GA & ACO 

with PSO & TLBO, which assists in estimation of shortest 

paths with better energy efficiency & higher packet rates even 

under faults. Due to which, it is capable of high efficiency 

energy harvesting, and fault tolerant applications. In future, 

the proposed model must be evaluated under different types of 

network scenarios, and must be integrated with Deep 

Learning, Q-Leaning, and Reinforcement learning to further 

optimize its real time performance. Moreover, blockchain 

technologies can be integrated to the model to further 

strengthen its security under real-time deployment scenarios. 
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