126,549 research outputs found

    Novel modeling strategy for a BCI set-up applied in an automotive application: an industrial way to use EM simulation tools to help Hardware and ASIC designers to improve their designs for immunity tests

    Get PDF
    Electronics suppliers of automotive industry use BCI (Bulk Current Injection) measurements to qualify immunity robustness of their equipment whereas electronics components manufacturers use DPI (Direct Power Injection) to qualify immunity of their component. Due to harness resonances, levels obtained during a BCI test exceed standard DPI requirements imposed by automotive suppliers onto components' manufacturers. We propose to use BCI set-up modeling to calculate the equivalent DPI level obtained at the component level during equipment testing and to compare results with DPI measurements realized at IC level

    Precision determination of the dpi -> NN transition strength at threshold

    Get PDF
    An unusual but effective way to determine at threshold the dpi -> NN transition strength is to exploit the hadronic ground-state broadening in pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated by the true absorption channel dpi- -> nn, which is related to s-wave pion production pp -> dpi+ by charge symmetry and detailed balance. Using the exotic atom circumvents the problem of Coulomb corrections to the cross section as necessary in the production experiments. Our dedicated measurement finds (1171+23/-49) meV for the broadening yielding (252+5/-11) \mub.Comment: 4 pages, 2 figures, 1 tabl

    Exploring the utility of Brachypodium distachyon as a model pathosystem for the wheat pathogen Zymoseptoria tritici

    Get PDF
    peer-reviewedBackground Zymoseptoria tritici, the causative organism of Septoria tritici blotch disease is a prevalent biotic stressor of wheat production, exerting substantial economic constraints on farmers, requiring intensive chemical control to protect yields. A hemibiotrophic pathogen with a long asymptomless phase of up to 11 days post inoculation (dpi) before a rapid switch to necrotrophy; a deficit exists in our understanding of the events occurring within the host during the two phases of infection. Brachypodium distachyon has demonstrated its potential as a model species for the investigation of fungal disease resistance in cereal and grass species. The aim of this study was to assess the physical interaction between Z. tritici (strain IPO323) and B. distachyon and examine its potential as a model pathosystem for Z. tritici. Results Septoria tritici blotch symptoms developed on the wheat cultivar Riband from 12 dpi with pycnidial formation abundant by 20 dpi. Symptoms on B. distachyon ecotype Bd21-1 were visible from 1 dpi: characteristic pale, water soaked lesions which developed into blotch-like lesions by 4 dpi. These lesions then became necrotic with chlorotic regions expanding up to 7 dpi. Sporulation on B. distachyon tissues was not observed and no evidence of fungal penetration could be obtained, indicating that Z. tritici was unable to complete its life cycle within B. distachyon ecotypes. However, observation of host responses to the Z. tritici strain IPO323 in five B. distachyon ecotypes revealed a variation in resistance responses, ranging from immunity to a chlorotic/necrotic phenotype. Conclusions The observed interactions suggest that B. distachyon is an incompatible host for Z. tritici infection, with STB symptom development on B. distachyon comparable to that observed during the early infection stages on the natural host, wheat. However first visible symptoms occurred more rapidly on B. distachyon; from 1 dpi in comparison to 12 dpi in wheat. Consequently, we propose that the interaction between B. distachyon and Z. tritici as observed in this study could serve as a suitable model pathosystem with which to investigate mechanisms underpinning an incompatible host response to Z. tritici.Teagasc Walsh Fellowship Programm

    Observation of the D1(2420)->DPI+PI- decays

    Full text link
    We report on the first observation of D1Dπ+πD_1\to D\pi^+\pi^- decays (where the contribution from the dominant known D1DπD_1 \to D^* \pi decay mode is excluded) in the BD1πB\to D_1\pi decays. The observation is based on 15.2×107BBˉ15.2\times 10^7 B\bar{B} events collected with the Belle detector at the KEKB collider. We also set 90% confidence level upper limits for the D2D()π+πD_2^*\to D^{(*)}\pi^+\pi^- and D1Dπ+πD_1 \to D^*\pi^+\pi^- decays in the BD2πB\to D^*_2\pi and BD1πB\to D_1\pi decays, respectively.Comment: 6 pages, 2 figure

    Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis

    Get PDF
    Background: Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. Methodology/Principal findings: The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. Conclusions/Significance: The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis

    Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens.

    Get PDF
    Newcastle disease virus (NDV) is a highly contagious avian pathogen that poses a tremendous threat to poultry producers in endemic zones due to its epidemic potential. To investigate host genetic resistance to NDV while under the effects of heat stress, a genome-wide association study (GWAS) was performed on Hy-Line Brown layer chickens that were challenged with NDV while under high ambient temperature to identify regions associated with host viral titer, circulating anti-NDV antibody titer, and body weight change. A single nucleotide polymorphism (SNP) on chromosome 1 was associated with viral titer at two days post-infection (dpi), while 30 SNPs spanning a quantitative trait loci (QTL) on chromosome 24 were associated with viral titer at 6 dpi. Immune related genes, such as CAMK1d and CCDC3 on chromosome 1, associated with viral titer at 2 dpi, and TIRAP, ETS1, and KIRREL3, associated with viral titer at 6 dpi, were located in two QTL regions for viral titer that were identified in this study. This study identified genomic regions and candidate genes that are associated with response to NDV during heat stress in Hy-Line Brown layer chickens. Regions identified for viral titer on chromosome 1 and 24, at 2 and 6 dpi, respectively, included several genes that have key roles in regulating the immune response

    D*-->Dpi and D*-->Dgamma decays: Axial coupling and Magnetic moment of D* meson

    Full text link
    The axial coupling and the magnetic moment of D*-meson or, more specifically, the couplings g(D*Dpi) and g(D*Dgamma), encode the non-perturbative QCD effects describing the decays D*-->Dpi and D*-->Dgamma. We compute these quantities by means of lattice QCD with Nf=2 dynamical quarks, by employing the Wilson ("clover") action. On our finer lattice (a=0.065 fm) we obtain: g(D*Dpi)=20 +/- 2, and g(D0*D0gamma)=[2.0 +/- 0.6]/GeV. This is the first determination of g(D0*D0gamma) on the lattice. We also provide a short phenomenological discussion and the comparison of our result with experiment and with the results quoted in the literature.Comment: 22 pages, 3 figure

    High performance deep packet inspection on multi-core platform

    Get PDF
    Deep packet inspection (DPI) provides the ability to perform quality of service (QoS) and Intrusion Detection on network packets. But since the explosive growth of Internet, performance and scalability issues have been raised due to the gap between network and end-system speeds. This article describles how a desirable DPI system with multi-gigabits throughput and good scalability should be like by exploiting parallelism on network interface card, network stack and user applications. Connection-based parallelism, affinity-based scheduling and lock-free data structure are the main technologies introduced to alleviate the performance and scalability issues. A common DPI application L7-Filter is used as an example to illustrate the applicaiton level parallelism
    corecore