738 research outputs found

    A 249-Mpixel/s HEVC Video-Decoder Chip for 4K Ultra-HD Applications

    Get PDF
    High Efficiency Video Coding, the latest video standard, uses larger and variable-sized coding units and longer interpolation filters than [H.264 over AVC] to better exploit redundancy in video signals. These algorithmic techniques enable a 50% decrease in bitrate at the cost of computational complexity, external memory bandwidth, and, for ASIC implementations, on-chip SRAM of the video codec. This paper describes architectural optimizations for an HEVC video decoder chip. The chip uses a two-stage subpipelining scheme to reduce on-chip SRAM by 56 kbytes-a 32% reduction. A high-throughput read-only cache combined with DRAM-latency-aware memory mapping reduces DRAM bandwidth by 67%. The chip is built for HEVC Working Draft 4 Low Complexity configuration and occupies 1.77 mm[superscript 2] in 40-nm CMOS. It performs 4K Ultra HD 30-fps video decoding at 200 MHz while consuming 1.19 [nJ over pixel] of normalized system power.Texas Instruments Incorporate

    Decoder Hardware Architecture for HEVC

    Get PDF
    This chapter provides an overview of the design challenges faced in the implementation of hardware HEVC decoders. These challenges can be attributed to the larger and diverse coding block sizes and transform sizes, the larger interpolation filter for motion compensation, the increased number of steps in intra prediction and the introduction of a new in-loop filter. Several solutions to address these implementation challenges are discussed. As a reference, results for an HEVC decoder test chip are also presented.Texas Instruments Incorporate

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Energy-Aware Data Movement In Non-Volatile Memory Hierarchies

    Get PDF
    While technology scaling enables increased density for memory cells, the intrinsic high leakage power of conventional CMOS technology and the demand for reduced energy consumption inspires the use of emerging technology alternatives such as eDRAM and Non-Volatile Memory (NVM) including STT-MRAM, PCM, and RRAM. The utilization of emerging technology in Last Level Cache (LLC) designs which occupies a signifcant fraction of total die area in Chip Multi Processors (CMPs) introduces new dimensions of vulnerability, energy consumption, and performance delivery. To be specific, a part of this research focuses on eDRAM Bit Upset Vulnerability Factor (BUVF) to assess vulnerable portion of the eDRAM refresh cycle where the critical charge varies depending on the write voltage, storage and bit-line capacitance. This dissertation broaden the study on vulnerability assessment of LLC through investigating the impact of Process Variations (PV) on narrow resistive sensing margins in high-density NVM arrays, including on-chip cache and primary memory. Large-latency and power-hungry Sense Amplifers (SAs) have been adapted to combat PV in the past. Herein, a novel approach is proposed to leverage the PV in NVM arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time. On the other hand, this dissertation investigates a novel technique to prioritize the service to 1) Extensive Read Reused Accessed blocks of the LLC that are silently dropped from higher levels of cache, and 2) the portion of the working set that may exhibit distant re-reference interval in L2. In particular, we develop a lightweight Multi-level Access History Profiler to effciently identify ERRA blocks through aggregating the LLC block addresses tagged with identical Most Signifcant Bits into a single entry. Experimental results indicate that the proposed technique can reduce the L2 read miss ratio by 51.7% on average across PARSEC and SPEC2006 workloads. In addition, this dissertation will broaden and apply advancements in theories of subspace recovery to pioneer computationally-aware in-situ operand reconstruction via the novel Logic In Interconnect (LI2) scheme. LI2 will be developed, validated, and re?ned both theoretically and experimentally to realize a radically different approach to post-Moore\u27s Law computing by leveraging low-rank matrices features offering data reconstruction instead of fetching data from main memory to reduce energy/latency cost per data movement. We propose LI2 enhancement to attain high performance delivery in the post-Moore\u27s Law era through equipping the contemporary micro-architecture design with a customized memory controller which orchestrates the memory request for fetching low-rank matrices to customized Fine Grain Reconfigurable Accelerator (FGRA) for reconstruction while the other memory requests are serviced as before. The goal of LI2 is to conquer the high latency/energy required to traverse main memory arrays in the case of LLC miss, by using in-situ construction of the requested data dealing with low-rank matrices. Thus, LI2 exchanges a high volume of data transfers with a novel lightweight reconstruction method under specific conditions using a cross-layer hardware/algorithm approach

    Data storage hierarchy systems for data base computers.

    Get PDF
    Thesis. 1979. Ph.D.--Massachusetts Institute of Technology. Alfred P. Sloan School of Management.MICROFICHE COPY AVAILABLE IN ARCHIVES AND DEWEY.Vita.Bibliography: p. 241-248.Ph.D

    SIMD based multicore processor for image and video processing

    Get PDF
    制度:新 ; 報告番号:甲3602号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新595

    Hardware accelerated redundancy elimination in network system

    Get PDF
    With the tremendous growth in the amount of information stored on remote locations and cloud systems, many service providers are seeking ways to reduce the amount of redundant information sent across networks by using data de-duplication techniques. Data de-duplication can reduce network traffic without the loss of information, and consequently increase available network bandwidth by reducing redundant traffic. However, due to the heavy computation required for detecting and reducing redundant data transmission, de-duplication itself can become a bottleneck in high capacity links. We completed two parts of work in this research study, Hardware Accelerated Redundancy Elimination in Network Systems (HARENS) and Distributed Redundancy Elimination System Simulation (DRESS). HARENS can significantly improve the performance of redundancy elimination algorithm in a network system by leveraging General Purpose Graphic Processing Unit (GPGPU) techniques as well as other big data optimizations such as the use of a hierarchical multi-threaded pipeline, single machine Map-Reduce, and memory efficiency techniques. Our results indicate that throughput can be increased by a factor of 9 times compared to a naive implementation of the data de-duplication algorithm, providing a net transmission increase of up to 3.0 Gigabits per second (Gbps). DRESS provides further acceleration to the redundancy elimination in network system by deploying HARENS as the server\u27s side redundancy elimination module, and four cooperative distributed byte caches on the clients\u27 side. A client\u27s side distributed byte cache broadcast its cached chunks by sending hash values to other byte caches, so that they can keep a record of all the chunks in the cooperative distributed cache system. When duplications are detected, a client\u27s side byte cache can fetch a chunk directly from either its own cache or peer byte caches rather than server\u27s side redundancy elimination module. Our results indicate that bandwidth savings of the redundancy elimination system with cooperative distributed byte cache can be increased by 12% compared to the one without distributed byte cache, when transferring about 48 Gigabits of data
    corecore