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Abstract

I propose a storage system optimised for digi-
tal libraries. Its key features are its heteroge-
neous scalability; its integration and exploita-
tion of rich semantic metadata associated with
digital objects; its use of a name space; and its
aggressive performance optimisation in the dig-
ital library domain.
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1 Introduction

More than ever before, there is a large amount of
information available in digital form. Increas-
ingly, this content is stored in large reposito-
ries accessed over wide-area networks. With
the dramatic rise of digital libraries, electronic
commerce and the everyday use of networked
information sources in business has also come
a pressing need for high availability of network-
accessible data. In the information age, data
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are the lifeblood of many organisations, and the
constant availability of those data is paramount.

To address the voracious appetite for storage,
research in that arena recently has turned to-
wards the issue of scalability—in terms of hard-
ware, software, and administration. Moreover,
a current focus has turned towards the use of
commodity off-the-shelf (COTS) hardware as a
means of achieving scalability. In particular, ap-
proaches such as clustering, networked attached
storage, and storage area networks are fast becom-
ing industry standards as means for achieving
manageable, scalable storage on the order of
terabytes (240 bytes) and upwards.

The bulk of storage research at the operating
system support level has looked at providing
file system support and associated functions.
Although there have been proposed some archi-
tectures for digital libraries storage repositories,
with the Kahn-Wilensky architecture [88] find-
ing favour, all digital library implementations
thus far have been built atop traditional oper-
ating system file systems or databases (which
are themselves usually built atop traditional op-
erating system file systems). Such file systems
are relatively weak in terms of providing sup-
port for the rich metadata and file types typi-
cally used in digital libraries.

Traditional file system metadata is geared to-
wards providing the operating system logical
and physical location of file data, and sim-
ple user protection mechanisms. It is typi-
cally canonical, and relatively crude compared
with metadata for digital libraries, which pro-
vides multiple viewpoints of digital objects, and
potentially sophisticated rights management.
In addition, semantically different object (file)
types might require radically different storage
and access techniques. In traditional file sys-
tems, this often must be handled in an ad hoc
fashion, often by means of arbitrary partitioning
of storage and use of specialised device drivers.

Here, we aim to reconcile diverse strands
of scalable storage design with digital library
repository access semantics as the target. Par-
ticular emphasis will be placed on scalability in
the storage realm, and on metadata support and
system support for different object types in the

digital libraries realm.
In Section 2 is background motivation. Sec-

tion 3 contains an overview of related research
in scalable storage. A brief guide to relevant
work in digital library object repositories and
access support is presented in Section 4. Sec-
tion 5 contains an outline of the problem to be
addressed in this research. A plan of work is
given in Section 6.

2 Background Motivation

More data are available online than ever be-
fore. There is a dramatic increase in the amount
available to the public served over wide-area
networks, and the level of growth continues.
In some areas, data gathering has followed ap-
proximately Moore’s law: in astronomy, for ex-
ample, the volume of data gathered is doubling
roughly every 20 months [188].

Already, there are several terabyte-sized
repositories of information of various kinds ac-
cessible to millions of users worldwide, and
more are being proposed.

The TerraServer [13] provides aerial, satellite,
and topographic images of Earth delivered via
the World Wide Web (WWW). There are eight
servers—six WWW servers and two database
back-end servers—averaging 5–8 million hits
and 50 GB of image downloads per day. As
of February 2000, the database comprised over
1.5 terabytes of data. The two database back-
end servers can contain up to 3.2 TB and 1.2 TB
of data stored using RAID-5 on 324 9 GB Ultra
Small Computer Systems Interface (SCSI) and
140 9 GB FiberChannel disks respectively. The
system is configured to handle a maximum of
40 million hits per day, and 6,000 simultaneous
users.

The Zoom Project [10, 190] provides access to
over 70,000 images of the Fine Arts Museums of
San Francisco over the WWW. The images com-
prise approximately 2.5 TB of storage served
from a cluster of 20 storage nodes hosting a to-
tal of 396 8.4 GB Ultra-Wide SCSI disks. The
storage cluster is called Tertiary Disk [189]. Four
of the storage nodes are “disk heavy,” with 70
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disks per 2 nodes; the remaining 16 are “CPU-
heavy,” with 32 disks per 2 nodes. The stor-
age nodes are networked via a 100 Mbps Eth-
ernet local area network (LAN), and the clus-
ter is connected to the Internet via an asyn-
chronous transfer mode (ATM) network con-
nection. Strings of disks are double-ended for
added reliability, meaning that even if one stor-
age node (or the SCSI host adapter) connected
to the string fails, the other node can continue
to access the disks.

The Sloan Digital Sky Survey (SDSS) intends
to provide multi-terabyte astronomical observa-
tional data for interactive exploration and query
via the Internet [188]. The SDSS expects to col-
lect over 40 terabytes of raw data in the next five
years. The proposed architecture will include
a 20 node array aggregating 6 TB of database
storage and amassing a cumulative 20 billions
of instructions per second (BIPS) of processing
power to scan continually the SDSS dataset to
apply user-supplied query predicates. It is esti-
mated that a scan rate of 2 GBps per node across
the array can be achieved, allowing the entire
dataset to be processed about every two min-
utes.

Even larger datasets are being planned. The
NASA Earth Observing System Data Informa-
tion System (EOSDIS) project [55, 93] seeks to
provide access to a huge collection of remote
sensing data collected over a 15 year time-span.
By 2002, it is predicted that raw data will be col-
lected at a rate of over 360 GB per day, and that
the archive will contain over 3 petabytes (250

bytes) of data across more than 260 data prod-
ucts. The system will utilise Distributed Active
Archive Centers (DAACs) networked together
via a high-speed backbone to collect and process
the data, and the entire collection will be acces-
sible to users via the WWW using a browser.

Even larger than EOSDIS is the data stor-
age needs of the Large Hadron Collider (LHC)
project at CERN [175]. This particle acceler-
ator will enter operation in 2005, and experi-
ments run on it will generate some 5 petabytes
of data per year, with data rates in the region of
100 MB to 1.5 GB per second. Experiments will
run over 15 years, generating in excess of 100

petabytes. The engineering challenge, however,
tackles storage requirements in the exabyte (260

bytes) range.
Along with such large scale projects, ordinary

production and consumption of data continues
at a pace that has even outpaced Moore’s Law.
Decision support systems (DSS) are rabid con-
sumers of data, with demand doubling roughly
every 9–12 months, in contrast to the approx-
imately 18-month doubling period of Moore’s
Law [91]. Indeed, the largest DSS database re-
ported in 1997 almost doubled in size from 2.4
TB to 4.4 TB in 1998 alone [205]. The biggest DSS
database of 1998 more than tripled from 1.3 TB
to 4.6 TB over its previous year’s size [206].

The huge rate of increase in data suggests
that massive-scale storage architectures need to
be able to scale at a faster rate than the growth
of processors and disks themselves: we cannot
rely on hardware improvements alone to keep
pace with the demand for data storage.

3 Scalable Storage

Computer storage has long been the subject of
research. With the rise of parallel and dis-
tributed systems came a plethora of associated
storage systems. For the purposes of this re-
search, this activity can broadly be grouped in
the areas of local file systems; parallel file sys-
tems; distributed file systems; and scalable net-
worked storage. Within all these areas, atten-
tion has been paid to operating system and ap-
plication programming support; layout, buffer-
ing, caching, and efficiency; reliability, fault-
tolerance, and crash recovery; and security.
Some of these goals are contradictory: high fault
tolerance might require a lower efficiency, for
example.

3.1 Local File Systems

A file system is a means by which data is man-
aged on secondary storage. At the user level,
these data are organised using an abstraction
known as a file. Files are a logical structur-
ing mechanism that allows data to be organ-
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ised as a byte-addressable sequence that may be
randomly accessed. File systems mask the de-
tails of how this logical structure is stored on
actual physical devices attached to the system.
File systems not only manage the actual long-
term storage of data—layout and structuring—
but also manage the access to that data—name
resolution, buffering and caching. File systems
employ metadata to assist in the organisation
of files on storage. Examples of such metadata
might be pointers locating blocks belonging to a
given file on a disk and the length of that file,
or a bitmap indicating the location of unused
blocks on a disk.

We deem local file systems to be those whose
storage is provided by directly-attached sec-
ondary storage. Most often, this storage is in
the form of direct-access storage such as disk
drives. The improvement in hard disk tech-
nology in terms of total storage (areal density)
and transfer rate has improved roughly accord-
ing to Moore’s Law [73, 74]. However, rota-
tional speeds and, especially, seek times have in-
creased at a much slower rate. Head seek times,
in particular, are limited by the physics of in-
ertia, and may not see vast improvement. To
address this, file system research has explored
the use of alternative layout schemes [145], ag-
gregation [31, 67], and aggressive caching and
buffering [62, 148] amongst other techniques to
ameliorate the effects of head seek times during
reads to and writes from disk.

3.2 Workload Studies

There have been several studies of the content
and usage of local file systems [49, 70, 144, 156,
200]. Such studies characterise the workload of
the file system. Workloads provide important
information to file system architects, and can
guide the design of layout schemes; buffering
and caching strategies; migration policies; and
performance tuning.

One consistent feature to arise out of work-
load studies for typical engineering and office
applications and environments is that most files
are small: in Gibson and Miller’s study [70] the
majority of files are less than 4K in size, and

in Douceur and Bolonsky [49] the median file
size is 4K. The distribution of file sizes is heavy-
tailed, with most bytes being concentrated in
relatively few large files: most files are small,
but large files use most disk capacity. Further-
more, a general trend is that most files are not
accessed very often in the long term.

Traces of long-term file activity collected by
Gibson and Miller [70] reveal that on a typical
day, less than 3% of all files are used, and of
that usage, file accesses account for over twice
the number of either file creations or deletions,
and the number of files modified is one third
the number of creations or deletions. In addi-
tion, they found that files modified are about
as likely to remain the same size as they are to
grow, and that modified files rarely get smaller
[70]. In fact, the amount of file growth during
file modifications found in their study was usu-
ally less than 1K, regardless of the file’s size [70].
Long-term activity of the file systems surveyed
by Douceur and Bolonsky [49] determined the
median file age to be 48 days, where file age is
calculated as the time passed since the most re-
cent of either the file’s creation or last modifi-
cation relative to when the file system contents
snapshot was taken.

Traces capturing the short-term behaviour of
file system workloads show that many files and
accesses are ephemeral and bursty. The seminal
Unix 4.2 BSD study of Ousterhout et al. [144] de-
termined that files are almost always processed
sequentially, and that more than 66% are whole-
file transfers. Of the remaining non-whole file
transfers, most read sequentially after initially
performing an lseek, i.e., to append. When mea-
sured over a short time scale, files tend to be
very short-lived, or only open for a very short
time.

Subsequent studies have confirmed the re-
sults of Ousterhout et al, but tending towards
extremes. Baker et al. [12] discovered the time
between a file being created and subsequently
either deleted or truncated to zero length to be
less than 30 seconds for 65%–80% of all files, and
those files tend to be small, accounting for only
about 4%–27% of all new bytes deleted or over-
written within 30 seconds. Vogels [200] found
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that files are open for even shorter periods: 75%
are open for less than 10 milliseconds, and 55%
of new files are deleted within 5 seconds; 26%
are overwritten within 4 milliseconds. Similarly,
both Baker et al. [12] and Vogels [200] confirm
that most files accessed are short, and sequen-
tially accessed (but shifting more towards ran-
dom access), but that most bytes transferred be-
long to large files, and that large files are getting
larger (20% are 4 MB or larger).

Ramakrishnan et al. [156] collected relatively
short-term traces of file system activity at eight
different customer sites running VAX/VMS
over several different time periods at various
times of the day and night. The sites repre-
sented different workloads (interactive; time-
sharing and database activity; transaction pro-
cessing; and batch data processing), but analysis
showed that file system activity was consistent
across different workload environments. The
study revealed that for almost all workloads,
most files—over 80%—are inactive (not opened,
read, or written during the trace), and of those
active files, a small percentage account for most
of the file opens (in an airline transaction pro-
cessing workload, less than 3% of active files ac-
count for over 80% of file opens). Over all work-
loads, over 50% of all active files were opened
only once or twice, and 90% of active files were
opened less than 10 times in a typical 9–12 hour
“prime time” period.

Of those files active during the trace period,
over 50% of them were read only once or twice,
and 90% of active files in all but one workload
had between 24 and 46 reads. In the case of
writes, 31–46% of active files were not written at
all, and 14–28% had only one write. Over 50% of
the active files had fewer than two write opera-
tions. Once again, a small percentage of files of-
ten account for most writes, and skew the mean
number of writes upwards. For the timesharing
workloads studied, 1.3–2% of files accounted for
80–87% of writes. In the case of transaction pro-
cessing workloads, 1.3–1.8% of files accounted
for 95% of writes.

Studies that have tracked the semantic con-
tent of files have found there is a good correla-
tion between file type and file size [18, 49, 165].

Analysis of the WWW by Adamic and Huber-
man [2] reveals that files and sites there follow
a power law with respect to many attributes, in-
cluding file size, site size, popularity, and site
linkage, thus confirming in a wider context the
“heavy-tailed distribution” phenomenon com-
mon to all file system studies.

Some consequences of workload studies are
that the name space is dominated by small files,
but that transfer bandwidth is dominated by
large files. Furthermore, files exhibit a genera-
tional behaviour in that if they survive the short
term then they will tend to persist—largely
inactive—for the long term. The likely uncer-
tain early lifetime makes write-back caching at-
tractive in the anticipation that a file will subse-
quently be deleted or modified before actually
being written to disk. The more of this volatility
that can be smoothed out by caching or buffer-
ing the better.

3.2.1 Workload Characterisation and Mod-
elling

Workload characterisation has long been used
in assessing the performance of systems [27]. In
storage research, analysis of workload traces, as
described above, features prominently. These
workload traces capture I/O activity as it hap-
pens over a period of time, and contain impor-
tant information about access requests and ac-
cess patterns.

Because actual traces are often large and dif-
ficult to capture (because of technical and polit-
ical reasons), researchers often have to resort to
using synthetic traces to model workload. Gen-
erating synthetic traces that are representative
of real-world activity is a significant problem
[60]. Ganger and Patt [61] advocate a system-
level approach to representing I/O workloads,
and, in particular, that different classes of I/O
request be treated with different importance to
better model their effect on overall system per-
formance. SynRGen [54] is a tool for generat-
ing workloads based upon algorithmic specifi-
cations of tasks, offering more realistic artificial
traces of system activity.

Traces are primarily used as input to simula-
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tions of storage systems. Simulation is popular
because of the flexibility with which data can
be collected and operational parameters con-
trolled. This allows “what-if” scenarios to be in-
vestigated to examine the effect of specific pa-
rameters within the storage system on global
system performance, e.g., cache size, seek time,
block size, bus speed, etc.

Ruemmler and Wilkes [161] describe a de-
tailed disk simulation, which they apply to the
HP C2200A and HP 97560 disk drives. Wor-
thington et al. [207] describe the extraction of
disk drive parameters directly by interrogation
of SCSI drives, combined with empirical mea-
surements, thereby improving modeling accu-
racy. Ganger et al. [63] produced a highly-
configurable disk simulator called DiskSim.
DiskSim can model such storage aspects as de-
vice drivers, busses, controllers, adapters, and
disk drives. DIXtrac [168] improves upon the
extraction capabilities of [207] in that it can ex-
tract over 100 disk parameters in a fully auto-
mated fashion. DIXtrac can be used to provide
input for disk drives simulated by DiskSim.
Pantheon [202] is a toolkit that supports the de-
velopment of storage simulations. It has been
successfully used in such storage projects as
TickerTAIP [29] and AutoRAID [203].

Although simulation is prevalent in storage
research, it has the disadvantage of being costly
in terms of time and resources needed to run
simulations. Analytical modeling has the ad-
vantage of being a quicker and more direct an-
swer for exploring alternative design spaces.
The disadvantage of analytical modeling is its
inaccuracy compared to simulation.

Uysal et al. [196] present an analytical model
to predict throughput of a modern disk array
that captures many of the complex optimisa-
tions found in such hardware. They validate
their model against a real commercial array and
obtain prediction accuracy within 32% in most
cases, and to within 15% on average. Shriver
[177] presents a detailed analytical model of a
single disk drive. Barve et al. [15] extend this
by analysing the performance of several drives
on the same SCSI bus, where bus contention
becomes a factor when large request sizes are

used. Shriver et al. [178] present an analytical
model of disk drives that support read-ahead
and request reordering. Their prediction accu-
racy is to within 17% across a variety of disk
drives and workloads. Borowsky et al. [24]
present an analytical model of response time of
a device subject to phased and correlated work-
loads. Their model is designed to determine
whether a given quality of service bound is sat-
isfied for the workloads presented.

Because analytical models lend themselves to
direct computation, unlike long-running simu-
lations, this makes them ideal for use in storage
optimisation problems. Of recent attention, in
particular, is the area of attribute-managed stor-
age [72]. Attribute-managed storage is a con-
strained optimisation problem in which a set of
workload units and devices are presented as in-
put to a solver. The output is a mapping of
workload units to devices such that the needs
of the workload units are met. Shriver [176] de-
scribes the workload and device attributes and
their mapping in greater detail. Alvarez et al.
[4] describe a suite of tools called Minerva that
can be used to design storage systems automat-
ically. In a test, Minerva is able successfully to
design a storage system to handle a decision-
support workload that performs as well as a
human-designed configuration. The Minerva-
generated system used fewer disks than the
human-designed system (16 vs. 30), and took
only 10–13 minutes to produce the design. Min-
erva is limited by its analytical models to the
types of storage system it can design (currently,
disk arrays).

3.3 Local File System Performance Issues

As mentioned previously, seek times dominate
disk access times. A simple “break-even” point
to make a seek worthwhile would be to spend
as much time actually transferring data as seek-
ing to find it. Obviously, though, the smaller
the overall fraction of a total read or write is oc-
cupied by seeking the better. Even COTS hard
drives have relatively high sustained transfer
rates, making the time lost seeking even worse.
For example, a “desktop use” 25 GB EIDE drive
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with an average seek time of 9 ms supports a
sustained transfer rate of 15.5 MB/s [86]. A
“server” 36 GB Ultra 160 SCSI drive with an
average seek time of 4.9 ms supports a sus-
tained transfer rate of 36 MB/s [87]. For the
25 GB drive, just over 142 KB of data could be
transferred in the time spent in an average seek
(0.009 s at 15.5 MB/s); for the 36 GB drive, just
over 180 KB could be transferred (0.0049 s at 36
MB/s). If only, say, 1 KB were transferred be-
fore seeking elsewhere, then less than 1% of the
total time would be spent actually transferring
useful data using the above mentioned drives as
examples. Even for a larger block size—4 KB—
still less than 3% of the time is spent usefully
transferring data. Successful use of the available
disk bandwidth means making fewer seeks and
larger transfers.

3.3.1 Caching

The impact of seeking on disk I/O is often ad-
dressed by caching. A large RAM-based cache
can absorb the effects of multiple reads of the
same disk block over time, and most modern
operating systems employ such buffer caches.
However, caches depend upon locality of refer-
ence to be successful: what happened before will
happen again. As mentioned previously, work-
load studies indicate most reads are whole-file
sequential reads. These have a negative impact
on cache performance, as they can effectively
stream through and flush the cache for large
enough files, if action is not taken to mitigate
such behaviour. Baker et al. report cache read
miss rates of about 40% in their study, rising to
97% on machines processing large files [12].

Caches will cache the most commonly ac-
cessed disk blocks. In an engineering and of-
fice environment, the most commonly-used files
will likely be application and system programs:
word processors, compilers, editors, and simi-
lar. Across the entire user population, individ-
ual user data files will be accessed less often rel-
ative to the software that operates upon those
data. Caching will likely be more successful for
programs than data. The exception to this is per-
haps the caching of writes.

A disk block that is read, modified, and writ-
ten back will exhibit strong temporal locality
of reference. Unfortunately, out of concern for
safety, many applications will not update file
data in situ, but, instead, often will make a tem-
porary copy of the old file to which are applied
the updates. After processing, the original file is
either deleted or renamed as a backup copy, and
the copy is renamed to the original. Baker et al.
[12] report that only 10% of new data written is
deleted or overwritten in the cache rather than
actually being written to disk. However, they
also report that the 30-second dirty block clean-
ing rule in their system accounted for over 70%
of blocks written from the cache, indicating that
cache content safety (flushing dirty blocks to
disk to guard against loss due to hardware fail-
ure), not cache size, is a major factor on write-
back cache performance.

3.3.2 Clustering and Fragmentation

Another method of ameliorating the effects of
seeks is to co-locate related data physically close
together on the disk. In this way, only small
seeks or a rotational delay must be incurred to
read successive blocks of a file. Physical cluster-
ing is especially useful in the case of file system
metadata. The Fast File System (FFS) for Unix
greatly improved the performance of the previ-
ous file system design by spreading file meta-
data throughout the disk [126]. The new design
divided the disk into cylinder groups, with each
cylinder group having its own local metadata.
In the previous design, all file system metadata
was clustered at the beginning of the disk. Data
blocks located on tracks away from the start of
the disk thus incurred long seeks every time the
metadata for the file stored there was accessed.
McKusick [126] estimates that such a segrega-
tion of metadata, coupled with the small 512-
byte block size, meant that the old Unix file sys-
tem design was only able to use 3-5% of the disk
bandwidth. But, by interspersing (clustering)
metadata and data blocks nearby on the disk,
and using a larger block size (4 K and up), disk
bandwidth utilisation increases to 47% in the
new FFS design [126]. Clustering in FFS also im-
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proves crash recovery, as file system metadata
is not physically concentrated in one localised
area of the disk, but is spread over it.

3.3.3 Block Sizing and Allocation

A more general application of increasing the
block size to lessen the effects of seeks and im-
prove storage contiguity to benefit the large se-
quential transfers prevalent in file system traces
is to adopt variable-sized blocks for files. In ef-
fect, the disk is treated as an area of storage from
which variable-sized allocations are made. Such
a problem is not new: efficient memory alloca-
tion and garbage collection has been long stud-
ied. Disks pose additional performance con-
straints because fragmentation seriously affects
performance by translating into long seeks (ex-
cessive head movement), and garbage collection
on disk is more costly than in main memory.

Wilson et al. [204] provide a comprehen-
sive survey of the memory allocation litera-
ture. Memory allocation allowing variable-
sized blocks has a disadvantage of extra meta-
data overheads for pointers to link allocated
areas, and compaction suffers significant over-
heads. Knowlton [92] introduced the buddy sys-
tem of allocation that is considerably more effi-
cient when freeing blocks.

In buddy systems, only a fixed set of block
sizes, b1 < b2 < · · · < bk, are available for al-
location, and so there is a potential for storage
to be wasted if an object is placed in a bigger
block than necessary. However, such lossage
is a problem for traditional fixed-size alloca-
tion schemes (though it is strictly bounded). A
standard block sizing scheme is to use increas-
ing powers of 2 (the exponential buddy system).
Hirschberg [78] describes a Fibonacci buddy sys-
tem in which the block sizes follow the Fibonacci
series. The use of the Fibonacci series permits a
larger number of different sizes, and hence in-
creases the probability of a good fit, thereby de-
creasing internal fragmentation.

Koch [94] designed a disk allocation scheme
based upon the exponential buddy system. Files
are stored in a bounded number of contiguous
extents, and a reallocation algorithm runs peri-

odically to improve the allocation of poorly ar-
ranged files. Koch reports a mean number of ex-
tents per file of 1.5 and an average internal frag-
mentation of less than 4%.

Ghandeharizadeh et al. [65] present and anal-
yse several algorithms for managing files in a hi-
erarchical storage environment with a focus on
the tradeoff between contiguity of files and the
amount of wasted space. (Their work explicitly
excludes support for striping, however.) Ghan-
deharizadeh et al. [64, 66] describe algorithms
for the layout of files on disk such that each n
block file is stored in no more than dlg ne sepa-
rate extents in order to minimise seeks.

Seltzer and Stonebreaker [173] examine sev-
eral variable block size file allocation strate-
gies and conclude that such extent-based ap-
proaches offer excellent performance in read-
mostly environments because of seek time min-
imisation and large sequential reads.

3.3.4 Log-Structured Approaches

A major trend in local file system design that
took hold in the early 1990s was a move towards
log-structured file systems to improve write
performance [145, 159, 160, 170, 171]. Instead
of the fixed layout schemes employed in tradi-
tional file systems such as FFS, log-structured
file systems treat the blocks of the disk as a log
to which data is appended. Unlike FFS-like file
systems which incur seek overheads for each
write, log-structured file systems instead batch
all writes and then write all the changes to disk
in a single large disk transfer operation. Typi-
cally, log-structured file systems divide the disk
logically into segments, and write an entire seg-
ment at a time.

By performing large disk transfers, the impact
of a seek is lessened. In addition, crash recov-
ery is greatly assisted, because in the event of a
crash, the file system software need only locate
the last checkpoint and then perform a roll for-
ward on the writes made after that point. This
is in contrast to the time-consuming multi-pass
consistency algorithm required in FFS-like file
systems [127].

Because disks are finite in size, the log must
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wrap when it reaches the end of the disk. This
necessitates special handling of free space in
the file system. The most common approach
is to employ a cleaner daemon that runs asyn-
chronously alongside the mounted file system.
The cleaner acts like a garbage collector, copy-
ing live blocks out of one or more segments con-
taining deleted space and consolidating the live
blocks together and writing them to clean seg-
ments in the log. The segments out of which
the live blocks were copied are now free to be
reused as clean segments for the log. Various
policies can be enforced for segment cleaning, to
balance the impact on the file system [124, 159,
Chapter 5].

Another way to improve write performance,
along the lines of log-structured file systems,
is to log writes to a smaller, separate logging
medium and then asynchronously commit the
changes to the actual data disks of the file sys-
tem. The logging medium could be non-volatile
RAM [80, 112], or a dedicated, separate log disk
[34]. Non-volatile RAM has also been used to
implement reliable buffer and file cache mech-
anisms to mitigate the impact of periodic writ-
ing of dirty blocks to ensure file system consis-
tency. Prestoserve [137] uses non-volatile RAM
to cache NFS writes. Rio [32] and Phoenix [59]
implement reliable file caches, making writes
to the file cache as permanent and as safe as
files on disk, but with much greater speed. Rio,
for example, performs 4–22 times as fast as a
standard Unix file system that employs write-
through caching, or 2–14 times as fast as a stan-
dard Unix file system using write-back caching.
Even when using delayed metadata writes in a
standard Unix file system [62], Rio is 1–3 times
as fast, but has the reliability advantage of syn-
chronous write behaviour.

3.4 Disk Arrays

File systems that reside on a single physical
disk have an inherent bottleneck by virtue of
there being only a single head assembly through
which to perform all reads and writes. As we
have seen, the time needed to move this head
assembly over the disk surface is probably the

major limiting factor in terms of disk I/O and
hence file system performance.

One way to mitigate this bottleneck is to in-
crease, in effect, the number of head assem-
blies. The easiest way to achieve this is to cre-
ate a virtual disk out of an array of individual
physical disks. Not only does this increase the
potential parallelism of reading and writing—
because different areas of the virtual disk can be
read and written simultaneously—but it also in-
creases the potential reliability, as a hardware
failure now no longer renders the entire vir-
tual disk unusable. Such virtual disk arrays
are commonly called disk arrays. An important,
and the most prevalent, class of disk arrays, in
which performance and reliability are empha-
sised, is called Redundant Array of Indepen-
dent/Inexpensive Disks (RAID) [31, 67].

RAID employs data striping to improve per-
formance, and redundancy to improve reliabil-
ity. Striping is a way to distribute data transpar-
ently over disks in an array. The granularity of
the stripe unit determines how many disks will
be involved in a given I/O request. The larger
the stripe unit, the fewer disks need be involved
for small I/O requests, allowing multiple I/O
requests to be serviced in parallel.

Redundancy in RAID involves using extra
storage space to improve the reliability of the
data stored in the RAID. The extra space holds
error correction information for the actual file
data stored on the RAID. The most prevalent er-
ror correction scheme used in RAID is XOR par-
ity. In this scheme, a parity stripe unit is com-
puted as the XOR of the corresponding stripe
unit from each of the data disks. Such a scheme
can tolerate the failure of a single disk, because
the parity data can be used with the remain-
ing good data to reconstitute the failed disk’s
data. There are other error correction schemes.
For example, the P+Q Redundancy scheme uses
Reed-Solomon codes to protect against the failure
of up to two disks.

The major performance impact of using er-
ror correcting data in a RAID is that additional
reads and writes are required when writing
data, particularly for small writes that update
only one data disk. This is because the parity
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data need also be updated on a write. In the case
of a small write, a read-modify-write process must
be used in which the old data must be read be-
fore the new data is written, to determine how
the new differs from the old, and then apply-
ing the differences to the parity block. Thus, a
small write actually requires two reads and two
writes. Because parity is always written on a
data write, if parity is kept on a single disk, that
disk can easily become a bottleneck for the en-
tire RAID.

The interleaving, or striping, of data and re-
dundancy information over the disks of a RAID
has a big impact on the performance and stor-
age utilisation of the disks participating in the
aggregate storage. There have emerged several
characteristic organisations, or levels of RAID.
These are briefly described below:

RAID 0: Data are striped across the disks com-
prising the RAID unit with no redundancy
employed whatsoever. This gives maximal
use of available disk space, and the best
write performance, but with no fault tol-
erance. If a disk in the RAID fails, then
the whole RAID fails (for all practical pur-
poses).

RAID 1: Twice as many disks are employed in
this RAID level as in level 0. Data are
striped across the data disks, but, also,
are mirrored on a corresponding redundant
disk. So, for each data disk, there is an-
other mirror disk. When data are written,
both the data disk and its mirror are up-
dated. When data are read, either of the
data disk or the mirror can be read, as both
contain identical information. Load balanc-
ing can be used to select the best disk to
which to direct the read request, e.g., to the
disk with the shortest request queue, or the
one whose head is currently closest to the
data. If a disk in a RAID 1 fails, all reads
and writes will be to and from its mirror.
RAID 1 has very high read performance.

RAID 2: This RAID level uses bit-level striping
and memory-style error-correcting codes
to detect and correct disk failures. So, a

RAID with n data disks using Hamming
codes for redundancy will use log n addi-
tional disks to store parity. If a disk fails,
the parity disks can, in combination, de-
tect which disk must have failed, and cor-
rect the failed data. As the RAID set grows
larger, the number of parity disks grows
more slowly. However, because disk fail-
ures are self-identifying, the extra parity en-
coding needed to identify which disk failed
is usually redundant, making this scheme
little-used.

RAID 3: Another bit-level striping scheme,
RAID 3 uses the fact that disk failures are
self-identifying to eliminate the O(log n)
parity disks, replacing them with a sin-
gle disk per RAID set. When a disk fails,
the parity disk can be used in conjunc-
tion with the remaining good disks to re-
construct the failed disk’s data. In this
bit-interleaved scheme, every disk partici-
pates in each read or write, and, in effect,
all disks operate identically (the heads are
synchronised). This simplifies implemen-
tation, and enables a high bandwidth to
be delivered, making RAID 3 attractive for
multimedia applications where quality of
service bounds must be observed.

RAID 4: Similar to RAID 3, RAID 4 is a block-
interleaved scheme that uses a single, ded-
icated parity disk. Read requests smaller
than the striping unit need only access a
single disk, increasing the I/O parallelism
of this scheme. The drawback, however, is
that all parity updates on writes go to a sin-
gle disk, which can quickly become a bot-
tleneck.

RAID 5: This organisation is similar to RAID
4, but improves upon that scheme by dis-
tributing the parity information across the
data disks of the RAID, instead of hav-
ing it reside on a separate disk. This dis-
tributed parity means that, now, all disks in
the RAID are used to store data, but also,
some blocks of each disk are used to store
parity. The equivalent of a single disk’s
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worth of storage is still consumed by parity
storage, but it is spread across all the disks
in the RAID. Although the layout is more
complicated, it means that no single disk
becomes a bottleneck for parity writes, and
also has the advantage that all disks can
participate in reads. The precise distribu-
tion of parity can affect performance [108].
RAID 5 generally has the best performance
for small and large reads and large writes
of any redundant disk array, but its biggest
drawback is the read-modify-write penalty
for small writes.

Those are the major RAID categories, but
by no means all. For example, the aforemen-
tioned P+Q redundancy scheme, which can pro-
tect against up to two disk failures, is often clas-
sified as RAID level 6. In practice, the most com-
monly used RAID organisations are RAID lev-
els 0, 1, 3, and 5.

Although excellent performance can be ob-
tained from a RAID with all disks operating,
performance can be severely degraded if a disk
fails. When a disk fails, the RAID is said to be
operating in degraded mode. In this mode, all
disks must participate in each read and write
(except for RAID level 1), removing any I/O
parallelism.

To counter this, a RAID can have online or hot
spare disks—disks that are part of the RAID, but
that are not used to store either data or parity
in the course of normal operation. When a disk
fails, its data is reconstructed onto a spare disk.
This is done transparently, to ensure the RAID
is not offline. If hot spares are not used, data
reconstruction takes place when the failed disk
is eventually replaced with a working unit. If
hot swappable drives are used in the RAID, this
can be accomplished without shutting down the
entire RAID. Distributed sparing [130] and parity
sparing [30] are two techniques that take advan-
tage of online spare disks to improve the normal
performance of the RAID, whilst still allowing
fast reconstruction to begin.

Even in non-degraded mode, care must be
taken to safeguard the integrity of the RAID to
protect against system crashes. In particular, the

RAID must keep track of not only which disks
have failed, but also which logical sectors of a
failed disk have been reconstructed, or which
logical sectors are currently being updated. This
is necessary to avoid reading stale data from a
RAID. This information kept track of is referred
to as the metastate of the RAID.

In addition, it is important to keep track of
which parity sectors are consistent and which are
inconsistent in the event of a system crash. Cus-
tomarily, this means that before each write, the
parity sector must be marked as inconsistent un-
til new, valid parity is written. Upon a system
crash, recovery mandates that all inconsistent
parity must be regenerated. Inconsistent par-
ity in the presence of a disk failure means that
the data will not be able to be reconstructed cor-
rectly. However, because reconstructing a con-
sistent parity sector also results in a consistent
parity sector, it is permissable to trigger the re-
generation of all parity sectors upon return from
a system crash, instead of maintaining stable
parity metastate information.

As well as individual disk failures, it is also
the case that multiple disks can fail systemati-
cally. Typically, this is because the controller or
bus to which they are connected fails. Thus, in-
stead of a single disk failing, a string of disks
fails. One way to combat this problem is to ar-
range error correction groups orthogonal to the
actual hardware arrangement. Such a strategy
is broadly called orthogonal RAID [139, 169].

RAID organisations are the subject of intense
research, particularly in improving write effi-
ciency and reconstruction performance. Float-
ing parity [131] and parity logging [183] can im-
prove small write performance. Declustered par-
ity [79, 132] can improve reconstruction perfor-
mance by distributing the parity groups such
that the load is balanced more evenly across the
disk array in degraded mode.

Research has been undertaken into employ-
ing adaptive RAID organisations, to match
workload with the best layout. The HP Au-
toRAID system [203] uses two levels of RAID
between which files may migrate automatically
depending upon how often they are updated.
RAID 1 (mirroring) is used for frequently up-
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dated data, and RAID 5 for infrequently up-
dated data. Initially, all but 10% of data is stored
as RAID 5. In the course of normal operation,
frequently-updated data in RAID 5 is promoted
to mirroring.

One of the major problems with RAID
schemes is that they are effectively bus-based so-
lutions, and so have restricted scalability. Typ-
ically, the disks of a RAID array are connected
directly to a RAID controller that mediates all
disk I/O. The RAID controller may be a custom
hardware controller, or, alternatively—and per-
haps more increasingly—a “software RAID” in
which a RAID disk driver is available as part of
the operating system. The RAID driver can then
act as a “higher level” layer upon the native disk
device drivers to create arbitrary RAID configu-
rations using those disks (or partitions thereof).

The RAIDframe [38] software toolkit is a re-
search vehicle for experimenting with different
software RAID organisations. It has been ported
to several variants of Unix, offering various lev-
els of functionality: as a RAID simulator and a
RAID device driver. For example, NetBSD 1.4
onwards includes a port of RAIDframe that en-
ables, through a kernel configuration option, a
RAID pseudo device driver. This driver allows
RAIDs of levels 0, 1, 4, and 5 to be created us-
ing block devices or even using other RAIDs.
So, it is possible to create a RAID 0 array out
of several RAID 5 arrays, or to construct other
arbitrarily complex hierarchies. The driver also
supports hot spares, various parity declustering
options, and so on.

Widely-available software RAID makes it
fairly straightforward to build large disk arrays
using COTS hardware. For example, a single PC
clone with four wide SCSI host adapter cards,
each driving fifteen 40 GB SCSI hard drives,
could provide over 2 terabytes of RAID storage.
However, in such a setup, the limiting factor is
likely to be the memory bus bandwidth.

3.5 Networked Storage

There is a vast literature on networked storage.
Put simply, networked storage is storage available
via a local-area or wide-area network. Typically,

a client/server model is employed, in which the
actual disk storage is provided by servers, and
accessed over the network by clients. The di-
vision of labour between client and server can
vary greatly. At one extreme, the server can act
as a “black box,” providing all functionality of
authentication, name lookup, consistency, and
data delivery (e.g., Network File System (NFS)
[162]); at the other, it can provide simply a low-
level storage abstraction that clients may read
and write (e.g., the Swarm storage server [75]).

From a hardware perspective, networked
storage can be divided into the following broad
categories:

Server Attached Disks: Storage made avail-
able by the server consists of disks that are
directly attached to the server host. An
archetypal example is one or more hard
disks connected to the server via a SCSI
host adapter. Only the server host com-
puter has direct access to the disks. All
other access—by networked clients—must
be via the server itself.

Network Attached Disks: This organisation
has disks directly attached to the network
and able to send data to clients via some
high-level networking protocol such as
TCP/IP. Usually, network attached disks
require some form of lightweight aid in the
form of file manager servers that mediate
client requests to the disks themselves. The
file manager interacts with the network
attached disks via a private network to
ensure integrity of data on the disks is
maintained. Once authorised, network
attached disks deliver data directly to the
client making the request.

Storage Area Networks: Here, a high-speed,
private network separates storage devices
(disk, tape, etc.) and storage servers. The
storage servers act as a front-end to the stor-
age pool, and any storage server can com-
municate with any storage device on the
storage area network (SAN). Clients make
storage requests via any storage server.
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Data is transferred between client and stor-
age devices via servers.

From a server/file manager point of view,
networked storage can be divided into the fol-
lowing broad categories:

Central: All client requests are served by a sin-
gle server, which carries the full burden of
file management functionality. NFS [162]
is the archetypal centralised server. Cen-
tral server designs are relatively straight-
forward in design and implementation, but
lack scalability.

Distributed: Distributed servers cooperate
with peer servers in order to satisfy client
requests. Typically, distributed servers
will partition the name space and each
will handle some portion of it. Exam-
ples of this category are Andrew File
System (AFS) [167] and the Sprite file
system [143].

Merged client/server: In this category, clients
can act as both clients and servers, acting
as a server for locally-attached storage, and
as a client when accessing non-local stor-
age. Most of the file management burden is
placed on the clients. Network of Worksta-
tions (NOW) [6] and xFS [7,201] are typical
examples of this category.

There is a lack of standardised terminology in
the area of large-scale, reliable, scalable storage.
Devlin et al. [48] offer a taxonomy describing
typical enterprise-scale storage organisations.
Much terminology, however, is industry-driven
[56, 185, 199].

Current emphasis is away from SCSI-based
disk systems to fibre channel-capable drives,
which supports the notion of network-attached
storage. Fibre channel [17] is a high-speed se-
rial interface offering speeds upwards of 100
MB/sec. It is more flexible than SCSI in that
it supports three basic interconnection topolo-
gies that may be scaled up: point-to-point; fab-
ric (switch); and arbitrated loop (ring). An arbi-
trated loop can support up to 126 devices with-
out the need of a switch. This is more scalable

than SCSI, which can support only up to 15 de-
vices per bus. In addition, fibre channel can be
driven over much larger distances—1 to 10 km,
depending upon wiring—as opposed to a max-
imum of 25 metres with SCSI. Fibre channel in-
tegrates both storage and networking protocols,
and is implemented using six protocol layers.

3.5.1 Intelligent Disks

Storage research continues the trend of migrat-
ing functionality into the disk itself. Instead
of moving data to code, one approach is to
move the code to the data and execute high-
level functions on the drive itself [1, 91, 158]. In
effect, make the disk an object-oriented device
that responds to high-level method invocations
from clients. In such a model, files become ob-
jects, the management of which becomes largely
opaque to the outside world.

Keeton et al. [91] at Berkeley put forward a
case for Intelligent Disks, or IDISKs, that pro-
vides higher-level application functionality on
the disk itself. Gibson et al. [68, 69] describe a
disk-centric storage architecture called Network
Attached Secure Disks (NASD) that also concen-
trates functionality on the disk itself. An exten-
sion of this work is that of Active Disks under-
taken at Carnegie Mellon and at the University
of California, Santa Barbara.

Riedel and Gibson [158] at Carnegie Mellon
describe the issues and potential benefits of be-
ing able to execute code directly on NASD. Ap-
plications studied include database select and
parallel sort. Their proposal of active disks lo-
calises activity on the disk, with relatively mod-
est processing requirements and no communi-
cation between disks.

Acharya et al. [1] at UCSB also propose an ac-
tive disk architecture that is a little more power-
ful in its scope. In it, disklets run on disks, dis-
patched and coordinated by a host. They out-
line several applications, including: SQL select
and group-by; external sort; relational database
datacube computation; image convolution; and
generation of composite satellite images. Their
simulation results indicate active disks outper-
form conventional disk architectures.
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The IDISK architecture described in Keeton et
al. [91] is probably the most powerful, in that it
posits higher bandwidth disk-to-disk communi-
cation, allowing for more general-purpose par-
allelism.

All of the active disk architectures are predi-
cated on increased technological sophistication
of the disk drive itself. The processors used in
current drives are typically one generation be-
hind those used in the host computers driving
them. Making a transition from 0.68 micron to a
0.35 micron process would, for example, enable
the integration of a 200 MHz StrongARM RISC
core into the current ASIC die space, plus an ad-
ditional 100,000 gates for specialised processing
in addition to incorporating all existing format-
ting, servo, ECC, and SCSI functions [158]. Ex-
perts at Seagate anticipated that by 2001, drives
will provide upwards of 100 MIPS in processing
power, plus up to 64 MB of RAM and 2–4 MB of
flash memory on the drive [5].

3.5.2 Parallel File Systems

In terms of software organisation, many net-
worked storage architectures have been pro-
posed. One important class is that of paral-
lel file systems. Initially, these were relatively
simple transpositions of the traditional Unix file
system semantics that treated files as linear se-
quences of bytes [152]. However, one distin-
guishing feature of parallel file systems is that
disk I/O is tightly coupled with the parallel
computation. Thus, parallel I/O began to as-
sume more importance in parallel computing,
especially in those applications that are data-
driven. The Message Passing Interface (MPI)
working group is evolving standards for paral-
lel I/O [35], as is the Scalable I/O Initiative [37].

Some parallel file systems recognise that files
can be structured to mirror the application and
workload under which they will be used. The
Vesta Parallel File System [36] treats files as mul-
tiple disjoint partitions that can be accessed in
parallel, and allows layout to be tuned to antici-
pated access patterns. The Hurricane File Sys-
tem [97] provides hierarchical building blocks
that can be composed to custom-build access

methods for files in a shared-memory multipro-
cessor environment. Application data files can
thus be associated with precisely-tuned seman-
tics appropriate to their chosen application and
access patterns.

Disk-Directed I/O [96] is a scalable I/O ap-
proach for MIMD multiprocessor systems. In-
stead of compute nodes sending requests to
I/O nodes independently, they instead collec-
tively send a single request to all I/O nodes.
The I/O nodes then control the flow of data
back to the compute nodes to best maximise
disk bandwidth. The Galley Parallel File Sys-
tem [140] implements a version of disk-directed
I/O, although its I/O requests are not explic-
itly collective. The PARADISE system [26] inte-
grates many theoretical parallel I/O techniques
into an experimental file system, including disk-
directed I/O; cooperative caching; flexible file
structuring via metadata; and selectable file ac-
cess methods. The TickerTAIP [28] parallel
RAID architecture bridges across the parallel
I/O and RAID models. River [9] is another ap-
proach to parallel I/O management. It provides
a data-flow programming model and I/O layer
for cluster environments. It uses a distributed
queue to load balance the workload amongst
data consumers in the system, and graduated
declustering to do workload balancing amongst
the data producers of the system. The goal is
to provide persistent peak performance across
workload perturbations.

The IEEE Storage System Standards Working
Group has been working on a reference model
for a large-scale, wide-area, scalable storage sys-
tem designed for petabyte-scale repositories of
potentially billions of datasets, each of which
could be terabytes in size and spread across
heterogeneous secondary and tertiary storage
[39, 82]. The model is designed to be widely
dispersed, geographically, yet support an I/O
throughput of gigabytes per second. The High
Performance Storage System (HPSS) project is
an implementation based upon the IEEE Mass
Storage System Reference Model. The HPSS
concentrates on highly-parallel, supercomputer,
and cluster environments, and seeks to deliver
data at upwards of 100 MB/sec [40]. One of the
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design criteria of the HPSS is to utilise existing
and emerging standards for increased deploy-
ability. Another design goal is to provide API
access at appropriate levels for use by separate
digital library, object storage, and data manage-
ment systems [40].

3.5.3 Distributed File Systems

Distributed file systems are networked file sys-
tems that spread file system contents over sev-
eral machines. In the simplest case, servers
handle all file system responsibilities, includ-
ing serving data; maintaining consistency; and
handling locking. In more advanced cases, this
workload is shared between clients and servers,
and in some systems, clients may act as both
clients and servers.

Although the NFS may be used to mimic a
distributed file system, it is not really consid-
ered one. Sprite [143], developed at Berkeley, is
a distributed file system in which the global file
system name space is partitioned across multi-
ple domains. A file server may handle one or
more domains. Sprite uses aggressive caching
to improve performance. Clients cache files
locally, to lessen server workloads. However,
when a file becomes write-shared, the server be-
comes involved, sending call-back messages to
all clients with the file open to disable caching
for that file. The AFS [167] is similar to Sprite in
that the file system is distributed across servers.
Like Sprite, AFS maintains state, and performs
callbacks to clients when cached shared file data
is modified by another client. Consistency in
AFS is at the whole file level, with the last file
written being the version maintained by the
server.

The biggest problem with AFS and Sprite is
that they do not scale well to large numbers of
clients. Availability is also a problem, should
a given server become disconnected. The con-
sistency granularity of AFS is also weaker than
traditional Unix semantics. AFS was commer-
cialised and developed as the Distributed File
System (DFS). The DFS is the basis of the Open
Software Foundation (OSF) Distributed Com-
puting Environment (DCE) [141], and provides

stronger consistency semantics over AFS. Coda
(“COnstant Data Availability”) [166] builds fur-
ther upon AFS, and is intended to provide im-
proved availability and even support discon-
nected operation for mobile users. In Coda, the
global name space is partitioned into volumes
consisting of files and directories. A volume is
the unit of replication. It may be explicitly repli-
cated when it is created, and a volume replication
database is used to keep track of all volumes. The
volume replication database is itself replicated
at every server.

Coda clients use more aggressive caching
than in AFS in that they can proactively cache
entire files for future disconnected operation.
Disconnected operation may be the result of net-
work inaccessibility to any Coda server replicat-
ing a volume used by the client, or a voluntary
disconnection, such as a laptop computer being
removed physically from the network. The lo-
cal disk of a Coda client is treated as a file cache,
and, during disconnected operation the client
becomes a server, handling all requests out of its
local cache. Upon reconnection, modifications
are consolidated with the servers of the volumes
used by the disconnected client. A repair tool is
provided to allow the user to resolve inconsis-
tencies that cannot be resolved by Coda auto-
matically.

Berkeley’s NOW project produced xFS, a
Serverless Network File System [7]. In xFS, clients
are both clients and servers: there is no cen-
tralised server (or small subset of machines
designated as servers) in xFS. This greatly im-
proves scalability. Metadata management is dis-
tributed across all nodes, instead of being parti-
tioned onto canonical servers.

The Global File System (GFS) is a serverless
file system in which a cluster of clients con-
nects to network attached storage devices ar-
ranged in a network storage pool connected via
a storage area network [182]. GFS uses a dis-
tributed lock manager controlled by the storage
devices. Devices in the network storage pool are
arranged into subpools, grouping devices with
similar characteristics. These subpools are then
exploited for efficiency. For example, file meta-
data is placed on low-latency subpools, whereas
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file data is placed on high-bandwidth subpools.
Although GFS is designed for clusters, it can
be extended to LAN and WAN environment by
GFS clients exporting file systems via other pro-
tocols such as NFS and Hypertext Transfer Pro-
tocol (HTTP) [21].

Clusters are receiving a lot of attention as a
way of producing low-cost, powerful, scalable
computing facilities. Correspondingly, there
has been significant cluster development result-
ing in mature products. Clusters are attractive
because of their smaller administrative domain
than wide-area distributed file systems. This
allows for lower latency, higher stable band-
width, and simpler security considerations. A
distributed lock manager, for example, is easier
to deploy with high performance in a SAN or
cluster environment, than over a wide-area net-
work.

VAXClusters and Tru64 Unix cluster pro-
vide high-performance, fault-tolerant cluster-
level file systems [99, 125]. Cluster members
can share locally attached storage, or use NASD
over a variety of interconnection fabrics. A hi-
erarchical lock structure and distributed lock
manager control file sharing. The lock manager
can detect deadlocks, and the system features
failure recovery. The Lustre cluster file system
is similar in scope [122].

The Berkeley NOW work has sparked much
cluster-level file system work. The latter de-
velopment of Sprite [143] gave rise to Zebra
[76], which provided striping across disks. In-
stead of striping files, Zebra uses a per-client
log which is striped across the disks rather like
a log-structured file system. The Swarm stor-
age system, developed at the University of Ari-
zona, is similar in that it provides a striped log
abstraction on cluster storage nodes for clients
[75]. DEC’s Frangipani [192] is a cluster-level
storage system based upon their Petal [109] vir-
tual disks. Petal provides virtual disks, each
of which has a 64-bit address space. A virtual
disk is made up of a pool of physical disks that
may be spread across multiple servers. Petal
is a software RAID in many respects. It fea-
tures component failure tolerance and chained
declustered data access. Copy-on-write tech-

niques enable Petal virtual disks to support ef-
ficient snapshots, for online backup purposes.
Frangipani builds on Petal to provide a consis-
tent view of the same set of files to all clients,
and uses a distributed lock manager to ensure
coherence.

4 Digital Libraries Object Repos-
itories

Although there has been extensive and intense
research in the area of file and disk storage,
there has been comparatively little undertaken
in the area of storage for digital libraries. Most
of what has been done is at the application level:
data structures and file layouts for indices; pro-
tocols for search and data interoperation; file
formats for archival storage; etc. Digital library
metrics studies have focused on user interface
and behavioural concerns, along with search
session and query characterisation [110].

Although digital libraries are voracious con-
sumers of storage, a tacit assumption in most
cases is that the underlying operating system
I/O substrate will be used for storage. An
application-layer shim is applied to provide the
more sophisticated I/O that is characteristic of
digital libraries [135,136]. This may lead to a se-
vere “impedance mismatch” between the lower
and upper layers.

One notable exception, in which storage and
access is given a great deal of attention, is in the
area of digital multimedia. There is a large lit-
erature on the design and implementation of ar-
chitectures for digital multimedia, with a partic-
ular focus on video servers. Although this is but
a subset of the digital library universe, it indi-
cates that an attention to low-level detail is war-
ranted where performance is necessary.

Traditional file systems treat files abstractly
as simple linear sequences of bytes, with little
or no additional semantics beyond that. Tradi-
tional file system files have little in the way of
metadata attached to files. What metadata ex-
ists is limited to information about the low-level
storage of the file, and the ownership and ac-
cess dispositions of the file. Almost no semantic
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information is associated with the file, reinforc-
ing the “neutral linear byte stream” semantics
prevalent in traditional file systems. There, the
mantra is that applications provide semantics.
Whereas that is true to an extent, as we have
seen, great performance improvements can re-
sult from matching a file’s storage and access
at the low level to its intended application (e.g.,
Hurricane, PARADISE, et al.). File system stud-
ies that have tracked file types consistently re-
port a good correlation between file size and file
type (semantics) [49].

In addition, a file’s type may limit its access
semantics. For example, compressed files are
often not amenable to random access, because
the decompression state of the current block de-
pends upon that of all the previous blocks in
the file. Such files, therefore, will almost cer-
tainly be accessed linear sequentially. (There are
compressed file formats that support nonlinear
access, most notably many multimedia file for-
mats.)

All this semantic information may be used to
improve storage layout and efficiency. A file
system that naively assumes all files will be ac-
cessed in the same way misses an opportunity
to tune performance to file semantics.

4.1 Digital Objects vs. Files

A major differentiation between file systems
and digital libraries is that file systems operate
on files and digital libraries operate on digital ob-
jects. Digital objects are more sophisticated than
files, and more abstract. Files, by comparison,
are concrete and simple.

Digital objects have an underlying data rep-
resentation of the digital object, and they also
have associated metadata that contains infor-
mation about the digital object. At a minimum,
the metadata includes a unique handle [186] by
which the digital object is known.

Files reside in file systems, whereas digital ob-
jects reside in repositories [88]. Repositories are
responsible for storing digital objects and secur-
ing them according to rights associated with the
digital object. These rights may include terms
and conditions under which the digital object

may be disseminated by the repository. A repos-
itory access protocol is used to effect appropriate
access to digital objects stored in a repository,
and to undertake the deposit of digital objects
into a repository.

A digital object repository is not a digital li-
brary. A digital library is much more than a dig-
ital object repository, and includes functionality
to facilitate user interaction; searching; brows-
ing; work-flow and content management; and
more. A digital object repository is one element
of a digital library, much in the same way a file
system is part of a larger operating system infra-
structure. A digital object repository can pro-
vide a functional substrate upon which digital
libraries may be built.

Another characteristic difference between
digital objects and files is that digital objects
are typically longer-lived. An important facet
of digital libraries—like that of conventional
libraries—is content management. Digital li-
braries usually host collections, the contents of
which are chosen carefully. There is cataloguing
effort associated with introducing an item into
a collection, and so to maximise the return on
such investment, items are usually introduced
with a long-term archival storage goal in mind.

Although collection items do degrade, go
missing, or are otherwise deleted from conven-
tional library collections, the frequency of dele-
tion is small compared with the frequency of ac-
cess in the collection as a whole. Unlike con-
ventional file systems, which may contain very
short-lived “temporary files,” or files whose
contents are updated frequently, digital objects
are relatively static, or read-mostly in file system
terms. Even then, updating a digital object is
usually considered a significant event, and may
result in different explicit versions of the digital
object.

Digital objects also may be complex com-
pound objects. For example, a digital object
could be the result of running a given program
on a given input file with given parameters.

Finally, a digital object may actually con-
tain no digital data at all: it may consist en-
tirely of metadata that refers to some non-digital
archival object such as an objet d’art owned by a
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museum. Unlike file system metadata, which
is relatively simple and focused on low-level
storage concerns, digital object metadata is very
rich in that it may not be uniform from digital
object to digital object. In fact, a given digital
object may have several encodings of the same
underlying metadata, to make it interoperable
between several different cataloguing conven-
tions.

4.2 Naming and Location

Naming is very important for digital libraries.
Unlike local file systems, names for digital ob-
jects are usually intended to be globally unique.
Part of this stems from conventional libraries,
which deal with authoritative versions of ob-
jects, and part stems from the desire for feder-
ation.

Names in file systems denote specific bit-
streams as they exist at the current time. Names
for digital objects denote the underlying intel-
lectual property, or digital object, and not spe-
cific bitstreams or particular renditions of that
digital object. A digital object may contain or
support several possible disseminations of that
digital object, but these are not generally con-
sidered to be separate digital objects in them-
selves. In file system terms, a digital object is
ultimately more like a directory in that it is a con-
tainer for all the digital artifacts (metadata and
data) directly pertaining to that digital object.
One could represent a digital object using a di-
rectory in which reside individual files contain-
ing the digital content (metadata and data), or
even symbolic links to other directories repre-
senting digital objects. The directory would rep-
resent the digital object, and the directory path-
name would be its name.

The important point to note about digital ob-
jects is that they are containers rather than sim-
ply individual flat entities. So, whereas a name
refers to the digital object container, accessing
the innards of that container is a more compli-
cated operation, and one akin to accessing an
object through its methods in the object oriented
paradigm. In this respect, digital objects are
closer to the object-based storage paradigm of

IDISK, Active Disks, and NASD (see the dis-
cussion starting on page 13). So, to access the
content of a digital object might require qual-
ifying the name with additional data (e.g., the
“method”). The result of an access might be ac-
tual data, or other names to dereference.

4.2.1 Uniqueness and Location Dependence

There are two major classes of names: locally
unique and globally unique. Locally unique
names are unique to a particular server, that is,
the same name on two different servers may re-
fer to different objects. (For example, the file
/etc/motd may contain two entirely differ-
ent message of the day contents on two differ-
ent servers at the same instance in time, even
though they have the same name: /etc/motd.)

File system file names are typically locally
unique, unless the file system is a wide-area dis-
tributed file system, in which case they are usu-
ally globally unique (often made so by qualify-
ing them with the global server name).

In addition, a name can be either location
dependent or location independent. Names that
are location dependent are tied to a particu-
lar server or server cluster, and incorporate the
server name as some facet of the name itself. Lo-
cation independent names incorporate no refer-
ence to any particular server holding the named
object, and part of the name resolution process
involves identifying a server storing the object
to which the name refers.

Location dependent names are undesirable
for at least three reasons: 1) they are tied to a
“physical location,” in that if an object is moved
(not copied) to another server, the original name
becomes invalid; 2) it is not immediately dis-
cernible whether two differently named objects
are in fact the same thing; and 3) a set of location
dependent names is harder to scale because the
set is tied to a particular cluster.

A ubiquitous example of a location depen-
dent globally unique name is the Uniform Re-
source Locator (URL) [22] used in the WWW.
URLs explicitly encode the host and location
within that host of a given resource. When ac-
cessing an object named by a URL, the host
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named in the URL is contacted. For popular ob-
jects, this can lead to severe load problems on
the server host so named. There are techniques
for alleviating such congestion. HTTP redirects
[21], Active Names [197], Persistent Uniform
Resource Locator (PURL)s [174], the Internet2
Distributed Storage Initiative [16], etc., seek to
make location dependent names less so by in-
terjecting a layer of indirection in the resolution
process.

4.2.2 Uniform Resource Names

A URL is a form of Uniform Resource Identifier
(URI) [20]. A Uniform Resource Name (URN)
[181] is also a form of URI, but one that is lo-
cation independent. Unlike URLs, which have
precise syntax and semantics, URNs have a pre-
cise syntax [134] but currently rather loose se-
mantics [180].

An overview of work on URNs is given in
[195]. Paskin [150] delineates many of the func-
tional requirements and progress towards im-
plementing URNs. The fundamental require-
ments of URNs include: global scope; global
uniqueness; persistence; scalability; legacy sup-
port; extensibility; and independence [181].

The basic syntactic form of a URN is
urn:nid:nss, where nid is the namespace identifier,
that identifies the particular type of URN, and
nss is the namespace-specific string under the aus-
pices of the nid. The semantic interpretation and
syntactic format of the nss is local to, and de-
fined by, the scheme implemented by the nam-
ing authority controlling the nid namespace.

There are several efforts currently underway
to introduce a working URN scheme. The
World Wide Web Consortium (W3C) has a
working group looking at URNs [83]. Their
effort concentrates on resolver discovery, and
they propose adaptations to the existing Do-
main Name System (DNS) to enable a re-
solver to be located for a given URN [128].
This approach adds a new type of record to
DNS databases: the Naming Authority Pointer
(NAPTR) [129]. The NAPTR includes rewriting
rules to enable a URI to locate an appropriate
resolver for resolution [129]. The W3C has pro-

posed a simple mechanism for resolving URNs
via HTTP [44]. Powell [154] describes a simple
technique that enables the resolution of URNs
using the Squid WWW proxy cache.

Two major URN initiatives are the CNRI Han-
dle system [186] and the Document Object Iden-
tifier (DOI) [149]. The DOI is a publisher-led
effort to develop a URN scheme for persistent
identification of intellectual property that in-
cludes a mechanism for resolving the DOI to
some useful resource or service associated with
that intellectual property. As well as identify-
ing an item of intellectual property, a DOI in-
cludes basic metadata describing the target of
the DOI [149].

The DOI actually uses the Handle system as
its resolution mechanism. The Handle system
is a global, decentralised, replicated URN sys-
tem. It is comprised of a Global Handle Reg-
istry and many Local Handle Services. The gen-
eral syntax of a handle is urn:hdl:naming-
authority/unique-identifier. The naming-authority
is the organisation that has authority over that
particular portion of the global handle names-
pace. In DNS terms, it is akin to being authorita-
tive for a domain. The naming-authority has ad-
ministrative control over the unique-identifiers.

The Global Handle Registry is akin to the root
nameservers in the DNS. Local Handle Services
manage actual handles for one or more naming
authorities. A naming authority may be homed
at either the Global Handle Registry, or at a Lo-
cal Handle Service. A naming authority can be
homed at only one Local Handle Service (or, al-
ternatively, at the Global Handle Registry). Both
the Global Handle Registry and a Local Han-
dle Service may actually be comprised of sev-
eral servers, for the purposes of fault tolerance
and load balancing. The service at which a nam-
ing authority is homed has administrative con-
trol over the handles within that naming author-
ity.

A client library is required for applications
wishing to resolve handles. Handle servers fea-
ture caching, and handle resolution is some-
what akin to that of the DNS in that first the au-
thoritative naming authority is sought, and then
the handle is resolved via a handle server of
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that naming authority. Handles may actually be
comprised of a set of values. Each value has its
own information, including a type entry. Han-
dle resolution queries can thus specify that only
values of a certain type, e.g., URL, be returned
by a server. This allows a measure of content ne-
gotiation by the client.

The Handle system is described in more de-
tail in [187]. The chief disadvantage of us-
ing handles as a ubiquitous naming scheme is
the overhead of registering and resolving them
in the global system. For short-lived, tempo-
rary objects, this is a significant additional over-
head. However, handles are designed primarily
to designate significant archival content: digital
objects.

4.2.3 Scalable Object Location

Name space operations are characteristically
lookup operations. An abstract way to think
of name space operations is as a hash table in
which the key is the name, and the value is the
set of operations supported by the underlying
object.

One way to scalably distribute such a hash
table across the nodes of a cluster is to use a
scalable distributed data structure (SDDS) [47,
98, 118–120, 198]. Born out of dynamic hashing
[105, 106], linear hashing [107, 113] is one of the
most common family of SDDS. Litwin, in par-
ticularly, has proposed many extensions to the
basic linear hashing approach, including vari-
ants featuring grouping [115], mirroring [116],
security [117], scalable availability [114], Reed-
Solomon codes [121], and a variant tuned for
switched multicomputers [90].

SDDS have three basic design properties:
1) there is no central directory through which
clients must access, avoiding “hot spots;” 2) ex-
pansion to new servers is gradual, and accord-
ing to load; and 3) the access and maintenance
primitives do not require atomic updates to
multiple clients. These properties provide ex-
cellent incremental scalability.

SDDS hash tables are accessed via a primary
key. For a digital library object repository, we
will use the object’s URN as a primary key. Be-

cause a URN is variable in length, we can canon-
icalise its format by hashing the URN string to
a fixed signature, for example to the MD5 hash
of the string. The MD5 hash will canonicalise
any URN string to a 128-bit “object ID” with
low probability of collision (2−128). It will also
pseudo-randomise any URN, due to the one-
way nature of the MD5 hash function. Other
suitable candidate one-way hash functions in-
clude the Secure Hash Algorithm (SHA) [57],
which hashes an arbitrary length bit stream to
a 160-bit string. SHA-1 is used in cryptographic
applications for digital signatures.

Randomised placement approaches have
been gaining favour in storage area networks
because they offer statistical guarantees for ac-
cess and provide good incremental scalability.
The problem with approaches such as RAID
and similar striping approaches is that they do
not scale well with the addition of new disks.
With high-efficiency parity layouts, often the
entire layout must be recomputed with the ad-
dition of new disks, necessitating a large move-
ment of data. Randomised placement also has
the advantage that it performs well for non-
predictive access patterns.

The SICMA [25] and RIO [23] projects use
randomised placement for multimedia servers.
Both are resource efficient, and ensure an even
distribution of requests amongst the disks in the
system, even in the presence of non-predictive
access patterns. RIO also employs partial repli-
cation of disk blocks to further evenly distribute
the request load across the disks in the system
[163]. It has been shown that even for predic-
tive access patterns, RIO performs equivalently
to that of normal striping approaches [164].

The PRESTO [19] project improves upon
SICMA and RIO. PRESTO uses a parity ap-
proach rather than straightforward replication
to improve space efficiency. PRESTO also has
an efficient re-mapping technique that requires
only 1/(n + 1) virtual data blocks to be moved
when adding an additional disk [19].

With the increasing popularity of peer-to-peer
networks for cooperative wide-area storage and
serving has come a focus on algorithms for scal-
able object location. The explosive growth of
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the WWW has necessitated a need for scalabil-
ity to alleviate “hot spots” and ensure consistent
and timely access to highly popular content.
In particular, Karger et al. [89] introduced the
concept of consistent hashing for locating trees
of caches within a dynamically changing set
of hosts. Consistent hashing has the desirable
property that each node in the distributed hash
table stores approximately the same number of
keys, but there is relatively little movement of
keys as nodes enter or leave the system. Consis-
tent hashing also has the desirable property that
not all clients need know about all the nodes
participating in the distributed hash table, re-
moving the need for global consistency and syn-
chronisation.

Chord [184] uses a variant of consistent hash-
ing to effect distributed lookup in a peer-to-peer
environment. It is used as the distributed hash
layer of the Cooperative File System (CFS) [43],
a peer-to-peer wide-area read-only storage sys-
tem. Chord uses O(log N) messages to look up
a key in a network of N nodes. The caching
scheme of Karger et al. [89] has O(1) lookup, but
with more routing information stored at each
node than Chord.

Plaxton et al. [153] describe a distributed data
location technique designed to locate the clos-
est copy of a data item to a client. Like
Chord, it also uses O(log N) messages in the
lookup, but has stronger guarantees about how
far those messages travel within the network.
The OceanStore [100] distributed storage sys-
tem uses a variant of the algorithm of Plaxton
et al.

Ratnasamy et al. use a d-dimensional
Cartesian coordinate space for their Content-
Addressable Network (CAN) [157]. The CAN
provides O(dN

1

d ) message key lookup, and re-
quires O(d) state maintained at each node. This
keeps the per-node state fixed, but at an asymp-
totically worse lookup cost. Past [50] uses a pro-
tocol similar to Chord, but is based on prefix
routing.

The proliferation of recent schemes illus-
trates the necessity of a scalable lookup system
for quickly and efficiently locating resources

in a networked environment. The peer-to-
peer schemes described above also tackle wider
problems such as highly dynamic node partici-
pation in the network; inconsistent views; sys-
tem security; anonymity; administration; and
fault tolerance. In particular, the volatility of
both the network membership and its topology
is expected to be significantly lower in a stor-
age cluster: nodes will join the network when
new disks are added, and leave when they are
removed for replacement.

4.3 Redundant Encoding for Reliability

Many schemes have been proposed for redun-
dantly encoding data to improve reliability and
tolerate faults. Several schemes have been pro-
posed for the LH∗ family of SDDS, including
mirroring [116], bit-level striping with parity
[117], data with scalable parity [114], and Reed-
Solomon encoding [121].

Other approaches are available for increas-
ing reliability. Upfal and Wigderson [194] in-
troduce a technique for replicating k copies of
a datum across nodes in a distributed system
to improve reliability in the presence of failures.
Their technique requires that only a majority of
the k copies be read or written in any given read
or write of the datum.

Rabin [155] proposes a technique for “efficient
dispersal of information” in which data can be
encoded into n pieces such that only m out of
n need be read to recreate the data. Alon and
Luby [3] present a linear-time algorithm for an
(n, c, l, r)-erasure-resilient code that can be used
for encoding and decoding a n-bit string into a
set of l-bit pieces such that when decoding, any
subset of the l-bit pieces whose combined length
is r is sufficient to recreate the original string.
The encoded string is of size cn, and r need only
be slightly larger than n.

The PRESTO project [19] employs a simple
parity-based redundancy scheme. Each logical
block is decomposed into k equal sized sub-
blocks (k > 1), plus an extra parity block the
same size as a sub-block. When reading a logical
block, any k of the k + 1 sub-blocks can be read
to reconstruct the original logical block. When
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writing, all k + 1 blocks (sub-blocks plus par-
ity sub-block) are updated. The sub-blocks are
pseudo-randomly distributed throughout the
system. The system can tolerate with high prob-
ability the failure of any single storage server. In
PRESTO, k = 4 for read-mostly objects, giving a
25% storage redundancy overhead [19].

4.4 Metadata

Metadata is, broadly speaking, “data about
data.” However, that simplification hides the
rich complexity inherent in metadata. Metadata
has widely varying uses, and that use may be
subjective, meaning that metadata is interpreted
in a specific context. A digital object may be
put to different uses by different entities, such
as publishers, archivists, and end-users. Such
entities will often create and interpret metadata
specific to their own intended purposes. Rather
than requiring a global union of all possible
metadata, it is more flexible to be able to aggre-
gate diverse sets of metadata for a given object to
enable interpretation of that object by a diverse
set of end users.

One approach that has curried widespread
support is to consider a digital object as a con-
tainer into which is placed digital content and
associated metadata. The Warwick Framework
[102], which arose out of a metadata confer-
ence, describes this approach. It seeks to ad-
dress some of the limitations of the Dublin Core
[51, 193] metadata set, the chief one being that
the Dublin Core seeks to be a global metadata
set, and such generality is undesirable in some
instances.

In the Warwick Framework, the metadata for
an object is actually a container holding pack-
ages of metadata. Each package can either be,
itself, a metadata container; a metadata set con-
taining actual metadata; or an indirect reference
to an external metadata object, referenced via
a URN. A client may access the contents of a
metadata container via an operation that returns
a sequence of packages inside the container. The
client may then skip over unknown packages—
metadata that the client does not know how to
deal with, or cannot access—and use only meta-

data that it “understands” for the application at
hand [102].

4.4.1 Buckets

The theoretical framework for the Warwick
Framework was laid down by Kahn and Wilen-
sky [88]. The Warwick Framework was subse-
quently generalised by recognising that there is
no real distinction between metadata and data,
and so containers should store both. Daniel
and Lagoze [45] describe such a generalisation,
known as Distributed Active Relationships, later
more commonly known as buckets [138]. An
architecture based around this approach is FE-
DORA [151].

The bucket paradigm treats digital objects as
abstract data types whose contents are accessi-
ble through defined methods that allow a user
to interrogate the contents of the digital object.
In this way, more “intelligence” is invested in
the digital object itself, and this makes the dig-
ital object less reliant on functionality built into
the repository in which it is stored. This philos-
ophy is termed Smart Objects, Dumb Archives
(SODA) by Maly et al. [123]. There are interest-
ing parallels between the philosophy of SODA
and the disk-centric approach of IDISK and
NASD, most notably that all emphasise self-
management of objects.

Each bucket in the SODA model has a han-
dle, and contains one or more typed elements
and zero or more packages. Packages are used
to aggregate elements. Typically, several dif-
ferent renditions of the same document, e.g.,
PostScript, PDF, TeX will form a single pack-
age, with each different format of the same doc-
ument being a distinct element of that package.
A package can also contain metadata, and terms
and conditions for accessing the bucket, and can
even be a pointer to a remote bucket, element, or
package. Packages or elements in a bucket can,
themselves, be buckets. The entire bucket has
several primitive methods to allow controlled
access to the contents of the bucket. The NC-
STRL+ project [138] seeks to expand upon the
NCSTRL distributed digital library [111] by us-
ing the bucket approach, amongst other things.
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The FEDORA model is very similar, except
that packages are, instead, typed byte streams
called DataStreams that are accessed via dissem-
inators. A Primitive Disseminator allows bucket-
level access, whilst individual Content-Type Dis-
seminators allow structured access to the indi-
vidual DataStreams.

4.4.2 Terms and Conditions

An advantage of making digital objects self-
contained, as in the bucket approach, is that
it ties them less to a particular repository, and
so makes replication and distribution easier in
a heterogenous architectural environment. In
particular, terms and conditions can be im-
planted within the digital object, instead of be-
ing wholly the responsibility of the repository.
So, the move is to secure digital objects, rather
than communication channels, which simplifies
the superdistribution of digital objects.

Cryptolopes [71] adhere to this philosophy by
encrypting the contents of a digital object, and
including encrypted versions of the keys used to
do so, along with digital certificates and check-
sums that may be used to verify the integrity
and authenticity of the content. A third-party
clearinghouse is used to enforce the terms and
conditions of the bucket, facilitating the buying
or obtaining of the appropriate keys to decrypt
the content [95]. A similar technique is used in
the DigiBox architecture [179].

Finally, the Resource Description Framework
(RDF) is gaining popularity as a model for en-
coding metadata for digital objects (resources)
[133]. The RDF uses XML as its encoding
systems, and provides a means for associating
properties with resources. The properties may
be assigned their own XML namespace, to dis-
ambiguate the notion of, say, “creator” in one
scheme from “creator” in another scheme. In
this way, the RDF supports the ability of being
able to describe the same resource (digital ob-
ject) with heterogenous metadata sets, as in the
Warwick Framework.

The major disadvantage of many metadata
encoding formats, from a low-level storage
viewpoint, is that they are often free-format,

and so relatively uneconomical and unwieldy
in terms of storage management. Importantly,
too, they are relatively expensive to parse
when compared to typical file system metadata,
which, for efficiency reasons, is necessarily com-
pact and fixed in format. It is a significant chal-
lenge to extend the richness of digital object
metadata to low-level repository storage.

4.5 Digital Object Repositories

Digital object repositories are akin to the file
system layer of traditional operating systems.
They are responsible for the storage, manage-
ment, and access of digital objects. They pro-
vide low-level functionality upon which digital
library functionality may be built.

Traditionally, a digital object repository is
seen as a form of “middleware” that provides
a shim to the operating system file system
and network layers to allow low-level access
to structured digital object content. This is a
utilitarian stance, to leverage existing storage
system functionality in a platform-independent
fashion. It does, however, have the potential
to divorce digital object storage from the actual
low-level storage subsystem, enough to cause a
significant potential loss of efficiency.

There are two competing goals when de-
signing a digital object repository: preserva-
tion versus efficiency. A repository designed
with preservation as the primary goal seeks to
make the storage as simple and transparent as
possible, so that recovery of data can be done
as easily as possible. This involves the use of
self describing files and data structures; no dele-
tions; and use of only disposable auxiliary struc-
tures (ones that can be faithfully recreated from
scratch, if necessary). The major impact of such
an approach is a significant detriment on per-
formance, and so little work has been done in
this area. Crespo and Garcı́a-Molina [42] pro-
pose a layered digital archive architecture with
long-term data preservation as its primary goal.

Instead of designing preservation into a dig-
ital object repository from the ground-up, it is
usually assumed that the low-level storage will
be supported by a disaster-recovery plan that al-
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lows it to be recovered after significant organ-
isational loss. Allied to that is a copy-forward
preservation approach, that migrates the low-
level storage and organisation of digital objects
into new, appropriate formats as system soft-
ware undergoes generational change.

4.5.1 Kahn-Wilensky and its Extensions

A significant abstract semi-formal description
of a digital object repository was introduced by
Kahn and Wilensky [88]. They introduce many
key concepts that have been built upon sub-
sequently by researchers. Important amongst
these concepts are the notion of a digital object
and its handle, as discussed previously. They
also describe the notion of repository, and a repos-
itory access protocol (RAP) which may be used to
control the deposit of and access to digital ob-
jects in the repository.

A repository is a logical entity in that the
name by which a repository is identified need
not correspond to a unique server. Rather, it
may correspond to a list of servers, each of
which are responsible for the stewardship of
digital objects stored in that repository. This
necessarily makes the concept of repository a
distributed one.

In the Kahn-Wilensky approach, digital ob-
jects are accessed via their associated handle.
Handle servers are used to locate a repository
at which a digital object is stored. This reposi-
tory can then be used to access the digital object
by means of the RAP. Access to a digital object
at a repository is by means of the digital object’s
handle, a service type, and possible additional
parameters. Such an access is termed a dissemi-
nation.

Kahn and Wilensky [88] define only three
service types for their RAP: ACCESS DO, DE-
POSIT DO, and ACCESS REF. The first two are
for accessing and depositing a digital object, re-
spectively. The third is to access the reference
services of the repository. This allows a client to
determine the contents of a repository.

Lagoze [101] describes an implementation of
the Kahn-Wilensky repository approach called
Inter-operable Secure Object Stores (ISOS). ISOS

uses the distributed object store Common Ob-
ject Request Broker Architecture (CORBA) for
its underlying implementation mechanism.

Dienst [46, 104] is another implementation
of the Kahn-Wilensky approach. Dienst uses
HTTP as its basic transport protocol, and par-
titions digital library functionality into several
basic services. These services may be further
refined by arguments to the service type when
accessing digital objects within Dienst, analo-
gous to the service type and parameter mode of
repository access in the Kahn-Wilensky model.
Dienst uses handles to name its objects.

The Networked Computer Science Technical
Report Library (NCSTRL) [111] previously used
Dienst for its digital library services. NCSTRL
has been subject to active development, primar-
ily to extend to it the notion of multiple collec-
tions or genres [138].

The Cornell Digital Library Research Group
designed the Cornell Reference Architecture for
Distributed Digital Libraries (CRADDL) infra-
structure to support the collection concept [103].
CRADDL is a layered model, and uses CORBA
for its implementation. The repository service
layer of CRADDL is called Flexible and Extensi-
ble Digital Object Repository Architecture (FE-
DORA) [151]. FEDORA is designed to sup-
port the bucket model of digital objects and
metadata, as described in Section 4.4. The FE-
DORA approach invests much of the intelli-
gence within the objects themselves. Each object
is opaquely packaged and contains a primitive
disseminator through which the actual contents
of the object may be inspected and retrieved.
The primitive disseminator can be thought of
as basic bootstrapping primitive methods that al-
low a remote entity to access the particular con-
tent of a given object. The primitive dissemina-
tor guarantees a minimal set of services for han-
dling an object. Handling, in this context, also
means incorporating new content into a digital
object [151].

Because much of the functionality resides
within the objects themselves, the RAP in FE-
DORA is relatively simple, and involves mainly
the creation and deletion of digital objects, and
associating URNs with them. The repository
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also provides an environment in which content
access and authorisation methods may be exe-
cuted [151].

4.5.2 Other Repository Approaches

An alternative approach to digital object repos-
itories is to view digital object stores as semi-
structured databases. The metadata of a dig-
ital object is stored in fields in a database
table, whilst the data of a digital object are
treated as binary large objects [77] stored in
the database. A database provides a flexible
method of searching and storing metadata, and
the advances in distributed databases provides
a ready platform upon which distributed digital
object repositories may be deployed.

IBM Digital Library [85] employs the
database approach. Its architecture consists of a
library server and one or more object servers. The
library server handles the metadata and search-
ing, whilst the object servers handle storage
and delivery of the actual digital content.

A client accessing the digital library gains ac-
cess to a digital object via the library server.
Once the library server has authenticated and
located the object server storing the digital ob-
ject the client wishes to access, the digital object
is transferred directly between the object server
in question and the client, requiring no further
participation from the library server.

Although there may be multiple object
servers, and those object servers may be attuned
to the content they deliver, there is only a sin-
gle library server per digital library. This cre-
ates a bottleneck in the architecture, especially
in metadata-intensive applications. Because the
library server is a database, it should be possi-
ble, though, to parallelise it to allow it to scale
up.

The Oracle Internet File System (iFS) is an-
other database-driven file system [142]. The un-
derlying database engine allows more flexible
and extensible metadata to be attached to files
than is supported by traditional file systems. It
also supports flexible “views” of files within the
file system. The iFS also supports versioning of
files, and check-in and check-out access for file

update. The protection model is access control
list-based, rather than permission-based as with
many file systems.

Files in iFS are parsed and stored in a canoni-
cal internal format. Renderers are used to recon-
struct parsed files in an application-specific way.
One of the features of iFS is it aims to be “proto-
col independent” when accessing files. The iFS
can be accessed via SMB, HTTP, FTP, IMAP4,
and SMTP. XML and Java are the technologies
through which the iFS API is used.

Like the IBM Digital Library, iFS is a step to-
wards content management rather than file man-
agement. Content management is similar in most
respects to the area of digital libraries in that
they share common goals and services. There
is perhaps more emphasis on work-flow, though,
in the area of content management.

The SDSC Storage Resource Broker (SRB) ar-
chitecture [14] is an API for managing access
to widely distributed heterogenous data objects.
One notable feature of SRB is that it allows ac-
cess to objects stored in a variety of storage sys-
tems, such as databases, file systems, and ter-
tiary storage, providing a simple, clean interface
to the client. The Storage Resource Broker uses
a metadata catalogue (MCAT) to keep track of
resources belonging to collections managed by
SRB.

The Stanford Infobus [146] is a CORBA-based
digital library object repository mechanism for
mediating access to distributed digital objects.
The Infobus uses library services to perform var-
ious functions on objects stored within the In-
fobus. Library service proxies mediate client ac-
cess to the Infobus and its library services (and
hence to the objects therein). The University
of Michigan Digital Library [53] uses an agent-
based approach to broker access to data stored
within it.

Many of these systems are designed to handle
widely distributed collections, and do not fo-
cus on local, cluster-based repositories, though.
This complicates the design requirements, plac-
ing stricter emphasis on authentication, hetero-
geneity, and network infrastructure. This, in
turn, makes the opportunities for optimisation
scarcer.
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5 Proposed Research

Several important themes have emerged in the
preceeding discussion. Chief amongst these
are the following: there is a great demand
for scalable storage; a storage system’s work-
load has significant impact on its performance
and on what design helps optimise that per-
formance; different types of files have differ-
ent access semantics and requirements (e.g.,
high-bandwidth vs. low latency); a storage sys-
tem’s performance will significantly improve if
it is tuned to its workload; there is a trend
towards serverless, intelligent disks and self-
management of data; and, digital library ob-
ject repositories are characteristically different
from ordinary general-purpose file systems, pri-
marily in that they are object-based, have richer
metadata, and are read-mostly.

Previous work on storage systems has been
almost exclusively in the context of operat-
ing systems services in which the policies and
mechanisms have been limited by the demands
of the overall system performance. For exam-
ple, the need to provide CPU time to running
jobs, and maintain a good response time to users
means that time spent, say, in the block allo-
cation algorithm for newly-written blocks must
be relatively limited, placing greater limits on
the amount of layout optimisation that can be
achieved. It is only with the recent advent of
intelligent disks and network-attached storage
that dedicated processing power and autonomy
for file system related activities has the potential
to improve storage efficiency and I/O perfor-
mance significantly. Advances in hardware, and
the increased emphasis on storage, means that
it is now cost-effective to devote relatively sub-
stantial computing resources to support storage
than was possible before.

File type (and by definition, its semantics)
has enormous impact on file storage and ac-
cess performance. Yet, aside from application-
driven file I/O prominent only in parallel com-
puting, file type has not played a role in file sys-
tem design. Part of this stems from the need
to provide a system-wide compromise solution
within the available system resources. How-

ever, a larger problem lies with the difficulty of
identifying file types, especially as storage sys-
tems often deal with a lower-level abstraction
than files, namely that of blocks. At a block
level, it is harder to optimise macro-scale per-
formance. Yet it is that macro-scale behaviour
that can seriously affect performance. Looking
only on the smaller scale can miss potential op-
timisations.

With digital libraries, digital objects carry
much richer explicit metadata than do conven-
tional files in file systems, allowing for closer
“typing” of files via explicit cataloguing rather
than relying on guessing via signature “magic
numbers.”

In this research we propose to investigate
the use of metadata and workload information
in cluster-based scalable storage system perfor-
mance. In doing so, we will address several of
the themes mentioned at the beginning of this
section.

5.1 Measuring Storage Systems

For the purposes of this research, we must iden-
tify aspects of storage performance in which we
are interested. We must then originate some
way to measure those aspects, to impart some
objective means to observe performance of dif-
ferent schemes employed.

There are several aspects of storage system
performance worthy of investigation. These as-
pects include the following: 1) access speed; 2)
storage utilisation; 3) cohesion; and, 4) fault tol-
erance. In cluster or networked storage, we are
also interested in network overheads.

For access speed, two time measures are of
interest: access latency and sustained transfer
speed. The former is the delay between request-
ing an object stored in the system and receiving
the first data. The latter is the average rate of
data transferred during the actual data transfer
period. Sustained transfer speed may be calcu-
lated both with and without the initial latency
included.

Storage utilisation usually measures the ra-
tio of the amount of data stored in the system
against the amount of storage allocated for stor-
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age. This may include all ancillary metadata
structures. Almost always, it measures the per-
centage of space “lost” due to blocking, i.e., the
amount of bytes unused in an allocated block.

Cohesion is sometimes referred to as fragmen-
tation, and usually is a measure of the spatial
locality of blocks comprising a file. Cohesion
could also measure temporal locality of refer-
ence. For the purposes of our research, the
amount of gross head movement is a good mea-
sure of overall file system cohesion.

Fault tolerance is the ability to operate in the
presence of and recover from faults. Faults may
include the loss of hardware components such
as disk blocks, entire disks, disk controllers, net-
work adapters, or cluster hosts. Faults may
also include software failures due to application
or operating system bugs. Fault tolerance may
complicate storage system design, and lower
performance. However, some fault tolerant
techniques, e.g., replication, may actually im-
prove performance by increasing the opportu-
nities for parallelism in data access. Measures
of fault tolerance are usually in terms of system
performance in the presence of defined faults.
For example, the access and sustained transfer
speed could be reported for increasing numbers
of disk failures.

Finally, network overheads measure the
amount of network traffic needed in addition
to that needed actually to transfer data. Such
overheads may include control and coordina-
tion messages needed to effect a transfer, espe-
cially if data are striped across more than one
storage unit.

5.2 Online workload characterisation

If the type and past access history of a file pro-
vides useful data as to its efficient storage and
access, it would be useful if an accurate snap-
shot of the digital object repository contents
were available. Most file system work makes
either static assumptions about its workload,
or seeks to exploit temporal locality of refer-
ence. But, the handling of a large multimedia
file might benefit from a radically different ap-
proach to that of a small text file. Even within

the same type of file, some files might be more
active than others. There may be characteris-
tic access patterns common to certain file types,
and files of these types may even exhibit partic-
ular discernable characteristic access patterns.

Although we believe the digital object reposi-
tory workload has significant impact on its per-
formance, there is currently little research into
the actual workload characteristics of digital li-
braries. Much of the digital library metrics work
has focused on user interface concerns, and
low-level information retrieval concerns such as
query lengths and term frequencies.

We believe an “instrumented” storage system
would not only provide useful research data on
digital library content usage, but would also be
a useful input into storage system placement
and access algorithms during its actual opera-
tion.

There are two levels of access information in
which we are interested. The first is object-level
access data. This charts access on an individ-
ual digital object basis. We can think of this as a
metadata-level trace. The other level is that of in-
dividual disk storage units comprising the stor-
age cluster. This is more of a block-storage-level
trace, and measures in part the overall utilisa-
tion of an individual disk node in the system.

For the metadata-level trace, we are particu-
larly interested in tracking file attributes and ac-
cess statistics with the type of digital object. Par-
ticularly, we are interested in whether access for
a given file type is typically read or write; ran-
dom or sequential. For file attributes, we are sig-
nificantly interested in the file size. Combined
with characteristic access mode, file size is an
important component to determining an effec-
tive block size for a given object, and whether
or not caching will be effective.

For the block-level trace, we are interested in
disk node utilisation both in terms of idleness
and also node storage utilisation. This will give
data on load balancing—in terms of workload
and storage allocation—across the disk nodes.
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5.3 Specialisation

The central idea in this research is whether
the special characteristics of digital libraries ob-
ject repositories in a cluster-based storage envi-
ronment can be used to improve performance.
Specifically, can type-specific information and a
read-mostly collection be exploited?

One important way in which type specific in-
formation for an object can be exploited is to
provide different storage and handling methods
according to object type. So, for example, a dif-
ferent block size, file layout, caching policy, and
striping approach may be adopted for MPEG
multimedia files than for text documents.

One way to cater to object specialisation is
at the software level. A repertoire of policies
and mechanisms may be known to the storage
system, and these employed according to an
object’s determined characteristics (e.g., object
type).

Another form of specialisation is at the hard-
ware level. Some storage devices have differ-
ent characteristics. So, a storage device with
low latency and low bandwidth may benefit cer-
tain types of files more than a storage device
with high latency but high bandwidth. In addi-
tion, because certain storage organisations ben-
efit certain workloads to the detriment of others,
storage devices also should be allowed to spe-
cialise for certain tasks. Rather than being a jack
of all trades and master of none, a storage de-
vice should be allowed to excel at certain tasks
best attuned to its hardware.

One possible disadvantage of such speciali-
sation is that it may be done badly. For exam-
ple, too many devices may specialise in catering
to write-intensive objects when the storage sys-
tem global workload has few writes. It is hoped
that the ongoing online workload characterisa-
tion mentioned previously would assist in pro-
viding feedback in that regard, allowing for a
dynamic reconfiguration of device roles or col-
lection apportionment. If we think of a storage
system as a kind of market economy, the device
specialisation would be seen as the supply, and
the workload statistics as an indication of de-
mand. Attuning the two would be a long-term

goal of the storage system.

5.4 Exploiting Low Volatility

It is contended here that digital libraries object
repositories exhibit less volatility than general
purpose file systems. In particularly, they tend
to be “read mostly,” in that the ratio of reads
to writes is very high. Part of this stems from
the generally long-term archival nature of dig-
ital libraries object repositories. Another ratio-
nale stems from the overt cataloguing effort that
takes place in digital libraries compared to or-
dinary file systems. A result of this is that such
objects tend to be longer-lived. Longer-lived ob-
jects make long-term optimisation more worth-
while.

It is anticipated that most explicit write ac-
tivity in a digital libraries object repository will
take place when new objects are deposited in
the system. To ameliorate the effects of this ac-
tivity from normal read activity, one approach
would be to adopt a “staging area” technique in
which designated write-optimised storage units
accept new content. After the new object is writ-
ten and analysed, it can be relocated to a more
permanent home on another storage device (or
across multiple devices).

A big advantage of using a staging area in
a read-mostly environment is that the staging
area can be optimised for writing and recovery.
In particular, log-based storage techniques and
expensive persistent caches can be employed
in staging area devices, thereby improving and
speeding up crash recovery. In addition, file sys-
tem studies have found the general trend that
files tend to be either very ephemeral or else rel-
atively long lived. Like generational garbage col-
lection, a staging area allows longer-lived objects
to be promoted to longer-term or deeper storage
within the system.

If we accept the thesis that in a read-mostly
environment, most files are typically written
and then read thereafter, the overheads of mov-
ing from the staging area is a small cost easily
amortised over the lifetime of the file. Yet the
staging area provides an opportunity of excel-
lent write and recovery performance, and is an
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effective way to “weed out” those objects which
are indeed ephemeral.

Objects in the staging area could be “flushed”
to more permanent storage according to var-
ious policies. For example, objects could be
flushed out after attaining a certain age (similar
to the asynchronous buffer cache flushing dae-
mon implemented under many Unix systems);
when the staging area attains a designated “fill
level” (i.e., like a cache replacement policy); or
when an optimal location in long-term storage
has been determined for the object.

Note that the staging area is simply an ex-
treme form of the specialisation approach de-
scribed in Section 5.3, except that instead of spe-
cialising according to certain file types, the spe-
cialisation is more towards a particular function
(i.e., writing). Exploiting such specialisation is a
topic of interesting future research.

5.5 Decentralising the Name Space

A common theme emerging from workload
studies is the following phenomenon: pick a
byte at random, and it is likely to belong to
a large file; pick a file name at random and
it is likely to name a small file. So, although
the name space is dominated by small files,
the transfer bandwidth is dominated by large
files. Furthermore, name space operations are
characteristically small transfers favouring low-
latency, and often are bursty in nature. This
favours a decoupling of control and data path-
ways of the storage system, allowing optimisa-
tion of network traffic on each.

As we have seen previously, digital libraries
object repositories are object-based rather than
block-based. Content is accessed by name, or
more abstractly, by invoking a method at a
name. This resolution mechanism is a signifi-
cant workload for the system to bear. Clearly, to
handle such a task at a single “gateway” node
to the storage cluster is not scalable. Serverless
file systems indicate clearly that scalable perfor-
mance is attainable by distributing the server
burden across all nodes in the system: in effect,
every node becomes both client and server.

In a cluster-based/SAN environment there is

the complicating notion of the storage nodes in-
habiting a “private” network, whilst requests
enter the system via some portal connecting to
the outside “public” network. Necessarily, there
is some finite entry window. However, this en-
try load can be mitigated by minimising the
task performed at such a gateway. Typically,
the job of gateway machines is to perform some
kind of efficient packet routing or request hand-
off, using techniques such as distributed packet
rewriting [11, 81], or locality-aware request dis-
tribution [147], for example.

The approach to be employed in this research
is to pseudo-randomise the name space across
the nodes in the storage cluster by means of a
cryptographic one-way hash function such as
MD5 or SHA on the URN. The MD5 hash func-
tion will hash an arbitrary string to a 128-bit
quantity with low probability of collision. This
128-bit quantity will represent the object ID of
the digital object named by the URN, and can
be considered a primary key for all access to the
object. We can see the MD5 as a way of ran-
domising a potentially highly-correlated initial
key space (URNs with likely highly clustered
prefixes) to a uniformly distributed one.

SDDS research has usually focused on min-
imising the number of servers required for a
given file, and only utilising new servers when
load dictates. In our case, our servers are ded-
icated to storage, and so not to utilise all of
those available would be inefficient. In practi-
cal terms, this means setting the initial number
of buckets to the number of servers in the stor-
age cluster (or to a subset earmarked for meta-
data storage, should we wish not to use all of the
disks in the cluster for metadata storage). The
problem, then, involves what happens when
new disks are added to the system, or existing
disks are removed. This question is addressed
by the splitting and merging policy employed.

SDDSs are designed to grow and shrink the
file according to load. Growing involves split-
ting an existing bucket, transferring a portion of
the existing data to the newly created bucket.
The split policy has significant impact on the
performance of the SDDS. Existing split criteria
revolve around either a bucket overflowing (this
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presumes a fixed size bucket), or the bucket’s
utilisation exceeding some split threshold (e.g.,
between 70% and 100%). Splitting can be un-
dertaken concurrently, and with or without the
need for a designated split coordinator [120].

Because our storage servers are almost cer-
tainly heterogeneous, a fixed split criterion is
undesirable for all. The load split threshold
should be computed as a function of total space
utilisation in the server. (This implies that each
server manages logically variable sized buck-
ets.) Vingralek et al. [198] examine a SDDS
with emphasis on server load management.
They also use an interesting indirection between
bucket numbers and server numbers. Not only
does this allow multiple logical buckets to be
handled by the same server, but also it allows
load to be managed by bucket migration as well
as bucket splitting.

When a new disk is added to the cluster, we
can choose to split one or more existing buckets
to distribute load onto the new disk, or simply
migrate existing buckets from multiple-bucket
servers based upon current individual server
load. When a disk is explicitly removed from
the cluster, we can either migrate its buckets
onto remaining servers, or else trigger a merge
(the opposite of splitting) of its buckets.

It is important to note that this distribution of
the name space across the servers in a cluster
implies the hashing of an object (based upon its
URN) to a “home server” for that object. The
home server of an object is responsible for main-
taining the metadata associated with that object.
Depending upon the object, its home server also
may manage the storage associated with the ob-
ject. We decouple metadata storage from object
storage. The primary reason behind this is that
the metadata can be used to give valuable hints
as to the most efficient location and layout for an
object, and also the fact that some objects may be
unable to reside within a single storage server.

As well as managing the metadata of an ob-
ject, we also assign the important task of under-
taking the scheduling of the I/O transfer of an
object to its home server. In this way, as well
as distributing the name space over the storage
nodes, we also distribute the request and buffer-

ing workload. It is our thesis that the uniform
randomisation of the URN name space will also
uniformly randomise the workload, especially
as load increases.

For the purposes of this research, we will
not address encoding for fault tolerance, and
assume a reliable communications and server
infrastructure.

5.6 Exploiting Object Metadata

We described in the previous section an ap-
proach to distribute the name space over the
storage cluster in a scalable fashion. In fact, this
actually distributes the object metadata and ob-
ject retrieval workload over the storage cluster.
It is another of our central contentions that ob-
ject metadata can be exploited to improve the
layout and performance of digital objects.

In our scheme, we decouple metadata han-
dling and data storage. That is, the layout and
I/O of an object can be wholly independent of
how its metadata is handled, and the metadata
contains information as to the disposition and
retrieval method of the object to which it ap-
plies. We can see this as an explicit separation of
policy and mechanism for object storage. In ef-
fect, we view storage I/O methods as ones that
can be overloaded on a per-object basis.

A storage system performs best when it is
tuned to its workload. However, file systems
usually are built under static assumptions and
do not adapt well to the objects they hold. Fur-
thermore, much file system design has been un-
dertaken under the assumptions of small disks,
small memories, and limited processing power.
This has lead to an emphasis on maximising
space utilisation and has limited file allocation
strategies (which must execute under limited
CPU resources). The much larger disks of today,
and high collective processing power of a clus-
ter of “active disks” allows us to be much more
adventurous in storage management.

File system traces over the years point to the
fact that most files are read, not written, and
that most I/O tends to be whole file I/O. Fur-
thermore, many new files are deleted shortly af-
ter creation, and most long-lived files tend to lie
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dormant. The “read-mostly” aspect is particu-
larly true of digital libraries, in which new ob-
ject creation is a considered act due to the ex-
plicit cataloguing that accompanies it. There
are few available usage traces of extant dig-
ital libraries, though indicators of digital li-
brary workloads may be inferred by the be-
haviour of large scale distributed data reposi-
tories such as the World Wide Web, and var-
ious audio and generic peer-to-peer file shar-
ing protocols. These systems are overwhelm-
ingly read more than they are written, in that
the ratio of object reads to writes is very high.
This asymmetry is recognised to the point of the
introduction of communications systems such
as Asymmetric Digital Subscriber Line (ADSL)
which model the observed phenomenon that
most clients download far more data than they
upload.

Another significant observed impact on per-
formance is to tune the block size to the object
being stored. Larger block sizes give better per-
formance for large files because they mitigate
the tremendous impact that head seek move-
ment has upon overall transfer time. Tradi-
tionally, smaller block sizes have been used out
of a desire to minimise wasted disk space due
to partial block usage. With larger disks and
higher-bandwidth controller interfaces, head
movement rather than disk space is likely to be-
come a more precious commodity. Clearly, the
trend is towards larger block sizes.

Although it is not often tracked, file system
traces that have attempted to track the type (se-
mantics) of a file and the way it is accessed have
found a strong correlation between the two. Ex-
cept for specialised types of file servers, such as
multimedia servers, file systems often cater to a
“one size fits all” model. We recognise that in-
dividual file semantics can have enormous per-
formance implications, and that knowing the se-
mantics and past history of a file can offer valu-
able hints as to its performance optimisation.

We will use the information provided by dig-
ital object metadata to track not only its high-
level semantic information, but also to store
and help infer its low-level storage disposition.
We also will consider access history and perfor-

mance statistics to be part of a digital object’s
metadata, even though normally only a fraction
of this information is explicitly catalogued (typ-
ically the object’s creation date). Hence, in the
“bucket” view of metadata we adopt here, as
discussed in Section 4.4, the object layout and
performance information become two elements
of the bucket maintained by the system.

Buckets are accessed abstractly in an object-
oriented fashion, in that all access to the bucket
contents is via interface methods provided by
the bucket. The same given method may be-
have differently according to the contents of the
bucket, i.e., the methods are inherently over-
loaded by the elements of the bucket, and a gen-
eral mechanism is provided to enable the ex-
ported methods to be enumerated and hence
used.

The storage system can take advantage of
this abstract model by implicitly overloading
the storage and retrieval of each element of the
bucket. If not explicitly overloaded, a de facto
global method can be used. Alternatively, the
element’s type can be used to obtain a storage
and retrieval method for that type of object. Fi-
nally, for elements that do not conform to type,
or that require explicit handling, the element’s
storage and retrieval method can be overloaded
individually.

We can thus view the access methods as be-
longing to an abstract class hierarchy accord-
ing to the elements, and the storage metadata as
providing input data to those access methods.

In this research, we will focus on the follow-
ing tunable storage parameters: block size and
striping threshold. We will be particularly in-
terested in block size and when it is worth-
while striping a file across more than one stor-
age server.

Historical studies have shown that most re-
quests are whole-file sequential reads of small
objects. Ideally, then, the goal should be to ser-
vice an entire request within a single node. This
maximises the parallelism of the entire stor-
age cluster, because a request for a given object
does not tie up (involve the use of) more than
one disk head assembly, and disk head move-
ment is the major limiting factor on disk per-
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formance. Historical studies also show, how-
ever, that most bytes stored are concentrated
in relatively few objects. A way of achiev-
ing a more equitable node utilisation, therefore,
would be to stripe large objects over larger (less
utilised) storage nodes in preference to smaller
ones. This would not allow larger objects to mo-
nopolise smaller storage nodes, but implies a
more careful placement strategy when an object
breaches the “striping threshold,” or the point at
which it should be stored across more than one
node.

Fortunately, the aggregate computing power
available in a storage cluster, combined with the
self-management of the active disk approach,
assist greatly in placement of large objects. Sev-
eral strategies are possible. One, pursued here,
is for each storage node to maintain statistics
on its own utilisation, as well as a rough im-
age of the utilisation of the rest of the storage
cluster. By “rough image” we mean that the
utilisation need not be accurate, only approxi-
mately accurate. Nor do we imply that it neces-
sarily be complete: it may consist only of knowl-
edge of a node’s “neighbourhood” (as deter-
mined by network topology, say), or of a cache
of recent responses to utilisation queries. Util-
isation need not be solely in terms of storage
(space) utilisation. It may also factor in the hard-
ware characteristics of the storage node, e.g., the
disk and CPU speed, amount of RAM, and so
on. Abstractly, utilisation is a measure of load,
weighted towards storage space, and each node
is free to advertise its own utilisation according
to its own local policy.

Based upon utilisation a storage node need-
ing to stripe an object across several nodes will
solicit the assistance of sufficient extra nodes to
store the striped portions depending upon the
chosen stripe size (decided based upon the ob-
ject type), and the utilisation knowledge this
node has of the other nodes in the cluster. Such
dispersal of an object is partly a contract be-
tween the “home node” of an object and the
other nodes across which it is striped. In-
complete knowledge of true utilisation of other
nodes will mean each node will operate an ad-
mission policy for striped foreign objects, and,

necessarily, there will be a negotiation phase as
each node proferred a portion of an object be-
ing striped will decide whether or not to accept
it. (Such a solicitation/negotiation phase is ripe
for investigation of possible strategies, but we
will leave this largely for future research.)

Utilisation measures advertised by a node
will be normalised by the node to a number be-
tween 0 and 1. The makes it easier for a node
to compare a set of returned utilisation figures.
However, it also is useful for probablistic load
balancing. By that, we mean a node can use the
utilisation as a probability of rejecting a request
to store foreign data on that node. It can also
use the utilisation as the probability of ignor-
ing a request to broadcast its current load (and
hence lower the probability of it being asked to
store further foreign objects). Unfortunately, us-
ing the utilisation load as a probability of re-
sponding to broadcasts directly has the disad-
vantage that most nodes will respond when the
storage cluster is largely empty. We can com-
bat this somewhat, for example, by threshold-
ing the probability of ignoring a request to some
minimum value, so as not to burden the net-
work. So, the ignore probability could be set
at max(t, u), 0 6 t, u 6 1, where t is the floor
threshold just mentioned, and u is the node util-
isation. A refinement would be to have t decay
from an initial elevated threshold value based
upon the elapsed time since the last reply to a
broadcast load query.

We will develop a metadata set for storage
layout and retrieval purposes that encompasses
both disposition tracking and performance his-
tory.

5.7 Improving Performance in a Read-
Mostly Repository

Objects in a read-mostly environment are read
much more than they are written. Typical en-
gineering/office environments have measured
an 80:20 ratio of reads to writes for normal file
systems [144]. (Even then, a good percentage
of writes are accounted for by short-lived ob-
jects.) It is highly likely that digital library object
repositories will exhibit an even higher ratio of
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reads to writes, and that objects deposited will
tend to be longer-lived.

When an object is written in a file system,
a decision about its placement must be made
under relatively tight time and resource con-
straints. Rarely is the object’s disposition sub-
sequently reassessed, except at the explicit di-
rection of performance improvement tools run
by system administrators. Most file system reor-
ganisation is directed towards reducing internal
fragmentation: some file systems provide user-
level defragmentation tools; for others, the re-
course to fragmentation is to restore the file sys-
tem’s contents anew from backup. Other file
systems—notably the family of log-structured
file systems—feature an asynchronous “cleaner
daemon” that garbage collects the file system to
ensure free segments are available for writes.

With long-lived, read-mostly objects in a stor-
age environment with relatively large amounts
of computing resources available, it seems
worthwhile to take greater effort in determin-
ing a good storage disposition of an object that
is newly deposited. It is also worthwhile to use
the available aggregate computing resources to
monitor and optimise the storage of the reposi-
tory contents.

The major question regarding asynchronous
performance optimisation involves its impact
on the I/O performance of the storage system.
Seltzer et al. [172] report the deleterious perfor-
mance effect of the LFS cleaner daemon under
high utilisation. It is important, therefore, that
any background optimisation process operate
only under periods of low load, and be able to
checkpoint and restart its work.

Because our namespace approach fosters the
notion of a “home” server for an object, and also
because our storage approach is object-based
rather than block-based, this encourages local,
decentralised, object-based optimisation rather
than a central global optimisation strategy. Ac-
tive disks and NASD promote local manage-
ment of storage objects, and are naturally decen-
tralised at the object level.

Some objects, however, are spread over more
than one storage server, so there is a need for
some cross-server optimisation. Such optimisa-

tion requires some knowledge of state (load) at
other servers. The namespace SDDS estimates
global state in terms of server load, so that offers
some input. In addition, there are efficient dis-
tributed global state techniques for optimising
within a distributed environment. Also, Arpaci-
Dusseau [8] discusses implicitly controlled sys-
tems in which the cooperating entities do not
explicitly exchange control or state information
but infer it from various sources. Her particu-
lar focus is on implicit job scheduling within a
distributed system.

Our read-mostly assumption offers sev-
eral possibilities for performance optimisation.
Firstly, we can treat writes (object deposit) as a
special case and forward such objects to a stag-
ing area optimised for writing (as discussed pre-
viously). The servers comprising the staging
area would migrate out those objects that age
sufficiently, or which consume sufficiently large
space resources to impact the performance of
the staging area.

Secondly, we can use ongoing access statistics
for objects to determine whether a given object
is a good candidate for optimisation. A success-
ful measure of predictive usage of a file object is
its “temperature,” which is a measure of how of-
ten it has been accessed over a given time frame.
The more accesses, the “hotter” an object will
become. So, object temperature can be used as a
threshold trigger to attempt to optimise a given
object (e.g., by defragmenting it), or a median
temperature of all the objects on a storage server
may be used to trigger optimisation of the stor-
age server itself.

As discussed previously, the namespace is
dominated by small files. There is an incentive,
therefore, to keep the initial portion of a given
object local to its home storage server (especially
as most reads are sequential whole-file reads).
This approach is often termed “inode stuffing,”
because the inode size is increased to be larger
than needed (e.g., to the size of a standard data
block), and the tail portion is used to hold the
initial data of the file. This is a big performance
win for small files because the file metadata and
data can be transferred in a single transfer.

Inode stuffing can be used analogously in a
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cluster-based storage system in that it can pro-
vide a threshold at which data remain local to
a node as opposed to being striped over other
servers. The higher this threshold, the more lo-
cal data will be. This will incur less network
usage (fetching striped portions from remote
servers), but will involve more local disk activ-
ity.

Given that an object’s metadata is maintained
by its home node, there is good reason to store
the initial data at that same node, too. In the
case of small objects, this will improve perfor-
mance, as both can be blocked together, as in in-
ode stuffing. However, we will investigate how
much initial data stored at a node (the off-node
threshold) affects performance. Modern high-
speed networking versus slow disks has made
networking overheads perhaps less of an issue.
Indeed, network RAM [58] is predicated on the
notion that it is now quicker to page data across
a network to another system than to page it to
local disk due to the orders of magnitude differ-
ence in operational speed of the two media.

Another issue greatly affecting performance
according to file system trace studies is the ef-
fect of block size on I/O performance. As men-
tioned previously, larger block sizes favour bet-
ter performance, the main disadvantage being
storage space lost to fragmentation. Historic
studies show that most files are small, but most
bytes belong to large files. This suggests several
strategies for choosing and adapting block sizes.

Firstly, we can favour large files by choosing
a large block size. This has the disadvantage
of wasting space for small files, and also of be-
ing a static scheme. The impact on small files
could be mitigated by batching smaller files into
the larger blocks, e.g., similar to the approach of
file systems such as ReiserFS [191] that are op-
timised for small files yet still perform well for
large files.

Secondly, we could choose a simple strategy
of having two block sizes: one for objects wholly
local to the storage node, and the other—much
larger—for objects that have been striped across
several servers. Because big objects will be
striped, the larger block size will benefit their
performance. Similarly, the smaller block size

for the smaller, local object will benefit perfor-
mance by decreasing space lost to internal frag-
mentation.

The disadvantage of this approach is chiefly
that of the previous technique in that it is essen-
tially static. However, it is also more difficult
to implement in storage servers consisting of a
single disk (e.g., an “intelligent disk”). If the
larger block size is not some exact multiple of
the smaller one, it becomes difficult to manage
allocation within the same disk real estate. Gen-
erally, the disk must be partitioned into multiple
areas employing a different block size in each
area (e.g., two partitions: one using the smaller
and one using the larger block sizes). Choosing
how much to allocate to each partition is diffi-
cult, as partitions are not easily resized once cre-
ated.

Storage servers that consist of multiple disks
per server node fare better, however. Each disk
can be used with a different block size. Once
again, the ratio of local (small) to remote (large)
objects is not easy to control, but in terms of the
global cluster usage the effect is not so serious as
nodes can “lease” the extra remote space for use
by other servers. If most bytes reside in large
files, space in the large block sized area will be
used effectively by other nodes in the cluster.
The question becomes one of sizing the small
block sized storage, which is used by small ob-
jects and metadata. However, the SDDS used to
allocate the namespace (metadata) will tend to
compensate for undersizing or oversizing any
particular storage node by factoring it into the
splitting or merging of the items stored at that
node.

The previous two approaches have the ad-
vantage of being relatively simple to imple-
ment and require relatively few resources. The
greater available dedicated processing power
available in the storage node suggests some-
thing more ambitious should be attempted, and
points to a third, more general approach: use
variable sized blocks.

In an object-based, read-mostly system where
I/O tends to be whole-file I/O, using large, con-
tiguously allocated disk blocks is clearly advan-
tageous (see Section 3.3.3). We shall thus adopt
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an extent-based layout approach. We shall use
contiguity and semantic file type as the criteria
for choosing the block size. As stated before,
a threshold must be chosen at which to begin
striping an object so as not to monopolise local
storage space. Once again, this threshold can be
decided according to object file types, or may be
determined according to the local server needs.

5.8 Summary

Analysis of digital libraries object repository re-
quirements and storage system research has led
us to develop an architecture which meets the
challenges and requirements of the former by
applying the best appropriate practices of the
latter.

Digital objects are naturally object-based, not
block-based, and have rich hints available via
explicitly catalogued metadata. By augment-
ing this explicit metadata with workload statis-
tics, we can add a new, semantic-driven in-
put to storage access and layout policy and
mechanisms. This is not present in conven-
tional storage systems, which, aside from some
application-specific domains, treat files as neu-
tral linear byte streams and thus miss a potential
rich source of performance optimisations.

Our target architecture is a cluster of intel-
ligent disk nodes that supports a repository
access protocol. Higher-level digital libraries
functions are assumed to be provided else-
where.

We propose to use scalable hashing with ran-
domisation as a means of handling both the
name space and workload distribution across
the nodes of the cluster. Scalable hashing ad-
dresses the problem of quickly and scalably lo-
cating an object within the cluster, and allowing
for the growth or shrinking of the cluster with
minimal re-mapping of existing objects to other
disks.

Disk seeks are an expensive commodity in
any disk access, because they are limited by
physical laws that severely limit their ongoing
performance improvement. However, most ob-
jects are small in relation to the collection, but
most bytes are concentrated in relatively few ob-

jects. We thus propose to manage the tradeoff
between minimising seeks as a threshold deci-
sion of when to stripe an object across more than
one disk node. This serves two purposes: it
allows even use of space across all disk nodes
(and prevents large objects monopolising space
on individual disk nodes), and it permits high-
bandwidth transfers of large objects by involv-
ing more disk head assemblies. The size thresh-
old at which to go “off node” is a matter for
investigation. In a simple fashion, it could be
a fixed size for all objects. In a more complex
implementation, it could be based upon the se-
mantic type of the object, as identified by the ob-
ject’s metadata or access history.

Archival digital library collections are pre-
dominantly read-mostly. Read mostly objects
benefit from large transfer sizes, as they are
overwhelmingly accessed in a whole-object se-
quential fashion. We propose to use a variable
block size extent-based allocation scheme to im-
prove I/O performance by making objects more
sequential on disk. This will minimise seeking,
and improve performance.

Our proposed architecture targets directly the
needs of digital libraries object repositories. Be-
yond all else, if offers a platform for future
experimentation tied directly to that important
domain.

6 Research Plan and Expected
Contributions

The proposed research centres around the
theme of designing a scalable cluster-based dig-
ital library object repository based upon digital
library collection characteristics. The emphasis
is on long-term scalability in an implicitly het-
erogeneous storage environment. Unlike con-
ventional approaches that are block-based, our
emphasis is on object-based storage.

No attempt will be made to implement a
working production prototype. Instead, the em-
phasis will be on the simulation of the proposed
concepts and techniques. Simulation enables
the investigation of a much wider size and array
of hardware and networking topologies than is
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possible using actual hardware. This is espe-
cially true when investigating scalability, which
involves large amounts of hardware resources.
Tools such as SynRGen [54] and DiskSim [63]
can greatly assist in the simulation process.

First, several real digital library collections
will be analysed to obtain collection statistics
to use when generating synthetic workloads.
One collection will be the repository of elec-
tronic theses and dissertations at Virginia Tech.
Although this collection does not have a large
amount of multimedia associated with it, it does
have good metadata, which is important to our
studies. It is also essentially a bucket-based
repository in that each thesis or dissertation
equates to a bucket.

Another good digital library to be examined
is the Perseus digital library at Tufts [41]. This
is a digital library centred around the humani-
ties that has been in development for over ten
years now. It contains eight main collections
containing a wide range of material both geo-
graphically and in time, including collections
on the Classics; papyri; English Renaissance;
London; California; the Upper Midwest; Chesa-
peake; and Tufts history. The collections include
both texts and images, as well as geographical
information in some cases. Some documents
have both text transcriptions and page images.
The content of the digital library is both large
and diverse, though, by nature, somewhat lack-
ing in digital video and audio.

The VARIATIONS digital library at Indiana
University [52] contains over 7000 audio titles,
and is a good example of a large collection of
digital audio. Its successor project, the Indi-
ana University Digital Music Library, recently
was launched. It seeks to synthesise many dif-
ferent types of media related to music includ-
ing digital audio, music notation files, score im-
ages, and MIDI files. This presents the possi-
bility of a more bucket-based approach than the
current VARIATIONS system, but lacks an ex-
tant mature collection due to the early stages of
the project.

The available digital library collections will be
analysed with respect to the criteria expounded
in Section 5.1. It is important to ascertain the

distribution of object sizes and accesses, both
globally and according to semantic file type.
Summary statistics will provide input as to
choice of striping threshold for various semantic
file types.

Using the collection analysis, we will then
generate synthetic collections in order to “scale
up” the problem. The synthetic collections will
mimic the characteristics of the exsiting ones,
but be orders of magnitude larger. We intend to
simulate collections in these sizes: 100 GB, 1 TB,
100 TB, and 1 PB. Each collection will be sim-
ulated on clusters of varying sizes: 100 nodes,
1000 nodes, and 10000 nodes. In addition, each
cluster configuration will employ disk sizes in
these random intervals at each node: 5–15 GB,
20–50 GB, and 50–150 GB. (Random disk sizes
per node are intended to simulate the hetero-
geneity that comes over time. Note that some of
the synthetic collection sizes will not fit in some
of the cluster configurations, e.g., 10 TB will
not fit in a 100 node cluster whose maximum
node capacity is 15 GB.) We will also simulate
two speeds of interconnection fabric: “slow” 10
Mbps and “fast” 1 Gbps. Experimental results
will be analysed using R [84].

When generating synthetic collections we will
use the characterisation of existing file types
and sizes as a basis, and then scale up the num-
bers of those files and objects (with random
perturbation) to achieve larger collection sizes
within the desired simulated ranges. It is the
collection size that will be scaled up, not the
sizes of individual object types, or the percent-
age with which that object makes up in the col-
lection as a whole. We will randomly sample
objects from existing collections until the de-
sired collection size is attained in each case, e.g.,
randomly sample until 1 TB is amassed for sim-
ulating a 1 TB collection.

Using the synthetic collections as our reposi-
tory contents, we will simulate a digital library
object repository storage cluster using the ideas
described previously. Figure 1 shows the gen-
eral architecture. In the figure, “D” represents
disk nodes within the storage cluster, and “G”
represents gateway nodes that handle client re-
quests from external networks. The disk storage
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Figure 1: Architecture of digital library object
repository storage cluster

nodes exist on a private network, not address-
able by external networks. The gateway nodes
are thus needed to facilitate a “hand-off” of re-
quests to the disk nodes within the cluster. Their
functionality is lightweight, and analogous to
that of front-end request processors in scalable
WWW server clusters.

External clients accessing the digital library
object repository are assumed to support a
repository access protocol of the type proposed
by Kahn and Wilensky [88]. Global URN res-
olution is performed at the client by some ex-
ternal, to locate the actual repository at which
the object to which the URN refers is stored. All
objects in the repository are accessed via their
URN handle. A typical access of a digital object
from the repository by an oblivious client pro-
ceeds as follows:

1. The client issues an ACCESS DO request
to the repository, with the digital object’s
URN handle as argument;

2. If the handle is resolvable to the repository,
the repository replies with a reference to

the primitive disseminator/bucket associ-
ated with the object;

3. The client requests a list of pack-
ages/DataStreams contained in the digital
object via the reference just returned;

4. The repository replies with a list of pack-
ages;

5. The client requests a list of elements con-
tained in a given package from the reposi-
tory;

6. The repository responds with a list of ele-
ments contained in the package;

7. The client requests a list of supported meth-
ods of a given element desired to be ac-
cessed;

8. The repository responds with the sup-
ported methods of the element;

9. The client invokes the desired access
method of the element at the repository;

10. The repository returns a byte stream to
the client produced by invoking the access
method

Note that the access sequence just described
can be collapsed tremendously depending upon
the knowledge the client possesses about the
content of the digital object or the collection.
For example, if a client knows that a certain ac-
cess method is supported on an element of a
package, known a priori, then the client can in-
voke that method on that element of that pack-
age of the object directly. In this way, much of
the worst-case “discovery phase” of accessing a
digital object can be eliminated. We will assume
our clients are nonoblivious, and are driven by
a higher-level digital library application layer
that is cognisant, somewhat, about the collec-
tions it serves. Also, although the bucket-based
approach allows for programmatic dissemina-
tors, we shall restrict our simulation to the ac-
cess of static content (i.e., disseminators that re-
turn byte streams of stored data, not of data gen-
erated algorithmically on-the-fly).
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The first, and most important aspect to sim-
ulate is the effectiveness of the namespace and
workload distribution hashing scheme. It is im-
portant to verify that this balances load ade-
quately in the limit. We will measure the effec-
tiveness according to three criteria: uniformity
of name distribution; equitability of byte distri-
bution; and equitability of workload distribu-
tion.

The uniformity of name distribution is as-
sessed by measuring the distribution of the
names of all stored objects across all nodes in
the storage cluster. Ideally, for a storage clus-
ter of k nodes storing a total of n objects, each
node should handle the stewardship of n

k
ob-

jects. The pseudo-random hashing of object
names should ensure good uniform distribution
across the total cluster. This is reinforced by
the load-balancing nature of the LH∗ hashing
scheme.

The equitability of byte distribution is analo-
gous to that of name distribution. Again, bal-
ancing is determined based upon node utilisa-
tion relative to the entire cluster. In terms of byte
storage, two possible measures manifest imme-
diately: for system of k nodes, each node could
store 1

k
th of the total bytes, or operate at p% of

its total storage capacity. In a storage cluster in
which each storage node has the same capacity,
both measures are in fact the same. In a hetero-
geneous environment, though, they are not. The
former measure will have smaller disks operat-
ing closer to being full, and larger ones closer
to being empty. This is not necessarily a bad
thing in terms of access performance, because,
naively speaking, each disk has only a single
head assembly, and head movement is the most
precious commodity for disk performance. In a
uniformly distributed workload, 1

k
th byte utili-

sation at each node equates to 1

k
th of the object

space at that node. A p% utilisation strategy is
good only if proportionally bigger objects are being
stored at storage nodes with higher capacity.

Equitability of workload distribution is mea-
sured by the proportion of time a disk node
spends servicing requests, i.e., the amount of
time it is “busy.” A well-balanced cluster should
have each storage node active the same percent-

age of time.
To test load handling under various cluster

configurations as described above, we also will
need several synthetic workloads. As men-
tioned, some of the collections have available
access logs that can be used as a basis for gener-
ating synthetic workloads. The important char-
acteristics we want to scale up from these are the
proportion of objects within the collection that
are accessed frequently, the distribution of ac-
cesses by object types, and the distribution of
times between sucessive accesses of the same
object.

As well as using synthetic trace workloads
to simulate real-world conditions, we will also
use SynRGen [54] to generate user-driven work-
loads. SynRGen can be used to model classes of
users, and can algorithmically generate work-
load traces. A particular user or access be-
haviour can be modelled in SynRGen, and the
output from the SynRGen run used as an in-
put workload to the simulation. In this way,
the numbers of users of the repository can be
scaled easily, and different access workloads in-
vestigated.

The next task will be to simulate the con-
tent management and dispersal aspect. Partic-
ular focus here is on the effect of the striping
(local versus network) policy. A major goal is
to identify whether the bottleneck lies within
the nodes, or in the interconnection network.
Although we will not implement the on-disk
layout mechanism in detail in the cluster-level
simulation, we will simulate its worst-case and
average-case guarantees of contiguity to esti-
mate seek and transfer times.

As mentioned previously, we will not address
the issues of reliability, fault-tolerance, authen-
tication, and security in this research. They are
left as topics for future examination. However,
the “closeted” nature of a private storage area
network cluster does mitigate the ill effects of
discounting the areas of security and authenti-
cation somewhat.

Table 1 shows the dependent variables used
and independent variables measured in our
simulation experiments. The access latency is
the amount of time between a client issuing a
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Dependent variables
Name Levels
Collection size (TB) 0.1, 1, 100, 1000
Disk nodes 100, 1000, 10000, 1000000
Disk size (mean GB) 10, 40, 100
Network speed 10 Mbps, 1 Gbps
Striping threshold (KB) TBD
Workload TBD

Independent variables
Access latency
Disk bandwidth usage
Network bandwidth usage
Node CPU utilisation
Node disk utilisation
Number of network messages

Table 1: Simulation variables

request and receiving the first result byte. Disk
bandwidth usage is the percentage of time spent
transferring actual data against the total amount
of time spent on a disk operation. Hence, if a
disk transfer operation spends 9 ms seeking and
1 ms transferring data, the operation is utilising
only 10% disk bandwidth; if it spends 9 ms seek-
ing and 81 ms transferring data in fulfilling a
disk transfer, it is utilising 90% disk bandwidth.

Network bandwidth usage is the percentage
of available network capacity used, analogous
to disk bandwidth usage. Node CPU usage is
the percentage of time a node spends actively
processing requests (from clients or other clus-
ter nodes) versus the time it spends idle await-
ing work to do. Node disk utilisation is the pro-
portion of disk space allocated in a node against
the total available disk space in that node. (So,
if a node currently uses 5 GB of a 20 GB disk,
it is at 25% node disk utilisation.) Number of
network messages is the number of control and
transfer messages sent over the network (inter-
nal and external) in the fulfillment of a client re-
quest.

Our experiments will revolve around a simu-
lation of a digital libraries object repository stor-
age cluster based upon techniques and princi-
ples described in Section 5. The simulation will
be instrumented so that its performance and
functionality may be measured and modified.

Series 1: Object/Workload Distribution

Vary: Collection size; number of nodes

Measure: Node CPU utilisation; node disk utilisa-
tion

Objective: Test equitable distribution of object
metadata and client workload across cluster

Series 2: Striping Policy

Vary: Collection size; number of nodes; striping
threshold/policy

Measure: Node CPU utilisation; node disk utilisa-
tion; network bandwidth utilisation

Objective: Measure the effect of striping threshold
on disk and network usage

Series 3: Metadata-driven Layout

Vary: Collection size; number of nodes; metadata
layout policy

Measure: Node CPU utilisation; node disk utilisa-
tion; network bandwidth utilisation; access la-
tency; disk bandwidth

Objective: Determine the effects of metadata-
driven layout specialisation

Table 2: Series of experiments for simulation

The simulation is intended as a “test bed” for
the ideas expressed herein.

We intend to run three main series of experi-
ments to assess the impact of various key ideas
put forth in this document. This series is listed
in Table 2. The first two series of experiments
are largely static tests of storage distribution,
as described previously. The third series is in-
tended to explore the effects of using metadata
hints on layout policy. Here, we will vary the
striping threshold on an object type basis. For
example, a different striping threshold will be
used for MPEG files than for PDF files, instead
of using the same for both.

Assessing the relative performance of the sys-
tem is somewhat difficult given the scaling and
domain-specific nature of the area. When vary-
ing the number of nodes, it is important to en-
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sure that it scales smoothly and is free of “hot
spots” or overloaded nodes. Performance will
be assessed relative to the maximum theoreti-
cal, to make it somewhat independent of actual
given parameter values. Chen and Patterson
[33] offer possible guidance on designing self-
scaling benchmarks that are meaningful across
platforms.

There are several expected contributions of
this research. Firstly, it will provide impor-
tant metric data in a field that, to this date, has
largely ignored it. (Digital libraries “live and
breathe” on storage, yet extant metrics work has
focused on user interfaces, queries, relevance,
recall, and precision. Collection storage analy-
sis is conspicuously missing.)

Secondly, and importantly, it will address
storage from a digital libraries point of view. It
has long been recognised that digital libraries
are not file systems, yet at a low level they re-
side on them. Not only does this rob them of
performance opportunities, but it forces digital
library functionality through the needle eye of a
file system API. This research will provide a dig-
ital object, respository-based approach to digital
library storage.

Thirdly, the research addresses the critical
need for scalability and evolution in digital li-
brary storage. With content growing at an
alarming rate, storage architectures must meet
that growth. This necessitates a heterogeneous,
incrementally growing storage architecture: a
demand this research addresses.

Finally, another significant contribution of
this research is a flexible handling of metadata
at the storage level. In addition, it contributes an
incorporation and usage of active storage per-
formance data in ongoing archival operations,
along with an exploitation of semantic content
in improving storage performance.
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