
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

4-2016

Hardware accelerated redundancy elimination in
network system
Kelu Diao
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Diao, Kelu, "Hardware accelerated redundancy elimination in network system" (2016). Open Access Theses. 765.
https://docs.lib.purdue.edu/open_access_theses/765

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/765?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F765&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Kelu Diao

Hardware Accelerated Redundancy Elimination in Network System

Master of Science

Ioannis Papapanagiotou
Co-chair

Thomas J. Hacker
 Co-chair

Baijian Yang

Thomas J. Hacker

Jeffrey L. Whitten 4/20/2016

HARDWARE ACCELERATED REDUNDANCY ELIMINATION IN NETWORK

SYSTEM

A Thesis

Submitted to the Faculty

of

Purdue University

by

Kelu Diao

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2016

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

I wish to gratefully acknowledge my committee members Dr. Ioannis

Papapanagiotou, Dr. Thomas Hacker, and Dr. Baijian Yang for their help in my

research. Dr. Ioannis Papapanagiotou guided me in this research, contributed a lot

of ideas, and facilitated me with a powerful machine to do all the experiments. I

would not have picked this topic and made it this far without him. Dr. Thomas

Hacker taught me to be conscientious and responsible in research, guided me in this

research with his insightful comments and suggestions. Dr. Baijian Yang mentored

me in research and life, and affected me with his kindness and passion.

I am grateful to my friends Faheem, Jason, Saurav, Zhihao in High

Performance Computing (HPC) lab. I had a great time working with them and

developed friendship with them beyond the lab. Faheem and Saurav are like older

brothers to me. I always asked them for advice when I had problems in research and

life. Jason managed the lab in order and facilitated all of us when we needed him. I

greatly benefited from his expertise in networking and Linux systems. Zhihao’s

thought provoking questions and insight into research helped me improve my work.

I would like to thank my teachers and mentors back in China, including

Yong Yu, Minyi Guo, Yanmin Zhu, Jian-Guang Lou, Qingwei Lin, and all of the

teachers who have taught me. I cannot explain how much they helped me with my

study and career. I would especially like to thank Yong Yu, the dean of ACM class

in Shanghai Jiao Tong University. He guided me into computer science and gave me

the chance to work and study with the most talented people in the world. I would

not have made computer science my career without him.

I would like to thank my mom, dad and my girlfriend Zhirui for their love

and support. Their unconditional and unbounded love was the driving force behind

this work. I would like to thanks my grandparents and great grandparents for their

iii

support, even though they have no idea what I am doing in a land thousands miles

away from home. I am proud of them, and I know they are also proud of the first

man who got a Master’s degree in the family.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

SYMBOLS . viii

ABBREVIATIONS . ix

GLOSSARY . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1
1.1 Background . 1
1.2 Statement of Problem . 4
1.3 Research Question . 5
1.4 Significance . 5
1.5 Scope . 6
1.6 Assumptions . 7
1.7 Limitations . 8
1.8 Delimitations . 8
1.9 Summary . 9

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 10
2.1 Identical Object Detection . 10
2.2 Delta Encoding . 11
2.3 Duplicate Chunk Detection . 12
2.4 Content-based Chunking . 13
2.5 Efforts of Acceleration . 16
2.6 Distributed Cache . 17
2.7 Summary . 18

CHAPTER 3. FRAMEWORK AND METHODOLOGY OF HARENS . . . 19
3.1 Research Type . 19
3.2 Hypothesis . 19
3.3 Methodology . 19

3.3.1 Algorithm Overview . 20
3.3.1.1 Packet/Object Chunking 20
3.3.1.2 Chunk Hashing . 21

v

Page
3.3.1.3 Chunk Matching 22

3.3.2 CUDA Acceleration . 22
3.3.3 Single Machine Map-Reduce 25
3.3.4 Multi-threaded Pipeline . 28

3.4 Measurements . 30
3.5 Summary . 33

CHAPTER 4. FRAMEWORK AND METHODOLOGY OF DRESS 35
4.1 Research Type . 35
4.2 Hypothesis . 35
4.3 Methodology . 35
4.4 Measurements . 38
4.5 Summary . 42

CHAPTER 5. SUMMARY . 43

LIST OF REFERENCES . 45

vi

LIST OF TABLES

Table Page

3.1 GPU occupancy . 26

3.2 Redundancy Rate Detected (sample number = 6) 32

4.1 Test cases for distributed byte cache 39

vii

LIST OF FIGURES

Figure Page

3.1 Chunk hashing throughput speed using Rabin, SHA1, and MD5 hash
(single thread) . 21

3.2 Issue stall reasons before optimization 24

3.3 Issue stall reasons after optimization 25

3.4 Map-Reduce structure . 27

3.5 Influence of the number of mappers and reducers on performance . . . 28

3.6 The pipeline process . 29

3.7 Throughput speed of the four methods (sample number = 6) 32

4.1 Work flow if no redundancy detected 36

4.2 Format of response for GET request 37

4.3 Work flow with redundancy detected 38

4.4 The average detected redundancy rate in the distributed caches 40

4.5 Size of data needed to send . 41

viii

SYMBOLS

⊕ the mathematical symbol for exclusive or

δ size of sliding window

σ constant used to compute the module number of hash value

to determine fingerprints

µ number of mappers

γ number of reducers

ix

ABBREVIATIONS

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DDT Distinct Data Rate

DRE Data Redundancy Elimination

FSM Finite State Machine

Gbps billions of bits per second

GPU Graphics Processing Unit

I/O Input and Output

LRU Least Recently Used

SHA Secure Hash Algorithm

x

GLOSSARY

(application) object: Requests from or responds to an Internet application.

block: A group of threads in CUDA architecture, which could be treated like a
matrix of threads.

buffer: A space to store data temporarily for the purpose of faster access.

CUDA stream: “A sequence of operations that execute in issue-order on the GPU”
(Rennich, 2011, p. 3).

data redundancy: Duplicated chunks in a data stream.

Finite State Machine: A mathematical model that describes finite number of
states and the behavior of transferring among these states.

kernel: “CUDA C extends C by allowing the programmer to define C functions,
called kernels” (CUDA Toolkit Documentation, 2015, para. 2.1).

MapReduce: A programming model that assigns workers two roles, mapper and
reducer, and make them run under a certain rule. It ensures the program to
distribute the work load to multiple workers and let them work in parallel.

middle-box: “A computer networking device that manipulates traffic for purposes
other than packet forwarding” (Morreale & Anderson, 2014, p. 129).

multi-threading: The situation where the program creates multiple threads and
handles them at the same time.

(network) packet: Data formated under a rule that can be recognized by network
devices.

pipeline: The situation where each worker (thread) handles one task, and passes its
output as the next worker’s input.

(Rabin) fingerprint: A method that transforms strings into polynomials in finite
field, and modulo them by a large prime polynomial in the same field, to
compute fingerprints (Rabin et al., 1981).

shared memory: The space allocated for each block, and shared by all the threads
within the block (CUDA Toolkit Documentation, 2015).

xi

ABSTRACT

Diao, Kelu M.S., Purdue University, May 2016. Hardware Accelerated Redundancy
Elimination in Network System. Major Professor: Ioannis Papapanagiotou.

With the tremendous growth in the amount of information stored on remote

locations and cloud systems, many service providers are seeking ways to reduce the

amount of redundant information sent across networks by using data de-duplication

techniques. Data de-duplication can reduce network traffic without the loss of

information, and consequently increase available network bandwidth by reducing

redundant traffic. However, due to the heavy computation required for detecting

and reducing redundant data transmission, de-duplication itself can become a

bottleneck in high capacity links. We completed two parts of work in this research

study, Hardware Accelerated Redundancy Elimination in Network Systems

(HARENS) and Distributed Redundancy Elimination System Simulation (DRESS).

HARENS can significantly improve the performance of redundancy elimination

algorithm in a network system by leveraging General Purpose Graphic Processing

Unit (GPGPU) techniques as well as other big data optimizations such as the use of

a hierarchical multi-threaded pipeline, single machine Map-Reduce, and memory

efficiency techniques. Our results indicate that throughput can be increased by a

factor of 9 times compared to a naive implementation of the data de-duplication

algorithm, providing a net transmission increase of up to 3.0 Gigabits per second

(Gbps). DRESS provides further acceleration to the redundancy elimination in

network system by deploying HARENS as the server’s side redundancy elimination

module, and four cooperative distributed byte caches on the clients’ side. A client’s

side distributed byte cache broadcast its cached chunks by sending hash values to

other byte caches, so that they can keep a record of all the chunks in the

xii

cooperative distributed cache system. When duplications are detected, a client’s

side byte cache can fetch a chunk directly from either its own cache or peer byte

caches rather than server’s side redundancy elimination module. Our results

indicate that bandwidth savings of the redundancy elimination system with

cooperative distributed byte cache can be increased by 12% compared to the one

without distributed byte cache, when transferring about 48 Gigabits of data.

1

CHAPTER 1. INTRODUCTION

This research was conducted to accelerate the redundancy elimination

algorithm so that it can match up the speed of network. This section covers the

background, scope, research question, assumptions, limitations, and delimitations of

this study.

1.1 Background

Network performance is always a big issue for service providers and users. A

recent study reveals that most of the network traffic on the commodity Internet is

due to streaming videos (Global Internet Phenomena Africa, Middle East & North

America, 2015). Many people have experienced and been annoyed by intermittent

video streams, especially during network rush hours. Network performance is

affected by factors such as available bandwidth, real-time network traffic, and the

distance of data transfer. Numerous attempts have been made to improve network

performance. For example, a network provider can replace copper with fiber-optic

cable to improve bandwidth, apply better routing techniques to find optimal

network paths, use middle-box data de-duplication techniques to reduce the impact

of redundant data in the traffic stream, set up multiple data centers around the

world to shorten the distance between users and data, and use P2P protocols to

allow users to share data while downloading.

Eliminating redundancy within the network can both reduce the network

traffic and decrease the response time in network-based applications. Generally,

there are two methods of network data de-redundancy, proxy-caches (Glassman,

1994) and Data Redundancy Elimination (DRE) (Sijben, van Willigenburg, de

Boer, & van der Gaast, 2002). Proxy-cache is a method in which a proxy server

2

detects duplicate Internet requests for data, and returns objects to users directly if

the requested data is in its cache. Another method, DRE, places middle-boxes on

both the servers’ and users’ end. The user’s middle-box simply retains data in its

cache with LRU cache replacement. A server’s middle-box detects the duplication in

the data to be sent to the users and sends metadata indicating the location of the

chunk cached in the user’s middle-box. The user’s middle-box then fetches this

chunk directly from its cache. If the chunk is no longer in cache, the client requests

that chunk from the server. We implemented a general de-duplication method that

could be deployed within proxy caches or DRE middle-boxes. Although our

approach would perform better using DRE because DRE middle-boxes are more

powerful and flexible than proxy caches.

For this research, the redundancy elimination procedure we deployed in

servers’ middle-boxes employed the following steps:

1. fetch data, which could be packets or objects, from a network port,

2. divide the received packets or objects into smaller chunks,

3. compute a hash value for each chunk, and

4. use the hash values to match the chunks.

In practice, we found that the data fetching step is fast enough, and does not

require acceleration, so this step can be safely skipped. There are two approaches

for the object/packet chunking step, the “classical” sliding window approach and

SampleBytes, a window sampling approach proposed by Aggarwal et al. (2010). In

the sliding window approach, the sliding window is put at the beginning of the data

stream and slid to the end of the stream one byte a time. For each step, the sliding

window algorithm computes the Rabin hash value of the window, applies a certain

sampling function (e.g. MODP, MAXP) on the hash values to choose a subset of

the windows. The first bytes of the windows are denoted as the fingerprints, which

divide the objects/packets into chunks. Another approach is SampleBytes, which

3

picks up some sample windows and computes their Rabin hash values, and then

applies a sampling function to choose fingerprints from the sample windows. We use

the sliding window approach in our work because the SampleBytes approach has the

potential to lose redundancy detection opportunities. In our work, the length of the

sliding window is 32 bytes, and sampling function is MODP. For the chunk hashing

step, a general redundancy elimination algorithm computes the hash values of each

chunk. For the chunk matching step, the hash values computed in the previous step

are used to detect redundant chunks, and replace the redundant chunks with

metadata that indicates the location of these chunks in the cache.

An existing redundancy elimination algorithm, the Rabin fingerprint, is a

slow technique in terms of network throughput, due to the time required for

computing the hash values and the memory management of this algorithm. This

drawback has made a Rabin fingerprint based redundancy elimination algorithm

impractical for high-speed networks. Many researchers have been studying this

problem and have proposed many solutions. Aggarwal et al. (2010) applies sampling

techniques which only analyzes a subset of all the windows to avoid the huge

amount of computing required to analyze all of the data. Bhatotia, Rodrigues, and

Verma (2012) uses GPU acceleration with a multi-threaded pipeline to improve disk

de-duplication performance. The fingerprint sampling technique introduced by

Aggarwal et al. (2010) may miss many duplicate bytes due to the sampling

technique it uses, which may affect the overall redundancy elimination. Shredder

has demonstrated good performance improvements for content chunking, but is still

not fast enough for fast networks (up to 10 Gbps), hence it is only applied for disk

de-duplication.

Furthermore, the resources in network systems are not used optimally due to

the lack of information. For example, when a client request for a web content, the

client’s side middle-ware would request server for this content if it is not cached. It

would be faster if the middle-ware could request a device, which is closer to this

middle-ware than the server and has the content in cache, for the data. A solution

4

for this problem is to use cooperative caches, which can share information about

cache contents to each other. Pitkänen and Ott (2007) and J. M. Wang, Zhang, and

Bensaou (2013) have applied cooperative distributed byte caches in the network

data de-duplication problem, but both of their works are limited in certain network.

Our purpose in this work is to find a general method that is suitable for the

common network structures.

1.2 Statement of Problem

With the tremendous growth in the amount of data produced and stored on

the Internet, many service providers are seeking ways of data de-duplication. Data

de-duplication can remove the replicative patterns from network traffic, and

decrease response time for time sensitive applications (Papapanagiotou, Callaway, &

Devetsikiotis, 2012). However, the redundancy elimination algorithm is a slow

technique compared to network throughput, which makes the approach very limited

in terms of bandwidth saving in network traffic. It is an open problem to accelerate

the redundancy elimination algorithm so that its throughput can match up to the

network throughput.

The redundancy elimination algorithm typically consists of the following

steps: fetching data, partitioning packets/objects chunks, computing hash values for

chunks, and detecting and removing duplicate chunks using hash values. The

problem is how to accelerate the other three steps so that their throughput can

match up to the throughput of the first step. Bhatotia et al. (2012) has proposed an

optimization of data chunking step. But the large amount of memory allocation,

release, and access in chunk hashing and chunk matching steps makes these two step

extremely time consuming, and hence slows down the whole process.

Besides, two routers that are located nearby each other in the network would

need to fetch full package of data respectively, even if they requested for the same

data. Network redundancy elimination is based on the logic that Internet users in a

5

region, like university campus, tend to visit similar web contents. Likewise, Internet

users in another university campus nearby would also tend to visit similar web

contents to the previously mentioned university campus. It would save a lot of

bandwidth and make respond faster if the routers can fetch data from each other’s

cache.

1.3 Research Question

How can the redundancy elimination algorithm be accelerated so that its

throughput speed can match up to the network throughput speed?

• For each step of redundancy elimination algorithm, which optimization

technique would be the best match?

• Can we make better use of the devices, such as CPU and GPU, so that each

device doesn’t need to wait until the other devices have done their work before

it begins a new task?

• Can this program be deployed in multiple middle-boxes, which can

synchronize frequent patterns with each other?

1.4 Significance

Network redundancy is a problem that has troubled service providers as well

as clients for years, as the duplicated data occupies a considerably large proportion

of the network traffic and reduces the Distinct Data Throughput (DDT) of the

network. With a redundancy elimination module in the network device, one can not

only increase the DDT, but also reduce the response time for Internet applications.

Many methods were introduced for network data de-duplication. Anand,

Muthukrishnan, Akella, and Ramjee (2009) used an object cache to track the

similar contents within the same object, but could not detect duplication chunks

6

across objects. Douglis and Iyengar (2003), and Mogul, Douglis, Feldmann, and

Krishnamurthy (1997) introduced delta-encoding, which can compare chunks across

objects, but it is application-specific and has problems dealing with dynamic

contents. Spring and Wetherall (2000) applied a middle-box approach to IP-layer

devices, but it is a slow technique. Aggarwal et al. (2010) introduced a SampleByte

technique, which can achieve a throughput of 2.2-5.8 Gbps with sampling period of

32-512 bytes, but it will miss some fingerprints in certain cases.

This research study aimed to find a way to accelerate the redundancy

elimination technique in network systems without affecting the duplication

detection rate. The researcher divided the redundancy elimination algorithm into a

few steps, and apply a few optimization techniques on both the hardware and

software levels to accelerate each step. The researcher used a multi-threaded

pipeline to overlap the execution time of each step to achieve the best performance.

The researcher also deployed distributed byte caches that can cooperate with each

other to further reduce the redundancy in network.

1.5 Scope

The work conducted by this research study included the following parts:

1. Apply a multi-threaded pipeline architecture for the redundancy elimination

algorithm steps to overlap their execution time.

2. Use Compute Unified Device Architecture (CUDA) to accelerate the

packet/object chunking step.

3. Use the optimization techniques of CUDA to take the best advantage of

CUDA architecture.

4. Find a way to accelerate the chunk hashing and matching steps. The chunk

hashing step is very computationally intensive and the chunk matching step is

also time consuming due to intensive memory allocation, release, and access.

7

5. Compare the performance of algorithms with and without the multi-threaded

pipeline, and algorithms with and without CUDA acceleration.

6. Use distributed byte caches, which can synchronize with each other, to allow

them fetch redundant chunks from other cache rather than fetch from server.

7. Implement a simulation system to compare the performance of the data

redundancy elimination system with and without synchronized distributed

byte cache.

Hash functions used in the chunk hashing step should be carefully chosen,

because this step is very computationally intensive, and it would severely slow down

the whole process with an improper hash function.

1.6 Assumptions

The assumptions for this study included:

• The middle-boxes upon which we deployed our algorithm supports

multi-threaded programs, have installed NVIDIA GPU(s) that support CUDA

6.5, and have a 64-bit operating system.

• The middle-boxes have memory no smaller than 16 GB so that we can have

enough space for the algorithm to run properly, and store the chunks,

meta-data, and intermediate data in it.

• The operating system running on the middle-boxes supports C++ version 11,

which is the earliest C++ version which has implemented standard

multi-threading library (Working Draft, Standard for Programming Language

C++, 2012, p. 1114).

• The middle-boxes have or are at least compatible with GCC 4.7 or later,

because GCC versions earlier than GCC 4.7 would not support the C++11

features used in the program (C++0x/C++11 Support in GCC , 2015).

8

• The middle-boxes have installed Nvidia GPU(s) which can support CUDA

architecture 6.5.

• The server is a video server, and users request for video by string IDs.

• The nodes and links in the network are stable and never failed or corrupted.

1.7 Limitations

The limitations for this study included:

• This research only covers redundancy elimination algorithms that use a

content-based chunking method.

• This research uses the Rabin Fingerprint method as the fingerprinting method.

• This research uses CUDA architecture to accelerate the fingerprinting process.

• This research uses C++11 multi-threading libraries to implement

multi-threaded programs.

• This research uses ns-3 to simulate network behaviors of the network

redundancy elimination system with cooperative distributed byte caches,

which consists of one server’s side middle-box (HARENS) and four clients’

side middle-boxes (distributed byte cache).

1.8 Delimitations

The delimitations for this study included:

• This research will not cover compression algorithms.

• This research will not cover assembly optimization or hardware architecture

optimization.

9

• This research will not cover the implementation of a real-world network traffic

redundancy elimination system.

1.9 Summary

This chapter provided the background, statement of problem, research

question, significance, scope, definitions, assumptions, limitations, and delimitations

for the research project. The next chapter provides a review of the literature

relevant to this research.

10

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter highlights the evolution of methods used for data de-duplication

in network systems.

2.1 Identical Object Detection

Data redundancy in the network is one of the major problems that

researchers aim to tackle. A trivial solution is to use proxy caches to detect and

eliminate the identical objects/packets. Glassman (1994) is one of the first who

studied the network data redundancy problem. After that, researchers kept looking

into this problem and found more optimization techniques and applications of

Glassman (1994). Abrams, Standridge, Abdulla, Williams, and Fox (1995), Barford,

Bestavros, Bradley, and Crovella (1999), Markatos (1996), and Williams, Abrams,

Standridge, Abdulla, and Fox (1996) studied the cache replacement policies.

Abrams et al. (1995) and Markatos (1996) explored other replacement policies,

which are derived from Least Recent Used (LRU) policy, to achieve better

performance in general or special cases. Barford et al. (1999) and Williams et al.

(1996) explored other replacement policies based on the file size. Bolot and Hoschka

(1996) applied an Auto-Regressive Integrated Moving Average (ARIMA) model to

track the pattern of occurrence of redundancy. Bolot, Lamblot, and Simonian

(1997) applied the proxy caching method to group Internet requests by sites or web

servers and send the requests in the same group at the same time. Meira Jr,

Fonseca, Murta, and Almeida (1998) presented an approach that can examine the

performance of proxy caches. Papapanagiotou, Nahum, and Pappas (2012)

summarized the usage and benefits of browser cache and proposed a modification on

cache replacement strategy to achieve the optimal bandwidth savings.

11

The early research studies introduced in this section are highly limited,

because they can only detect identical objects/packets and are protocol-specific.

However, their work is still valuable because proxy caching is a fast technique

compared to the redundancy elimination algorithms of today. For example,

Papapanagiotou, Callaway, and Devetsikiotis (2012) proposed a hybrid method,

which integrated proxy caching and a redundancy elimination module to take

advantage of both techniques.

2.2 Delta Encoding

Delta encoding is a method that compares a series of data to another series

of data, and transforms it to the difference of these two series of data. Researchers

applied this method to detect and compress similar objects/packets in network

systems. In the delta encoding method, the analysis program computes the delta

encoding of an object/packet based on the original one, and the compressed delta

encoded data would be sent rather than the full data. Jacobson (1990) applied this

technique to compute the delta encoding of the TCP/IP header to be sent based on

the previous header and compress it, which is based on the assumption that both

senders and receivers keep the previous header. It took researchers many years to

apply the delta encoding technique to HTTP traffic analysis. Williams et al. (1996)

first proposed delta encoding in their work addressing HTTP cache replacement

strategies, but they did not work on this idea until later (Williams (1996) according

to Mogul et al. (1997)). Housel and Lindquist (1996) is believed to be the first

publication that investigated the application of the delta encoding technique to

HTTP traffic. Mogul et al. (1997) and Douglis and Iyengar (2003) proposed their

refined delta encoding method in a protocol-specific situation.

Delta encoding is a big improvement over the trivial proxy cache technique.

But it only has significant benefit when dealing with very similar data, which makes

it highly limited in the era of information explosion.

12

2.3 Duplicate Chunk Detection

A better idea is to reuse the duplicated chunks in the data series, that the

data de-duplication algorithm can still detect duplications even if there is only little

similarity between two objects/packets.

Previous studies have proposed two approaches both related to the

fingerprinting method. Fingerprinting is a way to use a small signature to represent

a larger object. The researcher of this thesis first categorized them into Fingerprint

Expansion (FPE) and Fingerprint Partition (FPP). The FPE method is applied in

the work of Manber (1994), Spring and Wetherall (2000), and Schleimer, Wilkerson,

and Aiken (2003). It treats the fingerprints as anchors in the data series, matches

the anchors between two objects/packets, and expands the anchors to find the

maximum chunk match when two anchors match. The FPP method is applied in

the work of Muthitacharoen, Chen, and Mazières (2001), Rhea, Liang, and Brewer

(2003), Tolia, Kaminsky, Andersen, and Patil (2006), Pucha, Andersen, and

Kaminsky (2007), Anand et al. (2009), Aggarwal et al. (2010), Bhatotia et al.

(2012), and Papapanagiotou, Callaway, and Devetsikiotis (2012). It treats the

fingerprints as break points within the data series, divides the data series into

chunks from these break points, and matches the chunks within and across

objects/packets based on the non-collision hash value (normally SHA) of each

chunk. The FPE method would find a longer match than FPP once it finds an

anchor match, but it is a slow technique because the program needs to compare

every byte before and after the two matching anchors until it reaches different bytes.

The researcher of this thesis applied the FPP method, because it is much faster

than FPE, and speed is the main concern in this work.

There are also different methods for picking fingerprints. A simple

implementation would be to choose a fingerprint every several bytes. However, a

slight modification would make a significant change in the fingerprint set. For

example, if there is a byte inserted in the data series, the fingerprints after that

insertion would all be shifted left by one byte. This problem could be solved by

13

content-based chunking, which is categorized to MODP (MOD p) and MAXP (local

MAX in p bytes) by Anand et al. (2009). Besides MODP and MAXP, Aggarwal et

al. (2010) proposed SampleByte in the work EndRE. MODP is a method that

chooses a subset of the fingerprints that every fingerprint in the subset modulo p

equals a certain number. p is a pre-determined number. Manber (1994) applied this

technique in his work related to finding similar files in a large file system. Spring

and Wetherall (2000) first proposed applying this technique in redundancy

elimination in network systems. Bhatotia et al. (2012), Muthitacharoen et al.

(2001), Papapanagiotou, Callaway, and Devetsikiotis (2012), Pucha et al. (2007),

Rhea et al. (2003), and Tolia et al. (2006) also adopted MODP method or used the

tools that adopted MODP method in their work. The MAXP method is choosing a

local maximum (or minimum) in every continuous block with length p. Anand et al.

(2009), and Schleimer et al. (2003) adopted MAXP method in their work. The

SampleByte method proposed by Aggarwal et al. (2010) adopted the ideas from

both MODP and MAXP. It skips p/2 bytes every time when a fingerprint is chosen.

Because MODP uses a pre-determined value p to filter fingerprints, and the network

data could be clustered, it could miss some redundancy detection opportunity. The

SampleByte method would lose even more redundancy detection opportunity than

MODP. However, this work adopted the MODP method, because it has

approximately the same detected redundancy rate as MAXP, according to the

experiment conducted by Aggarwal et al. (2010), and partitions data into fewer

chunks, which would make the critical steps faster.

2.4 Content-based Chunking

The content-based chunking algorithm computes fingerprints for the set of

selected substrings in the data series, and applies a certain rule to filter these

fingerprints. The data series is partitioned by the first bytes of the remaining

substrings. The Rabin fingerprint method proposed by Rabin et al. (1981) is the

14

most famous and commonly used fingerprinting technique. The fingerprints of

different objects are expected to be different, which means there is only very small

probability that two different objects have the same fingerprint. Mathematically,

denoting k as the number of bits in a fingerprint, Rabin’s hash method can be

represented by Equation 2.1

F = {f : O → {0, 1}k} (Eqn. 2.1)

In equation 2.1, symbol O represents all possible objects inputted for fingerprinting.

It is expected that for any real-life set of objects S, the function satisfies

Equation 2.2, which means the size of the set of fingerprinting results should be

approximately equal to the size of the set of input values.∣∣|f(S)| − |S|
∣∣

|S|
≈ 0 (Eqn. 2.2)

The fundamental idea proposed in the work of Rabin et al. (1981) represent

a string as a series of bits, which could be interpreted as a large polynomial over a

Galois field of order 2 (denoted as GF(2)), and to compute the signature of the

string as this string modulo a polynomial, which is of degree k − 1 and irreducible

over GF(2). In Rabin’s method, a string ≡ a series of bits ≡ a polynomial over field

GF(2). The irreducible polynomial could be easily generated by the algorithm

proposed by Gao and Panario (1997). In this research, this irreducible polynomial is

dynamically generated to protect information security.

A brute force implementation of Rabin hash is very expensive. The

complexity of the modulo operation used for computing the fingerprints that uses a

Euclidean algorithm would be O((8n− k + 1)k) = O(nk), where n is the length of

string in bytes, and k is the term number of irreducible polynomial. Broder (1993)

introduced an optimized form of the Rabin hash algorithm. This algorithm

pre-computes the results of modulo operation for all possible inputs and stores them

in a table, from which the algorithm can simply refer to in the fingerprint

15

computation. Notice that the input could be very large, which would require a huge

table to store all results for all possible inputs. The clever part of the design in

Broder (1993) is that they only computed the results of all possible eight-bit inputs

shifted left by k + 24, k + 16, k + 8, and k bits, and stored them into four tables

named TA, TB, TC, and TD, with 256 data entries each. The data structure of the

tables is array, in which the index could perform as key of table. Hence, the result

of possible 32-bit inputs shifted left by k bits could be computed by concatenating

one entry from each of the four small tables. The modulo operation is computed

iteratively, as shown in Algorithm 1. The input of this algorithm is a string,

Algorithm 1 Optimized Algorithm by Broder (1993)

result← 0
while S(x) is not empty do
A(x)← first 32 bits in S(x)
r0, r1, r2, r3 ← result0
result← (result << 32) + TA[r0] + TB[r1] + TC[r2] + TD[r3] + A(x)

end while

denoted as S(x). The variable result0 is the first 32 bits of the value result, and

P (x) denotes the irreducible polynomial in the following discussion. The algorithm

reads 32 bits of S(x) each time, concatenates the variable result with the newly

read bits, and compute the result of result modulo P (x) as the new result. The

modulo operation is done by decomposing the first 32 bits of result into four

eight-bit numbers and referring to the tables for the results. Notice that this

algorithm actually computed the result of (S0(x) << 64) mod P (x) + S1(x), where

S1(x) is the last 64 bits of S(x), and S0(x) is the remaining part. However, S(x)

mod P (x) =
(
(S0(x) << 64) + S1(x)

)
mod P (x), so that the result of this

algorithm is not exactly the same as the result of S(x) mod P (x). But the

distribution of the results of optimized algorithm is as sparse and even as Rabin

hash, which means it can also satisfy Equation 2.2. Therefore, the researcher

adopted this optimized Rabin fingerprint algorithm in this research.

16

2.5 Efforts of Acceleration

Several previous studies have contributed to accelerating the redundancy

elimination algorithm to allow it to match the speed of the network. Anand et al.

(2009) and Schleimer et al. (2003) applied MAXP, which is faster than MODP.

Anand et al. (2009) applied a bloom filter to accelerate chunk matching, but the

bloom filter has a relatively high false positive probability, does not have the

information of chunk location, and has difficulty in the case of deletion due to

lacking of information of chunk location. Aggarwal et al. (2010) proposed the

SampleByte method, which only pick some sample bytes to compute Rabin

fingerprints, so that it loses redundancy detection opportunities. Bhatotia et al.

(2012) used a GPU to accelerate the Rabin fingerprint process, but their technique

is mainly targeted on redundancy elimination in incremental storage, and their

technique was not addressed in accelerating chunk hashing and matching

procedures, which are critical steps in network redundancy elimination.

Papapanagiotou, Callaway, and Devetsikiotis (2012) adopted some of the work of

Aggarwal et al. (2010) and proposed a hybrid method using both a proxy cache and

a redundancy elimination module. The work of Papapanagiotou, Callaway, and

Devetsikiotis (2012) was later adopted in the work of Callaway and Papapanagiotou

(2013a), Callaway and Papapanagiotou (2013b), and Callaway and Papapanagiotou

(2014). But their work was not addressed in accelerating the algorithm in

redundancy elimination module. In this thesis, we mainly focused on accelerating

the whole process of redundancy elimination, which is a complementary of the work

made by Papapanagiotou, Callaway, and Devetsikiotis (2012).

Dal Bianco, Galante, and Heuser (2011), and Kolb, Thor, and Rahm (2012)

proposed a data de-redundancy approaching using map-reduce. But their work

applied brute force approach in objects chunking and duplicate chunk matching,

which is inefficient, and used existing map-reduce tools, which may not perfectly

suit for the redundancy elimination task. Our work used the Rabin fingerprinting

algorithm for objects/packets chunking, which is much faster. We also implemented

17

a single-machine map-reduce. It eliminated the key-value pair process, because the

value itself is the key. It also eliminated the merge/sort step, and passes the output

of map phase to reducers immediately instead of passing a list after mapper is done.

This real-time map-reduce communication approach is the key of acceleration.

2.6 Distributed Cache

Distributed cache is a solution for addressing the limitations posed by the

limited computational power and storage of the middle-boxes. It can also distribute

network traffic to multiple paths. Gadde, Rabinovich, and Chase (1997) and Povey

and Harrison (1997) were among the first to propose using distributed Internet

caches to reuse data and reduce the redundant network transfer. Gadde et al. (1997)

proposed a Caching and Replication for Internet Service Performance (CRISP)

method, which allows multiple caches share a directory of the cache contents to

distributed traffic load to the caches. Povey and Harrison (1997) proposed a method

that can replicate data among a hierarchical cache, which reduces the network traffic

load in successive levels in the Internet. Chuang and Sirbu (2000), and Tay, Feng,

and Wijeysundera (2000) also used distributed caches for servers and proposed

strategies to ensure data consistency. Borst, Gupt, and Walid (2010) developed a

cache management algorithm to maximize cache usage and rate of non-redundant

data in the network traffic. Iyer, Rowstron, and Druschel (2002), C. Wang, Xiao,

Liu, and Zheng (2004), and Huang, Sun, Chen, Mao, and Zhang (2012) showed the

advantage of the distributed Internet cache method over the traditional proxy cache

in P2P applications. Among these three works, Iyer et al. (2002) proposed Squirrel,

a decentralized web cache that enables the nodes in the peer-to-peer network to

share their local caches. We also used a decentralized method for the clients’ side

middle-boxes in this thesis as it’s more efficient and fault tolerant. C. Wang et al.

(2004) proposed a Distributed Caching and Adaptive Search (DiCAS) protocol,

which uses a multilayer P2P network and restrict traffic within one layer based on

18

the group ID of the node that sends requests. Huang et al. (2012) proposed a

BufferBand method with distributed caches and a three-layer hierarchical mapping,

which can decrease the delay compared to traditional P2P networks.

Although both redundancy elimination in network system and distributed

cache are well researched, there is not much research about using distributed cache

in redundancy elimination. Pitkänen and Ott (2007) proposed an opportunistic

model in a delay tolerant network, which allows nodes in the network to

communicate end-to-end when a link to server cannot be set up in a given time.

However, most Internet applications are not delay tolerant, which makes this work

very limited when applied to real cases. J. M. Wang et al. (2013) proposed a cache

cooperation scheme to distribute traffic load among caches and reduce redundancies.

However, this work is also very limited in real cases, because it is only designed for

Content-Centric Networking (CCN) architectures. In this thesis, I used

synchronized distributed caches in client’s side middle-boxes and a redundancy

elimination module in a server’s side middle-box, which can be deployed in a normal

network. Distributed caches on the clients’ side rather than on the server’s side can

also reduce the network latency because the clients’ side middle-boxes are

geographically close to each other.

2.7 Summary

This chapter provided a review of the literature relevant to redundancy

elimination in network systems. The next chapter provides the framework and

methodology to be used in the research project.

19

CHAPTER 3. FRAMEWORK AND METHODOLOGY OF HARENS

This chapter provides the framework and methodology that were used in the

research study of Hardware Accelerated Redundancy Elimination in Network

Systems (HARENS).

3.1 Research Type

This research study was a mix of qualitative and quantitative research. our

goal was finding a way to accelerate the redundancy elimination algorithm, and to

estimate the improvement of throughput speed and the effect on detected

redundancy rate by each acceleration technique.

3.2 Hypothesis

H0: HARENS does not improve the performance (throughput speed and

redundancy detection) of a redundancy elimination algorithm in network

systems.

Ha: HARENS improves the performance (throughput speed or redundancy

detection) of a redundancy elimination algorithm in network systems.

3.3 Methodology

In this section, we introduce an overview of the algorithm applied to solve

the data duplication problem. Then the optimization techniques applied to

accelerate the algorithm are introduced.

20

3.3.1 Algorithm Overview

The common procedure for a redundancy elimination algorithm consists of

four steps: fetching data, partitioning packets/objects chunks, computing hash

values for chunks, and matching chunks by comparing hash values. We found that

the data fetching step is fast enough, and does not require acceleration, so this step

can be safely skipped. The other three steps will be referred as chunk partitioning,

chunk hashing, and chunk matching in the rest parts of this chapter.

3.3.1.1. Packet/Object Chunking

In this step, the program reads in the traffic stream either on-line or off-line,

applies a sliding window to scan through the whole input stream, and marks the

fingerprints based on given rule. The fingerprints divide the stream into chunks.

Algorithm 2 Packet/Object Chunking

window ← 0
fingerprints ← empty set
while window + δ < stream length do

hashValue = ComputeRabinHash(stream[window], δ)
if hashValue mod σ = 0 then

fingerprints.Add(window)
end if
window ← window + 1

end while

The Rabin fingerprint algorithm (Rabin et al., 1981) is used as the

fingerprint sampling algorithm in this step. An overview of the procedure of the

Rabin fingerprint algorithm is briefly shown in Algorithm 2. During initialization,

window is put at the beginning of the stream and fingerprints is an empty set.

Then this window is slide to the end of the stream, moving right by one byte each

step. In each step, the algorithm also computes the Rabin hash value of the stream

that covered by the window (σ is size of the window). If the hash value module by

21

Figure 3.1. Chunk hashing throughput speed using Rabin, SHA1, and MD5 hash

(single thread)

a given number δ equals to 0, the algorithm mark the beginning of this window as a

fingerprint and add it into the set.

3.3.1.2. Chunk Hashing

Having partitioned the stream into chunks, a hash value is computed for each

chunk. The Rabin, SHA1, and MD5 hash are all good choices for chunk hashing.

The hash function used for chunk hashing is expected to be effective (satisfies

Equation 2.2) and efficient. So that we tested the throughput (shown in Figure 3.1)

and hash collision rate (Rabin hash has 0.1% – 0.5% collision rate, while no hash

collision observed using SHA1 and MD5) of each method affected by these two hash

functions against the YouTube video accessing data we generated from the trace file

22

of UMass Trace Repository UMass Trace Repository (2014) The experiment was

CPU based, conducted under the environment described in Section 3.4. According

to these results, Rabin hash has much better performance and SHA1 hash has

slightly better performance than a MD5 hash, but Rabin hash could occasionally

encounter hash conflicts, while SHA1 and MD5 would not have this problem. In the

method proposed in this work, a duplication is claimed when a duplicated hash

value is detected, hence hash conflicts are intolerable. Therefore, we choose SHA1 as

the chunk hashing method.

3.3.1.3. Chunk Matching

In this step, the algorithm stores the hash values computed on the previous

step in a hash table. It reports a duplicate chunk when it finds that the hash value

already exists in the hash table. Hash conflicts would not be a problem because the

hash conflict rate of SHA1 is small enough to be safely ignored Spring and

Wetherall (2000).

A replacement algorithm for the chunks is required, so that only a limited

number of chunks are kept in memory. We chose LRU as the chunk replacement

algorithm because the repetitive patterns are also grouped in time period

(Willinger, Taqqu, Sherman, & Wilson, 1997), which means the redundant chunks

are most likely to be redundant to recent data.

3.3.2 CUDA Acceleration

In the packets/objects chunk partitioning step, we need to compute the

Rabin hash for each window, which is (stream length - σ + 1) windows, which

makes this step very computationally intensive. But it also has a great feature in

that the Rabin hash takes exactly σ bytes as input, and will follow exactly the same

mathematical procedure, which is independent to each other and takes about the

same amount of time. The features of the MODP Rabin fingerprinting algorithm in

23

this step makes it a perfect candidate of CUDA acceleration. Besides, we also

applied CUDA optimization techniques to make the best advantage of CUDA.

Shared memory access is much faster than global memory access in the

CUDA architecture, which makes it beneficial to transfer data to shared memory

before computing. Besides, there are multiple threads reading the same memory

location because of the overlap of windows, which causes access conflicts and hence

only one of the threads that access the same memory slot would run while the

others are waiting. To solve this problem, we made two copies of some input data in

shared memory and aligned the data to avoid half of the access conflict as well as

improve the memory bandwidth. It is impossible to make more copies of data in

shared memory because of the limited size of shared memory.

The CUDA kernel instructions could be stalled by many reasons. We ran an

un-optimized CUDA algorithm in Visual Studio and generated Figure 3.2, which

shows the potential reasons that could slow down CUDA kernel execution. As shown

in Figure 3.2, the issues that could affect the performance includes: the speed of

instruction fetch and constant miss, which requires well arranged code order to make

the full advantage of cache; execution dependency and memory dependency, which

requires avoidance or reduction of the scenario that the threads in GPU depends on

one another; and memory throttle and pipe busy, which requires avoidance or

reduction of the scenario that multiple threads access the same slot of data.

Moreover, in CUDA compute capability 3.5, the maximum threads per

multiprocessor is 2048; the maximum shared memory per multiprocessor is 49152

bytes; the maximum register file size per multiprocessor is 65536 bytes (CUDA

Toolkit Documentation, 2015). To achieve the most threads per multiprocessor, one

need to balance the size of shared memory and register allocated per multiprocessor.

In this method, we transfer data from global memory in GPU to two shared

memory slots in each block, which stores two shifted copies of input data, and used

CUDA kernel registers for the other memory usage. The GPU threads are

synchronized after transferring data into shared memory, so that a large part of stall

24

Figure 3.2. Issue stall reasons before optimization

reasons for the threads are switched from memory throttle, memory dependency,

and pipe busy to synchronization, as shown in Figure 3.3. Although there are more

warp cycles got stalled in the optimized code, the execution time was reduced by

around 10% because a) the average stall time was reduced and b) a large part of

issue stalls (synchronization) were under control. A GPU with CUDA architecture

consists of multiple Streaming Multiprocessors (SM). Each SM has its independent

instruction unit, constant cache, texture cache, shared memory, and multiple

Streaming Processors (SP), which have independent registers and share the “shared

memory”. To fully utilize the GPU, we expect the occupancy of each SM to be as

25

Figure 3.3. Issue stall reasons after optimization

high as possible. Table 3.1 shows the GPU occupancy of our program. This work

achieved 100% theoretical occupancy and 93.89% achieved occupancy.

3.3.3 Single Machine Map-Reduce

In the chunk hashing and chunk matching step, a simple approach is to

compute the hash value of each chunk, store it in a hash table, and detect duplicate

chunks by referring to the hash table. The problem with such an approach is that a

large amount of time will be consumed in randomly accessing the memory when the

hash table is repeatedly accessed. Another idea is to launch multiple threads to

execute chunk matching task, which would result in much better performance.

26

Table 3.1 GPU occupancy

Variable Achieved Theoretical Device Limit
Occupancy Per SM
Active Blocks - 4 16
Active Warps 60.09 64 64
Active Threads - 2048 2048
Occupancy 93.89% 100% 100%
Warps
Threads/Block - 512 1024
Warpss/Block - 16 32
Block Limit - 4 16
Registers
Registers/Thread - 17 255
Registers/Block - 12288 65536
Registers/SM - 49152 65536
Block Limit - 5 16
Shared Memory
Shared Memory/Block - 1034 49152
Shared Memory/SM - 4136 49152
Block Limit - 38 15

However, there exists an upper boundary of throughput in the approach of simply

launching multiple threads to execute a chunk matching task, as there would be

massive time spent in waiting for acquiring locks on the a) hash table and b) chunk

hashing result queue, both of which would need to be accessed by all the threads to

prevent a data race condition. We developed our own data mapper and reducer

inspired by Hadoop Map-Reduce with the goal of parallelizing data chunk hashing

(using the mapper developed in this research) and data chunk hash matching (using

the reducer developed in this research). We call our approach Map-Reduce, however,

we did not use Hadoop Map-Reduce software - we developed our own

implementation. We used our single machine map-reduce architecture, which

significantly improved the performance of these two steps.

Figure 3.4 shows our Map-Reduce structure in this research. Assume there

are µ threads of chunk hashing as the mappers, and γ threads of chunk matching as

27

Figure 3.4. Map-Reduce structure

the reducers. The mapper computes a SHA1 hash value for each chunk and sends to

hash value to a reducer based on the value of (hash value mod γ). Each reducer i

maintains a hash table separately, which only stores hash values satisfying

Equation 3.1.

hash value mod γ = i (Eqn. 3.1)

So that Equation 3.1 performs the functionality of a shuffle between mappers and

reducers. Furthermore, γ should be greater than µ because maintaining a hash table

is much slower than computing a SHA1 hash value.

We conducted an experiment using a different number of mappers and

reducers to analyze its effect on the throughput of our algorithm. As shown in

Figure 3.5, the throughput speed increases with the number of mappers. However,

the number of mappers does not significantly impact the throughput speed when

there are more than 8 mappers. The throughput speed fluctuates when the number

28

Figure 3.5. Influence of the number of mappers and reducers on performance

of reducers is smaller than 500, and deteriorates when the number of reducers is

higher than 500. An explanation for this is that the system we ran experiment on

cannot handle that many threads. Experimental results showed that the algorithm

performed best with µ ∈ [8, 14] and γ ∈ [92, 218]. We used (µ, γ) = (11, 212) in the

experiments in Section 3.4.

3.3.4 Multi-threaded Pipeline

Pipelining is the task mode in which the workers perform their assigned tasks

simultaneously, and pass their output to the next worker as input. To increase the

throughput of the redundancy elimination algorithm, we used a multi-threaded

pipeline technique to minimize the idle time of each device.

29

Figure 3.6. The pipeline process

Figure 3.6 shows the work flow of the multi-threaded pipeline redundancy

elimination algorithm:

30

• When the program receives a request, it pushes the request into the request

queue.

• The reading process retrieves a request from the request queue, reads the data

for the request into memory, and then pushes the memory page into the buffer

queue.

• The chunk partitioning process retrieves data from the buffer queue, partitions

the data into chunks, and then pushes the chunks into the chunk queue.

• The chunk hashing process retrieves data from the chunk queue, computes the

SHA1 hash for each chunk, and pushes the hash values into the hash queue.

• The chunk matching process retrieves data from the hash queue, detects

duplicate chunks by maintaining a hash table for the chunks, and outputs the

result for the request.

Each process keeps running as long as the input buffer is not empty, which makes it

much faster than the serialized method.

Furthermore, we used asynchronized memory transfer in the CUDA

accelerated packets/objects chunk partitioning step. The CUDA stream technique

allows the kernel to execute the instructions in the order they are sent by the

program, and the host-device memory transfer and kernel functions can be

simultaneously executed. We used this technique as the second layer pipeline within

the pipelining of the whole process.

3.4 Measurements

The methods were evaluated on a machine with an Intel(R) Core(TM)

i7-5930K CPU @ 3.50 GHz, with 6 cores and 16.0 GB RAM. The GPU installed in

this machine is an NVIDIA Tesla K40c. The hardware accelerated redundancy

elimination is evaluated on Windows 8 64 bit operating system.

31

We generated experimental data for our evaluation using data from Youtube

traces that are publicly available in the UMass Trace Repository (2014). We wrote a

batch downloading script gotube1 inspired by a python YouTube video downloading

library written by Ficano (2015).

We generated six test cases as the experiment data, which are 10 GB files.

The redundancies are detected in a window about 8 GB, so that the least recently

accessed chunks would be removed from the cache. Figure 3.7 and Table 3.2 show

the average value and standard deviation of the experimental results for all six test

cases. We did not intend to simulate the natural of downloading in real-world,

where the videos might be downloaded simultaneously and overlap with each other.

As the size of video files (normally 10-20 MB) is relatively small in terms of size of

the cache (8-16 GB), the video files would not compete on the cache. Therefore, the

order of packets of the videos would not affect the experimental result.

We evaluated our method by comparing the throughput and the detected

redundancy rate of the program introduced in this research (HARENS) with the

other three benchmark programs2. The algorithms we evaluated were:

• Naive C++ implementation

• Multi-threaded pipeline accelerated algorithm

• CUDA accelerated algorithm

• HARENS

In Figure 3.7, we showed the throughput of the four methods. As is shown in

the figure, the multi-threaded pipeline accelerated algorithm demonstrated about a

60% throughput improvement over the naive C++ implementation, because the

multi-threaded pipeline accelerated algorithm overlapped the execution time of each

steps. The improvement in the multi-threaded pipeline accelerated algorithm was

not significant compared with the naive C++ implementation because each step was

1The script can be found in https://github.com/KeluDiao/gotube
2All the programs can be found in https://github.com/keludiao/REinNS

32

Figure 3.7. Throughput speed of the four methods (sample number = 6)

Table 3.2 Redundancy Rate Detected (sample number = 6)

Mean Standard Deviation
Naive C++ 19.00 2.96
Multi-threaded pipeline 19.00 2.96
CUDA 18.98 2.91
HARENS 19.02 2.98

still time consuming. The CUDA accelerated algorithm had about 70% throughput

improvement over the naive C++ implementation, because the CUDA accelerated

algorithm shortened the time required for objects/packets chunk partitioning.

HARENS, the method introduced in this work had about a factor of 9 times

throughput improvement over the naive C++ implementation, because HARENS

not only shortened the execution time of objects/packets chunk partitioning, chunk

hashing, and chunk matching, but also overlapped the execution time of each step.

33

In Table 3.2, we show the detected redundancy rate of the trace file using the

four methods. The redundancy rates detected by the naive C++ implementation,

the multi-threaded pipeline accelerated approach, and the CUDA accelerated

approach are similar. Our method detected slightly more redundancy than the other

three methods. As the buffer is limited, the older chunks would be removed from

the buffer according to the LRU replacement technique. The Map-Reduce chunk

hashing/matching mechanism has a better chance of keeping the redundant chunks

because the redundancies are generally clustered.

3.5 Summary

In this chapter, the author presented HARENS, an efficient approach

developed for redundancy elimination in network systems. The author used a

multi-threaded pipeline to overlap the execution time of each step. For the

object/packet chunk partitioning step, this research used a GPU to accelerate the

Rabin fingerprinting algorithm. In this step, this research made use of shared

memory to improve memory bandwidth, applied asynchronized memory transfer to

minimize the blocking time of the kernel instructions, and balanced the usage of

GPU registers and shared memory to activate the largest possible number of

threads in execution. Hence, this research achieved the highest possible theoretical

GPU occupation. For the chunk hashing and chunk matching step, this research

applied our single machine Map-Reduce architecture which distributed and

scheduled the work load of these two steps in thousands of threads which improved

the overall performance by about a factor of 9 times.

There are several interesting avenues for future work. The Map-Reduce

architecture this research used could be deployed on a distributed system, such as

Openstack. We could also adopt the hybrid method introduced by Papapanagiotou,

Callaway, and Devetsikiotis (2012), making our redundancy elimination module

work with a proxy cache module, to see if it can improve performance. Besides, the

34

author found that there is significant time spent in lock acquisition and release. A

lock-free method would be another good topic for further investigation.

35

CHAPTER 4. FRAMEWORK AND METHODOLOGY OF DRESS

This chapter provided the framework and methodology that were used in the

research study of Distributed Redundancy Elimination System Simulation (DRESS).

4.1 Research Type

This research study was a mix of qualitative and quantitative research. Our

goal was finding a way to make the clients’ side middle-boxes fetch data from a

network device that is closer to it in the network than a server. We estimated how

cooperative distributed caches impacted the bandwidth savings and affected the

detected redundancy rate.

4.2 Hypothesis

H0: DRESS does not improve the bandwidth savings of a network data

redundancy elimination systems.

Ha: DRESS improves the bandwidth savings of a network data redundancy

elimination systems.

4.3 Methodology

The use of distributed caches is a widely used method to distribute

computational and I/O workload over multiple machines. We deployed the

hardware accelerated redundancy elimination module in the server’s side

middle-box, and distributed caches in the clients’ side middle-boxes. The clients’

36

Figure 4.1. Work flow if no redundancy detected

side middle-boxes are geographically close to each other, so the latency of data

transfer between clients’ side middle-boxes are generally shorter than latency of

data transfer between a server’s side middle-box and a client’s side middle-box. It is

also easier to improve the bandwidth between clients’ side middle-boxes. Based on

our assessment of DRESS using a small network configuration, we believe that our

method is a good fit for a small cooperative cache system. In terms of scaling,

however, managing the distributed caches is likely to pose a challenge in terms of

performance and in discovering the client who holds a data block. Additional work

would be needed to investigate the challenges posed by scaling.

Figure 4.1 shows the work flow of such a system when no redundant chunks

are detected:

1. When a client sends a GET request, the client’s side middle-box redirects the

request to server side middle-box.

37

Figure 4.2. Format of response for GET request

2. The server’s side middle-box fetches the data from server. One can also apply

other redundancy elimination methods here, for example, caching static web

pages, to further increase the performance.

3. The server’s side middle-box then applies the aforementioned redundancy

elimination algorithm to the data: partitions data into chunks, computes hash

values for the chunks, and matches the hash values to detect redundancies.

4. The format of the response for a GET request from a client’s side middle-box

as shown in Figure 4.2 consists of three parts: an integer indicating the

number of chunks in the data, a bit map indicating whether each chunk is

duplicated or not, followed by an array of chunks if chunk is not duplicated, or

hash values if chunk is duplicated. The numbers marked above each bar is the

offset from the beginning of the payload of the response.

5. When a client’s side middle-box receives a response, it stores the transmitted

chunks in its cache and computes hash values for the non-duplicated chunks.

Then it broadcasts the hash values of the newly accepted chunks to

cooperating middle-boxes. The client’s side middle-boxes that receive the

38

Figure 4.3. Work flow with redundancy detected

broadcast maintain a hash table, recording the hash values that the other

middle-boxes have.

Figure 4.3 shows the work flow of the system when redundant chunks are

detected. The first four steps of this scenario are the same as first four steps in the

work flow where no redundancy is detected. When the client’s side middle-box that

requested for the data gets the response, it would fetch the duplicated chunks from

caches. If the duplicated chunk does not exist in its own cache, the client’s side

middle-box would request the data from other client’s side middle-boxes according

to the hash map.

4.4 Measurements

The methods were evaluated on a machine with Intel(R) Core(TM) i7-5930K

CPU @ 3.50 GHz, with 12 cores and 16.0 GB RAM. The GPU installed in this

machine is NVIDIA Tesla K40c. The cooperative distributed cache is evaluated on

Debian 8 64 bit operating system, since the experiment is conducted over a

39

Table 4.1 Test cases for distributed byte cache

Test Case Number of Files Total Size (Bytes)
1 400 5,196,155,543
2 400 5,810,427,132
3 400 6,566,425,587
4 400 5,919,295,453
5 400 4,762,626,716

simulated network using NS-3 (NS-3 documentation, 2011), which only runs in

Linux systems.

Experimental data for DRESS are also generated based on Youtube traces

that are publicly available in UMass Trace Repository (2014) using the batch

downloading script gotube. Table 4.1 shows the five test cases in this experiment,

which were generated as mentioned earlier. The video data were stored in files

named by the video IDs assigned by YouTube. The order of requests (for video files)

that clients’ side middle-boxes send to server’s side middle-box was based on the

trace file in UMass Trace Repository (2014), and the request was generated

randomly under a Poisson distribution. Figure 4.4 and Figure 4.5 show the

experimental result of all the test cases separately.

We evaluated our method by comparing the detected redundancy and

bandwidth savings of the program introduced in this research with the other 2

benchmark programs 1. The algorithms evaluated are listed below:

• Redundancy elimination system with cooperative distributed byte cache

• Redundancy elimination system without cooperative distributed byte cache

• Network system without redundancy elimination program

In Figure 4.4, we show the average redundancy rate in the distributed

caches. One can see that the average detected redundancy rate of the redundancy

1All the programs can be found in https://github.com/keludiao/DRESS

40

Figure 4.4. The average detected redundancy rate in the distributed caches

elimination system with distributed byte caches was about two to three times

greater than the average detected redundancy rate of the redundancy elimination

system without distributed byte caches. In the redundancy elimination system

without distributed byte cache, the server’s side middle-box needed to keep a hash

table for each of the client’s side middle-box. It only sent a hash value instead of

chunks when the chunk exists in the cache of the client’s side middle-box that sent

the current request. In the redundancy elimination system with distributed byte

cache, the server’s side middle-box only needed to keep one hash table for the

chunks. It would send a hash value for the duplicated chunks even if it does not

exist in the cache of the client’s side middle-box that sent the current request.

Therefore, the distributed cache significantly increased the chance to detect

duplicated data and reduces the memory space required in server’s side middle-box

for the hash tables.

41

Figure 4.5. Size of data needed to send

In Figure 4.5, we show the amount of data need to send in a redundancy

elimination system with distributed byte caches, a redundancy elimination system

without distributed byte caches, and a network system without redundancy

elimination program. The amount of data needed to send in the redundancy

elimination system without redundancy elimination program was the same as the

amount of data requested. One can see from the figure that the redundancy

elimination system with distributed byte caches can save about 15% of the

bandwidth, while the redundancy elimination system without distributed byte

caches can only save 3% of the bandwidth. The redundancy elimination system

with distributed byte caches saved 12% more bandwidth than the one without

distributed byte caches. In test case 5, the redundancy elimination system without

distributed byte caches generated even more traffic than the baseline system, since

there were only small amount of redundancies detected. This results in smaller

42

amount of bandwidth savings compared to the meta data (including the integer

indicating number of chunks and the bit map)

4.5 Summary

In this chapter, the author presented DRESS, a distributed Internet cache

that scales to improve the performance of a redundancy elimination system. The

author deployed HARENS as the server’s side redundancy elimination module, and

four cooperative distributed Internet caches in the clients’ side middle-boxes.

Results showed that the redundancy elimination system with cooperative

distributed Internet caches saved 12% more bandwidth than the redundancy

elimination system without a cooperative distributed Internet cache.

There are several interesting avenues for future work. The cooperative

distributed caches in this research are close to each other in the network. We can

find a method for wider Internet and let the distributed caches to cooperate with

their neighbors. We can also make the server’s side redundancy elimination module

a part of the P2P network, so the redundancy elimination program can be applied

to both download and upload streams. As mentioned in previous chapter, we can

adopt the hybrid method introduced by Papapanagiotou, Callaway, and

Devetsikiotis (2012), making HARENS work with a proxy cache redundancy

elimination module. It would be interesting to research about how to put this

hybrid method in DRESS network system.

43

CHAPTER 5. SUMMARY

In this thesis, the author presented HARENS, an efficient approach

developed for redundancy elimination in network systems, and a simulation of

distributed Internet cache to improve the performance of redundancy elimination.

HARENS provided an acceleration to the redundancy elimination method

based on Rabin fingerprinting algorithm. We divided the process of redundancy

elimination into four steps: fetching data, partitioning packets/objects chunks,

computing SHA1 hash values for chunks, and matching chunks by comparing hash

values. Each step was treated as a Finite State Machine (FSM), which ran

separately but shared data buffers to synchronize with each other. These FSMs

performed the role of workers in a pipeline, which can keep the tasks running

simultaneously. Due to the acceleration methods, HARENS answered the hypothesis

by: a) improving the throughput of network data de-duplication by about a factor

of 9 times and b) witnessing no significant improvement on redundancy detection.

DRESS scaled HARENS in a larger network by deploying cooperative

distributed Internet caches. HARENS performed the role of server’s side redundancy

elimination module, and the cooperative distributed Internet caches performed the

role of clients’ side redundancy elimination modules. There was higher chance to

detect duplicated data in this network, since the distributed Internet caches shared

the information of their cached chunks with each other. DRESS answered the

hypothesis by improving 12% more bandwidth savings than the network

redundancy elimination system without cooperative distributed Internet caches.

There are many potential improvements and further works for both

HARENS and DRESS. We can use hybrid methods combining HARENS

redundancy elimination module with traditional proxy-cache methods. We can

make better use of hardwares and reduce the time consumption of synchronizing the

44

FSMs. We can also further scale our redundancy elimination system to a larger

network by making the distributed Internet caches cooperate with their neighbors.

To conclude, redundancy elimination is a good solution for the network

traffic jam. It is a much cheaper solution than increasing the network bandwidth by

deploying more coppers or replacing them with better network cables. However,

current redundancy elimination methods are too old and slow for the rapidly

increasing bandwidth. We are glad to be one of the first to pick up this topic again,

and hope there will be more research to further dig this gold mine and solve the real

problems.

LIST OF REFERENCES

45

LIST OF REFERENCES

Abrams, M., Standridge, C. R., Abdulla, G., Williams, S., & Fox, E. A. (1995).
Caching proxies: Limitations and potentials (Tech. Rep.). Blacksburg, VA,
USA.

Aggarwal, B., Akella, A., Anand, A., Balachandran, A., Chitnis, P., Muthukrishnan,
C., . . . Varghese, G. (2010). EndRE: An end-system redundancy elimination
service for enterprises. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation (pp. 28–28). Berkeley, CA,
USA: USENIX Association. Retrieved from
http://dl.acm.org/citation.cfm?id=1855711.1855739

Anand, A., Muthukrishnan, C., Akella, A., & Ramjee, R. (2009, June).
Redundancy in network traffic: Findings and implications. SIGMETRICS
Perform. Eval. Rev., 37 (1), 37–48. Retrieved from
http://doi.acm.org/10.1145/2492101.1555355 doi: 10.1145/2492101.1555355

Barford, P., Bestavros, A., Bradley, A., & Crovella, M. (1999, January). Changes in
web client access patterns: Characteristics and caching implications. World
Wide Web, 2 (1-2), 15–28. Retrieved from
http://dx.doi.org/10.1023/A:1019236319752 doi: 10.1023/A:1019236319752

Bhatotia, P., Rodrigues, R., & Verma, A. (2012). Shredder: GPU-accelerated
incremental storage and computation. In FAST (p. 14).

Bolot, J.-C., & Hoschka, P. (1996). Performance engineering of the World Wide
Web: Application to dimensioning and cache design. In Proceedings of the
Fifth International World Wide Web Conference on Computer Networks and
ISDN Systems (pp. 1397–1405). Amsterdam, The Netherlands, The
Netherlands: Elsevier Science Publishers B. V. Retrieved from
http://dl.acm.org/citation.cfm?id=232710.232762

Bolot, J.-C., Lamblot, S. M., & Simonian, A. (1997). Design of efficient caching
schemes for the World Wide Web.

Borst, S., Gupt, V., & Walid, A. (2010). Distributed caching algorithms for content
distribution networks. In Infocom, 2010 proceedings ieee (pp. 1–9).

Broder, A. Z. (1993). Some applications of Rabins fingerprinting method. In
Sequences II (pp. 143–152). Springer.

C++0x/C++11 support in GCC. (2015). Retrieved 2015-09-28, from
https://gcc.gnu.org/projects/cxx0x.html

46

Callaway, R. D., & Papapanagiotou, I. (2013a, March 13). Dynamic caching module
selection for optimized data deduplication. Google Patents. (US Patent App.
13/800,289)

Callaway, R. D., & Papapanagiotou, I. (2013b, October 22). Dynamic caching
module selection for optimized data deduplication. Google Patents. (US
Patent App. 14/059,959)

Callaway, R. D., & Papapanagiotou, I. (2014, September 4). Scheduler training for
multi-module byte caching. Google Patents. (US Patent App. 14/477,093)

Chuang, J. C.-I., & Sirbu, M. A. (2000). Distributed network storage service with
quality-of-service guarantees. Journal of Network and Computer
Applications , 23 (3), 163–185.

CUDA toolkit documentation. (2015). Retrieved 2015-09-24, from
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#kernels

Dal Bianco, G., Galante, R., & Heuser, C. A. (2011). A fast approach for parallel
deduplication on multicore processors. In Proceedings of the 2011 acm
symposium on applied computing (pp. 1027–1032). New York, NY, USA:
ACM. Retrieved from http://doi.acm.org/10.1145/1982185.1982411 doi:
10.1145/1982185.1982411

Douglis, F., & Iyengar, A. (2003). Application-specific Delta-encoding via
resemblance detection. In USENIX Annual Technical Conference (pp.
113–126).

Ficano, N. (2015). pytube. https://github.com/nficano/pytube.git. GitHub.

Gadde, S., Rabinovich, M., & Chase, J. (1997). Reduce, reuse, recycle: An
approach to building large internet caches. In Operating systems, 1997., the
sixth workshop on hot topics in (pp. 93–98).

Gao, S., & Panario, D. (1997). Tests and constructions of irreducible polynomials
over finite fields. In Foundations of computational mathematics (pp.
346–361). Springer.

Glassman, S. (1994). A caching relay for the World Wide Web. In Computer
Networks and ISDN Systems (pp. 69–76).

Global Internet phenomena Africa, Middle East & North America. (2015).
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-africa-middle-east-and-north-america.pdf.
(Accessed:2016-04-12)

Housel, B. C., & Lindquist, D. B. (1996). WebExpress: A system for optimizing
web browsing in a wireless environment. In Proceedings of the 2nd Annual
International Conference on Mobile Computing and Networking (pp.
108–116). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/236387.236416 doi: 10.1145/236387.236416

Huang, B., Sun, Z., Chen, H., Mao, J., & Zhang, Z. (2012). Bufferbank: A
distributed cache infrastructure for peer-to-peer application. Peer-to-Peer
Networking and Applications , 7 (4), 485–496.

47

Iyer, S., Rowstron, A., & Druschel, P. (2002). Squirrel: A decentralized peer-to-peer
web cache. In Proceedings of the twenty-first annual symposium on principles
of distributed computing (pp. 213–222).

Jacobson, V. (1990). Compressing TCP/IP headers for low-speed serial links.

Kolb, L., Thor, A., & Rahm, E. (2012, August). Dedoop: Efficient deduplication
with hadoop. Proc. VLDB Endow., 5 (12), 1878–1881. Retrieved from
http://dx.doi.org/10.14778/2367502.2367527 doi:
10.14778/2367502.2367527

Manber, U. (1994). Finding similar files in a large file system. In USENIX Winter
1994 Technical Conference (pp. 1–10).

Markatos, E. P. (1996). Main memory caching of web documents. In Proceedings of
the Fifth International World Wide Web Conference on Computer Networks
and ISDN Systems (pp. 893–905). Amsterdam, The Netherlands, The
Netherlands: Elsevier Science Publishers B. V. Retrieved from
http://dl.acm.org/citation.cfm?id=232710.232714

Meira Jr, W., Fonseca, E., Murta, C., & Almeida, V. (1998). Analyzing performance
of cache server hierarchies. In Computer Science, 1998. SCCC’98. XVIII
International Conference of the Chilean Society of (pp. 113–121).

Mogul, J. C., Douglis, F., Feldmann, A., & Krishnamurthy, B. (1997). Potential
benefits of Delta encoding and data compression for HTTP. In ACM
SIGCOMM Computer Communication Review (Vol. 27, pp. 181–194).

Morreale, P. A., & Anderson, J. M. (2014). Software defined networking: Design
and deployment. CRC Press.

Muthitacharoen, A., Chen, B., & Mazières, D. (2001, October). A low-bandwidth
network file system. SIGOPS Oper. Syst. Rev., 35 (5), 174–187. Retrieved
from http://doi.acm.org/10.1145/502059.502052 doi:
10.1145/502059.502052

NS-3 documentation. (2011). Retrieved from
https://www.nsnam.org/documentation (Accessed:2016-04-19)

Papapanagiotou, I., Callaway, R. D., & Devetsikiotis, M. (2012). Chunk and object
level deduplication for web optimization: A hybrid approach. In
Communications (ICC), 2012 IEEE International Conference on (pp.
1393–1398).

Papapanagiotou, I., Nahum, E. M., & Pappas, V. (2012). Smartphones vs. laptops:
Comparing web browsing behavior and the implications for caching. In Acm
sigmetrics performance evaluation review (Vol. 40, pp. 423–424).

Pitkänen, M. J., & Ott, J. (2007). Redundancy and distributed caching in mobile
dtns. In Proceedings of 2nd acm/ieee international workshop on mobility in
the evolving internet architecture (p. 8).

Povey, D., & Harrison, J. (1997). A distributed Internet cache. Australian
Computer Science Communications , 19 , 175–184.

48

Pucha, H., Andersen, D. G., & Kaminsky, M. (2007). Exploiting similarity for
multi-source downloads using file handprints. In Proceedings of the 4th
USENIX Conference on Networked Systems Design & Implementation
(pp. 2–2). Berkeley, CA, USA: USENIX Association. Retrieved from
http://dl.acm.org/citation.cfm?id=1973430.1973432

Rabin, M. O., et al. (1981). Fingerprinting by random polynomials. Center for
Research in Computing Techn., Aiken Computation Laboratory, University.

Rennich, S. (2011). CUDA C/C++ streams and concurrency [PDF document].
Retrieved 2015-09-24, from http://on-demand.gputechconf.com/gtc
-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

Rhea, S. C., Liang, K., & Brewer, E. (2003). Value-based web caching. In
Proceedings of the 12th International Conference on World Wide Web (pp.
619–628). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/775152.775239 doi: 10.1145/775152.775239

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: Local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data (pp. 76–85). New York,
NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/872757.872770
doi: 10.1145/872757.872770

Sijben, P., van Willigenburg, W., de Boer, M., & van der Gaast, S. (2002).
Middleboxes: Controllable media firewalls. Bell Labs technical journal , 7 (1),
141–157.

Spring, N. T., & Wetherall, D. (2000). A protocol-independent technique for
eliminating redundant network traffic. ACM SIGCOMM Computer
Communication Review , 30 (4), 87–95.

Tay, T., Feng, Y., & Wijeysundera, M. (2000). A distributed Internet caching
system. In Local computer networks, 2000. lcn 2000. proceedings. 25th
annual ieee conference on (pp. 624–633).

Tolia, N., Kaminsky, M., Andersen, D. G., & Patil, S. (2006). An architecture for
Internet data transfer. In Proceedings of the 3rd Conference on Networked
Systems Design & Implementation - Volume 3 (pp. 19–19). Berkeley, CA,
USA: USENIX Association. Retrieved from
http://dl.acm.org/citation.cfm?id=1267680.1267699

UMass trace repository. (2014). Retrieved 2015-10-09, from
http://traces.cs.umass.edu/index.php/Network/Network

Wang, C., Xiao, L., Liu, Y., & Zheng, P. (2004). Distributed caching and adaptive
search in multilayer P2P networks. In Distributed computing systems, 2004.
proceedings. 24th international conference on (pp. 219–226).

Wang, J. M., Zhang, J., & Bensaou, B. (2013). Intra-AS cooperative caching for
content-centric networks. In Proceedings of the 3rd acm sigcomm workshop
on information-centric networking (pp. 61–66).

Williams, S. (1996). Personal communication. Retrieved from
http://ei.cs.vt.edu/ williams/DIFF/prelim.html

49

Williams, S., Abrams, M., Standridge, C. R., Abdulla, G., & Fox, E. A. (1996).
Removal policies in network caches for World-Wide Web documents. In
Conference Proceedings on Applications, Technologies, Architectures, and
Protocols for Computer Communications (pp. 293–305). New York, NY,
USA: ACM. Retrieved from http://conferences.sigcomm.org/sigcomm/1996/
papers/williams orig.pdf doi: 10.1145/248156.248182

Willinger, W., Taqqu, M. S., Sherman, R., & Wilson, D. V. (1997). Self-similarity
through high-variability: Statistical analysis of Ethernet LAN traffic at the
source level. IEEE/ACM Transactions on Networking (ToN), 5 (1), 71–86.

Working draft, standard for programming language C++. (2012). Retrieved
2015-09-28, from http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2012/n3337.pdf

	Purdue University
	Purdue e-Pubs
	4-2016

	Hardware accelerated redundancy elimination in network system
	Kelu Diao
	Recommended Citation

	Blank Page

