10 research outputs found

    Exploring Spatio-Temporal Representations by Integrating Attention-based Bidirectional-LSTM-RNNs and FCNs for Speech Emotion Recognition

    Get PDF
    Automatic emotion recognition from speech, which is an important and challenging task in the field of affective computing, heavily relies on the effectiveness of the speech features for classification. Previous approaches to emotion recognition have mostly focused on the extraction of carefully hand-crafted features. How to model spatio-temporal dynamics for speech emotion recognition effectively is still under active investigation. In this paper, we propose a method to tackle the problem of emotional relevant feature extraction from speech by leveraging Attention-based Bidirectional Long Short-Term Memory Recurrent Neural Networks with fully convolutional networks in order to automatically learn the best spatio-temporal representations of speech signals. The learned high-level features are then fed into a deep neural network (DNN) to predict the final emotion. The experimental results on the Chinese Natural Audio-Visual Emotion Database (CHEAVD) and the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpora show that our method provides more accurate predictions compared with other existing emotion recognition algorithms

    Learning temporal clusters using capsule routing for speech emotion recognition

    Get PDF
    Emotion recognition from speech plays a significant role in adding emotional intelligence to machines and making human-machine interaction more natural. One of the key challenges from machine learning standpoint is to extract patterns which bear maximum correlation with the emotion information encoded in this signal while being as insensitive as possible to other types of information carried by speech. In this paper, we propose a novel temporal modelling framework for robust emotion classification using bidirectional long short-term memory network (BLSTM), CNN and Capsule networks. The BLSTM deals with the temporal dynamics of the speech signal by effectively representing forward/backward contextual information while the CNN along with the dynamic routing of the Capsule net learn temporal clusters which altogether provide a state-of-the-art technique for classifying the extracted patterns. The proposed approach was compared with a wide range of architectures on the FAU-Aibo and RAVDESS corpora and remarkable gain over state-of-the-art systems were obtained. For FAO-Aibo and RAVDESS 77.6% and 56.2% accuracy was achieved, respectively, which is 3% and 14% (absolute) higher than the best-reported result for the respective tasks

    Attention-enhanced connectionist temporal classification for discrete speech emotion recognition

    Get PDF
    Discrete speech emotion recognition (SER), the assignment of a single emotion label to an entire speech utterance, is typically performed as a sequence-to-label task. This approach, however, is limited, in that it can result in models that do not capture temporal changes in the speech signal, including those indicative of a particular emotion. One potential solution to overcome this limitation is to model SER as a sequence-to-sequence task instead. In this regard, we have developed an attention-based bidirectional long short-term memory (BLSTM) neural network in combination with a connectionist temporal classification (CTC) objective function (Attention-BLSTM-CTC) for SER. We also assessed the benefits of incorporating two contemporary attention mechanisms, namely component attention and quantum attention, into the CTC framework. To the best of the authors’ knowledge, this is the first time that such a hybrid architecture has been employed for SER.We demonstrated the effectiveness of our approach on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) and FAU-Aibo Emotion corpora. The experimental results demonstrate that our proposed model outperforms current state-of-the-art approaches.The work presented in this paper substantially supported by the National Natural Science Foundation of China (Grant No. 61702370), the Key Program of the Natural Science Foundation of Tianjin (Grant No. 18JCZDJC36300), the Open Projects Program of the National Laboratory of Pattern Recognition, and the Senior Visiting Scholar Program of Tianjin Normal University. Interspeech 2019 ISSN: 1990-977

    An Attention Pooling based Representation Learning Method for Speech Emotion Recognition

    Get PDF
    This paper proposes an attention pooling based representation learning method for speech emotion recognition (SER). The emotional representation is learned in an end-to-end fashion by applying a deep convolutional neural network (CNN) directly to spectrograms extracted from speech utterances. Motivated by the success of GoogleNet, two groups of filters with different shapes are designed to capture both temporal and frequency domain context information from the input spectrogram. The learned features are concatenated and fed into the subsequent convolutional layers. To learn the final emotional representation, a novel attention pooling method is further proposed. Compared with the existing pooling methods, such as max-pooling and average-pooling, the proposed attention pooling can effectively incorporate class-agnostic bottom-up, and class-specific top-down, attention maps. We conduct extensive evaluations on benchmark IEMOCAP data to assess the effectiveness of the proposed representation. Results demonstrate a recognition performance of 71.8% weighted accuracy (WA) and 68% unweighted accuracy (UA) over four emotions, which outperforms the state-of-the-art method by about 3% absolute for WA and 4% for UA

    Multimodal Sensing and Data Processing for Speaker and Emotion Recognition using Deep Learning Models with Audio, Video and Biomedical Sensors

    Full text link
    The focus of the thesis is on Deep Learning methods and their applications on multimodal data, with a potential to explore the associations between modalities and replace missing and corrupt ones if necessary. We have chosen two important real-world applications that need to deal with multimodal data: 1) Speaker recognition and identification; 2) Facial expression recognition and emotion detection. The first part of our work assesses the effectiveness of speech-related sensory data modalities and their combinations in speaker recognition using deep learning models. First, the role of electromyography (EMG) is highlighted as a unique biometric sensor in improving audio-visual speaker recognition or as a substitute in noisy or poorly-lit environments. Secondly, the effectiveness of deep learning is empirically confirmed through its higher robustness to all types of features in comparison to a number of commonly used baseline classifiers. Not only do deep models outperform the baseline methods, their power increases when they integrate multiple modalities, as different modalities contain information on different aspects of the data, especially between EMG and audio. Interestingly, our deep learning approach is word-independent. Plus, the EMG, audio, and visual parts of the samples from each speaker do not need to match. This increases the flexibility of our method in using multimodal data, particularly if one or more modalities are missing. With a dataset of 23 individuals speaking 22 words five times, we show that EMG can replace the audio/visual modalities, and when combined, significantly improve the accuracy of speaker recognition. The second part describes a study on automated emotion recognition using four different modalities – audio, video, electromyography (EMG), and electroencephalography (EEG). We collected a dataset by recording the 4 modalities as 12 human subjects expressed six different emotions or maintained a neutral expression. Three different aspects of emotion recognition were investigated: model selection, feature selection, and data selection. Both generative models (DBNs) and discriminative models (LSTMs) were applied to the four modalities, and from these analyses we conclude that LSTM is better for audio and video together with their corresponding sophisticated feature extractors (MFCC and CNN), whereas DBN is better for both EMG and EEG. By examining these signals at different stages (pre-speech, during-speech, and post-speech) of the current and following trials, we have found that the most effective stages for emotion recognition from EEG occur after the emotion has been expressed, suggesting that the neural signals conveying an emotion are long-lasting

    Learning Attention Mechanisms and Context: An Investigation into Vision and Emotion

    Get PDF
    Attention mechanisms for context modelling are becoming ubiquitous in neural architectures in machine learning. The attention mechanism is a technique that filters out information that is irrelevant to a given task and focuses on learning task-dependent fixation points or regions. Furthermore, attention mechanisms suggest a question about a given task, i.e. `what' to learn and `where/how' to learn for task-specific context modelling. The context is the conditional variables instrumental in deciding the categorical distribution for the given data. Also, why is learning task-specific context necessary? In order to answer these questions, context modelling with attention in the vision and emotion domains is explored in this thesis using attention mechanisms with different hierarchical structures. The three main goals of this thesis are building superior classifiers using attention-based deep neural networks~(DNNs), investigating the role of context modelling in the given tasks, and developing a framework for interpreting hierarchies and attention in deep attention networks. In the vision domain, gesture and posture recognition tasks in diverse environments, are chosen. In emotion, visual and speech emotion recognition tasks are chosen. These tasks are selected for their sequential properties for modelling a spatiotemporal context. One of the key challenges from a machine learning standpoint is to extract patterns which bear maximum correlation with the information encoded in its signal while being as insensitive as possible to other types of information carried by the signal. A possible way to overcome this problem is to learn task-dependent representations. In order to achieve that, novel spatiotemporal context modelling networks and the mixture of multi-view attention~(MOMA) networks are proposed using bidirectional long-short-term memory network (BLSTM), convolutional neural network~(CNN), Capsule and attention networks. A framework has been proposed to interpret the internal attention states with respect to the given task. The results of the classifiers in the assigned tasks are compared with the \textit{state-of-the-art} DNNs, and the proposed classifiers achieve superior results. The context in speech emotion recognition is explored deeply with the attention interpretation framework, and it shows that the proposed model can assign word importance based on acoustic context. Furthermore, it has been observed that the internal states of the attention bear correlation with human perception of acoustic cues for speech emotion recognition. Overall, the results demonstrate superior classifiers and context learning models with interpretable frameworks. The findings are very important for speech emotion recognition systems. In this thesis, not only better models are produced, but also the interpretability of those models are explored, and their internal states are analysed. The phones and words are aligned with the attention vectors, and it is seen that the vowel sounds are more important for defining emotion acoustic cues than the consonants, and the model can assign word importance based on acoustic context. Also, how these approaches for emotion recognition using word importance for predicting emotions are demonstrated by the attention weight visualisation over the words. In a broader perspective, the findings from the thesis about gesture, posture and emotion recognition may be helpful in tasks like human-robot interaction~(HRI) and conversational artificial agents (such as Siri, Alexa). The communication is grounded with the symbolic and sub-symbolic cues of intent either from visual, audio or haptics. The understanding of intent is much dependent on the reasoning about the situational context. Emotion, i.e.\ speech and visual emotion, provides context to a situation, and it is a deciding factor in the response generation. Emotional intelligence and information from vision, audio and other modalities are essential for making human-human and human-robot communication more natural and feedback-driven

    Automatic Screening of Childhood Speech Sound Disorders and Detection of Associated Pronunciation Errors

    Full text link
    Speech disorders in children can affect their fluency and intelligibility. Delay in their diagnosis and treatment increases the risk of social impairment and learning disabilities. With the significant shortage of Speech and Language Pathologists (SLPs), there is an increasing interest in Computer-Aided Speech Therapy tools with automatic detection and diagnosis capability. However, the scarcity and unreliable annotation of disordered child speech corpora along with the high acoustic variations in the child speech data has impeded the development of reliable automatic detection and diagnosis of childhood speech sound disorders. Therefore, this thesis investigates two types of detection systems that can be achieved with minimum dependency on annotated mispronounced speech data. First, a novel approach that adopts paralinguistic features which represent the prosodic, spectral, and voice quality characteristics of the speech was proposed to perform segment- and subject-level classification of Typically Developing (TD) and Speech Sound Disordered (SSD) child speech using a binary Support Vector Machine (SVM) classifier. As paralinguistic features are both language- and content-independent, they can be extracted from an unannotated speech signal. Second, a novel Mispronunciation Detection and Diagnosis (MDD) approach was introduced to detect the pronunciation errors made due to SSDs and provide low-level diagnostic information that can be used in constructing formative feedback and a detailed diagnostic report. Unlike existing MDD methods where detection and diagnosis are performed at the phoneme level, the proposed method achieved MDD at the speech attribute level, namely the manners and places of articulations. The speech attribute features describe the involved articulators and their interactions when making a speech sound allowing a low-level description of the pronunciation error to be provided. Two novel methods to model speech attributes are further proposed in this thesis, a frame-based (phoneme-alignment) method leveraging the Multi-Task Learning (MTL) criterion and training a separate model for each attribute, and an alignment-free jointly-learnt method based on the Connectionist Temporal Classification (CTC) sequence to sequence criterion. The proposed techniques have been evaluated using standard and publicly accessible adult and child speech corpora, while the MDD method has been validated using L2 speech corpora

    Robust text independent closed set speaker identification systems and their evaluation

    Get PDF
    PhD ThesisThis thesis focuses upon text independent closed set speaker identi cation. The contributions relate to evaluation studies in the presence of various types of noise and handset e ects. Extensive evaluations are performed on four databases. The rst contribution is in the context of the use of the Gaussian Mixture Model-Universal Background Model (GMM-UBM) with original speech recordings from only the TIMIT database. Four main simulations for Speaker Identi cation Accuracy (SIA) are presented including di erent fusion strategies: Late fusion (score based), early fusion (feature based) and early-late fusion (combination of feature and score based), late fusion using concatenated static and dynamic features (features with temporal derivatives such as rst order derivative delta and second order derivative delta-delta features, namely acceleration features), and nally fusion of statistically independent normalized scores. The second contribution is again based on the GMM-UBM approach. Comprehensive evaluations of the e ect of Additive White Gaussian Noise (AWGN), and Non-Stationary Noise (NSN) (with and without a G.712 type handset) upon identi cation performance are undertaken. In particular, three NSN types with varying Signal to Noise Ratios (SNRs) were tested corresponding to: street tra c, a bus interior and a crowded talking environment. The performance evaluation also considered the e ect of late fusion techniques based on score fusion, namely mean, maximum, and linear weighted sum fusion. The databases employed were: TIMIT, SITW, and NIST 2008; and 120 speakers were selected from each database to yield 3,600 speech utterances. The third contribution is based on the use of the I-vector, four combinations of I-vectors with 100 and 200 dimensions were employed. Then, various fusion techniques using maximum, mean, weighted sum and cumulative fusion with the same I-vector dimension were used to improve the SIA. Similarly, both interleaving and concatenated I-vector fusion were exploited to produce 200 and 400 I-vector dimensions. The system was evaluated with four di erent databases using 120 speakers from each database. TIMIT, SITW and NIST 2008 databases were evaluated for various types of NSN namely, street-tra c NSN, bus-interior NSN and crowd talking NSN; and the G.712 type handset at 16 kHz was also applied. As recommendations from the study in terms of the GMM-UBM approach, mean fusion is found to yield overall best performance in terms of the SIA with noisy speech, whereas linear weighted sum fusion is overall best for original database recordings. However, in the I-vector approach the best SIA was obtained from the weighted sum and the concatenated fusion.Ministry of Higher Education and Scienti c Research (MoHESR), and the Iraqi Cultural Attach e, Al-Mustansiriya University, Al-Mustansiriya University College of Engineering in Iraq for supporting my PhD scholarship
    corecore