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Abstract
Discrete speech emotion recognition (SER), the assignment of
a single emotion label to an entire speech utterance, is typically
performed as a sequence-to-label task. This approach, however,
is limited, in that it can result in models that do not capture tem-
poral changes in the speech signal, including those indicative of
a particular emotion. One potential solution to overcome this
limitation is to model SER as a sequence-to-sequence task in-
stead. In this regard, we have developed an attention-based bidi-
rectional long short-term memory (BLSTM) neural network in
combination with a connectionist temporal classification (CTC)
objective function (Attention-BLSTM-CTC) for SER. We also
assessed the benefits of incorporating two contemporary atten-
tion mechanisms, namely component attention and quantum at-
tention, into the CTC framework. To the best of the authors’
knowledge, this is the first time that such a hybrid architecture
has been employed for SER. We demonstrated the effectiveness
of our approach on the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) and FAU-Aibo Emotion corpora. The ex-
perimental results demonstrate that our proposed model outper-
forms current state-of-the-art approaches.
Index Terms: speech emotion recognition, connectionist tem-
poral classification, attention mechanism, bidirectional LSTM

1. Introduction
Automatic speech emotion recognition (SER), which focuses on
the identification of discrete emotion states, can be a challeng-
ing task, and relies heavily on the effectiveness of the speech
features for classification. Many works in this field treat the
task as a typical sequence classification problem, in which each
chunk of speech such as an utterance has exactly one label.
To predict the emotional label of the chunk such as an utter-
ance, models, such as long short-term memory recurrent neu-
ral networks (LSTM-RNNs) [1, 2, 3, 4, 5] are built following a
sequence-to-label recipe, in which the input is a sequence, and
the output is a single emotional label. However, such a conven-
tional sequence-to-label modelling approach for discrete SER
modelling is less than ideal. A critical underlying issue is a
loss of dynamic temporal information that can strongly reflect a
change in emotional state [6].

To address this issue, we herein propose an approach to
model the discrete SER problem temporally, utilising sequence-
to-sequence learning methods such as connectionist temporal
classification (CTC) [7]. In this approach, we treated the in-
put and output of the model as sequences. Initial research has
highlighted the effectiveness of such an approach [6], and CTC-
based models have shown strong performance in tasks such as

end-to-end speech recognition systems and social signal detec-
tion [8, 9, 10, 11, 12]. To date, however, work exploiting CTC
models for discrete SER has been very limited [4, 6, 13, 14].

However, when using CTC, there are two main limitations:
the hard alignment problem and the conditional independence
constraint [15]. Conditional independence is of particular con-
cern for discrete SER; it infers that the output predictions are
independent given the entire input sequence, which is not the
case in SER. We address these issues through the inclusion of
attention mechanisms directly within the CTC framework. At-
tention mechanisms enable a model to focus on a subset of its
input sequence, and they are widely used in a range of sequence-
to-sequence learning tasks, e. g., in speech recognition [16] and
natural language processing (NLP) [17, 18]. Moreover, the
application of attention can improve the performance of SER
models [2, 3, 19].

However, there are two key limitations in applying attention
in a CTC network: the possible assignment of the same weight
to every feature within a given frame [15] and an increase in the
number of learnable parameters associated with the inclusion of
attention [20]. Component attention has recently been proposed
as a method to overcome effects relating to spatial uniformity in
the learnt weights [15]. The main advantage of this technique
is that it enables the assignment of multiple temporal attention
weights, one for each spatial component [15]. Concerning an
increase in learnable parameters, quantum attention [20], which
is based on the quantum theory of weak measurement [21], has
been demonstrated in NLP to reduce the number of learnable
parameters. At the same time, it maintained comparable results
to an equivalent system enhanced with a standard attention [20].

Motivated by the above analysis, we have investigated
a novel sequence-to-sequence modelling solution, based on
attention-BLSTM-CTC, for the task of discrete SER. We com-
bined BLSTM and CTC to align emotional labels to emotion-
ally relevant frames automatically. This set-up should allow
the model to cope robustly with long utterances containing both
emotional and neutral components. Additionally, we extended
the CTC model in three separate versions incorporating local,
component, and quantum attention.

Our two main contributions can, therefore, be summarised
as follows: (1) We have developed an attention-based BLSTM
neural network combined with a unique probabilistic-nature
CTC loss function. Our results demonstrate the effectiveness of
this sequence-to-sequence modelling solution for discrete SER.
(2) We also investigated the use of two contemporary attention
mechanisms. These two attention mechanisms allow CTC to be
trained using soft, instead of hard, alignments. The presented
results indicate the suitability of this approach for discrete SER.
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2. Proposed Methodology
In this section, we outline the main steps required to implement
model attention directly within the CTC framework. First, we
describe the BLSTM and CTC approach used in our proposed
model. We then introduce the two attention mechanisms used to
form the novel CTC-attention hybrid architecture, which mod-
els the discrete SER task in a thorough sequence-to-sequence
manner.

2.1. System overview

The architecture of the proposed attention-BLSTM-CTC model
consists of four main components (Fig. 1): (i) an input layer,
where we employ spectrograms as the input of the model, (ii) a
BLSTM layer, to derive high-level representation from step (i),
(iii) an attention layer, utilising one of three different attention
mechanisms, and (iv) a CTC layer, in which the CTC model
is used to align emotional labels to emotionally salient frames
automatically.

2.2. Bidirectional long short-term memory recurrent neu-
ral networks

LSTM-based networks are widely used in the SER litera-
ture [22, 23, 1, 2, 3, 4, 5], as they model long-range dynamic
dependencies in the data while avoiding the problem of van-
ishing or exploding gradients during training [24]. As the
standard LSTM processes the input only in one direction, the
bidirectional long short-term memory recurrent neural network
(BLSTM) was proposed to overcome this limitation [25]. In a
BLSTM, the input sequence is processed both in the standard
order and in a reversed order [26].

2.3. CTC approach

The CTC model uses a loss function for sequence labelling that
can account for input and the target label sequence of different
lengths, without the need for any pre-segmentation. The key
idea of CTC is to introduce a blank labelNull, meaning the net-
work generates no label. This addition enables the network to
suppress frame-wise outputs, including repetitions of the same
labels, into the sequence of target outputs (e. g., phonemes or
characters).

Given an input sequence X = (x1, ..., xT ), CTC trains
the model to maximise the probability distribution P (l|X) for
the corresponding target label sequence l of length U(≤ T ).
CTC represents this distribution as a summation of all possi-
ble frame-level intermediate representations π = (π1, ..., πT )
(hereafter referred to as the CTC path):

P (l|X) =
∑
π∈Φ(l)

P (π|X), (1)

where Φ(l) denotes the set of CTC paths allowing for the in-
sertion of Null and repetition of non-blank labels to l, i. e.,
Φ−1(π) = l, noting, if lu ∈ L = {1, ...,K}, the softmax
layer is composed of |L ∪ {blank}| = K + 1 units. Based on
the conditional independence assumption, the decomposition of
the posterior P (π|X) is given by:

P (π|X) =

T∏
t=1

ytπt, (2)

where ytk is the k-th output of the softmax layer at time t, in-
terpretable as the occurrence probability of the corresponding
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Figure 1: Framework of our proposed model. First, spectro-
grams are fed into a BLSTM layer. We then apply one of three
different attention mechanisms and use CTC to align labels to
emotionally salient input frames.

label. The probability distribution P (l|X) can be computed ef-
ficiently using the forward-backward algorithm. The detailed
CTC training process is described in [6]. Note, we used the
CTC model for the work presented in this paper to update the
parameters of the BLSTM model. Herein, this combination is
denoted as BLSTM-CTC.

2.4. Attention-BLSTM-CTC model

In this section, we introduce the component attention and quan-
tum attention mechanisms to improve the suitability of the
BLSTM-CTC-based framework for SER.

2.4.1. Component Attention

Similar to [15], the component attention model investigated in
this paper considers a small subsequence of hidden feature vec-
tors rather than the entire sequence. Instead of applying the
same attention weight to all features extracted from the frame,
multiple attention weights are assigned to each frame – one for
each spatial component.

In order to compute the weights of each component in
the local attention mechanism, rather than the weights of each
frame, the weights are calculated as follows:

et,fn = tanh(W × C[t− scope−1
2

,t+ scope+1
2 ],fn + b), (3)

where W denotes the learnable weight matrix; C denotes the
output of BLSTM network; t, the time step of the input; fn, the
number of features; and scope, the length of the component
attention mechanism window. After calculating the weights
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of each component in every frame, we then normalise these
weights in feature level axes as follows:

αt,fn,i =
exp(et,fn,i)∑ scope−1

2

j=− scope−1
2

exp(et+j,fn,i)
, (4)

where αt,fn,i is interpretable as the level of contribution from
C, the output of the BLSTM network. Meanwhile, since fea-
tures are individually treated in component attention, i is used
to denote each feature.

The final output of attention mechanismU can be computed
as:

Ut = Annotate(α,C)

=

scope−1
2∑

i=− scope=1
2

αt+i × C[t− scope=1
2

,t+ scope−1
2 ]. (5)

We added a fully-connected layer after the component attention
layer to produce the probability of each label in every time step.
Finally, the CTC loss function is used to calculate the gradi-
ent, and the RMSProp Optimiser [27] is used to train the whole
network.

2.4.2. Quantum Attention

Quantum Theory (QT) is widely employed to explain cognitive
activities in psychology and cognition science, and it is widely
used in information theory [28]. In an analogy of weak mea-
surement in physics [21], we regard a human’s recognition of
emotion in speech as a system of Quantum Attention, i. e., the
features of the frame are the observable variables, and the im-
portance of the different frames to the emotion of the utterance
are the measurement results.

Similar to [20], the quantum attention mechanism inves-
tigated in this work employs weak measurement rather than
standard quantum measurement to model the process of SER.
Moreover, the weak value under the two-state vector formalism
(TSVF) is used to represent the degree of importance of differ-
ent frames for SER. The pre-state is the forward memory cell
which contains the information of all input features generated
in the past; the post-state is the backward memory cell which
contains the information of all input features (to be) generated
in the future. Thus, the weak value in the two-state vector for-
malism is:

ei,t =
Cfini × (Cti )

T × Cti × (Cini )T

Cfini × (Cini )T
, (6)

where i denotes the instance; t, the time step of the input; fin,
the final time step; and in, the first time step. Equation (6) can
be regarded as the degree of importance of the different frames
to the emotion at the statistical level.

As a result of the weak values produced by the above for-
mula, a tanh layer is applied to the resulting values:

αt = tanh(et). (7)

Finally, every feature in each frame is multiplied by wi
thereby applying the quantum attention mechanism. The final
output of the attention mechanism U is computed as follows:

U = Annotate(α,C) = α · C. (8)

Table 1: Instance distribution over four emotion classes –
Neutral, Happy, Sad, and Angry – of the IEMOCAP Dataset.

Session N. H. S. A. Total

1 223 132 104 62 521
2 217 191 100 22 530
3 198 149 190 90 627
4 174 195 81 84 534
5 287 280 133 31 731

Sum 1 099 947 608 289 2 943

Table 2: Instance distribution over five emotion classes – Angry,
Emphatic, Neutral, Positive, and Rest – of the FAU Aibo Emo-
tion Corpus.

A. E. N. P. R. Total

Train 881 2 093 5 590 674 721 9 959
Test 611 1 508 5 377 215 546 8 257

Sum 1 492 3 601 10 967 889 1 267 18 216

3. Experiments and results
To demonstrate the effectiveness of the proposed methods, we
performed a set of experiments on the popular interactive emo-
tional dyadic motion capture (IEMOCAP) [29] and FAU Aibo
Emotion corpus (FAU-AEC) [30] databases. The latter was
thereby featured in the original Interspeech Emotion Challenge.

3.1. Datasets

IEMOCAP is a well-known corpus made up of audio-visual
data with transcriptions of recordings of dialogues between two
actors [29]. The corpus is divided into two parts: improvise and
script. In our experiments, we only used the part improvise in
order to reduce the potentially confounding effect of semantic
information disturbance. However, the data distribution of each
emotion class is heavily unbalanced. As in [31], we therefore
merged the happy and excited utterances into the happy class.
This merger results in the use of four emotion categories for
training and evaluation: angry, happy, sad, and neutral. The
final number of instances of each emotion class are given in Ta-
ble 1.

We also used the FAU Aibo Emotion Corpus for evalua-
tion, which is composed of spontaneous and emotional German
speech samples [30]. The corpus contains 9.2 hours of Ger-
man speech from a total of 51 children interacting with Sony’s
pet robot Aibo at two different schools. As per [32], we used
9,959 utterances from 26 children (13 males, 13 females) as the
training set, and 8,257 utterances from 25 children (8 males,
17 females) as the test set. We concentrated on the five-class
problem with the emotion categories of anger, emphatic, neu-
tral, positive, and rest. The final number of instances of each
emotion class are given in Table 2.

3.2. Features

We used the extraction process described in [33] to form our
spectrograms. In short, each spectrogram was constructed using
the output of a 40-dimensional mel-scale log filter bank. These
features were computed over frames of 25 ms length and 10 ms
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stride and normalised to be in the range [0,1].

3.3. Experimental setup and evaluation metrics

Using the IEMOCAP dataset, we performed a 10-fold cross-
validation using a leave-one-out strategy, adopting the method-
ology of previous work. In each training process, eight speak-
ers from four sessions were used as training data, and the re-
maining session was separated into two parts: one being re-
garded as validation data and the other as test data. For the FAU
Aibo Emotion Corpus, we followed the Interspeech 2009 Emo-
tion Challenge guidelines [32], employing utterances from one
school (the Ohm-Gymnasium) for training and the other (the
Montessori-Schule) for testing1.

The proposed model has several parameters that are tuned
based on the recommendations of previous work that utilised
the same database. For CTC training, we made use of the Ten-
sorFlow2 deep learning framework. The RMSProp optimiser
was used to train our model in all the experiments, with a fixed
learning rate of 10−3. The mini-batch size was 32. We set 256
as the dimension for the bidirectional LSTM, and the network
contains two hidden layers with 256 bidirectional LSTM cells
(128 forward nodes and 128 backward nodes). Similar to [6],
we also compared the performance when assigning the num-
ber of emotional labels as 1) the number of words in x, 2) the
number of voiced phonemes in x, and 3) the double number of
voiced phonemes in x.

For the evaluation of results generated by the two datasets,
we used standard evaluation criteria. For IEMOCAP-generated
results, unweighted and weighted accuracies (UA and WA re-
spectively) are used as evaluation metrics. For FAU-AEC-
generated results, we consider only unweighted accuracy (UA),
since the FAU Aibo Emotion corpus is extremely unbalanced.
The instance upsampling strategy was also applied for the FAU-
AEC dataset.

3.4. Results and discussion

We observed that the BLSTM-CTC combined with attention
mechanisms outperformed the BLSTM-CTC without the at-
tention model on both datasets (cf. Table 3). For IEMOCAP,
the best UA (67.0 %) and WA (69.0 %) were achieved by our
proposed BLSTM-CTC with component attention, in a signif-
icant improvement over the baseline BLSTM-CTC (p < 0.05
in a one-tailed z-test). This set-up also achieved the best UA
(42.9 %) on FAU-Aibo, which is also a significant improvement
over the baseline BLSTM-CTC (p < 0.05 in a one-tailed z-
test). Overall, the proposed approach outperformed the baseline
BLSTM-CTC model. Using IEMOCAP, relative improvements
of 3.0 % (UA) and 3.1 % (WA) were observed, while a relative
improvement of 3.6 % in UA was observed using FAU Aibo
Emotion Corpus.

Furthermore, we observed that the BLSTM-CTC with com-
ponent attention performed better than BLSTM-CTC with local
attention (Table 3). As the component attention is an improve-
ment upon local attention, this higher performance validates our
hypothesis that separately weighting each component of a fea-
ture is essential in the computation of the attention vector.

Comparing the two attention mechanisms introduced in this
work, the performance of BLSTM-CTC with quantum attention
is lower than BLSTM-CTC with component attention, but still

1We will provide a URL for a doc with details on all partitions and
seeds upon acceptance.

2https://www.tensorflow.org

Table 3: Performance comparison of the baseline BLSTM-CTC
model and the improved BLSTM-CTC models enhanced by one
of three different attention mechanisms reported on both the
IEMOCAP and FAU-AEC datasets.

Methods IEMOCAP FAU-AEC
[%] UA WA UA

baseline BLSTM-CTC models w/o attention [6]

Word Number 63.5 64.7 40.3
Phoneme Number 65.1 66.9 41.4
Phoneme Number×2 63.6 64.7 40.8

proposed BLSTM-CTC models enhanced w/ attention

w/ Local Attention 66.3 68.0 41.8
w/ Component Attention 67.0 69.0 42.9
w/ Quantum Attention 65.4 68.0 42.4

Note: for IEMOCAP, we provide both unweighted and weighted accuracies
(UA and WA respectively) as the evaluation metric, while for FAU-AEC, we
only adopt UA as the evaluation measure, since this database is extremely
unbalanced.
The performance of the BLSTM-CTC is evaluated based on assigning the
number of emotional labels as the number of voiced phonemes in an utter-
ance.

surpasses the basic BLSTM-CTC model (in a one-tailed z-test,
p < .10 for IEMOCAP, p < .10 for FAU). Therefore, the incor-
poration of quantum attention can still be considered a better-
suited solution for SER.

The performance comparison between the different strate-
gies on how to split an utterance into emotional segments in this
work is consistent with the conclusions drawn in [6]; phoneme
level segmentation achieves the best performance.

4. Conclusions
In this paper, we presented an effective hybrid sequence-
to-sequence modelling approach for categorical speech-based
emotion recognition. The experimental results indicate that our
attention-based BLSTM-CTC approach achieves state-of-the-
art performance on the IEMOCAP and FAU-AEC datasets. We
hypothesise that the attention mechanisms yield improvements
in system accuracy by allowing the model to focus on the emo-
tionally salient parts of the speech signal.

In our experiments, CTC attention consistently outper-
formed the BLSTM-CTC approach. As our proposed hybrid
CTC-attention architecture is easily adaptable, future work will
focus on demonstrating its suitability in other computational
paralinguistics tasks. In other future efforts, we will explore
more effective sequence-to-sequence approaches to improve
speech emotion recognition.
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