326 research outputs found

    Curb-intersection feature based Monte Carlo Localization on urban roads

    Get PDF
    One of the most prominent features on an urban road is the curb, which defines the boundary of a road surface. An intersection is a junction of two or more roads, appearing where no curb exists. The combination of curb and intersection features and their idiosyncrasies carry significant information about the urban road network that can be exploited to improve a vehicle's localization. This paper introduces a Monte Carlo Localization (MCL) method using the curb-intersection features on urban roads. We propose a novel idea of “Virtual LIDAR” to get the measurement models for these features. Under the MCL framework, above road observation is fused with odometry information, which is able to yield precise localization. We implement the system using a single tilted 2D LIDAR on our autonomous test bed and show robust performance in the presence of occlusion from other vehicles and pedestrians

    Curb-intersection feature based Monte Carlo Localization on urban roads

    Get PDF
    One of the most prominent features on an urban road is the curb, which defines the boundary of a road surface. An intersection is a junction of two or more roads, appearing where no curb exists. The combination of curb and intersection features and their idiosyncrasies carry significant information about the urban road network that can be exploited to improve a vehicle's localization. This paper introduces a Monte Carlo Localization (MCL) method using the curb-intersection features on urban roads. We propose a novel idea of “Virtual LIDAR” to get the measurement models for these features. Under the MCL framework, above road observation is fused with odometry information, which is able to yield precise localization. We implement the system using a single tilted 2D LIDAR on our autonomous test bed and show robust performance in the presence of occlusion from other vehicles and pedestrians

    Perception for autonomous driving in urban road environment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    MOZARD: Multi-Modal Localization for Autonomous Vehicles in Urban Outdoor Environments

    Full text link
    Visually poor scenarios are one of the main sources of failure in visual localization systems in outdoor environments. To address this challenge, we present MOZARD, a multi-modal localization system for urban outdoor environments using vision and LiDAR. By extending our preexisting key-point based visual multi-session local localization approach with the use of semantic data, an improved localization recall can be achieved across vastly different appearance conditions. In particular we focus on the use of curbstone information because of their broad distribution and reliability within urban environments. We present thorough experimental evaluations on several driving kilometers in challenging urban outdoor environments, analyze the recall and accuracy of our localization system and demonstrate in a case study possible failure cases of each subsystem. We demonstrate that MOZARD is able to bridge scenarios where our previous work VIZARD fails, hence yielding an increased recall performance, while a similar localization accuracy of 0.2m is achieve

    Utilizing the infrastructure to assist autonomous vehicles in a mobility on demand context

    Get PDF
    In this paper we describe an autonomous vehicle that aims at providing shared transportation services in a mobility on demand context. As the service is limited to a known urban environment, prior knowledge of the environment can be exploited, as well as existing infrastructure sensors such as security cameras. We argue that utilizing infrastructure sensors yields greater safety of operation and allows reduction in the number of sensors required on-board, hereby reducing the cost of the vehicle. We describe the role that infrastructure sensors can play and show the resulting improved performances of the system, supported by simulation and field experiment results

    Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans

    Full text link
    Due to their ubiquity and long-term stability, pole-like objects are well suited to serve as landmarks for vehicle localization in urban environments. In this work, we present a complete mapping and long-term localization system based on pole landmarks extracted from 3-D lidar data. Our approach features a novel pole detector, a mapping module, and an online localization module, each of which are described in detail, and for which we provide an open-source implementation at www.github.com/acschaefer/polex. In extensive experiments, we demonstrate that our method improves on the state of the art with respect to long-term reliability and accuracy: First, we prove reliability by tasking the system with localizing a mobile robot over the course of 15~months in an urban area based on an initial map, confronting it with constantly varying routes, differing weather conditions, seasonal changes, and construction sites. Second, we show that the proposed approach clearly outperforms a recently published method in terms of accuracy.Comment: 9 page

    Mapping in urban environment for autonomous vehicle

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Vehicle localization with enhanced robustness for urban automated driving

    Get PDF

    Robust ego-localization using monocular visual odometry

    Get PDF
    corecore