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Summary

Vehicle autonomous driving has become one of the most popular research areas in

robotics. Autonomous vehicles will not only enhance operational safety and efficiency

of the transportation system, but also provide convenience to the vehicle users and im-

prove their productivity. This thesis focuses on developing the perception functions for

vehicle autonomous driving in the urban road environment. Fundamental perception re-

quirements are identified through literature review, and the contributions of this thesis

are the minimal-sensing solutions for these perception requirements. We demonstrate

that with the minimal sensing ability, our algorithms are able to achieve equivalent or

better performance compared to existing techniques.

We first review the history and current status of autonomous vehicle technology,

and summarize the important perception requirements for autonomous navigation in the

urban road environment. Three fundamental perception tasks are identified from the

review, including localization, object recognition, and environment understanding. Our

researches on these three perception tasks are the main body of this thesis.

To address the problem of vehicle localization, we manage to utilize the typical fea-

tures in the urban road environment for pose estimation, with only a tilted-down 2D

LIDAR and the odometry system. In the first stage of our research, curb-intersection

features are extracted to localize the vehicle. While curb features help estimate the posi-

tion in the lateral direction, intersection features are beneficial to reduce the longitudinal

uncertainty. Our algorithm makes use of both curb and intersection features for localiza-

tion, and shows accurate results. However, the curb-intersection-based algorithm only

applies to roads where curbs exist, and may not be general enough for all the urban road

ix
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scenarios. For this reason, in the second stage of the research, we consider incorpo-

rating other urban features for localization. Since the urban environment is composed

of artificial objects or structures which usually have vertical surfaces, we try to utilize

these vertical surfaces as the localization features. Compared to the curb-intersection

algorithm, the “vertical surface” algorithm is applicable to general urban road scenarios

(with/without curbs), and has better localization.

Problems of object recognition are also studied in this thesis. While object recogni-

tion is a broad research topic, our attention is focused on two specific tasks that are more

relevant to vehicle autonomous driving, i.e., road detection and moving object recogni-

tion. For the task of road detection, we investigate two categories of research, i.e., road

marking detection using vision, and road surface-boundary detection using LIDAR. For

vision-based marking detection, we propose a general framework for the detections and

analyses of various types of markings. For LIDAR-based surface-boundary detection,

we introduce the idea of a “3D rolling window” and solve the problem in a 3D manner.

As for the task of moving object recognition, we propose a spatial-temporal approach to

solve it, with only a 2D planar LIDAR. Avoiding using more elaborate and costly sen-

sors like the 3D Velodyne, we show that it is possible to obtain highly accurate object

classification via temporal accumulation. Our algorithm is tested in both campus and

highway scenarios, and shows good accuracy.

Besides the object recognition functions developed for the short-term object-oriented

detection purpose, to endow the robot with higher-level intelligence, we are also in-

terested in acquiring some long-term environment-oriented understanding. While the

understanding of an environment can be about any dimension of its properties, in our

research, we concentrate on the semantic and activity dimensions. Unlike existing re-

searches approaching different dimensions of understanding independently, we argue

that these dimensions are highly correlated and can be learned from each other. We im-

plement this idea to infer the semantic property from learned activity knowledge, and

x
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achieve promising results.

Keywords: Autonomous Vehicle; Urban Road Environment; Perception; Localiza-

tion; Road Detection; Moving Object Recognition; Environment Understanding; Se-

mantic Mapping; Activity Learning.
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Chapter 1

Introduction

Vehicle autonomous driving has become one of the most popular research areas in

robotics. Autonomous vehicles will not only enhance operational safety and efficiency

of the transportation system, but also provide convenience to the vehicle users and im-

prove their productivity. This thesis focuses on developing the perception ability for

vehicle autonomous driving in the urban road environment.

1.1 Background

DARPA Challenges. To stimulate research on autonomous vehicles, the Defense Ad-

vanced Research Projects Agency (DARPA) has organized a series of competitions for

autonomous vehicles. Two of the largest and most recent field demonstrations are the

DARPA Grand Challenge (DGC) [1] and the DARPA Urban Challenge (DUC) [2]. DGC

was held twice in 2004 and 2005. In the first competition none of the vehicles finished

the route. In the second one, five teams were able to complete a 212 km off-road course

in the desert.

In DUC, held in 2007, autonomous robots were required to complete autonomous

navigation in the urban environment, which was a more difficult task compared to the

previous one. In this competition, the autonomous vehicles had to navigate, in a fully

autonomous manner, through a partially known urban-like environment populated with

(static and dynamic) obstacles and perform different tasks such as road and off-road

driving, parking and visiting certain areas while obeying traffic rules. As the emphasis

of the competition was geared more towards military applications, the vehicles had to
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1.1. Background

be fully self-contained in every aspect including perception, motion planning, behavior

reasoning, etc. Although this leads to an elegant setup, the situations encountered in

DUC do not closely represent those faced in real-world crowded environments such as

in cities like Singapore, London, etc. In addition, the cost of the hardware components on

these autonomous vehicles is extremely high, making them impractical to be employed

in social or commercial applications. The majority of the cost comes from the expensive,

high-performance sensors (e.g. Velodyne LIDAR) and localization units (e.g. Applanix

Inertial Navigation System), which are needed so that the vehicles can effectively handle

all the possible (even adversarial) environments they may encounter.

Google Car. The company Google has taken the lead in autonomous vehicle re-

search after the success of the two challenges [3]. The Google driverless cars have

demonstrated their ability of autonomous navigation in the crowded urban environment.

However, similar to the DARPA stories, their full autonomy comes with the high cost of

expensive sensors, like Velodyne LIDAR, high-precision GPS/INS, and multiple cam-

eras and radars.

Future Urban Mobility Project. In 2010, the Singapore-MIT Alliance for Research

and Technology (SMART) initiated an interdisciplinary research program project on Fu-

ture Urban Mobility (FM). Autonomy in Mobility-on-Demand Systems is one research

project in FM. As part of the research, we are aiming to realize vehicle autonomy under

minimal sensing [4–12]. Instead of relying on powerful but expensive sensors like 3D

LIDAR, we use cheap sensors of limited sensing ability, such as 2D laser range find-

ers and cameras, to realize localization, obstacle detection, and other various perception

functions. The requirement of minimal sensing pushes us to develop more intelligent

algorithms under available perception resources. On the other hand, we want to utilize

infrastructure sensors for additional information. Nowadays modern cities are evolving

into sense-able cities with the increasing deployment of various sensors. For example,

cameras are mounted to monitor traffic, loop detectors to count vehicle numbers, and

so on. In the electronic road pricing (ERP) project in Singapore, even 24/7 tracking of

vehicles is in trials. All the information from the above infrastructure sensors can be

very useful for a vehicle to perceive its environment.

Till now, we have two autonomous prototypes converted, one is a Yamaha G22E

golf cart shown by Figure 1.1, and another is an iMiev shown by Figure 1.2. These
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two vehicles have been thoroughly tested inside and outside the NUS campus, and have

demonstrated good performances [13] [14]. More details of our project can be found

from Video (1)(2)(3) in Appendix B.

Figure 1.1: SMART autonomous golfcart

Figure 1.2: SMART autonomous iMiev

1.2 Perception for Autonomous Driving

The software system of our autonomous vehicle is composed of three modules: the

perception module for environment sensing, the planning module for decision making
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Perception

Planning

Control

Sensor Input

Control Output

Figure 1.3: Software structure of SMART autonomous vehicle

and path planning, and the control module for the low-level speed and steering control.

Figure 1.3 illustrates the software structure of the vehicle. This thesis is focused on

developing the perception module of an autonomous vehicle, which parses measurement

readings from sensors, and generates perception results about its own states and the

surrounding environment. The perception results will be used as direct inputs to a

vehicle’s planning module, and are hence of vital importance.

1.2.1 Characteristics of Urban Road Environment

Vehicle autonomous driving in different environments requires different perception func-

tions, as suggested in the two DARPA Challenges. In DGC, the basic perception func-

tions are only localization and traversable road detection. However in DUC, autonomous

vehicles have to be able to not only localize themselves and detect roads, but also detect

other agents and negotiate the traffic. Indeed, the urban road environment is a typical

environment with distinctive characteristics. On one hand, the urban road environment is

more challenging than the rural or desert environment, considering that it is full of other

dynamic agents like pedestrians and cars, so that an autonomous vehicle has to be able

to detect and deal with these agents well. On the other hand, however, since the urban

road environment is a semi-structured environment, it provides multiple conveniences

for autonomous navigation: since urban roads are usually well paved, road surface and

boundary can be easily detected; markings on the road surface can be relied on to pro-

vide useful navigation guidance; vertical surfaces of urban buildings can be utilized for

localization; etc. In the development of the perception functions, these characteristics

of the urban road environment are fully considered and utilized, making our perception
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functions accurate and robust.

1.2.2 Minimal Sensing

The contributions of this thesis are the minimal-sensing solutions for the fundamental

perception functions of autonomous driving. While some of the perception problems

may have been widely studied, we manage to solve them with minimal sensing abil-

ity. For example, expensive GPS/INS systems or 3D LIDARs (like a Velodyne) have

been utilized for decimeter-level localization [15], our method manages to achieve the

same accuracy with only the odometry and a 2D LIDAR [8]. The idea of “perception

under minimal sensing” helps bring down the cost of our autonomous vehicle, as well

as distinguishes our researches from other projects. We demonstrate that with the mini-

mal sensing ability, our algorithms are able to achieve equivalent or better performance

compared to the existing work.

While we have two different autonomous testbeds, they share the same sensor con-

figuration, i.e., an odometry system, two 2D LIDARs, and one webcam. Table 1.1 lists

the sensors used for the golfcart testbed. According to the objects that sensors measure,

they can be classified into two types, i.e., the proprioceptive type (such as the odometry

system) to measure a robot’s internal states, and the exteroceptive type (such as the LI-

DAR and vision sensors) to observe the surrounding environment. In our application, the

odometry system is used to measure the vehicle’s orientation and displacement, which

provides the necessary ego-motion information for vehicle localization as well as other

perception functions. The exteroceptive sensors of our system include two 2D LIDARs

and one webcam, where the tilted-down LIDAR is used to perceive the road surface and

the nearby off-road structures, the planar LIDAR to handle the obstacles on a horizontal

plane from a distance, and the webcam to provide visual clues of the environment. This

sensor configuration provides the most essential sensing ability for vehicle autonomous

driving, and the focus of this thesis is to realize the perception functions under this min-

imal sensing configuration.
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Table 1.1: Sensor configuration for golfcart testbed

Sensor Type Sensor Name Modules

Proprioceptive Odometry
IMU MicroStrain 3DM-GX3-25

Wheel Encoder Scancon-2RS

Exteroceptive
LIDARs

Tilted-down LIDAR SICK LMS-151

Planar LIDAR SICK LMS-151

Vision Webcam Logitech  C910

Own States Surrounding Environment

Perception

Localization Object Recognition
Environment 

Understanding

Road 

Detection

Moving Object 

Detection
Activity Learning Semantic Mapping

Chapter 3&4

Chapter 5&6 Chapter 7 

Chapter 8 

Figure 1.4: Thesis scope and outline

1.3 Scope of the Thesis

While perception is a broad research area covering a large variety of topics, this thesis

only studies a small portion of them which are critical to vehicle autonomous driving.

Figure 1.4 summarizes the perception functions studied in this thesis. From a broad

view, these perception functions can be classified into two categories, i.e., functions to

estimate the vehicle’s own states, and functions to perceive the vehicle’s surrounding

environment. For own state estimation, the localization problem is studied, which is

to estimate the vehicle pose in given global coordinates. For surrounding environment

sensing, we are not only interested in short-term object-oriented recognition, for exam-

ple, road detection and moving object recognition, but also interested in acquiring long-

term environment-oriented understanding, such as a place’s semantic meaning, learning

human activity patterns at this place, etc.
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1.3.1 Localization

Mobile robot localization is the problem of determining the pose of a robot relative to

a given map of the environment [16]. Localization is one fundamental requirement for

vehicle autonomy. While other researchers rely on an expensive GPS/INS system or 3D

sensor for high-accuracy localization, we acquire the ability using only the odometry

system and a planar 2D LIDAR.

In the first stage of our research, we propose a Monte Carlo Localization (MCL)

method using curb-intersection features on urban roads [6]. The curb, which defines the

boundary of the road surface, is one of the most prominent features on an urban road.

An intersection is a junction where two or more roads merge, appearing where no curb

exists. The combination of curb and intersection features carries significant information

about the urban road network, and can be exploited to localize a vehicle. We propose a

novel idea of “synthetic LIDAR” to encode the two types of features into the format of

laser scans, and integrate these synthetic laser scans into a MCL framework for precise

localization. The proposed algorithm is implemented with only a single tilted-down 2D

LIDAR and the odometry system, and achieves satisfactory results.

However, the curb-intersection-based algorithm only applies to the road segments

where curbs exist, and may not be general enough for all the urban road scenarios. For

this reason, in the second stage of the research, we consider incorporating other urban

features for localization. In fact, there are actually many other salient features in the

urban environment that can facilitate localization, such as lamp posts and building out-

lines. The common traits of these artificial objects (or structures) are that they all have

vertical surfaces. To counter the limitations of the curb-intersection-based method and

utilize the general artificial objects, we propose to use the “vertical surface” features for

localization [8]. In the proposed method, a 3D point cloud is first accumulated with a

tilted-down LIDAR in a rolling-window manner, from which the points cast on vertical

surfaces are extracted. We introduce the idea of “Synthetic LIDAR” to compress the

extracted points into a scan-like format, and use the synthesized scans for localization.

Compared to the curb-intersection algorithm, the “vertical surface” algorithm is appli-

cable to general urban road scenarios (with/without curbs), and has better localization

accuracy.
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1.3.2 Road Detection

Road surfaces are traversable areas where vehicles can safely navigate through, the de-

tection of which is hence of much interest for vehicle autonomous driving. The results of

road detection can not only serve as the guidance for vehicle path planning and control,

but also provide the contextual information to solve other perception problems. Current

research of road detection can be mainly classified into two categories, i.e., road mark-

ing detection and road surface-boundary detection, both of which will be covered in this

thesis [9] [17].

Road Marking Detection. Road markings are the paintings on the road surface to

provide traffic guidance information for vehicles and pedestrians. Common road mark-

ings include lane markings, arrows, characters, zebra crossing, etc. Road marking detec-

tion has been a popular research topic in the context of Autonomous Driver Assistance

Systems (ADAS). Researchers aim to detect and locate the road markings, and utilize the

results to provide driver assistance. While researchers have proposed various methods to

detect the different types of markings, there is a lack of a general framework which sup-

ports all the detection purposes. In our work, we develop a general framework for road

marking detection and analysis using vision [17]. Our basic idea is to extract individual

markings and classify them based on their contours. Each type of marking will have its

own dedicated classifier, which extracts the markings of interest, and filters out the rest.

The recognized markings will be fed into an analysis process to analyze its guidance

information. Unlike existing researches which only deal with certain specific types of

markings, our proposed method is general enough to support a variety of marking types.

Road Surface-Boundary Detection. While marking detection is only applicable to

the painted roads where markings exist, road surface-boundary detection is not limited

to that. In our research, we try to detect the surfaces and boundaries of urban roads using

a tilted-down 2D LIDAR.

In our initial research, road surfaces and boundaries are detected based on individual

laser scans [6]. Sensing on an urban road, scans from a tilted-down LIDAR will show

a piecewise property in their angle-range functions. Laser scans can be segmented uti-

lizing this property, and the segmented scan pieces can then be classified as either road

surface, boundary or background noise according to certain heuristic criteria. While this

method achieves satisfactory results, it has a strong assumption about the sensing sce-
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nario: road boundaries should always intersect the projected laser line on the ground,

and there are at most two boundary points in each scan. This assumption does not ap-

ply to all the sensing scenarios, e.g. where road boundaries are actually parallel to the

projected laser line. In addition, since the detection is based on individual measurement,

it ignores the temporal relationship between adjacent scans, and is hence vulnerable to

noise.

Considering these limitations, in the following research, we develop a new detection

method using accumulated 3D data [9]. We introduce the idea of a 3D rolling window

to maintain the data accumulated from 2D scans, and develop a cascaded process for

the road detection purpose. Since this method relies on no assumption about the sensing

scenario, it is able to deal with all the different situations. In addition, since the temporal

relationship between consecutive scans can be well maintained in the 3D accumulation,

this detection method is able to achieve better accuracy and more robust performance.

1.3.3 Moving Object Recognition

Since the urban road environment is shared by human beings, an artificially intelligent

vehicle has to be able to recognize and live with these dynamic agents, pedestrians and

vehicles for example. In our research into “dynamic” human agents recognition, a re-

duced problem of “moving” object recognition is studied: while every human agent has

the potential to move - noted as “dynamic”, our attention is focused on recognizing those

entities actually moving. We propose a spatial-temporal (ST) approach for moving ob-

ject recognition using only modest sensory data [12]. Avoiding using more elaborate and

costly solutions (e.g., outdoor depth cameras and 3D range finders), our method works

with a simple planar 2D LIDAR on a mobile platform. Although the sparsity of sensor

information from a 2D LIDAR complicates the detection task, we show that it is possible

to obtain highly accurate object classification via temporal accumulation and a coupled

classification process.

1.3.4 Environment Understanding

While researchers have spent significant efforts on the detection problems of various

objects, getting a good understanding of the environment that hosts these objects and

the robot is also of great importance. Unlike the object-oriented detection problems
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which are focused on the short-term momentary recognition of objects in the robot’s

local neighborhood, the environment-oriented understanding aims at acquiring a long-

term consistent model at the global scale. The understanding of an environment can

happen at different dimensions, such as the metric dimension, semantic dimension, etc.

In traditional studies, attention has been mostly focused on the metric dimension,

where various algorithms have been proposed to build a consistent metric representation

of the environment. The most representative work is SLAM (Simultaneously Localiza-

tion and Mapping). However, the understanding of an environment is never limited to

metric mapping, but extends to other more broad dimensions, such as the dimensions

of activity and semantics. We argue that the activity and semantic information are two

additional important dimensions of information for vehicle autonomous driving, and can

be inferred from each other [11].

Activity Learning. Activities of human agents in the urban road environment are

usually not erratic but follow certain patterns, which are implicitly determined by social

norms and traffic rules. Knowing these motion patterns not only helps an autonomous

vehicle predict human behaviors and intentions, but also enables it to perform human-

like path planning. In our work, we propose an activity learning method using collected

trajectories from a mobile platform. Firstly, pedestrians are detected and tracked using

on-board sensors. Secondly, track classification and clustering are performed. Thirdly,

the information of the tracks is registered into a grid map, and finally the pedestrian

activity model is learned using Gaussian Processes (GP).

Semantic Mapping. Semantic mapping has become a popular research topic in

recent years. By augmenting the traditional metric/topological maps with higher-level

semantic knowledge, researchers aim to help robots to really “understand” their environ-

ments. A semantic map can not only facilitate human robot interaction, but also help a

robot perform advanced reasoning and planning. Unlike existing research acquiring se-

mantic knowledge through interpreting appearance features, we propose a novel method

of semantic mapping by analyzing the learned activity patterns. While an environment

serves as the space for different agents to conduct different activities, it can be divided

into different functional areas, with each area corresponding to certain types of activities.

For this reason, we can infer the semantic meaning of an area from its associated activity

information.
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In our implementation, we want to recognize the different functional areas for pedes-

trians in the urban road environment, i.e., “pedestrian path”, “entrance/exit”, “crossing”

and “sidewalk”. By observing pedestrian activities over time, the semantic property of a

place can be inferred from their motion patterns. A pedestrian activity model of the envi-

ronment is first learned, and then 2D grid semantic mapping is performed by classifying

the semantic properties of each grid cell with the learned activity model. Our proposed

method is validated through experiments, and has shown promising results.

1.4 Thesis Outline

In summary, this thesis is focused on developing the perception ability for autonomous

driving in the urban road environment. The contributions of this thesis are the minimal-

sensing solutions for the fundamental perception functions described above. The thesis

is organized as follows. Chapter 2 provides a general literature review about the per-

ception techniques for vehicle autonomous driving. Chapter 3 and Chapter 4 study the

problem of vehicle localization. Chapter 5-7 are focused on object-oriented recognition,

where Chapter 5 and Chapter 6 introduce our research on road detection, and Chapter 7

presents our method of moving object recognition. In Chapter 8, environment-oriented

understanding problems are addressed. Chapter 9 concludes the thesis and discusses the

future work.

More supplementary materials can be found in the appendices, including the author’s

publication list, and the video links for the overall project and for the perception func-

tions studied in this thesis.
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Chapter 2

Literature Review

Serving as the sensorium of an autonomous vehicle, the perception module plays a vital

role for this artificially intelligent agent, enabling it to localize itself, approach the des-

tination via drivable ground, and at the same time avoid collisions with other agents like

pedestrians or vehicles. In this chapter, we study the development of autonomous vehi-

cle technology worldwide, and discuss the perception modules of different autonomous

vehicle projects. Three fundamental perception functions for vehicle autonomous driv-

ing are identified from the study, i.e. localization, object recognition, and environment

understanding, which will be reviewed in detail in the subsequent sections.

2.1 Autonomous Vehicles and Their Perception Modules

2.1.1 A Brief History

The technology of autonomous vehicle dates back to the 1920s, when a radio-controlled

driverless car was demonstrated on New York streets. While this vehicle was not really

autonomous but remotely controlled, it is considered as the beginning of the era of au-

tonomous vehicles [18]. Ever since then, the technology of vehicle autonomy has started

its long-term evolution.

Early-stage autonomous vehicles worked in a lane-following way. They were able

to perform lane-keeping, cruise control, collision avoidance and other basic operations.

These systems were usually semi-autonomous in the sense that they had dedicated lanes,

and needed human intervention from time to time. The perception modules in these

vehicles were generally simple, where vision/magnetic sensors played an important role
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for the lane detection and tracking purpose. Representative projects of this stage are the

Prometheus Project in Europe and the California Path Project in USA [19].

To spur the innovation of autonomous vehicle technology, DARPA launched DGC

and DUC. Autonomous vehicles in DGC were required to navigate through a 142-mile

long desert course, with GPS way points provided two hours before the challenge [1].

Two major perception functions were required to complete the challenge, i.e. localiza-

tion and drivable terrain detection. In the perception system of the challenge winner –

Stanley, a high-accuracy GPS/INS device was used to solve the localization problem,

and the terrain analysis was performed with both LIDAR and vision data [20].

Although DGC achieved great success, vehicles in this challenge were designed to

drive in desert off-road terrain, and were not applicable to urban environments. To foster

research into vehicle autonomy on urban roads, DARPA launched DUC in 2006 [2]. The

challenge was held in a city-like environment, and participants were required to complete

a 96 km course within 6 hours. In the challenge, the vehicles had to avoid other human-

driven/autonomous vehicles, handle intersections and maneuver in car parking zones,

while obeying all traffic regulations. DUC provided an invaluable chance for researchers

to really understand the problem of autonomous driving in urban environments, and to

recognize not only the challenges but also the opportunities. Research carried out in

DUC stood as the state of the art at that time, and shed light on the development of

autonomous vehicles nowadays.

We review the perception modules of the six finishers in DUC, and summarize their

sensor configurations and perception functions in Table 2.1. It is observed that although

these autonomous vehicles are designed independently and differently, they identify sev-

eral common perception functions: vehicle localization, object/obstacle detection, object

tracking, and road/lane detection. These perception functions actually provide the most

basic perception ability for a vehicle navigating in the urban environment: to determine

where to go, the vehicle has to be able to localize itself first; to safely navigate through

the urban traffic the vehicle has to be able to detect other objects or obstacles; to predict

the motions of dynamic agents the ability of object tracking is desired; last but not the

least, road/lane detection is desired for the vehicle to drive on-road. Sensors of different

modalities and types are placed around the DUC vehicles to realize the above perception

functions: high-accuracy GPS/INS devices are employed for localization; Radars and
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2D/3D LIDARs are mounted for object detection and tracking; cameras are used for the

lane detection purposes; etc.

2.1.2 Current Trends

Seven years have passed since DUC. Nowadays autonomous vehicle technology is em-

bracing its golden age – almost every automobile company is engaged in developing its

own autonomous prototype. We review several current state-of-the-art projects [21] [22]

[23] [24] [25], and summarize their perception modules in Table 2.2. Unlike the DUC

vehicles equipped with redundant and expensive sensors regardless of the cost, current

autonomous vehicles projects try to achieve equivalent perception ability with fewer and

cheaper sensors. For example, it is noticed that some of the current projects are trying to

get rid of the expensive GPS/INS devices, and use feature matching methods to solve the

localization problem. It is also noticed that while 3D LIDARs are heavily relied on for

object detection and tracking in the past DUC [2] and in the current Google project [21],

to reduce the cost, some groups are researching to achieve equivalent detection ability

using alternative cheaper sensory modalities [22] [23] [24].

Besides the interest in low-cost sensors, there are two other notable research trends in

the current autonomous vehicle community. The first trend is to maximize the utilization

of the vision modality. Back at the DUC time, vision was usually just used to recognize

road markings or as a complement to other sensors like LIDAR. Nowadays, researchers

are applying vision for various perception tasks, such as localization [26] [27] [28], real-

time object recognition [29], terrain mapping [30], etc. The driving force behind this is

that the vision modality is relatively cheaper, but able to provide rich information about

the environment.

Another trend is to endow the vehicles with high-level intelligence of semantic un-

derstanding. While in the past years researchers have spent huge efforts to help robots

build metric maps of their environments, nowadays much attention is turned to the se-

mantic interpretation. By augmenting the traditional metric environment model with

higher-level semantic knowledge, researchers want to help robots really “understand”

the surrounding environments [31] [32].
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Table 2.1: A summary of perception systems for the six finishers in DARPA Urban
Challenge [2]. Several common perception functions are identified: vehicle localiza-
tion, object/obstacle detection, object tracking, and road/lane detection. To realize these
perception functions, various sensors of different modalities were used.

Ranking Vehicle-
Team Name Sensors Perception Functions Brief Descriptions

1st Boss-Tartan

• Applanix POS-LV 220/420 
GPS/IMU;

• SICK LMS LIDAR;
• Velodyne HDL-64 LIDAR;
• Continental ISF 172 LIDAR;
• IBEO Alasca XT LIDAR;
• Continental ARS 300 Radar;
• Point Grey Firefly;

Moving Object Detection 
and Tracking Detect and track moving objects;

Static Obstacle Detection 
and Mapping Detect static obstacles, such as curbs;

Localization Localize the vehicle relative to road using
road boundary information;

Road Shape Estimation Estimate the geometry of unknown roads;

2nd Junior-
Stanford

• Applanix POS-LV 220/420 
GPS/IMU;

• SICK LMS LIDAR;
• RIEGL LMS-Q120 LIDAR;
• Velodyne HDL-64E;
• IBEO LIDARs;
• BOSCH  Long Range 

Radars LRR2;
• Distance Measurement Unit;

Laser Obstacle Detection Detect general obstacles using LIDAR data;

Static Mapping Build a local map by accumulate static data
overtime;

Dynamic Object 
Detection and Tracking Detect and track dynamic objects;

Precise Localization Localize the vehicle using road reflectivity
and boundary information;

3rd Odin-
Victor Tango

• NovAtel GPS/INS;
• SICK LMS LIDAR;
• IBEO Alasca XT LIDARs;
• IBEO Alasca A0 LIDARs;
• Cameras;

Object Classification Identify both static and dynamic obstacles
using IBEO software and vision;

Localization Compute vehicle global and local position
using GPS/INS information;

Road Detection Detect road boundary and identify the
drivable area;

Dynamic Obstacle 
Precition Predict likely paths of dynamic obstacles;

4th Talus-MIT

• Applanix POS-LV 220 
GPS/INS;

• Velodyne HDL-64 LIDAR;
• SICK LMS LIDARs;
• Point Grey Firefly Cameras;
• Delphi Radars

Localization Estimate vehicle global position using
GPS/INS information;

Obstacle Detection Detect and track obstacles using 2D LIDAR
and Velodyne data;

Hazard Detection Determine hazards the vehicle shouldn't drive
over, such as curbs;

Lane Finding Identify the road using both vision and
LIDARs;

5th or 
6th

Little Ben-
Ben Franklin

• Oxford Technical Solutions 
RT-3050 unit,;

• SICK LIDARs;
• Hokuyo LIDARs;
• Point Grey Bumblebee 

Stereo Camera;
• Velodyne HDL-64E

Localization Localize vehicle pose using Oxford Technical
Solutions RT-3050 unit;

LIDAR Ground/Obstacle 
Detection Extract ground plane and obstacles;

LIDAR Lane Marking 
Detection

Detect lane markings using LIDAR
reflectivity values;

Dynamic Obstacle 
Tracking Track moving objects;

Vision Perception Extract road markings using stereo vision;

Mapping Fuse perceptual measurements into a map;

5th or 
6th

Skynet-
Cornell

• GPS/INS System;
• Velodyne HDL-64E 

LIDAR;
• SICK LIDARs;
• IBEO Alasca XT LIDARs
• Delphi Radars;
• MobilEye Camera;

Obstacle Detection and 
Tracking

Detect and track obstacles using LIDAR,
Radar and Vision Sensors;

Localization Localize the vehicle using GPS/INS system;

Lane Marking Detection Detect Lane markings using vision;
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Table 2.2: A summary of perception systems for recent notable projects [21] [22] [23]
[24] [25]. It is noticed that unlike the DUC vehicles equipped with redundant and expan-
sive sensors, current autonomous vehicle projects try to achieve equivalent with fewer
and cheaper sensors.

Research 
Group

Vehicle Name 
(if any) - Module Sensors Perception Functions Brief Descriptions

Google Prius / Lexus

• GPS/INS System;
• Velodyne HDL-64E;
• Radars;
• Cameras

Localization and Mapping
Perform vehicle localization and 
environment mapping using LIDAR 
intensity data;

Object Recognition Recognize different types of objects 
based on the 3D data from Velodyne;

Moving Object Tracking Track moving objects;

Traffic Light Detection Detect the traffic lights and their states;

CMU Cadillac SRX

• GPS/INS System;
• 2D LIDARs;
• Radars;
• Video Camera;
• FLIR Camera

Localization
Localize the vehicle in the road network 
using lane marking and road shape 
features, and GPS/INS system;

Object Detection Object detection using LIDAR, and 
vision;

Lane Marking Detection Lane marking detection using vision;

VisLab BRAiVE -
Hyundai Sonata

• GPS/INS System;
• Firewire A Cameras;
• Point Grey Cameras:

FireFlyMV, 
Dragonfly2;

• Hokuyo LIDARs
• IBEO Lux LIDAR,
• Hella IDIS LIDAR;
• Radars

Traffic Sign Detection Detect traffic signs;

Obstacle Detection Detec obstacles using LIDAR and stereo 
vision;

Object Recognition Detect various objects like pedestrians, 
vehicles, etc. 

Terrain Mapping Identify drivable area;

Lane Marking Detection Detect lane markings using stereo-
cameras;

Scene Classification Classify the environment into different 
driving scenes;

Oxford RobotCar –
Nissan LEAF

• 2D LIDARs;
• Stereo Cameras;
• INS System

Localization Localize the vehicle using push-broom 
LIDAR or stereovision;

Dynamic Object Detection Detect and tracking dynamic objects;

Environment Understanding Learn the semantic model of the road 
environment;

Stanford Junior -
Volkswagen Passat

• Applanix POS-LV 
220/420 GPS/IMU;

• SICK LMS LIDAR;
• Velodyne HDL-64E;
• BOSCH Radars;
• Point Grey Cameras: 

Ladybug3, Point Grey 
Flea2, Grasshopper.

Mapping and Localization
Generate high-resolution intensity-based 
ground map, and localize the vehicle 
relative to it;

Object Recognition Recognize and track obstacles using 
Velodyne data;

Traffic Light Detection Detect traffic lights and their states using 
vison;

Generic Sign Detection Locate the position and orientations of 
road signs;
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2.1.3 Discussion

The focus of this thesis is on developing the perception functions for vehicle autonomous

driving. While it is impossible to cover all these topics in my Ph.D work, three funda-

mental and interesting questions are selected, i.e. localization, object recognition, and

environment understanding. Localization is the problem of estimating the position of

the vehicle, which provides the vehicle its spatial relationship to the surrounding en-

vironment as well as the destination. The localization ability is the most fundamental

requirement for almost any mobile robot. Object recognition is the problem of detecting

the existence of certain types of objects, ranging from static to dynamic entities. For a

vehicle to safely navigate through an urban environment populated with various static

structures and dynamic objects, robust object recognition becomes a critical require-

ment. While the abilities of localization and object recognition stand out as the most

basic and necessary abilities for autonomous driving, environment understanding aims

to help the vehicle really “understand” the environment that it lives in, endowing it with

higher-level intelligence.

In our researches, we aim to realize the above perception functions with the idea of

minimal sensing. Except for the odometry system, the major sensors of the vehicle are

only one webcam and two planar LIDARs, as summarized in Table 1.1. We show that

it is feasible to realize the studied perception functions with only such sensors. Existing

literature of these perception topics will be reviewed in the following sections.

2.2 Localization

Mobile robot localization is the problem of determining the pose of a robot relative to

a given map of the environment [16]. It is one fundamental requirement for vehicle

autonomy.

Localization problems can be categorized into different types from different perspec-

tives. Considering the availability of the initial position, localization can be distinguished

as three types: position tracking, global localization, and the kidnapped robot problem.

Considering the environment that a robot navigates, it can be distinguished as static en-

vironment localization and dynamic environment localization. From the viewpoint of

motion control for localization, it can be categorized into the passive type and the active
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2.2. Localization

type. From the viewpoint of the number of robots involved, it can be classified as single-

robot localization and multi-robot localization. The taxonomy introduced here provides

a good way to understand the natures and difficulties of different localization problems.

Existing approaches to localization can be categorized into four major streams: the

GPS/INS fusion technique, the road matching technique, map-aided localization, and

the SLAM (Simultaneous Localization and Mapping) technique. These approaches will

be reviewed and discussed in detail.

2.2.1 GPS/INS Fusion Approach

In the past decades, researchers spent much effort on the fusion of a Global Positioning

System (GPS) and an Inertial Navigation System (INS) to estimate vehicle position [33]

[34] [35].

There are currently three GPS systems available, the American GPS, the Russian

Glonass, and the China Beidou Navigation Satellite System. The European Union is

developing their Galileo system, which is set to be completed by 2020. The basic oper-

ational idea of GPS is that a receiver measures the propagation time of satellite signals,

and further calculate its distances to the satellites. These distances are called range es-

timates. When three or more satellites are available, position of the receiver can be

determined by means of triangulation [36]. From the working manner of the GPS, it is

found that the positioning accuracy depends heavily on the accuracy of the range esti-

mates, which are subjected to common mode errors (such as ionospheric radio signal

propagation delays, satellite clock and ephemeris errors) and non-common mode errors

(such as multipath radio signal propagation, and receiver noise). To compensate the

common mode errors, differential GPS (DGPS) technology is introduced. A DGPS uses

a network of ground-based reference stations to calculate the difference between the

positions indicated by the satellite system and the known fixed positions, and provides

correction information for receivers in the coverage. There are also some satellite-based

augmentation systems (SBASs) that use geostationary satellites for the same purpose.

However, even though the GPS accuracy is improved by the above augmentation

techniques, a stand-alone GPS is still vulnerable to various types of noises, and has

to be fused with other types of information to obtain desired accuracy, integrity and

continuity. An Inertial Navigation System (INS) serves this purpose. An INS usually
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includes one computational unit and one platform or module containing accelerometers,

gyroscopes, or other motion-sensing devices. The sensing platform is usually an Inertial

Measurement Unit (IMU) consisting of 3 accelerometers and 3 gyroscopes, providing

linear acceleration and angular velocity information. The INS is usually provided with

its initial position and velocity, and computes its own position and velocity by integrating

the acceleration information [37]. The error of an INS comes from its use of integration:

a small error in the linear acceleration or angular velocity will be integrated into an

unbounded large drift in the position estimate. It is also found that the position error

is proportional to linear acceleration multiplied by the square of time, and to angular

velocity error by the cube of time [38].

The properties of an INS are complementary to those of GPS systems [36]. First,

INS systems are self-contained and do not depend on external information which may

be noisy or unavailable at some time, as opposite to a GPS. Second, an INS can provide

position and angle updates at a quicker rate than a GPS. Third, the position error of an

INS is unbounded, which can be bounded by the GPS input. The complementary facts

listed above lead to the fusion of the GPS and the INS, which contributes to a more

accurate, reliable and robust positioning system. An Extended Kalman Filter (EKF) is

the traditional algorithm to fuse the two sources of information. The key idea underlying

the EKF approximation is linearization, through which state transition and measurement

functions are linearized to calculate corresponding minimum mean square error (MMSE)

estimation. While the EKF method provides an easy solution to fuse the INS and the

GPS, its goodness depends on the magnitude of noise and the nonlinearity of the two

functions. The localization accuracy may be bad and the estimation may even diverge

[16]. Some nonlinear filtering algorithms are proposed to solve this problem, such as the

Unscented Kalman Filter (UKF), the Particle Filter (PF), and so on [39].

2.2.2 Road-Matching Approach

The performance of current GPS/INS systems rely heavily on the GPS signal quality.

While an integrated system works well in open areas, its estimation can be erratic in

urban areas due to severe satellite signal blockage and the multipath propagation effect.

Road-matching algorithms are proposed to counter this problem. The basic idea of road

matching is to treat road constraints of vehicle motion as observations. The road is
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conceived as a line segment, with no specific lane width information. By checking the

driven-on road segment against a road map, additional localization information can be

derived.

Najjar et al. in [40] propose a road-matching localization algorithm, using Belief

Theory for road selection and Kalman Filtering for recursive estimation. In the first

stage, vehicle position is predicted according to odometry information, and corrected by

GPS measurement, if available. In the second stage, with this estimate, the credible roads

are selected based on multiple criteria combined by Belief Theory. Once a plausible

road segment is selected as the driven-on road from the database, information from this

road segment will be treated as an observation and used to update the predicted position

from the first stage. Guivant et al. proposed one road-matching method with a particle

filter in [41]. The basic idea is to penalize off-road particles based on road network

information. Some other similar studies can be found in [42].

These road-matching algorithms achieve good localization in a global fashion, and

have already been applied in some advanced driver assistance systems (ADAS). How-

ever, they are not designed to generate accurate position relative to road surfaces or road

boundaries. In this sense, the localization is coarse-level localization, which may be

inadequate for a fully autonomous vehicle performing complex tasks on a road surface.

2.2.3 Map-aided Approach

While the merit of road-matching techniques can be attributed to the fact that they rely

on GPS as the one and only exteroceptive sensor, this fact also brings its inability to per-

form high-precision localization. To reach this goal, researchers have to use additional

sensors. Local features are extracted to help realize precise position estimation, together

with a prior feature map. Algorithms of this type are usually classified as map-aided

localization.

In [43], single side curb features are extracted by a vertical LIDAR to improve vehi-

cle localization together with one road boundary map. This map is learned beforehand in

the form of line segments. This research is extended in [44], where a two-step algorithm

is proposed. In the first step, a road-matching technique is applied to get preliminary

position estimation at the coarse level. In the second step, the road curb is extracted as a

local feature and incorporated into an EKF scheme to correct the estimated pose. While
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these algorithms reduce the lateral localization error considerably, they help little in the

longitudinal direction.

In [45], lane markings are utilized as the local features, which are extracted from

the reflectivity values of LIDAR scans. One digital lane marking map is acquired be-

forehand. Performance of the algorithm is similar to those in [43] [44]. The lateral

position estimation is precise, but the longitudinal error can only be reduced where the

road curvature is big. Similar work can be found in [46].

Hentschel et al. in [47] use outer walls of solid buildings as local features. The land-

mark information is extracted from a 3D point cloud with the novel idea of Virtual 2D

Scans [48]. The algorithm is tested in a campus environment, with the referenced map

provided by the German land registration office. In [49], the group of researchers man-

aged to apply the algorithm with the OpenStreetMap Geodata. The algorithm showed its

effectiveness through experiments. However, possible absence of building features and

slow update rate limit its effectiveness and usage.

Miller et al. in [50] use a particle filter to fuse GPS/INS information with map-

referenced, vision-based road information for vehicle localization in challenging GPS

environments. Three types of lane information are extracted from cameras. Similar

to the previous algorithms, one map of accurate road lanes is provided. Experiments

reveal that the algorithm improves significantly the quality of traditional GPS/INS po-

sitioning solutions, both when GPS signals are available and particularly when they are

unavailable. However, the favorable condition of an accurate road line map is not always

possible, and under bad illumination conditions this algorithm may not work.

Levinson et al. in [51] [15] utilize road surface reflectivity for precise localization.

A particle filter is used to localize the vehicle in real time with a 3D Velodyne LIDAR.

The algorithm first analyses the laser range data, and extracts those points cast on the

ground. Then reflectivity measurements of these points are correlated to a map of ground

reflectivity to update particle weights. One assumption underlying this algorithm is that

road surfaces remain relatively constant, which may not hold in some cases. Besides,

the need for costly 3D LIDAR sensor limits its usage.

Baldwin et al. in [52] utilizes accumulated laser sweeps as local features. The al-

gorithm first generates a swathe of laser data by accumulating 2D laser scans from a

tilted-down LIDAR. Then the swathe is matched to a prior 3D survey by minimizing
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an objective function. This algorithm demonstrates its accuracy and robustness in GPS-

denied areas. Although the algorithm proposed does not require an accurate 3D model

of the environment, we argue that an accurate and consistent prior is desired when the

localization is integrated with other navigation functions.

2.2.4 SLAM Approach

While the above map-aided methods achieve good performances, they assume the avail-

ability of precise prior maps, which however is not always guaranteed. Able to acquire

the environment map and recover the robot pose at the same time, SLAM (Simultaneous

Localization and Mapping) approaches are usually employed for the localization as well

as the mapping purposes when a robot explores a new place.

From a probabilistic perspective, there are two types of SLAM approaches: online

SLAM and full SLAM [16]. Online SLAM tries to estimate the posterior over the mo-

mentary pose together with the map, i.e. p(xt,m|z1:t, u1:t), where xt is the pose at time

t, m is the map, and z1:t and u1:t are the measurements and controls. Full SLAM tries to

estimate the entire path x1:t with the map, i.e. p(x1:t,m|z1:t, u1:t). As in most probabilis-

tic robotic problems, a state transition model p(xt|xt−1, ut) and a measurement model

p(zt|xt,m) are required to recursively update the desired probability distribution. SLAM

has been a highly active research area in the last ten years, wherein many approaches

have been developed [53] [54].

SLAM with an Extended Kalman filter (EKF) is the earliest and maybe the most

influential algorithm. The EKF-SLAM algorithms belong to the online SLAM category,

using maximum likelihood data association. They construct a combined state vector yt

of the robot pose xt and the map m to estimate them simultaneously. This type of algo-

rithm uses feature-based maps, and makes a Gaussian noise assumption for robot motion

and perception. One of the key problems with EKF-SLAM lies in its computational cost.

In the measurement correction step, the state vector and the joint covariance matrix are

updated. Due to the dimension of the covariance matrix, the computational cost of this

step grows quadratically with the number of landmarks. This limitation makes plain

EKF-SLAM algorithms unsuitable for large-area mapping. Another problem with EKF-

SLAM is its fragility to mismatching in data association [55]. This issue arises from the

operation that only one landmark with the maximum likelihood is associated. If the as-
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sociation is incorrect, the whole estimation process after this misalignment is influenced.

The FastSLAM algorithm applies a Rao-Blackwellized Particle Filter (RBPF) to

solve SLAM problems, introduced by Montemerlo et al. in [56]. FastSLAM factor-

izes the SLAM posterior into two separate parts:

p(y1:t|z1:t, u1:t, c1:t) = p(x1:t|z1:t, u1:t, c1:t)
∏N

n=1 p(mn|x1:t, u1:t, c1:t)

where y1:t is the combined state vector of the robot path x1:t and the map m. This

decomposition is validated by the fact that features are conditionally independent from

each other given the robot path. With the idea of RBPF, the above probability distribution

is represented by a set of particles. Each particle carries its own path estimation, and

the whole set of estimators for individual features. In the estimation process, the robot

trajectory is estimated by the particle filter, while each map feature is estimated by an

extended Kalman filter inbuilt in each particle.

FastSLAM outperforms the traditional EKF-SLAM in three respects. Firstly, it is

computationally more efficient. FastSLAM uses a separate low-dimensional EKF for

each individual feature, rather than using a single Gaussian to estimate the joint distri-

bution of all features. Secondly, it handles the data association problem better. Unlike

EKF-SLAM, which keeps a single best association, FastSLAM makes the data associ-

ation decisions on a particle-by-particle basis. By virtue of multiple hypotheses, Fast-

SLAM is more robust to the data association problem. Thirdly, particle filters ensure

FastSLAM’s ability to cope with nonlinearity in the robot motion model. The disad-

vantage of FastSLAM stems from degeneration of particle diversity which denotes the

variety of all particles. Diversity is important, and it is always desired to maintain maxi-

mum diversity. While EKF-SLAM maintains correlation between different map features

explicitly in the covariance matrix, FastSLAM maintains it through its diversity in par-

ticle sets. If the diversity decreases too much, accuracy of the algorithm will suffer. The

FastSLAM algorithm is improved in [57], where measurement information zt is also in-

corporated into the proposal distribution. This ensures that fewer particles are eliminated

in the resampling step. Grisetti et al. manage to apply a similar idea to grid mapping

in [58] [59].

Another important SLAM algorithm is GraphSLAM, which is a full SLAM algo-

rithm rather than an online one [60]. GraphSLAM is essentially an information-theoretic

technique. It treats control actions and measurements as constraints, and represents these
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constraints in a sparse graph. GraphSLAM constructs a target function as the sum of

these constraints. Minimizing this function will yield the maximum likelihood map and

a corresponding set of robot poses. GraphSLAM is computationally more efficient and

can acquire maps many orders of magnitude larger than EKF-SLAM. Besides, due to

the fact that GraphSLAM has access to all data at the same time, data association can be

more accurate than the EKF one. The limitation of this algorithm is that the constraint

graph grows linearly over time, while EKF-SLAM has no such dependence.

Since SLAM has been a popular topic, many algorithms have been proposed. Range

sensors, like sonar and LIDAR, have been the dominant sensors in the SLAM history.

Recently, however, vision has gained more and more popularity in the appearance-only

SLAM branch. Historically vision has been used for topological mapping and place

recognition [61]. Color histograms are extracted as the global features of each room.

In [62] Newman et al. utilize visual appearance signatures to detect and close the loop

in 3D SLAM. M. Saedan et al. [63] present a vision SLAM algorithm with an omnidi-

rectional camera in a hybrid map representation. More exciting research in [26] develops

a biologically inspired method with vision for appearance-only SLAM, which demon-

strates its ability of online localization and mapping during a 66 km journey through a

suburban road network. Cummins et al. in [64] [65] propose a new algorithm of fast

appearance-based mapping (FAB-MAP) based on the “Bag-of-Words” idea in the com-

puter vision community. This algorithm proves to be both robust and computationally

efficient. The above research progress shows that appearance-only SLAM with vision

can be good a complement to metric SLAM methods.

Another trend in the SLAM area is to extend the SLAM idea from 2D to 3D environ-

ments. While 3D SLAM may be considered a straightforward extension, its complexity

increases significantly due to the dimensions of the robot motion and measurement mod-

els. Kummerle et al. in [66] propose to use a multi-level volumetric surface map for 3D

SLAM. Another representative research can be found in [67], where Nuchter et al. apply

the method of Iterative Closest Point (ICP) scan matching for highly precise mapping.

2.2.5 Discussion

In our project, the ability of precise localization is pursued. While both the map-aided

technique and SLAM technique are able to provide precise pose estimation, the map-
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aided technique is adopted as our run-time localization technique. The considerations

are as follows. Firstly, compared to the SLAM technique, which involves the high-

dimensional map building problem and is hence computationally costly, the map-aided

technique concentrates on the low-dimensional pose estimation problem, and is compu-

tationally much lighter and more feasible for online processing. Secondly, the SLAM

technique is mainly developed for the exploration task in a new environment, and is nei-

ther necessary nor efficient for autonomous vehicles which probably navigate the same

environment every day. In fact, the SLAM technique is usually applied to generate the

map of an environment in an offline manner, which will then be used as the prior knowl-

edge for online map-aided localization. (It should be mentioned that although some

SLAM methods are applied in our research to generate metric maps, they are not the

focus of this thesis and will not be covered in detail.)

In short, to avoid using expensive GPS/INS devices as well as to guarantee localiza-

tion accuracy and efficiency, the map-aided technique is chosen in our research. Typical

features of urban road environments are studied, and utilized for the localization pur-

poses. In our initial research, road boundary features are extracted and utilized. While

existing map-aided algorithms also utilize road features like curbs or lane markings for

position estimation [45] [43] [44] [46], they only localize the vehicle well in the lateral

direction of the road, but the accuracy in the longitudinal direction is not guaranteed.

To counter this problem, we introduce an “intersection feature” as a complement to the

curb feature, and utilize the combined curb-intersection feature of a road network for

the localization purpose. Our algorithm achieves accurate estimation results in both the

lateral and the longitudinal directions. Chapter 3 presents this localization method.

Although our initial work achieves satisfactory results, it is limited to the road seg-

ments where curbs exist. To make the localization more general and accurate, we turn

to the use of general vertical surfaces in the typical urban environment. The algorithm

achieves equivalent accuracy compared to the work in [51] [15], however, with a much

cheaper 2D LIDAR sensor which has reduced sensing ability. Details of this work are

presented in Chapter 4.
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2.3 Object Recognition

Object recognition is the task of detecting and identifying the objects in the environment

from sensor measurements. It has always been an active research domain, not only in the

robotics community, but also in the communities of computer vision, machine learning,

etc. For an autonomous vehicle, to reliably recognize other static/dynamic objects is a

prerequisite for interacting with the environment and performing safe navigation. In this

section, a general review of object recognition is first presented. While the topics of

road detection and moving object recognition are more relevant to my research, studies

on these two topics are then performed in detail.

2.3.1 A General Review

A tremendous amount of research has been performed in the field of object recogni-

tion, which may be categorized into different types with different criteria. According

to the sensory modalities that are used, object recognition approaches can be classified

as the vision-based approach [68] [69] [70] [71] [29], the LIDAR-based approach [72]

[73] [74] [75] [76] [77] [78], the Radar-based approach [79] [80], and so on. In au-

tonomous vehicle applications, vision and LIDAR are the two most important sensory

modalities for object recognition, where the vision category can be further divided into

the monocular/stereo types, and the LIDAR category can be divided into the 2D/3D

types. While each sensory modality has its own advantages and disadvantages, in some

applications multiple sensory modalities are fused to achieve better recognition perfor-

mance [81] [82] [83]. Methods of this type can be viewed as the fused-modality ap-

proach.

According to the types of objects to be recognized, object recognition can be roughly

categorized as the recognition of static structures, and the recognition of dynamic human

agents. This categorization is based on the observation that an environment is composed

of two distinct parts, i.e., the static structures fixed to it and the dynamic human agents

living in it. The recognition of the static structures is focused on the roads [68] [84] and

other traffic-related facilities [85] [86] [87], while the recognition of the dynamic part

covers all the types of human agents in the traffic, such as pedestrians [29] [76] [73] [81],

vehicles [69] [74] [88] [89], etc. The recognition of static structures and dynamic agents
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is equally important for robot safe navigation.

While object recognition is a broad research topic, our attention is focused on two

specific problems that are more relevant to vehicle autonomous driving, i.e., road detec-

tion and moving object recognition. Road detection has been a popular research topic for

decades, and researchers have proposed various techniques to address this issue. A de-

tailed review of road detection is presented in the following Section 2.3.2. Compared to

the problem of road detection, the recognition of dynamic human agents appears much

more challenging. The main difficulty comes from the high intraclass variance among

human agents [69]. To be more specific, pedestrians may be dressed in different colors,

vehicles may have different shapes and sizes, etc. To robustly and efficiently recognize

these human agents remains a challenging problem nowadays. In our research of “dy-

namic” human agent recognition, a reduced problem of “moving” object recognition is

studied: while every human agent has the potential to move - noted as “dynamic”, our

attention is focused on recognizing those entities actually moving. A detailed review of

moving object recognition is presented in Section 2.3.3.

2.3.2 Road Detection

Road surfaces are traversable areas on which vehicles can safely navigate. Road detec-

tion is one basic requirement for autonomous vehicle driving in the urban road envi-

ronment. Road detection can provide not only the guidance for vehicle path planning

and low-level control, but also the contextual information of the local environment for

other perception purposes like vehicle detection and tracking. Given its importance, the

problem of road detection has been widely studied. Current research into road detection

mainly falls into two categories, i.e., road marking detection and road surface-boundary

detection.

Road marking detection has been studied for years in the context of Autonomous

Driver Assistance Systems (ADAS). Researchers aim to detect and locate road markings

on the road, and utilize the results for lane departure warning, adaptive cruise control

and other purposes. Among all the different types of markings, lane markings are the

dominant markings on the road surface, and have attracted most of the research inter-

ests. Aly [68] presents a real-time algorithm to detect lane markings on urban streets.

An Inverse Perspective Mapping process is first applied to generate a bird’s-eye view
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of the road surface from the original image. The transformed image is then filtered by

a horizontal Gaussian filter and then thresholded to extract pixels corresponding to the

vertical lanes. In the final step, Hough Transform and RANSAC methods are used to

get a mathematically compact representation of the detection results. Similar work can

be found in [90] [91] [92]. Compared to the tremendous efforts spent on lane marking

detection, very little research has been carried out for other types of markings, such as

arrows and zebra crossings, which however also convey important traffic guidance infor-

mation, and deserve more attention. Vacek et al. [93] use a template matching method to

detect arrow markings. Li et al. [94] use marking shape information to detect both lanes

and arrows. Se [95] deals with zebra-crossing detection by grouping concurrent lines in

the camera image.

While marking detection is only applicable to the structured roads with painted mark-

ings, road surface-boundary detection can be applied to both structured and unstructured

roads. LIDARs have played a dominant role in this area. Thrun et al. use LIDARs to

carry out Probabilistic Terrain Analysis (PTA) in desert driving in [20] [96]. The driving

terrain is represented by a 2D grid map, and the grid cells are then classified into differ-

ent terrain types according to the height differences in their local neighborhoods. Zhang

proposes a road boundary detection algorithm for urban roads in [84]. A Gaussian dif-

ferential filter is applied to the range values of each laser scan, and road boundary points

are extracted as local maxima of the filter response. In other similar research, Cramer

et al. applied Hough Line for scan segmentation and feature extraction in [97], while

Kodagoda et al. achieved the same goal by using an EKF filter in [98] [99]. Our previ-

ous work also proposes a simple road boundary detection algorithm using a tilted-down

LIDAR in [6]. One common feature of the above algorithms is that they all operate on a

single individual 2D scan for road boundary detection. Stereo vision is another sensory

modality that has been used for road boundary detection. Related work can be found

in [100] [101].

2.3.3 Moving Object Recognition

Moving object recognition helps autonomous vehicles recognize and live with other dy-

namic agents. Existing work in moving object recognition decomposes the problem into

two distinct sub-tasks: detection and classification. The former aims to discern the exis-
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tence of moving objects, while the latter aims to recognize the objects’ identities. Con-

sidering the ways of moving evidence detection, we categorize existing methods into two

types, the tracking-based type and the SLAMMOT (short for simultaneous localization,

mapping, and moving object tracking) type.

Tracking-based methods (e.g. [81] [102]) work at the object level: they first segment

a laser scan into multiple segments, which are considered as the measurements of dif-

ferent objects; the segments are then fed into trackers to estimate their positions and

velocities; objects exceeding a defined speed or displacement are reported as moving

objects. The accuracies of these methods are mainly determined by the tracking process,

which has to solve the notorious data association problem and may easily fail in cluttered

environments.

Unlike the tracking-based methods, SLAMMOT methods detect moving objects at

the atomic level [103] [104] [105]. An occupancy grid map of the local environment is

created through a SLAM process and the changes in the grid cell’s occupancy statuses

indicate the existence of moving objects. Compared to the tracking-based methods, the

SLAMMOT techniques have two major advantages. Firstly, they are more robust to ego-

motion estimation errors (which are compensated by the SLAM process). Secondly, they

don’t have to address the tracking problem. However, the computational cost associated

with SLAM is usually high, leading to low update frequency. This is undesired for robots

such as autonomous vehicles, which move at relatively high speeds. Besides, since these

methods assume that robots move on a flat ground, they are not applicable to bumpy

road environments.

In both types of methods discussed above, object classification is performed indepen-

dently from motion detection, either before or after one object is identified as “moving”.

The classification process usually relies on the sparse geometric features of the 2D seg-

ments, and appears vulnerable to similar-looking background noise. To achieve better

performance, classification results of measurements received at different times can be

fused for continuous estimation, with the premise that object tracking is carried out ac-

curately.
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2.3.4 Discussion

Object recognition is one of the fundamental requirements for vehicle autonomous nav-

igation. Among all the research associated with it, the topics of road detection and

moving object recognition will be addressed in this thesis.

Road Detection. Both the marking detection problem and surface-boundary detec-

tion problem will be studied in this thesis. For road marking detection, although there

has been a large amount of research addressing this problem, researchers tend to develop

dedicated methods to detect certain specific types of markings, and there is a lack of a

general approach which supports all the detection purposes. For this reason, we develop

a general framework for marking detection and analysis, and the proposed approach is

presented in Chapter 5.

For the purpose of road surface-boundary detection, we propose a recognition method

using accumulated 3D data. While most existing algorithms operate on individual 2D

scans, they usually have strong assumptions about the sensing scenario, which limit their

applications. Furthermore, these algorithms fail to capture the temporal relationships

between adjacent measurements, and appear vulnerable to noise. However, our method

employs 3D perception techniques, and is able to handle the above problems. Chapter 6

presents our algorithm in detail.

Moving Object Recognition. While two types of moving object recognition meth-

ods have been reviewed, both of them have their limitations: the tracking-based methods

have to solve the data association problem, and may fail in cluttered environments; the

SLAMMOT method has to perform SLAM during the detection, which limits its speed.

In this thesis, we introduce a spatial-temporal approach for moving object recognition,

which does not rely on tracking or SLAM, and is able to perform reliable real-time recog-

nition in both clear and cluttered environments. The algorithm is presented in Chapter

7.

2.4 Environment Understanding

For vehicle autonomous navigation in the urban environment, object recognition func-

tions are developed to detect and identify different objects of interest, as discussed in the

previous sections. The detection is performed online in the local neighborhood of the
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own vehicle, to help it handle various momentary conditions reactively. While the de-

tection is generally short-term and object-oriented, some long-term understanding about

the environment is also desired. Environment understanding targets acquiring long-term

knowledge about the environment. This knowledge, also called the model, serves as the

prior information for robot autonomous navigation, which can be used to help vehicle

localization, path planning, and all the other purposes.

The knowledge of an environment can be about any dimension of its properties, such

as its spatial layout, its temperature, the types of objects placed in it, etc. In our research,

three dimensions of knowledge important for autonomous navigation are identified: the

metric dimension about an environment’s geometric layout, the semantic dimension

about the semantic meanings of different places, and the activity dimension about the

activity patterns of human agents living in it.

In traditional robotics studies, enormous efforts have been spent on the problem of

metric mapping to derive a metric model of the environment. One popular approach of

metric mapping is SLAM, as reviewed in Section 2.2.4. The output of metric mapping

is a metric model of the environment, which captures its geometric layout and is mainly

used for localization. Nowadays researchers are trying to augment traditional metric

maps with some high-level knowledge, such as semantic information and activity infor-

mation, to help the robot to really understand its environment. While metric mapping is

out of the scope of this thesis, our attention is put on learning the semantic and activity

knowledge. Related work on semantic mapping and activity learning is reviewed in the

Section 2.4.1 and Section 2.4.2, respectively.

2.4.1 Semantic Mapping

Semantic mapping, which is the process of learning the semantic model of an environ-

ment, has become a popular research topic in recent years. A semantic map can not only

facilitate human-robot interaction, but also help a robot perform high-level reasoning

and planning. In the past few years, various methods have been proposed for seman-

tic mapping. Depending on the sources of semantic information, these methods can be

roughly classified into three categories: the appearance-based approach, the object-based

approach, and the activity-based approach.

The appearance-based approach is the most popular approach in semantic learning
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research, where semantic knowledge is acquired by interpreting appearance features

from sensory data. In [106], O. M. Mozos et al. use geometric features from a planar

laser range finder for indoor place classification. This work is extended to incorporate

vision features for better and finer classification in [107]. Similar researches have been

done by Pronobis et al. in [108]. In [109], I. Posner et al. use fused vision and 3D

laser data for semantic labeling of urban scenes. Visual features and 2D/3D geometric

features are extracted and fed into a hierarchical classifier for scene recognition. In [31],

S. Sengupta et al. present a dense semantic mapping method for an urban street environ-

ment, based on vision features extracted from a sequence of street-level imagery. Some

other appearance-based semantic mapping studies can be found in [110].

Unlike the appearance-based approaches where semantics is directly learned from

sensor readings, the object-based approaches infer the semantic meaning of an environ-

ment by checking the occurrence of key objects inside. In [111], C. Galindo et al. infer

the semantic type of a room by detecting the typical objects in it. In [112], S. Vasudevan

et al. propose to perform place classification using not only object count information,

but also the position relationships between objects.

The activity-based approach learns the semantic knowledge of an environment based

on agent activities in it. Compared to the extensive literature of the appearance-based

approach, less research is found in this category. In [113], D. F. Wolf et al. build a 2D

semantic grid map according to the occupancy status of the space by dynamic entities.

Activity-related features are extracted to classify a place into two semantic types, “street”

or “sidewalk”. In [114], D. Xie et al. present a method to localize functional objects that

affect people’s behaviors in surveillance videos. In [115], G. Li et al. infer the furniture

types in a room based on human activity recognized from wearable sensors. A pre-

learned activity-to-furniture model is used.

2.4.2 Activity Learning

While an environment serves as the space for different agents to perform different activi-

ties, these activities usually follow certain patterns, which can be learned and aggregated

into an activity map. The activity information can be considered the dynamic knowledge

of the environment, knowledge of which will bring multiple benefits: for example, given

the activity knowledge, a robot can understand the traffic flow at a certain place, infer
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social rules and perform human-like planning and controlling; the activity knowledge of

human agents can also help the robot to realize robust tracking, predict their intentions,

and improve interaction with them; etc.

Activity learning is not a new topic in the computer vision community, where re-

searchers have proposed various methods to learn the human motion patterns in an en-

vironment. N. Johnson et al. in [116] model the probability distribution of pedestrian

trajectories through a vector quantization method using a neural network. Swears et

al. [117] use hierarchical clustering of Hidden Markov Models to learn motion behaviors

in video surveillance. Ellis et al. [118] apply an algorithm of Gaussian Process Regres-

sion (GPR) to model pedestrian trajectory patterns. Some other representative work can

be found in [119]. However, most of the above algorithms use a stationary camera and

assume the observability of complete trajectories, which is not a valid assumption for

mobile robot applications.

Lookingbill et al. in [120] use a helicopter to learn the motion patterns of moving ob-

jects on the ground. Objects are tracked with multiple particle filters, with each particle

containing the position and velocity information. The activity map is represented by a

4-dimensional histogram h(x, y, v, θ) of the particles, which is indexed by x-y locations

in the camera plane and represented by velocity magnitude v and direction θ. Bennewitz

et al. [121] manage to learn motion patterns using mobile service robots. Laser range

finders are mounted on mobile robots to record human trajectories. The Expectation

Maximization (EM) algorithm is applied to cluster different types of motion, and learn

the corresponding patterns simultaneously. Sehestedt et al. [122] propose a method to

learn the human motion patterns in an office-like environment based on Sampled Hidden

Markov Models (SHMM). The advantage of this method is allowing online and unsu-

pervised learning.

2.4.3 Discussion

Besides metric mapping, semantic mapping and activity learning are attracting more and

more research interest. While the three dimensions of knowledge are highly correlated

with each other, existing studies usually focus on one single specific individual dimen-

sion, and there is no research utilizing their correlations for knowledge inference. In this

thesis, we propose the representation of a multi-dimensional grid map, and argue that the
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environment properties of different dimensions are correlated and hence can be learned

from each other. As an implementation of this idea, we develop a semantic mapping

approach by analyzing the activity patterns of human agents. Details of this work are

presented in Chapter 8.

2.5 Summary

This chapter studies the history and current status of autonomous vehicle technology,

summarizes the fundamental perception requirements for autonomous driving in the ur-

ban environment, and discusses the ongoing research trends. Three perception problems

are selected and reviewed in detail: localization, object recognition and environment un-

derstanding. Our researches on these three perception tasks are the main body of this

thesis, and are discussed in the following chapters.
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Chapter 3

Curb-Intersection Feature based

Monte Carlo Localization

One of the most prominent features on an urban road is the curb, which defines the

boundary of a road surface. An intersection is a junction of two or more roads, appear-

ing where no curb exists. The combination of curb and intersection features gives a

complete picture of the urban road network, and can be exploited to improve a vehicle’s

localization. This chapter presents a curb-intersection feature based Monte Carlo Local-

ization (MCL) method for precise vehicle localization in the urban road environment.

3.1 Introduction

Localization is one fundamental requirement for vehicle autonomous navigation. Local

features have been utilized to realize precise vehicle localization, as reviewed in Section

2.2. In [43] [44] [45] [46], researchers propose to utilize curb features for vehicle local-

ization. However, due to the lack of the longitudinal localization information in the curb

features, these methods only localize the vehicle well in the lateral direction of the road,

but help little in the longitudinal direction. To counter this problem, we introduce an

“intersection feature” as a complement to the curb feature for the localization purpose.

The intersection features appear at junctions of roads, where no curb exists. While curb

features mostly help localize a vehicle laterally in the road, intersection features carry

rich longitudinal information. The complementary nature of these two kinds of features

makes them well suited for localization. With this idea, we propose a curb-intersection
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feature based Monte Carlo Localization algorithm for precise vehicle localization. The

proposed algorithm is implemented using only a single tilted-down 2D LIDAR and the

odometry system, and achieves accurate estimation results in both the lateral and the

longitudinal directions.

The contributions of our research are two-fold. Firstly, we introduce a new “intersec-

tion feature” as a complement to the curb feature for vehicle localization. Secondly, we

propose a novel idea of “synthetic LIDAR” to represent the curb-intersection features,

which enables us to use the standard measurement models of laser sensors for accurate

and robust localization.

The remainder of this chapter is organized as follows. Section 3.2 gives an overview

of the localization system. In Section 3.3, the extraction of curb and intersection features

is introduced. Section 3.4 presents our idea of synthetic LIDAR. Section 3.5 provides

details of the curb-intersection-based MCL method. Experiment results and analyses are

presented in Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 System Overview

The localization system mainly consists of three parts: curb-intersection feature extrac-

tion, synthetic LIDAR construction, and the Monte Carlo Localization process, as shown

in Figure 3.1. A tilted-down 2D LIDAR is utilized to extract the curb and intersection

features from urban roads. Synthetic LIDARs are constructed by encoding the extracted

curb-intersection features into the format of laser scans. Vehicle pose estimation is car-

ried out through a Monte Carlo Localization process, where particles are propagated in

the prediction step with the odometry information, and the particle weights are updated

in the correction step with the measurements from the synthetic LIDARs. Particles are

resampled in the resampling step to avoid the degeneration problem.

3.3 Curb-Intersection Feature Extraction

There are numerous studies on road boundary detection. One method is the use of a

tilted-down LIDAR for curb detection. Cramer et al. [97] applied Hough Line for scan

segmentation and feature extraction, while Kodagoda et al. [98] [99] achieved the same
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Figure 3.1: Curb-intersection feature based localization flowchart

goal by using an EKF filter. This section presents an intuitive two-step method to detect

both curb and intersection, which proves to be efficient and robust. Similar work can be

found in [84].

3.3.1 Segmentation of Laser Scan

In the first step, one single laser scan is segmented into several pieces, by virtue of its

typical laser range-angle characteristics on-road.

Figure 3.2 shows the model of sensing on-road. One LIDAR sensor is mounted at

point O, with its titled-down angle as α and mounting height as H . O′ is the projection

ofO on the road surface, P is the center of the line of intersection between the laser scan

and the road surface, and the distance between point P and O′ is the look-ahead distance

of the tilted-down LIDAR. The angle between the vehicle’s heading direction and the

road is denoted as ϕ. The angle of the laser beam is denoted as θ. As presented in Figure

3.2, laser beams from point O are cast onto different planes, i.e. road surface plane,

curb plane, road shoulder plane, and so on. From this model, a piecewise function can

be derived to represent the relationship between the beam angle and range value, with

each interval corresponding to an individual plane. Without involving too many details,

a simplified formula can be represented as:
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Figure 3.2: Model of LIDAR sensing on-road

r(θ) =



... ... ...

RleftCurb(θ) for θC ≤ θ ≤ θB

RroadSurf (θ) for θD ≤ θ ≤ θC

RrightCurb(θ) for θE ≤ θ ≤ θD

... ... ...

(3.1)

Due to the piecewise nature of function r(θ), a second-order differential filter can be

implemented to detect the edges:

rf (θ) =
i=−3∑
i=−5

r(θ + i× µ) +
i=5∑
i=3

r(θ + i× µ)−

i=0∑
i=−2

r(θ + i× µ)−
i=2∑
i=0

r(θ + i× µ) (3.2)

where µ is the angular resolution of the LIDAR sensor, and θ ∈ [−π/2 + 5µ, π/2− 5µ].

Boundary points are extracted as local maxima or minima in the filter response plot, and

their values should exceed a certain threshold, as shown in Figure 3.3.
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Figure 3.3: Raw LIDAR reading and filter response

3.3.2 Classification of Scan Segments

In the second step, scan segments generated are fed into a sequential classification pro-

cess:

1. The road surface segment, shown as line CD in Figure 3.2, is selected first. It is

always located between the two edge points nearest to the center of the sensor.

2. Curb lines, (BC and DE of Figure 3.2), are searched for subsequently, based on

point C and D determined from the former step.

3. The remaining segments are other features off the road.

Some restrictive criteria are applied during the above steps, such as road width, curb

height, etc. Specifically, to extract a valid curb feature, the length of segment CD should

be bigger than the minimum value of road width, the curb height of segment BC (or

DE) should be within a certain range, and the number of laser points on BC (or DE)

should be over a certain threshold, etc. Only when all these criteria are satisfied is the

classification result considered valid. Thus most noise like vehicles and pedestrians gets

filtered. One typical classification result is shown in Figure 3.4. Among these classified

laser segments, the curb segments are saved for further usage.
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Figure 3.4: Scan segment classification

3.3.3 Intersection Feature

It should be clarified that, a fixed maximum detection range is defined for the above curb

extraction algorithm. If the distance of the curb edge (C or D) to the projected center O′

exceeds this range, the curb features are deemed unreliable, and will yield a “no-curb”

result. For this reason, the above algorithm does not apply to road intersections, where

the curbs are too far away, or there may be no curb at all. However, the “no-curb” result

actually carries significant localization information, which tells the vehicle that it has

arrived at some critical points in the road network. To embody this kind of information,

a novel “intersection feature” is introduced.

As shown in Figure 3.5, an intersection feature is represented by a synthetic beam
−→
PR (or

−→
PL if it points to the left), with its direction perpendicular to

−−→
O′P and its dis-

tance the maximum detection range of curb extraction. It should be clarified that feature

extraction of left and right sides are independent, enabling both curb and intersection fea-

ture extraction at a T-junction. Implementation of curb-intersection features for Monte

Carlo Localization will be discussed in the following sections.

3.4 Synthetic LIDAR Construction

3.4.1 Synthetic LIDARs in the Horizontal Plane

As discussed in the previous section, the features extracted here are curb segments (line

BC and DE), or synthetic beams (
−→
PR and

−→
PL). Because the curb and intersection
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Figure 3.5: Curb-intersection feature at a T-junction

features are extracted using a tilted-down LIDAR in the 3D space, building their mea-

surement models as well as utilizing them for localization is not an easy task. To simplify

the task, we project the extracted features in the horizontal plane (z = 0), and introduce

the novel idea of “synthetic LIDAR” to encode the features into the format of laser scans,

as illustrated by Figure 3.6.

For curb features, segments BC and DE are projected as B′C and DE ′. Let Qi be a

random point onBC (orDE), and its image onB′C isQ′i. A synthetic laser beam can be

conceived of as
−−→
O′Q′i, as shown in Figure 3.6(a). In this way, a synthetic planar LIDAR

(LIDAR-V1) can be built, with its origin located at O′, and the laser beams ending at the

projections of the extracted curb lines, as illustrated by Figure 3.6(b). This LIDAR is

somehow exotic: it can only see curb lines (since its beams are only constructed based

on the extracted curb points), and its beam angle is not evenly spaced (while the angles

of the original laser beams in the slanted plane
−→
OQ are evenly spaced, it can be proved

that the angles of the synthesized beams
−−→
O′Q′i are not due to the projection process). The

full scale range of this synthetic LIDAR is the maximum detection range for the curb.

With similar ideas, LIDAR-V2 centered at P can be modeled for intersection features.

LIDAR-V2, different from LIDAR-V1, has at most two synthetic beams,
−→
PR and

−→
PL,

with its range values always the maximum detection range for curb.

3.4.2 Scan-Assembled Synthetic LIDARs

With two synthetic LIDARs established, the MCL problem using curb-intersection fea-

tures is reduced to a common MCL problem with planar LIDARs. However, because
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Figure 3.6: Synthetic LIDAR construction

scans of the synthetic LIDARs carry much sparser information than real ones, it is ad-

visable to assemble several scans at different times into one. The assumption validating

this operation is that odometry remains accurate within a short distance interval. The

new assembled synthetic scan can then be treated as a normal laser scan, and fed into the

MCL processing.

During the scan assembling of LIDAR-V1, to reduce the computational cost, only

two curb points (C and D) are retained for each scan. Curb points recorded at different

times are then translated into the latest LIDAR coordinate, serving as endpoints of syn-

thetic laser beams cast from a new synthetic LIDAR, denoted as LIDAR-VSA1. As for

LIDAR-V2, two synthetic beams are recorded at different times, together with their cast-

ing origins. The new synthetic assembled LIDAR is even more exotic: it is composed

of several 2-beam (or 1-beam at a T-junction) range finders, with each finder mounted at

different positions with different angles. When the beam number of LIDAR-VSA1 (or

LIDAR-VSA2) exceeds a certain Assembling Threshold, one synthetic measurement is

published. Finally, we get two new synthetic LIDARs: LIDAR-VSA1 for curb features,

and LIDAR-VSA2 for intersection features, as shown in Figure 3.7.

3.5 Monte Carlo Localization Algorithm

3.5.1 MCL Overview

In this chapter, Monte Carlo Localization (MCL) is applied to estimate the vehicle pose.

MCL is a probabilistic localization algorithm based on Bayes Theorem and the Monte

42



3.5. Monte Carlo Localization Algorithm

Figure 3.7: Assembled synthetic LIDARs

Carlo method. A thorough study is made by Sebastian Thrun et al. [16]. The belief

bel(xt) in MCL is represented by a set of M particles x[m]
t , and each particle is paired

with an importance weight w[m]
t :

bel(xt) ∼ {x[m]
t , w

[m]
t }Mm=1 (3.3)

MCL estimates the position of the vehicle recursively by repeating the following

steps:

1. Prediction: a new set of particles {x[m]
t , w

[m]
t }Mm=1 for time t is generated with

{x[m]
t−1, w

[m]
t−1}Mm=1 and the control ut, according to a certain motion model p(xt|ut, xt−1).

2. Correction: the importance weight of each particle in {x[m]
t , w

[m]
t }Mm=1 is adjusted

with new measurements zt, according to a certain measurement model p(zt|xt,m).

3. Resampling: the particle set {x[m]
t , w

[m]
t }Mm=1 will be resampled when necessary.

After resampling, the distribution of the particles approximates bel(xt).

3.5.2 Pseudo-3D Odometry Motion Model

In the prediction step, a motion model is applied to propagate particles for the prior belief

distribution bel(xt). Generally, a 2D motion model in [16] is enough. Even for a vehicle

moving in a 3D world, we solve the localization problem on its horizontal projection

plane, as shown in Figure 3.8. Here we extend the 2D motion model to a Pseudo-3D

one, by introducing a pitch noise part.
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Figure 3.8: Pseudo-3D localization

Table 3.1: Pseudo-3D Odometry Sample Motion Model (ut, xt−1)
1. δ̂rot1 = δrot1 − sample(α1δ

2
rot1 + α2δ

2
trans)

2. δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1

+ α4δ
2
rot2 + α5γ

2δ2
trans)

3. δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans)

4. x′ = x+ δ̂trans cos(θ + δ̂rot1)

5. y′ = y + δ̂trans sin(θ + δ̂rot1)

6. θ′ = θ + δ̂rot1 + δ̂rot2
7. return xt = (x′, y′, θ′)T

Table 3.1 represents the Pseudo-3D Odometry Sample Motion Model. This model is

used for sampling from p(xt|ut, xt−1) with relative motion information on the horizontal

plane. Here γ denotes the pitch angle, δrot1 the initial rotation on the projected plane,

δtrans the translation and δrot2 the second rotation. More details can be found in [16].

3.5.3 Curb-Intersection Measurement Model

In the correction step, importance weights of particles get adjusted based on measure-

ments and related measurement models. A measurement model is used to adjust the

importance weight of each factor. It is formally defined as a conditional probability dis-

tribution p(zt|xt,m), where xt denotes the robot pose, zt denotes the measurement at t,

and m is the map of the environment, according to [16]. In our algorithm, zt is curb and

intersection features, andm is an occupancy grid map of the road boundary. By applying

the idea of “synthetic LIDAR”, the curb-intersection feature is converted into a synthetic
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laser scan, which permits us to use common LIDAR models for the measurement.

LIDAR-VSA1 (for curb features) adopts the “Likelihood Field Range Finder Model”,

considering its computational efficiency and less sensitivity to noise. However, LIDAR-

VSA2 (for intersection features) has to adopt the “Beam Range Finder Model” due to

its working manner. As mentioned in previous sections, intersection features are repre-

sented by a set of synthetic beams with maximum range values, meaning that no curb is

met along their virtual light paths. Only through ray tracing in the “Beam Model” can

this working manner get properly interpreted.

3.5.4 Practical Considerations

MCL Estimation Frequency. In this chapter, an MCL estimation loop is triggered

by the arrival of synthetic measurements. Whenever an assembled synthetic scan from

LIDAR-VSA1 or LIDAR-VSA2 is available, a prediction step is performed in a retro-

spective manner, followed by a correction step with the new incoming measurement.

In this sense, the frequency of the synthetic scan is quite important. To control the

frequency of LIDAR-VSA1 and LIDAR-VSA2, we can either control the frequency of

curb-intersection feature extraction, or control their Assembling Threshold. We find it is

always advisable to obtain curb-intersection features when the vehicle moves, and sus-

pend the process when stopping. The Assembling Threshold is determined by trading

off the MCL response speed and robustness.

Algorithm Robustness. The robustness of MCL is a key issue. A reasonably high

Assembling Threshold will help the algorithm to resist measurement noise. Actually,

before curb-intersection is fed into MCL, we adopt the temporal EKF method in [98] to

reduce measurement noise. The temporal filter is applied after curb extraction and before

the scan assembling operation. In the filter update step, if the Mahalanobis distance

between the detected curb and the predicted one exceeds a certain threshold, the newly

detected curb will be considered as noise and discarded. This EKF method helps to

eliminate minor noise like pedestrians and small cars.

Another strategy that we apply to increase algorithm robustness is the injection of

random particles [16]. When the vehicle is locally lost or the measurement is badly

corrupted for sometime, the short-term average of particle importance factors will be
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remarkably decreased. In this case, a fraction of particles will be generated around the

predicted position, and spread according to a uniform distribution within a certain range.

Map-Incorporated Prediction. For vehicle localization on urban roads, one assump-

tion is that vehicles are not likely to drive off-road. This assumption allows us to penalize

those erratic particles by decreasing their weight importance. In this way, map informa-

tion is also incorporated into the prediction step, which makes our localization more

robust.

3.6 Experiments

3.6.1 Experimental Setup

Our test bed is a Yamaha G22E golf cart with various sensors, as shown in Figure 3.9.

(Note that the sensor configuration is different from the latest one shown in Figure 1.1.

While the sensor configurations have been changing during the development of the ve-

hicle, the exact configuration at the time of the experiment is shown.) We use one SICK

LMS 291 LIDAR for curb and intersection detection. It is mounted in the front, with

a tilted-down angle of 18 degrees. One wheel encoder (Scancon-2RS) and one IMU

(3DM-GX3-25) are mounted on the cart to provide necessary odometry information (dis-

tance, pitch and yaw). The proposed algorithm is tested online. In the experiment, the

golf cart is driven manually on a hilly road at the campus of the National University of

Singapore, from point S to G, as shown in Figure 3.10. Several big slopes are involved

along the way, with the maximum height difference over 10 meters. The average speed

in the test is about 3.5 m/s. The reference road map is an occupancy grid map manu-

ally generated from a vector-format road map provided by the Land Transport Authority

(LTA) of Singapore and a satellite map. The size of this road map is 200 meter by 240

meter, with grid resolution of 0.1 meter, as shown by Figure 3.11.

3.6.2 Experimental Results

In the test, the golf cart is given a rough initial position at S, and driven for about 430

meters to G. The localization results are shown in Figure 3.10. The blue lines denote

the road boundary. The red line marks the localization result of the curb-intersection
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Tilted-down LDIAR

Planar LDIAR

Wheel Encoder

IMU

Figure 3.9: Yamaha G22E golf cart mounted with various sensors

Figure 3.10: Localization results
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Figure 3.11: Road boundary map and detected curb features

feature-based MCL, and the raw odometry trace is shown by the yellow line. For com-

parison, we also give the localization result from one state-of-the-art GPS/INS module

(Ublox EVK-6R) with the green dotted line. From Figure 3.10, it is apparent that the

dead-reckoning odometry drifts a lot after a certain distance. Even when it is fused with

GPS, the INS/GPS trajectory tends to fall outside of the road boundary. Because our

algorithm incorporates road surface information, it helps to correct the odometry and

yield a fairly decent estimation. Figure 3.11 shows the occupancy grid map of the road

boundary. The green points represent the curb features detected in the experiment, over-

laid on top according to the localization results. Some unexpected points in the figure

are measurement noise.

To evaluate the localization result, estimation errors of position and attitude are cal-

culated against ground truth values. We rely on our occupancy grid map to get the ground

truth. When the ground truth is needed, vehicle position relative to the road network is

measured carefully and marked onto the map image. By counting the pixels in the im-

age, the ground truth can be calculated easily. The vehicle was driven manually to the

selected points marked in Figure 3.10 and the errors in location estimate are listed in
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Table 3.2: Localization error at several marked points
Marked Points A B C D E F G

Position Error (m) 0.20 0.55 0.06 0.20 0.32 0.06 0.08
Orientation Error (deg) < 3

Figure 3.12: Position estimation standard deviation

Table 3.2. It can be seen that position error of our algorithm is usually small, less than

0.6 meter; and the orientation estimation is quite accurate, less than 3 degrees derivation

from the ground truth.

From Table 3.2, one can also observe that position errors at some critical points of

intersections and turnings (like A, C, D, F) are much smaller than that of the straight

road (like B). The phenomenon can be explained from the estimated standard deviation

of particles. Figure 3.12 shows “estimation standard deviation” vs “driving distance”

in road longitudinal and lateral directions. During the whole test, lateral estimation

standard deviation remains small, which means particles are confident about the lateral

position. However, the longitudinal standard deviation changes remarkably along the

drive, which determines the accuracy of localization.

During the trip from A to B, the longitudinal standard deviation increases first, due

to consistency of the road boundary. When the road represents a small curvature, curb

features embodying this information will reduce the longitudinal standard deviation.
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Figure 3.13: Typical particle behaviours near some marked points in Figure 3.10

Thanks to the look-ahead distance of the tilted-down LIDAR, the vehicle will sense

this information before it actually arrives there. When the vehicle is approaching the

intersections and turnings (like A, C, D, F), the particles are condensed significantly by

the detected intersection and the tightly curved curb features. The longitudinal standard

deviation at these points is usually less than 0.4 meter. Hereby it can be concluded that,

while curb features on straight roads help to estimate the lateral position, the intersection

and tightly curved curb features contribute very much to the longitudinal positioning.

Figure 3.13 shows the typical particle behaviours around point B, C, D. The red arrays

are particles, green lines are the detected curb features, and the purple dots visualize the

endpoints of the extracted intersection features.

In the experiment, there is one situation where measurement noise becomes severe,

when the vehicle is passing by an intersection at F. As mentioned in Section 3.3, injec-

tion of random particles is performed to overcome this “noisy situation”. This operation

leads to an increase of the estimation standard deviation, as reflected in Figure 3.12. As

long as some new reliable measurements come in, the particles quickly converge, and

the localization quickly recovers from the bad situation. Actually, although light mea-

surement noise happens from time to time in the test, the localization is hardly disturbed.

The robustness of this algorithm is proved.
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Besides the manual drive, we conducted another simple semi-autonomous drive to

test our localization algorithm. The vehicle is required to navigate from point S to G

by following a predefined route. While the throttle and brake are controlled manually,

the steering is controlled by an on-board computer. It turns out that the localization is

accurate enough for the vehicle to reach its target smoothly.

3.6.3 Autonomous System Demonstration

As a part of the overall goal of attaining mobility on demand, we conducted an au-

tonomous system demonstration in July 2011, where we had guests request the vehicle

to navigate from a pickup location to pre-specified drop-off locations shown in Figure

3.14.

The autonomous vehicle localization was performed purely using curb-only road fea-

tures. At the pickup and drop-off points where few curb features exist, patches of 2-D

occupancy planar maps were used to augment the road network map. Secondary planar

LIDAR sensor readings were incorporated to achieve higher accuracy in localization at

these critical points. During the course of the demonstration, the autonomous vehicle

serviced almost 10 requests from the guests, running over 7 km. The curb-only local-

ization failed at an inclined T-junction 2 times over the whole demo. The reason for

failure was determined to be lack of curb features and planar maps at the intersections

and T-junctions, which prompted us to include such intersection features, resulting in the

localization scheme presented in this chapter. Since then we have covered over 50km

in autonomous runs during various demonstrations using the curb-intersection MCL al-

gorthm without failing in any segment of the route. This included situations where the

curb detection was hampered briefly by traffic. However such events were detected as

no-information cases and recovered from once the sensory occlusion was overcome.

More details of our experiments and demonstrations can be found from Video (4)(5)

in Appendix B.

3.7 Summary

This chapter introduces a Monte Carlo Localization algorithm based on the curb-intersection

feature, which is extracted through a two-step procedure. A novel idea of “synthetic LI-
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(a) (b)

(c) (d)

Figure 3.14: Autonomous system demonstration: (a) vehicle in operation, (b) pickup-
dropoff points, (c) snapshot of curb localization estimate, (d) curb map augmented by
planar patches.
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DAR” is applied to represent the curb-intersection features, which enables us to use the

standard measurement models of laser sensors. An occupancy grid map for the road

boundary is used as prior knowledge. From experiment results, our algorithm proves

to be accurate and robust. Although the longitudinal estimation standard deviation may

increase on a long straight road, it will not influence much the control of vehicle motion.

The look-ahead distance in the feature extraction can help localize vehicles accurately

before they reach critical places like junctions and turnings.

Compared to existing approaches that purely use curb features for vehicle localiza-

tion [43] [44] [45] [46], we introduce an “intersection feature” as a complement, and

utilize the combined curb-intersection feature for better localization. Our algorithm

achieves accurate estimation results in both the lateral and the longitudinal directions.

The contributions of our algorithm also include the way we represent and utilize the

curb-intersection features, which are encoded into the format of laser scans with the idea

of “synthetic LIDAR”, enabling us to use the standard measurement models of laser

sensors for accurate and robust localization.

However, there are two limitations of the proposed localization algorithm: firstly,

it is only applicable to the urban roads where curb-intersection features exist; secondly,

while the algorithm relies on a road map as a prior, an accurate road map may not always

be available, and it is laborious to generate it manually. To counter these limitations,

in the following work, we extend the idea of “synthetic LIDA” from curb-intersection

features to general vertical surface features, which is applicable to all kinds of urban

environments. Chapter 4 introduces the improved localization algorithm.
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Chapter 4

Synthetic 2D LIDAR for Precise

Localization in 3D Urban Environment

The previous chapter introduced our curb-intersection feature-based localization algo-

rithm. While the algorithm achieves satisfactory results, it is only applicable to road

segments which have curbs as the boundaries. To counter its limitations as well as to

achieve better localization accuracy, we turn our attention to other salient features in the

urban environment, such as building contours, lampposts, etc. The common traits of

these artificial objects (or structures) are that they all have vertical surfaces.

This chapter extends our idea of “synthetic LIDAR” from curb-intersection features

to general vertical surface features, which are extracted from a 3D rolling window [8].

(In our research, we use the same notion of “synthetic LIDAR” for both the LIDARs built

with the curb-intersection features and the one built with the vertical surface features. If

not explained explicitly, the notion in this chapter is referred to the latter case.) The

basic assumption is that many surfaces in the urban environment are rectilinear in the

vertical direction. The interest points are extracted from the rectilinear surface, and then

projected on a virtual horizontal plane to form a synthetic LIDAR. The synthetic LIDAR

serves as a bridge between the real-world 3D environment and the virtual horizontal 2D

plane. With the idea of synthetic LIDAR, algorithms for 2D localization can be easily

adapted to the 3D problem. We develop a Monte Carlo Localization algorithm with

the notion of synthetic LIDAR, and demonstrate its accuracy and robustness through

experiments.

The rest of this chapter is organized as follows. Section 4.1 discusses the idea of pro-
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jecting the 3D world to the 2D plane, and gives an overview of the localization system.

Section 4.2 addresses the construction of synthetic LIDAR. The localization algorithm

is introduced in Section 4.3, and experiment results are presented in Section 4.4. Section

4.5 concludes the chapter.

4.1 Localization on a Virtual Plane

4.1.1 Projecting the 3D world to the 2D plane

Robot localization on a planar surface has been studied for decades and many algorithms

have been proposed. The 2D scan-matching algorithm may be the most popular choice

due to its accuracy and robustness [123]. However, it cannot be directly applied to

vehicles moving in the 3D world. Since outdoor roads can be very hilly at times, laser

points from a planar LIDAR may cast onto the road surface, rather than the desired

vertical objects, as discussed in [52]. Our previous research in Chapter 3 utilizes a tilted-

down LIDAR to extract road boundary features on urban roads, and then uses these

features for vehicle localization. While this algorithm achieves satisfactory results, it

is only applicable to road segments where curbs exist. Actually, there are many other

salient features in the urban environment that can benefit localization. What features

to extract, how to extract them, and how to feed them into the localization scheme are

questions to be further addressed. It is acknowledged that 3D range data are usually

desired to extract features for a robot navigating in the 3D world [67]. In our research,

we use a tilted-down LIDAR to generate a 3D point cloud of the environment in a push-

broom configuration. Rather than directly applying 3D scan-matching to the raw data

[52], we try to extract features from the 3D point cloud, and use the vertical features

for localization. The assumption of our method is that the urban environment is rich in

vertical surfaces, such as curbs, walls of buildings, and even vertical tree trunks.

The “vertical world” assumption, also called the “2.5D assumption”, is a popular as-

sumption used in many works in the literature. Harrison et al. in [124] propose a method

to generate high-quality 3D laser range data while the robot is moving. By exploiting

the assumption of a vertical world, useful information (e.g., roll and pitch angles) can be

inferred. Kohlbrecher et al. [125] achieve 2D SLAM and 6-DoF (Degree of Freedom)

pose estimation with only a single 2D LIDAR and an IMU. Although not explicitly ex-
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plained, the underlying assumption in the work is that the environment contains many

vertical surfaces. Weingarten et al. in [126] use this assumption to realize fast struc-

tured environment reconstruction. In our method, since outdoor environments may have

more arbitrary-shaped objects than structural environments, a classification step has to

be taken before applying the vertical assumption. In the classification procedure, laser

points cast on the vertical surfaces are extracted based on surface normal estimation.

When the tilted-down LIDAR sweeps the environment, some vertical surfaces will be

swept from bottom to top in consecutive laser scans. If we take a bird’s-eye view of this

scanning process and project the vertical features onto a virtual horizontal plane, it is

exactly the same as a robot with a horizontal LIDAR moving on a 2D surface. From a

mathematical point of view, the vertical surface constrains how laser points at different

heights should match with each other. With the above intuition, the idea of synthetic

LIDAR is proposed. A synthetic LIDAR is a planar 2D LIDAR on the projected virtual

plane, where the endpoints of its laser beams are the projected points from the vertical

surface in the 3D environment.

The idea of synthetic LIDAR helps to solve the 3D localization problem on a 2D

plane. Although a vehicle is moving in the 3D world with 6-DoF, generally speaking, a

ground-based vehicle is mostly interested in its 2D pose vector (x, y, yaw). By project-

ing the 3D vertical features onto a virtual plane, a 2D occupancy grid map can be built by

marking those vertical features. This way, an a-priori map can be obtained using SLAM

with the idea of synthetic LIDAR. It should be clarified that our algorithm only applies

to an environment with only one traversable level. For cases with more traversable levels

such as multistory garages or highway overpasses, some 2.5D or full 3D algorithms may

be used [127].

4.1.2 System Overview

The localization system mainly consists of two parts, the 3D perception part to extract

key feature points, and the 2D localization part to solve the localization in the horizontal

plane. The synthetic LIDAR serves as a bridge to connect the 3D world and the 2D

virtual plane, as shown in Figure 4.1.

The system uses an IMU and a wheel encoder to provide 6-DoF odometry informa-

tion, a 2D tilted-down LIDAR to provide laser scans, and an occupancy grid map as
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Figure 4.1: Synthetic LIDAR based localization flowchart

prior knowledge for localization. Simple dead-reckoning is used to obtain the odometry

information. Assuming the distance measured by a wheel encoder at the n-th time step

is rn, and the rotation is given by a pitch θ and a yaw Ψ, the change in position of the

vehicle is given by:
∆xn

∆yn

∆zn

 =
(
rn − rn−1

)
cos θn cos Ψn

cos θn sin Ψn

− sin θn

 (4.1)

The 3D perception process assumes that the odometry system is accurate enough in a

short time period, and accumulates the 2D laser scans for 3D range data. A classifica-

tion procedure is then applied to extract interest points from the accumulated data. The

extracted laser points are then projected onto a virtual horizontal plane (by ignoring their

z values), and a synthetic 2D LIDAR is constructed. The 2D localization fuses odometry

information from odometry and measurements from the synthetic 2D LIDAR in a Monte

Carlo Localization scheme. With a prior map of vertical features generated beforehand,

localization in the 2D horizontal plane is achieved.
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4.2 3D perception

One of the requirements of the synthetic LIDAR is the adaptability to different types of

environment in urban scenarios. We achieve this by properly extracting interest points

from a reconstructed environment model, before the synthetic LIDAR is built.

To be able to recognize features that are perpendicular to the ground, an accurate

model of the world is necessary. There are numerous ways that allow building an accu-

rate environmental model, which include nodding LIDAR and Velodyne. As introduced

in Section 4.1, a single tilted-down planar LIDAR enables the reconstruction of the envi-

ronment accurately by sweeping across the ground surface. This is an attractive solution

since it is low-cost and only requires rigid mounting of the sensor. It also allows efficient

computation for feature extraction, as discussed later.

4.2.1 3D rolling window

A 3D rolling window is used to accumulate different scans recorded across a short dis-

tance. The size of the window is flexible and the rolling window forms a local snapshot

of the 3D environment. It moves together with the vehicle, where new incoming scans

are added into the window, and the old samples get discarded. Let w denote the window

width, i denote the 2D scan index, pi the points in the i th scan, n the latest scan index,

and β the control distance. Pn is the 3D point cloud updated by the newest scan n, which

is accumulated according to

Pn =
⋃

k=n−bw/βc

{pk, . . . , pn} n > bw/βc (4.2)

As shown in Figure 4.2, a new scan is only inserted when sufficient distance β is reached.

This prevents the rolling window from getting redundant points at the same place. There

are many ways to control the processing of the collected 3D data. The way used in

our work is to process the rolling window when the vehicle traverses a certain distance

interval w.
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Figure 4.2: 3D rolling window

4.2.2 Point Classification

To extract features that are perpendicular to the ground, estimation of surface normal is

used. While many methods exist [128], we use the normal estimation method proposed

by [129]. It is based on first-order 3D plane fitting, where the normal of each point

in the space is approximated by performing least-square plane fitting to a point’s local

neighborhood PK [130]. The plane is represented by a point x, its normal vector ~n and

distance di from a point pi ∈ PK , where di is defined as:

di = (pi − x) · ~n (4.3)

By taking x = p = 1
k

∑k
i=1 pi as the centroid of pk, the values of ~n can be computed

in a least-square sense such that di = 0. The solution for ~n is given by computing the

eigenvalue and eigenvector of the following covariance matrix C ∈ R3x3 of PK [131]:

C =
1

k

k∑
i=1

·(pi − p) · (pi − p)T , C · ~vj = λj · ~vj, j ∈ {0, 1, 2} (4.4)

where k is the number of points in the local neighborhood, p as the centroid of the neigh-

bors, λj is the jth eigenvalue with ~vj as the jth eigenvector. The principal components

of PK corresponds to the eigenvectors ~vj . Hence, the approximation of ~n can be found

from the smallest eigenvalue λ0. Once the normal vector ~n is found, the vertical points

can then be obtained by simply taking the threshold of ~n along the z axis, e.g. 0.5. This

can vary depending on how noisy the sensor data are.
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To find the local neighborhood points efficiently, KD-tree [132] is built from all the

points obtained from the rolling window and a fixed radius search is performed at each

point. Although the surface normal can be calculated as a whole, performing normal

calculation at each point in the rolling window can be very expensive. To further reduce

the computation complexity, two successive rolling windows are maintained. The idea

is illustrated by the following equation:

P φ
n+1 = P φ

n

⋃
Φ(Pn+1 \ Pn) (4.5)

where Φ can be any points classification function, P φ consists of the processed points

and P contains the raw points. This way, surface normal calculation is only required for

the much smaller rolling window Pn+1 \ Pn. In other words, this ensures that classifi-

cation will only be performed on the newly accumulated point cloud and the processed

points from the previous instance can be reused.

4.2.3 Synthetic LIDAR construction

The classified points consist of the collection of interest points in 3D. For the construc-

tion of synthetic LIDAR, the interest points in 3D are projected onto the virtual hori-

zontal plane (z=0). It can be seen that this synthetic LIDAR has a very special trait: the

ability to “see through” the obstacles. This is possible since interpretation of points is

done in 3D. The construction of synthetic LIDAR is completed by placing the virtual

sensor at the base of the vehicle and performing transformation of all the interest points

from odometry to the vehicle’s base.

The construction of synthetic LIDAR can be illustrated by a cartoon illustration,

as shown by Figure 4.3(a). In the illustration, the tilted-down LIDAR is shown by a

green cylinder mounted on a vehicle, which sweep the environment as the vehicle moves

forward. A point cloud is accumulated with the idea of 3D rolling window, where each

point is denoted as a blue dot. In the point classification process, we extract points which

are cast on the vertical surfaces of the environment, and visualize them as the green dots.

In the process of LIDAR construction, a synthetic LIDAR is constructed with its origin

placed at the base of the vehicle and its laser beams ending at the projections of the

extracted “vertical points”.

60



4.2. 3D perception

A. 3D Data Accumulation B. Point Classification

C. Synthetic LIDAR Construction

A. B.

C.

Synthetic LIDAR

Top-down view

tilted-down LIDAR

accumulated point cloud

vertical points

moving direction

(a) a cartoon illustration

LIDAR accumulation with 
3D rolling window

Surface Normal Calculations Point Classification

Synthetic LIDAR Construction

(b) a real-world example

Figure 4.3: Construction of synthetic LIDAR
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A real-world example is also provided to visualize the construction process, as shown

by Figure 4.3(b). In this figure, we also visualize the intermediate results of surface

normal calculation, where the normal at each point is represented by a tiny red arrow.

In our application, the operations of the point cloud are carried with the Point Cloud

Library (PCL) [133], which provides many useful functions for 3D perception.

4.3 Online Localization

4.3.1 MCL Localization

Our algorithm adopts the Monte Carlo Localization (MCL) scheme to estimate the vehi-

cle pose. MCL is a probabilistic localization method based on Bayes Theorem and the

Monte Carlo idea [16]. The core of MCL is a particle filter, where the belief of vehicle

position is maintained by a set of particles. MCL mainly consists of three steps, pre-

diction, correction, and the resampling. For the motion model which is required for the

prediction step, Pseudo-3D odometry motion model from Chapter 3 is used. The choice

of measurement model is discussed in the following.

4.3.2 Synthetic LIDAR Measurement Model

To incorporate the measurement into localization, a measurement model is needed for the

synthetic LIDAR. The “Likelihood Field Range Finder Model” is adopted for the syn-

thetic LIDAR. Our considerations are as follows. Since the endpoints of virtual beams

are the projection of interest points from vertical surfaces, it is possible that different

points from different vertical surfaces may have the same angle. In other words, there

exist two laser beams with the same angle while having two different range values. For

this reason, synthetic 2D LIDAR is a peculiar LIDAR that only detects vertical surfaces,

and can also see through these surfaces. In light of this, the likelihood model which only

requires the endpoints of laser beams is well suited for the synthetic LIDAR.
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Figure 4.4: Vehicle testbed

4.4 Experiments

4.4.1 Experiment Setup

Our test bed is the Yamaha G22E golf cart used in Chapter 3, but with a slightly different

sensor configuration. The hardware configuration is shown in Figure 4.4. The tilted-

down LIDAR mounted in the upper-front is a SICK LMS-291 LIDAR for localization. A

4-layer LIDAR, SICK LD-MRS400001 is mounted at waist level for obstacle detection.

Both rear wheels of the golf cart are mounted with encoders that provide an estimate

of the distance traveled. An Inertial Measurement Unit (IMU) MicroStrain 3DM-GX3-

25 is mounted at the center of the real axle to provide orientation information of the

vehicle. The localization algorithm is tested on the Engineering Campus of the National

University of Singapore, where the road is up-and-down and many high buildings exist

off the road.

A prior map is first generated with Graph-SLAM techniques by using the synthetic

LIDAR as the input. To perform pose optimization, Fast Laser Interest Region Transform

(FLIRT) [134] is used as a front end to detect loop closure. Then, the fully optimized

pose is recovered using the optimization library from [135]. To evaluate the quality of the

recovered map built from synthetic LIDAR, the map is projected onto a satellite map, as

shown in Figure 4.5. The map shows consistency with good correlation with the satellite

map, with an area of about 550m × 487m. Although there are discrepancies towards
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Figure 4.5: Mapping of the NUS Engineering Campus

the left side of the map due to uniform logitudinal features along the road, the overall

topology is maintained. This shows that the map can be used for accurate localization.

4.4.2 Experiment Results

The synthetic LIDAR is able to perform at a rate of 50 Hz output on a laptop with

a Core i7 processor, showing that the synthetic LIDAR can be used to perform a real

time localization. The localization results are shown in Figure 4.6. Judging from the

prior map, the localization result from our algorithm always aligns with our driving path

where a parallel line with the road boundary is clearly shown in the long stretch of road.

Since our algorithm does not rely on GPS, our estimation still performs well near areas

crowded by tall buildings. Note that in the experiment, a rough initial position is given

and hence localization is mostly concerned with pose tracking. However, the system

is able to cope with small kidnapping problems, e.g. brief data error from the LIDAR,

since the odometry system is still able to provide information. Should a large kidnapping

occur, e.g. the vehicle was moved in between placed without turning on the localization

module, a rough initial position may be provided to speed up the convergence rate.

Figure 4.7 shows “localization standard deviation” vs “driving distance”. The stan-

dard deviation of angle is generally less than 1◦, as shown in Figure 4.7(a). Figure 4.7(b)
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Figure 4.6: Localization results during a manual drive
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(a) angle standard deviation

(b) position standard deviation

Figure 4.7: Localization standard deviations

shows “position standard deviation” vs “driving distance” in longitudinal and lateral di-

rections relative to the vehicle. It is shown that during the whole test, standard deviations

in both directions remain small. The worst estimations occur longitudinally, at a value of

about 0.2 m. This suggests the localization algorithm has high confidence about its pose

estimation. At the same time, it is also seen that the lateral standard deviation is gener-

ally smaller than the longitudinal one. This is inline with the fact that in an urban road

environment, features in the lateral direction are much richer than those from the longi-

tudinal direction, as discussed in our previous work in Chapter 3. By comparing Figure

4.7(b) to Figure 3.12, it can be easily observed that the localization performance in the

longitudinal direction is much better than that in the previous work. The improvement

can be attributed to the usefulness of vertical surface features other than the curbs.

This proposed method has since been used to perform autonomous navigation sim-

ilar to the previous work. To show that the localization results are consistent, two au-

tonomous runs are performed as shown in Figure 4.8. The golf cart is given a path

to follow with the direction from A to E. To validate the precision of the localization, 5

checkpoints are selected where per-pixel absolute difference between 2 grayscale images

captured from each autonomous run is performed. The larger the grayscale difference is,

the darker the output image. To ensure the same lighting condition, the two autonomous
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runs were performed consecutively on the same day. 5 smaller images from Figure 4.8

are the results of the visual validation. The bright images give strong evidences that the

localization system is able to provide precise position repeatedly. Do note that the dark

spots present at images B, C and E are the natural results from moving objects. This

shows that precise navigation can be achieved with only a single 2D LIDAR.

More details of our experiments and related applications can be found from Video

(6)(7) in Appendix B.

4.5 Summary

This chapter proposes the use of synthetic LIDAR constructed from vertical surface

features for precise localization in a 3D environment. Vehicle position estimation is

conducted in a Monte Carlo Localization scheme, based on synthetic LIDAR measure-

ments and odometry information. We demonstrate the accuracy and robustness of our

localization algorithm in a driving test. Since this method utilizes the general vertical

surface features rather than only the curb-intersection features, it is able to achieve better

localization performance that the algorithm introduced in Chapter 3.

The contributions of our localization algorithm presented in this chapter are two-

fold: firstly, compared to the state-of-art algorithm using 3D LIDAR [15], our method

achieves equivalent performance, however, with the much reduced sensing ability of

a 2D LIDAR; secondly, similar to the algorithm in Chapter 3, the idea of “synthetic

LIDAR” enables us to use the standard laser model to solve the localization problem on

the projected 2D plane, both efficiently and precisely.

To sum up, Chapter 3 and Chapter 4 introduce our localization methods with only a

tilted-down LIDAR and odometry information. By utilizing the typical features in the

urban road environment, the proposed localization algorithms achieve good accuracy as

well as robustness. In our future work, we are looking forward to developing a generic

framework that incorporates multiple sensory modalities for localization, in order to

further improve the accuracy and robustness.
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Figure 4.8: Autonomous navigation with synthetic LIDAR. Images on the right from top
to bottom correspond to visual validation of localization repeatability from checkpoint
A to E.
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Chapter 5

A General Framework for Road

Marking Detection and Analysis

Road detection is the problem of detecting and locating drivable roads, which is a basic

requirement for vehicle autonomous navigation. As reviewed in Chapter 2, two major

streams of research are found around this topic, i.e. road marking detection, and road

surface-boundary detection. This chapter deals with the problem of road marking detec-

tion. The topic of road surface-boundary detection is addressed in Chapter 6.

5.1 Introduction

Road marking detection has been a popular research topic in the context of Autonomous

Driver Assistance Systems (ADAS). Road markings are paintings on road surface to pro-

vide traffic guidance information for vehicles and pedestrians. Common road markings

include lane markings, arrows, zebra-crossings, words, etc. Researchers aim to detect

and locate these road markings, and utilize the results to guide vehicle autonomous nav-

igation. This chapter introduces a general framework for road marking detection and

analysis using vision, which is able to support various marking types.

Lane markings are the dominant markings on the road surface, and there has been a

lot of research to detect lane markings, as reviewed in Section 2.3.2. The detection of

other types of markings is also studied, such as arrow markings, pedestrian crossings,

and so on [68] [93] [95]. However, existing approaches are all case-specific, and there

is a lack of a general framework which supports all the various types of markings. Our
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research in this chapter targets meeting this demand.

Our basic idea is to extract all the marking contours indiscriminately from image

processing, and then send them into different modules for dedicated classification and

analysis. Each type of marking will have its own dedicated classifier, which extracts its

marking contours of interest, and filters out the rest. The recognized marking will be fur-

ther fed into an analysis process to extract its guidance information. In some cases, road

markings come as a group, such as zebra-crossings and words. For markings of these

types, two rounds of classifications will be involved. Firstly, their contour components

will be recognized at an individual level. Then the recognized components are clustered

as groups, and a second round of classification will be carried out at the group level.

After the marking groups are recognized, traffic guidance information will be extracted

from them in the subsequent analysis procedure. Unlike the previous work, which only

deals with certain specific types of markings, our proposed method is general enough to

support a variety of markings.

The rest of this chapter is organized as follows. Section 5.2 introduces the overview

of the proposed framework. Section 5.3 discusses the image processing to extract mark-

ing contours. Section 5.4 presents the detection and analysis modules for four marking

types. Experimental results are shown in Section 5.5. Finally, Section 5.6 concludes the

chapter.

5.2 Framework Overview

The framework of marking detection and analysis is shown in Figure 5.1. Its input is the

camera image, and the output is various marking information. This framework can be

roughly divided into two parts, the image processing part for marking contour extraction,

and the classification-analysis part for contour recognition and analysis.

In the image processing part, input image is first transformed through an Inverse

Perspective Mapping (IPM) process to get a bird’s-eye view of the road surface. Image

binarization is then applied to the transformed image to extract the foreground pixels.

The binarized image is further segmented into different parts with their contours ex-

tracted. While each contour represents one single marking candidate, their contours are

sent to the classification-analysis part for further processing.

70



5.3. Image Processing
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Figure 5.1: A general framework for road marking detection and analysis

The classification-analysis part is composed of several parallel classification-analysis

modules. These modules are independent from each other, with each module dedicated

to its corresponding type of marking. In one module’s classification step, contours are

classified into (c + 1) classes, where c is the class number of markings in this type, and

the additional “1” represents other irrelevant types of markings and noise. For example,

there are c types of arrow markings on urban roads. In the “Arrow” module, its clas-

sifier will treat markings of other types as noise, and try to identify these c classes of

arrow markings. The identified markings are then analyzed to extract useful guidance

information. In some cases, road markings come as a group, such as the markings of

zebra-crossings. In such cases, one individual marking component carries no meaning-

ful information. It is desired to cluster the recognized contour components together, and

recognize them as an entity.

5.3 Image Processing

5.3.1 Inverse Perspective Mapping (IPM)

Inverse Perspective Mapping (IPM) is an image transformation method to get a bird’s-

eye view of the road surface [136]. When a forward-looking camera captures an image,

shapes of road markings are usually distorted due to perspective projection. An IPM

process can be applied to remove this distortion, and recover the original shapes for

classification purposes. Figure 5.2 illustrates the basic idea of IPM. For a fixed-mount

on-board camera, its pose in the vehicle coordinate frame is usually known, and hence
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Figure 5.2: Inverse Perspective Mapping

its pose relative to the road surface. Together with its intrinsic parameters from a prior

calibration process, the perspective transformation matrix from road surface to camera

image can be calculated. An inverse operation of this perspective matrix will restore the

original road surface, and represent it as an IPM image.

An example of the complete image processing flow is shown by Figure 5.3. Figure

5.3(a) shows the original image, and Figure 5.3(b) illustrates the image after IPM trans-

formation. We select our Region of Interest (ROI) to be the lower part of the original

image, as shown by the blue quadrilateral. During the transformation, besides the IPM

ROI, we can also define the pixel-to-meter ratio between the transformed image and real

road area. This ratio bridges the position of an object in the IPM image, and its position

in the real world.

5.3.2 Image Binarization

After the IPM process, the transformed image is converted into an 8-bit grayscale image

for the operation of binarization. We combine the global thresholding and local adap-

tive thresholding methods to generate the binary image. Since road markings usually

have higher brightness than the background surface, a global thresholding step with an

appropriate threshold value will naturally distinguish the foreground markings and the

background surface. We select a fixed threshold value for this global thresholding step.

To guarantee that the global thresholding always works well, we implement one cam-

era exposure control method [137] to maintain a stable grayscale histogram for the IPM

image. While the global thresholding distinguishes the foreground and background pix-

els in a global manner, some details of the IPM image may be lost due to unbalanced

exposure. We use the adaptive thresholding method to recover these local details. In our
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(a) original image

(b) IPM transformation (c) image binarization (d) contour extraction

Figure 5.3: An example of image processing
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implementation, the IPM image is independently processed by the two types of thresh-

olding methods, and the resulted images are then fused together in one bitwise “AND”

operation. Figure 5.3(c) shows the resulting image after binarization.

5.3.3 Contour Extraction

After the image binarization process, the foreground pixels are segmented into different

components. Since the contour of a component carries all its geometric information, we

use the contours to represent the extracted components. Our operations of recognition

and analysis will be carried out with the geometric information of the contours. Be-

fore sending the contours for further processing, a prefiltering step is applied to remove

the tiny pieces of contours from background noise. Figure 5.3(d) shows the extracted

contours by visualizing them in different colors.

5.4 Contour Classification and Analysis

The image processing procedure extracts a set of contours, which comes from various

road markings as well as background noise. This set of contours needs to be further

classified and analyzed to extract useful traffic guidance information. Our framework

uses independent classification-analysis modules to deal with different marking types.

In each classification-analysis module, a classifier is trained to recognize its dedicated

marking type. Some specific analysis will then be carried out for this type of marking.

A Support Vector Machine (SVM) [138] is used for the classification purpose, with

each classifier trained independently for each single type of marking. Geometric features

of each contour are extracted to compose its feature vector, as summarized in Table 5.1.

The selected features are rotation-invariant, and carry adequate geometric information

for the classification operation.

One interesting issue of contour classification arises when certain types of markings

appear as a group. These types of markings include zebra-crossings, road surface words,

etc. After the classification of contour components at the individual level, recognized

components are then clustered into groups, where a second-round classification will be

carried out to recognize the marking groups.

In this section, we study four types of common markings, and their classification-
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Table 5.1: Geometric features of marking contours

Feature Name Dims. Description

Hu Moments 7
The seven Hu Moments of a contour, which are

scaling and rotation invariant.

Weight 1 The length in pixels of a contour.

Bounding Rectangle 2

The minimum-area bounding rectangle of a

contour is calculated, and its two side lengths are

selected as features.

Approximate Polygon 1

A polygon approximation is applied to a contour,

and the vertex number of the polygon is selected

as a feature.
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Figure 5.4: Four marking modules

analysis modules are shown in Figure 5.4. While the classifications of different markings

use the same method, analyses on them are quite different: for a lane marking, our

interest is to extract its mathematical representation as a line; for an arrow, our interest is

to determine its type, and calculate its pose relative to the vehicle; for a zebra-crossing,

we want to recognize its existence and determine its position and covering area; for a

word on the road surface, we want to infer its meaning given a learned dictionary.

5.4.1 Lane Module

Lane markings are used to denote road lanes, and are the most dominant markings on

the road surface. A binary classifier is trained for lane detection, to determine whether

one marking is a lane or not. To get a line representation of the recognized marking, we
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(a) contour input (b) skeletonization (c) line fitting

Figure 5.5: Lane processing

first perform a thinning operation [139] to get its skeleton with single-pixel thickness.

The Random Sample Consensus (RANSAC) [140] method is then applied to fit a line on

the skeleton pixels.

It is possible that multiple lane markings are connected to each other, and extracted

as a single marking. To deal with this situation, an iterative process of RANSAC is per-

formed for multiple-line fitting. In the iteration, after a line is fitted by RANSAC, its

inliers are removed from the skeleton pixel sets, and the remaining pixels are used for

the next iteration step. The iteration process is terminated when no more “good” lines

can be fitted. Here the criteria for “good” are that a line should have enough supporting

pixels, and its length should exceed a certain threshold. Figure 5.5 shows an example

of lane contour processing, where Figure 5.5(a) shows the contour input, Figure 5.5(b)

visualizes the skeletonization for the recognized lane contours, and Figure 5.5(c) illus-

trates the RANSAC line fitting result on the IPM image. This iterative RANSAC method

works well to extract multiple straight lanes when they are connected to each other. As

for curved lanes, they will be approximated by several connected straight lanes.

5.4.2 Arrow Module

Arrow markings usually appear nearby T-junctions or turnings of the road network, and

provide direction guidance for drivers. While the appearances of arrow markings may

vary in different countries, we study 7 types of common markings from our local road,

as shown in Figure 5.6. To recognize these arrows, an 8-class classifier is trained. The

additional class denotes other irrelevant markings and noise.

For the recognized arrows, we want to calculate their poses (x, y, theta) relative
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(1) (2) (3) (4) (5) (6) (7) 

Figure 5.6: Common arrow types

(a) contour input (b) arrow detection and positioning

Figure 5.7: Arrow processing

to our vehicle. The arrow position of (x, y) is represented by its contour’s centroid

position, which is first calculated in the IPM image with “pixel” as its unit, and then

transformed into the real world coordinates using the IPM pixel-to-meter ratio mentioned

in the former section. Arrow angle θ is denoted as the angle of its contour’s principal

axis [94]. While there are 2 principal axes for a 2D contour, the one corresponding to a

smaller angle is chosen, considering that an arrow is usually parallel to a vehicle’s driving

direction. Figure 5.7 shows an example of arrow processing. In Figure 5.7(b), two

arrows are recognized and colored in green with their poses in the vehicle coordinates.

5.4.3 Zebra-Crossing Module

A zebra-crossing is an area for pedestrians to go across the road. The recognition of

a zebra-crossing area can alert drivers to possible pedestrians. Its most distinguishing

feature is the alternating dark and light stripes. In the zebra-crossing module, a binary

classifier is trained to recognize the light stripes. Then the extracted strip contours are

clustered as a group. A second round of classification is then carried out at the group

level to recognize possible zebra-crossings.
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In the clustering/grouping step, multiple criteria are used to calculate the distance

measurement between two contours c1 and c2, denoted as Dist(c1, c2). The first cri-

terion is about the parallelism between two contours. While the contour of a zebra-

crossing strip can be approximated by a rectangle, Angle dist(c1, c2) denotes the angle

between the long sides of their rectangles. The second criterion deals with the collinear-

ity of the rectangle short sides, which is reflected by the measurement Col dist(c1, c2).

Col dist(c1, c2) is calculated as the maximum distance from points in one short side to

the line of the other. The third criterion is about the distance between the centroids of

two contours. For two neighboring zebra-crossing stripes, the centroid distances of their

contours should be around 2 times the rectangle width. We use Centr dist(c1, c2) to

present this knowledge, which is calculated as the centroid distance minus 2 times the

rectangle width. The synthetic distance Dist(c1, c2) is defined as:

Dist(c1, c2) =a1Angle dist(c1, c2) + a2Col dist(c1, c2)

+ a3Centr dist(c1, c2) ,

where a1, a2, a3 are weighting parameters. When Dist(c1, c2) is less than a fixed thresh-

old T , two contours are clustered into one group. T can be learned through a supervised

learning process.

After contour grouping, clusters of contours will be classified at a group level using

a second classifier. The second classifier is a binary classifier to determine whether

one cluster of contours is a crossing, which can be trained based on the group features.

In our application, the group feature is simply the contour number in one cluster, as a

zebra-crossing usually has multiple light stripes. The covering area of one recognized

zebra-crossing is calculated by finding a minimum-area enclosing rectangle for all its

stripes. Figure 5.8 shows an example of zebra-crossing processing.

It should be mentioned that our zebra-crossing detection algorithm works well even

in the presence of partial occlusion. By choosing a relatively small value for parameter a3

when calculating Dist(c1, c2), two adjacent crossing contours can be clustered together

even when some crossing contours are occluded in between. As long as enough contours

are grouped in one contour cluster, this cluster will be recognized as a zebra-crossing.
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(a) contour input (b) crossing detection

Figure 5.8: Zebra-crossing processing

5.4.4 Word Module

In an urban road network, another important type of markings is the words. These words

are usually used to give speed advice for drivers, to indicate a speed bump ahead, etc.

The letters of these words are usually in uppercase, with uniform height and width. In

the word module, we first apply a binary classifier to extract the letter contours, then

group them, and finally recognize them as a word at the group level.

In the first step, a binary classifier is trained to classify the contours into two types,

the letter contour and the non-letter contour. While letter contours usually have uniform

size and some similar geometric features, non-letter contours are either too big or too

small, with irregular shapes. This observation is utilized by the classifier to distinguish

letter and non-letter contours. It should be clarified that we do not perform charac-

ter recognition at this step, but leave it to the end of the word module. Similar to the

processing of zebra-crossing, our second step is contour grouping. While some noise

may remain from the classification step, the grouping process can discard most of the

remaining non-letter contours. After contour grouping, a simple classification will be

performed on the extracted groups. Only the groups with enough letter contours will be

treated as possible words, and fed into the word recognition process.

Tesseract [141] is one popular open source Optical Character Recognition (OCR)

engine, and we use it for the word recognition purpose. In our application of road word

recognition, it is found that Tesseract achieves much better performance recognizing a

single letter than a word. For this reason, we use it to recognize individual letters inside
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(a) contour input (b) recognized word

Figure 5.9: Word recognition

a contour group, and fuse the results together to recognize a complete word using a Bag

of Words (BoW) model [142] . In our application, a “word” inside the “bag” is actually

an uppercase English letter, and the “bag” is an English word shown by the markings.

Our dictionary is composed of the 26 uppercase English letters. We construct a 26-entry

vector as the feature vector of one word, with each entry of the vector representing the

occurrence of the corresponding letter. With this feature vector, a multi-class classifier

can be trained to recognize the different words. Figure 5.9 shows an example of word

recognition.

5.5 Experiments

We use a common webcam (Logitech Pro Webcam C910) to acquire 640×360 images at

30 fps. It is mounted in the front of the vehicle, at the height of 1.5m and with a tilting-

down angle of 10 degrees. We define our IPM image to be 240 × 240, with its ratio to

the real word as 20 pixel/m. Although the IPM image covers a square area in front of

the vehicle, the effective detection zone of our algorithm is an isosceles trapezoid, with

its bottom width 4.0m, top width 12.0m and height 12.0m. The bottom side of this

trapezoid is 3.0m ahead of the camera mounting position. Our algorithm is programmed

in C++ with OpenCV [143], and is able to perform real-time classification and analysis

for various markings, except for the word ones. Our experiments were carried out on

the campus of the National University of Singapore, which is one typical urban road

environment.
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Table 5.2: Classification performance for road markings
Classifiers for markings Lane Arrow Crossing Word

labeled markings 2720 6912 732 490
weighted precision(%) 92.8 96.5 97.2 91.8

weighted recall (%) 92.8 96.4 97.2 91.8

Table 5.3: Confusion matrix of arrow classification
Prediction Outcome 

Noise-0 Arrow-1 Arrow-2 Arrow-3 Arrow-4 Arrow-5 Arrow-6 Arrow-7 

Actual 

Value 

Noise-0 4247 108 21 12 4 5 3 7 

Arrow-1 57 1799 0 0 2 2 0 0 

Arrow-2 4 0 247 17 0 0 0 0 

Arrow-3 6 2 3 151 0 2 0 0 

Arrow-4 0 0 0 0 40 0 0 0 

Arrow-5 0 0 2 0 0 166 0 0 

Arrow-6 0 0 0 0 0 0 72 0 

Arrow-7 0 0 0 0 0 0 0 196 

To train the classifiers for different marking types, images are collected beforehand.

Our data collection took place on a cloudy day when the lighting conditions were rel-

atively mild. Marking contours in the collected images were labeled manually. Four

classifiers were trained independently using SVM with the labeled data. Table 5.2 shows

the classification performance of each classifier under 5-fold cross-validation. We ana-

lyze the precision and recall rates to better evaluate our algorithm: precision measures

what fraction of the detections are actually the studied markings, and recall measures

what fraction of the actual studied markings are detected. It can be seen that each type

of markings is classified well, with precision and recall rates all above 90%. This re-

sult justifies our idea of using contour features for marking classification. While the

classifiers for the other 3 types of markings are all binary classifiers, the one for arrow

marking is an 8-class classifier. Table 5.3 shows the confusion matrix for arrow clas-

sification. From the table, it is found that the first 3 types of arrows are more easily

misclassified as noise than the other 4 types. This is because that when seen from a

distance, these arrows appear blurred and resemble lane segments.

While the classifications for lanes and arrows are based on individual markings, the

recognitions of zebra-crossings and words are performed on the group of contours. As

for the zebra-crossings, we try to extract the groups with enough contour members.

Since the precision of crossing contour classification is high, the precision of its group

classification is also high. The precision of the zebra-crossing classification is more
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Table 5.4: Confusion matrix of word classification
Prediction Outcom 

Noise "AHEAD" "SLOW" "STRIP" "HUMP" "X-ING" 

Actual 

Value 

Noise 53 5 0 1 0 1 

"AHEAD" 5 70 4 4 2 0 

"SLOW" 0 5 22 2 0 1 

"STRIP" 0 0 0 18 0 0 

"HUMP" 0 0 0 0 15 0 

"X-ING" 0 4 0 0 0 76 

than 98%. As for the words, OCR is performed at the letter level, and we train a word

classifier based on the OCR outputs. Tesseract is used for single-letter classification, and

its precision is about 55% in our application. By training a word classifier using a BoW

model, the accuracy of word detection is considerably improved. In our experiment, we

manage to identify 5 common words on road, and the precision is 88%. The confusion

matrix of word classification is shown in Table 5.4.

Besides the accuracy, computation time is another key issue for marking classifica-

tion and analysis. Our processor is an Intel Core i5-3550. We use separate threads for

different operations and test their computation time. Table 5.5 shows the computation

time of marking detection and analysis. The procedure of image processing is composed

of IPM transformation, binarization, and contour extraction, and its computation time

is around 3ms . The extracted contours are then sent to different modules for process-

ing. While the computation time of each module may vary dramatically for different

images with different markings, we record the time when their corresponding contours

appear. The lane module generally takes 6ms to process contours from one single im-

age, while in contrast the arrow module only needs 2ms . The reason is that the lane

module involves contour skeletonization and RANSAC operations, which is computa-

tionally intensive. The zebra-crossing module takes 3 ms to classify the contours, cluster

them, and find the crossing areas. Our camera is working at the frequency of 30 fps, and

the above 3 modules are able to perform online processing for their relevant markings.

The word module takes a much longer time compared to the above 3 modules. In our

implementation, Tesseract takes around 30ms to recognize a single character, making

the recognition of a word to be more than 150ms.

To test the robustness of our proposed method, we carried out a series of tests under

different lighting conditions. Since camera exposure control is used to the camera for the
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Table 5.5: Computation time of different processes
Processes Image Processing Lane Arrow Crossing Word
Time (ms) 3 6 2 3 >150

(a) contour input (b) marking

Figure 5.10: Shadow-highlight situation

IPM ROI, our algorithm can handle moderate shadow-highlight effects and perform well

in most scenarios. However, when the shadow-highlight effects are too strong, noise

will appear and the detection performance will be undermined. Figure 5.10 shows an

example where false lane markings are detected due to nonuniform illumination on the

road surface. Despite the challenges brought by shadows and highlights, our algorithm

shows good performance in most scenarios. Some impressive results are shown in Figure

5.11.

More details of our experiments can be found in Video (8) in Appendix B.

5.6 Summary

In this chapter, we propose a general framework for road marking detection and analy-

sis, which is able to support various types of markings. Marking contours of different

types are extracted indiscriminately from an image processing procedure, and sent to

respective modules for independent classifications and analyses. Four common types

of markings are studied as examples: lanes, arrows, zebra-crossings, and words. Our

proposed method shows good accuracy in experiments.

The contribution of our work is the proposed framework for road marking detec-

tion and analysis; unlike the existing approaches which are case-specific, the proposed
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Figure 5.11: Marking detection and analysis results
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method is able to detect various types of markings under a uniform framework, and

achieves good performance.

In future work, we will try to improve our algorithm in the following three respects.

Firstly, a more robust method will be developed for the contour extraction process. Here

extraction simply relies on brightness thresholding by assuming that road markings are

generally clear and complete, which however may fail when the markings are worn or

the shadow-highlight effect is too strong. Some shadow removal algorithms may be

applied to alleviate this problem. Secondly, in the current setup, different classification-

analysis modules operate in an independent manner, which may generate contradictory

classification results. A consensus process will be developed to eliminate the contradic-

tions based on some semantic knowledge, which will help to improve the classification

accuracy of the whole system. Thirdly, due to the lack of suitable public datasets, we

do not provide comparative evaluation of our method with other state-of-art algorithms,

which will be addressed in the future work.
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Chapter 6

Road Detection and Mapping using 3D

Rolling Window

Road marking detection and surface-boundary detection are the two major research top-

ics in road detection. While the previous chapter introduces our work of road marking

detection, it is only applicable to painted roads where markings exist. This chapter ad-

dresses the problem of road surface-boundary detection, which however can be applied

to the general urban road environment.

6.1 Introduction

LIDARs have played a dominant role in the research on road surface-boundary detection,

as reviewed in Section 2.3.2. While most existing methods as well as our initial work

(Section 3.2) use a 2D LIDAR for road boundary detection, the algorithms are based on

the processing of individual 2D scans, which have several disadvantages to be discussed

in the next paragraph.

In this research, we employ the idea of a 3D rolling window for road surface and

boundary detection. Unlike algorithms directly processing 2D scans, our method applies

3D perception techniques for the detection purpose, and has several advantages over the

2D algorithms. Firstly, 2D algorithms have a strong assumption about the detection

scenario: road boundaries should always intersect the projected laser line on the ground,

and there are at most two boundary points in each scan. This assumption generally works

well; however, it does not apply to some tricky situations, e.g. where road boundaries are
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parallel to the projected laser line. On the contrary, our algorithm using accumulated 3D

data does not have this assumption, and is able to handle all the situations. Secondly, our

algorithm is able to implicitly utilize the temporal relationship between adjacent scans,

and hence will be more robust to noise. This is because our detection makes use of the

features of each point, which incorporate the information of their neighboring points

from multiple scans. Thirdly, while other algorithms use the tilted-down LIDAR solely

for road detection, the 3D data accumulated in our algorithm can also be used for other

object recognition purposes.

The method of a 3D rolling window has been introduced in Section 4.2.1. Com-

pared to commercial 3D sensors like Velodyne, this technique provides a cheaper way to

acquire 3D data. While a Velodyne can perceive the 3D environment through one snap-

shot, the rolling window achieves this through temporal data accumulation and is hence

suitable for static object perception. Since the accuracy of the rolling window is not

yet clear, its probabilistic characteristics will be studied. Considering the characteristics

of the rolling window, a cascaded process of road detection is developed with region-

growing and classification methods. We further develop a probabilistic framework for

road mapping with the detection results.

The remainder of this chapter is organized as follows. Section 6.2 studies the idea

of the 3D rolling window. Section 6.3 presents the cascaded process of road detection.

Section 6.4 discusses the idea of probabilistic road mapping. The experimental results

and analyses are shown in Section 6.5. Section 6.6 concludes this chapter.

6.2 3D Rolling Window

3D perception is the ability to perceive the environment in three dimensions. It is always

desired for a robot navigating in the real world, and is getting more and more popu-

lar [133]. There are many ways to get 3D data, including using stereo vision, using a

3D LIDAR, and accumulating 3D data from 2D range scanners [144]. We use a tilted-

down LIDAR to generate a 3D point cloud of the environment in a rolling-window way.

A fixed tilted-down single planar LIDAR enables the reconstruction of the environment

by sweeping across the ground surface. In this section, we will introduce the construc-

tion of the 3D rolling window, study its probabilistic characteristics, and incorporate the
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probabilistic characteristics into the 3D point cloud. (While the construction and mainte-

nance of a 3D rolling window has been introduced in Section 4.2.1, to make this chapter

self-contained and easy to ready, some details are restated here. )

6.2.1 Construction and Maintenance

A 3D rolling window is used to accumulate different scans received across a short dis-

tance. The size of the window is flexible and the rolling window forms a local snapshot

of the 3D environment. It moves together with the vehicle, where new incoming scans

are added into the window, and the old samples get discarded. Let w denote the window

width, i denote the 2D scan index, pi the points in the i th scan, n the latest scan index,

and β the control distance. Pn is the 3D point cloud updated by the newest scan n, which

is accumulated according to

Pn =
⋃

k=n−bw/βc

{pk, . . . , pn} n > bw/βc . (6.1)

As shown in Figure 4.2, a new scan is only inserted when sufficient distance β is reached.

This prevents the rolling window from getting redundant points at the same place. There

are many ways to control the processing of the collected 3D data. The way used in

this work is to process the rolling window when the vehicle traverses a certain distance

interval w.

6.2.2 Probabilistic Characteristics

The 3D rolling window provides a low-cost method to get 3D data. However, the ac-

curacy of the accumulated point cloud is not yet clear. It is necessary to understand

its probabilistic characteristics before using it. While below we give a general analysis

for the accumulation process, we are not going to calculate the full distribution of the

3D data. Instead, for our specific application, we only focus on the distribution of each

single point in the z direction.

Figure 6.1 shows the coordinate systems during the data accumulation process. In

the figure, pi denotes the laser points from scan i, “Laser-i” the LIDAR coordinate where

points pi are originally collected, “Baselink-i” the vehicle-attached coordinate when ac-

cumulating scan i, “Baselink-t” the vehicle coordinate at time t, and “Odom Coordinate”
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Baselink-i 

Laser-i 

 Odom Coordinate 

Baselink-t 

𝑝𝑖 

...      

Baselink-Verti-t 

Figure 6.1: Coordinate system for 3D data accumulation

the dead-reckoning coordinate of odometry. For the vehicle-attached coordinate, its ori-

gin is at the center of the real wheel axis, with its x-axis pointing forward in the vehicle

longitudinal direction, y-axis pointing left in the lateral direction, and z-axis pointing up.

When a scan i is received, points pi are calculated and transformed into the odometry

frame to be stored. When data processing is needed at a certain time t, recorded points pi

are transformed from “Odom Coordinate” into the latest vehicle coordinate “Baselink-

t”. This transformation depends on pose estimation for vehicle coordinate “Baselink-t” .

However, pose estimation for the vehicle coordinate may suffer from severe noise in its

pitch and roll angles, making the transformed data unreliable to use. A vertical coordi-

nate frame is introduced to avoid this problem. The vertical coordinate frame, denoted

as “Baselink-Verti-t”, has the same origin and yaw angle with “Baselink-t”, but its roll

and pitch angles are set to zero. At time t, the accumulated 3D data are transformed into

the “Baselink-Verti-t” coordinates for further usage.

The data accumulation process can be represented as follows:

pti = t
iBT

iB
iLT pi , (6.2)

where pti = (xi, yi, zi, 1)T is the augmented position vector of points pi in the coordinates

of “Baselink-t”, tiBT denotes the 4×4 homogeneous transformation matrix from coordi-

nate frame “Baselink-i” to “Baselink-t”, and iB
iLT denotes the transformation matrix from

“Laser-i” to “Baselink-i”. The distribution of pti is determined by the two transformation

matrices t
iBT and iB

iLT . In the cases where the LIDAR is fixed and iB
iLT is a fixed matrix,

the pti distribution is then only determined by t
iBT , which is subject to the estimation of
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the vehicle pose.

Let X t
iB denote the pose of coordinate frame “Baselink-i” in “Baselink-Verti-t”, and

X̄ t
iB the estimation value for X t

iB from the vehicle odometry system. The probability

distribution function of X t
iB can be approximated by a Gaussian Distribution with mean

value X̄ t
iB, and the covariance matrix Σt

iB:

X t
iB = (x, y, z, α, β, γ)T , X t

iB ∼ N(X̄ t
iB,Σ

t
iB) . (6.3)

Here vehicle orientation is represented in Euler angles (roll-pitch-yaw), with α, β, γ de-

noting yaw, pitch, and roll respectively. Σt
i reflects the uncertainty of the dead-reckoning

system, increasing with vehicle driving distance and turning angle. When the LIDAR

mounting is fixed, pti is only a function determined byX t
iB, which is pti = f(x, y, z, α, β, γ).

By linearizing the function f , distribution of pti can be represented as a Gaussian Distri-

bution:

pti ∼ N(p̄ti,Σp) , (6.4)

where

p̄ti = f(x̄, ȳ, z̄, ᾱ, β̄, γ̄),

Σp = F Σt
iB F

T .

F is the Jacobian Matrix of function f with respect to X t
iB. The full distribution for

single point pin can be calculated with the above equation. In our specific application for

road detection, we are only interested in the point distribution in the z axis. The tilted-

down LIDAR is fixed in the front of the vehicle and its mounting pose in the vehicle

coordinate is denoted as X iB
iL = (xl, yl, zl, 0, βl, 0), which determines the transformation

matrix iB
iLT . Then we have:

zi = fz(β, γ, xl, yl, zl, βl, r, θ) , (6.5)
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where

fz =− sin β(cos βl(r cos θ) + xl) + cos β sin γ((r sin θ)

+ yl) + cos β cos γ(− sin βl(r cos θ) + zl) + z .

r denotes the range value in the laser scan, and θ is the laser beam angle. To calculate

the variance of z, some simplification is adopted for Σt
iB. Usually the six state variables

can be correlated, but here we define it as a diagonal matrix as adopted in [96] :

Σt
iB = diag(σ2

x, σ
2
y , σ

2
z , σ

2
α, σ

2
β, σ

2
γ) . (6.6)

Considering the fact that β and γ are usually very small, Fz (the Jacobian Matrix of f

related to z) can be calculated and approximated as:

Fz = (0, 0, 1, 0,
∂fz
∂β

,
∂fz
∂γ

) (6.7)

≈ (0, 0, 1, 0, −r cos θ cos βl − xl, r sin θ + yl) .

The distribution of the points in the z direction will be:

zi ∼ N(z̄i, σ
2
zi

) , (6.8)

where

z̄i = fz(β̄, γ̄, xl, yl, zl, βl, r, θ),

σ2
zi

=σ2
z + (r cos θ cos βl + xl)

2σ2
β

+ (r sin θ + yl)
2σ2

γ .

Given the fact that the width of the rolling window is small, and the road surface is

generally horizontal, σ2
z is usually very small and negligible. It can be seen that point

variance in z is mainly determined by variances of vehicle pitch and roll angles, and

points from side beams of LIDAR are more sensitive to roll angles rather than those

from the central ones. In our system, both roll and pitch angles are retrieved from one
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Intertial Measurement Unit (IMU). Their variances are approximated as:

σγ = a1
dγ

dt
+ a2γ, σβ = b1

dβ

dt
+ b2β . (6.9)

where a1, a2, b1, b2 are fixed parameters selected in experiments.

6.2.3 Extended Point Cloud

A point cloud is a cloud of points in 3D space, which has been the most popular rep-

resentation of 3D data. One point may have 3D position information, color, and other

features. Rusu et al. present a Point Cloud Library (PCL) to facilitate the processing of

3D data in [133], which has been widely used. However, while it is well recognized that

3D data may be noisy, especially in stereo-vision, the probabilistic characteristics of the

point cloud are usually not used. In our research, we incorporate point variance σzi for

noise filtering, and road boundary recognition.

In our application, the 3D point cloud is generated by accumulated 2D laser scans.

When laser points are calculated and stored in the point cloud format, information be-

longing to the accumulation process is lost, such as the serial number (or ID) of the

scan that the point belongs to, the beam angle that the point belongs to, etc. How-

ever, such information may be useful for the 3D data processing purpose. We try

to preserve such useful information, and demonstrate its importance in later sections.

One point p′ of the extended point cloud is defined to have the following attributes:

p′ = (x, y, z, σzi , laser ID, beam angle) .

6.3 Cascaded Process of Road Detection

This section presents a cascaded road detection process based on region-growing and

classification methods. Region-growing is a simple segmentation method which has

been used in image processing. Rusu et al. generalize it for 3D point cloud segmen-

tation in [145]. Similarly we use the region growing method to extract road surface

and boundary from the 3D rolling window. Our assumption is that the road surface is

generally smooth in the center, but changes drastically at road boundaries. Surface cur-

vature can be calculated to represent this smoothness information. While road surface
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Figure 6.2: Road detection flowchart

is represented by a cloud of points, its curvature near a point can be calculated through

an analysis of the eigenvectors and eigenvalues (or PCA - Principal Component Anal-

ysis) of a covariance matrix created from the nearest neighbors of this query point, as

introduced in [145].

The region-growing method is easy to implement. However, due to the noisy and

sparse nature of the accumulated 3D data, some pre-filtering, adjustment and post-

classification processes have to be cascaded to yield good detection results. In the first

step, most noisy points in the 3D rolling window are filtered by checking the integrity

of their corresponding laser scans. The region-growing method is then applied to extract

road surface and boundaries, followed by a boundary adjustment procedure. Finally, the

adjusted boundary points are further filtered by a classification process. The flowchart

of this algorithm is shown in Figure 6.2.

6.3.1 Noise Prefiltering

According to Equation 6.8, point variance in the z direction is mainly determined by

variances of pitch and roll. In common cases, a noisy pitch angle contributes to most

of the noisy points in the rolling window. When the vehicle passes over some speed

bumps, its pitch angle will change drastically, making a large pitch variance according

to Equation 6.9. Points from laser scans collected at this time hence have high variance

in z, and usually unexpected large curvature values due to misalignment. Since most

points from these scans are useless, it is desired to identify these scans and filter them

out before applying any road detection algorithm.

One binary classifier is trained using a Support Vector Machine (SVM) to detect the
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(a) road image (b) point cloud curvature

Figure 6.3: Curvature hint for road detection

noisy scans. The response of each laser scan is good or noisy. Its feature vector is

composed of two parts. The first part is the angular information acquired from the IMU,

including pitch, roll, pitch speed, and roll speed, which will give a description of the

temporal vehicle motion status and is important for position variance in the z direction.

The second part is an array of curvature values. These curvature values belong to points

from the middle part of the scan, which gives us a hint about how many points will be

classified as boundary points if the scan is not filtered.

The feature vector can be constructed using the extended format for a point cloud.

The “laser ID” and “beam angle” attributes in each point can be used to assemble points

together and generate the curvature arrays for their corresponding scans. The “laser ID”

can be used to refer to scan-related angular information, which is recorded from the IMU

during the data accumulation process. Our training data are labeled manually. During

our labeling process, if too many large-curvature points appear where they should not

be, the scan is labeled as noisy.

6.3.2 Region-growing Method

Figure 6.3 shows a 3D point cloud generated from the rolling window. It is colored ac-

cording to a point’s local curvature, which is the curvature of the neighborhood surface.

It can be found that curvature of the road surface is generally low, while curvature at the

surface edge is high. If we give a seed point to the middle of the road, and connect every

point whose local curvature is low, we can extract the whole road surface. In addition,

road boundary points are extracted where high-curvature points are encountered in the

region-growing process. In our application, the region-growing process is applied to the

3D point data in the rolling window, which works in the vehicle-attached coordinates.
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Algorithm 1: Pseudo-code for region-growing algorithm
Input: 3D point cloud P , seed point po ∈ P
Output: Road surface point set S, boundary point set B

1 S := ∅, B := ∅; add po to S;
2 for every point pi in S do
3 find its neighbourhood points Pi within a searching radius l;
4 for every point pj in Pi do
5 if pj’s curvature < curvature threshold T then
6 if pj /∈ S then
7 add pj to S
8 end
9 else

10 if pj /∈ B then
11 add pj to B
12 end
13 end
14 end
15 end

The seed point is selected from the point cloud which is several meters away, right ahead

of the vehicle center. The pseudo-code for the region-growing algorithm is shown in

Algorithm 1.

6.3.3 Road Boundary Adjustment

In the region growing process, curvature threshold T is a global parameter to be deter-

mined. A small threshold value is set to guarantee that no road boundary points are

missed. While the region growing method is easy to implement, the selection of small

threshold value T will introduce a new problem. Due to the sparsity of collected 3D

data, neighborhood points nearby the road boundary will have curvatures comparably

large to those of the boundary points. The small threshold T will terminate the region

growing process early before it really reaches road boundaries, and extract its neigh-

borhood points as boundary points. In other words, these extracted boundary points

(candidates) are inaccurate, and hence the surface points (since the supposed boundary

points are actually surface points). Thankfully, since boundary points are the local max-

imum curvature points, we can adjust the boundary candidates to their local maxima for

better accuracy. Figure 6.4 shows the boundary point adjustment, where purple points

are boundaries before adjustment, and green ones are the adjusted boundary points. The
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Figure 6.4: Boundary point adjustment

points between the old and new boundaries will be classified as road surface points. The

road width after adjustment is slightly larger, which however reflects the actual road

width.

6.3.4 Post Classification

In our previous discussion, curvature is used as the only boundary criterion. In the region

growing process, if a point being inspected has a curvature less than a certain threshold,

it is classified as a surface point; otherwise, it is a boundary point. This simple criterion

generally works fine. However, it will lead to some false-positive boundary points where

points become too noisy in the z direction, or too sparse. It is desired to take into account

point z-variance and local density (number of neighboring points) for boundary detec-

tions. Besides, maximum local height difference (maximum height difference between

a point and its neighbors) will also help to eliminate spurious boundary points.

We propose to apply a post-classification process to filter the extracted boundary

points. One SVM binary classifier is trained for this purpose. The response of each

point will be surface or boundary. Its feature vector is composed of its curvature, z-

variance, local density and maximum local height difference. The training data are

boundary points extracted after boundary adjustment, and are labeled manually. This

post-classification process improves the accuracy of the road boundary classification,

and hence the road surface extraction. It should be clarified that this process will not

help to erase boundary points caused by vehicles or pedestrians. These points can be
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Figure 6.5: Point cloud segmentation example

treated as temporary boundary points, and used for various purposes like online path

planning.

6.3.5 Road Detection for Point Cloud Segmentation

The road surface is the most dominant structure in the urban road environment. The

detection of the road surface from 3D point clouds can be used for point cloud segmen-

tation of the road environment. Since the road surface serves as a supporting ground for

other objects, by first detecting and removing it from the 3D point cloud, points from

different objects are naturally separated. Then the remaining part of the point cloud can

be segmented and clustered easily. Figure 6.5 shows one example of point cloud seg-

mentation, where different point cloud clusters are shown in different colors. The point

cloud segmentation is the by-product of our road detection, and its results can be used

for other object recognition purposes.

6.4 Probabilistic Road Mapping

In this section, a probabilistic framework is proposed for global road mapping, with road

detection results from above. A global road map can not only be used to help vehicle

path planning, but also provide texture information for vehicle localization and other

perception purposes [41, 89].

An Occupancy Grid Map (OGM) [16] is used for this mapping purpose. An Occu-

pancy Grid Map is a map that represents a map of the environment by an evenly spaced

grid. Each grid cell represents a variable to be estimated. In our application, the vari-

able is a binary variable with two possible values, road surface or road boundary. By
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utilizing our high-accuracy localization [8], this mapping problem is simplified from a

Simultaneous Localization and Mapping Problem (SLAM) to an Occupancy Grid Map-

ping problem, which is to estimate the posterior over map given the data: p(m|z1:t, x1:t),

where m is the map, z1:t is the measurement from time 1 to t, and x1:t is the set of robot

poses from time 1 to t. By assuming independence between grid cells, the posterior

can be further factorized into p(m|z1:t, x1:t) =
∏

i p(mi|z1:t, x1:t), where mi denotes a

grid cell in map m [16]. An inverse sensor model p(mi|zt, xt) is needed for the above

estimation process.

In our application, zt are the extracted road surface and boundary points in the

vehicle-attached coordinates (“Baselink”) at time t, and xt is the vehicle pose in the

global coordinates (“map”). The extracted points zt can be transformed into map coor-

dinates given the knowledge of xt . We have p(mi|zt, xt) = p(mi|zti), where zti is the

point that falls into cell mi. The inverse sensor model is defined as:

p(mi = road surface|zti = surface point) = k1,

p(mi = road surface|zti = boundary point) = k2,

where k1, k2 are parameters to be selected in experiments. Generally k1 should be larger

than (1 − k2), reflecting the fact that there is more noise in boundary points than in

surface points. This noise may come from false-positive boundary points, or temporal

boundary points caused by vehicles or pedestrians. Given the inverse sensor model, a

Static Bayes Model is applied to calculate the posterior p(m|z1:t, x1:t).

6.5 Experiments

6.5.1 Experiment Setup

To test the performance of our algorithms, we conducted several experiments. We use

the same test bed as in Section 4.4.1. For prompt data processing and reducing com-

putational cost, the width of rolling window w is set to a small value 0.5m. Its control

distance β is 0.02m. We conducted several experiments to test the proposed road detec-

tion and mapping method. Our experiment was conducted on the Engineering Campus,

National University of Singapore.
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6.5.2 Experiment Results

The first experiment is to check the probabilistic characteristics of the 3D rolling win-

dow. Parameters in Equation 6.9 are manually set, with a1 = b1 = 0.1, a2 = b2 = 0.02.

Figure 6.6 shows three typical cases for 3D data collected from the rolling window. The

left column of each case shows the corresponding angle plots over data accumulation;

the middle column is the angular rate plots; the right column shows the accumulated

point cloud colored by the variance value in units of meters, and the red line shows vehi-

cle trajectory over time. In general straight-line traversal, both pitch and roll angles keep

relatively stable, making point z-variance small. The quality of the 3D rolling window is

generally good at this time, as shown by the upper picture. When the vehicle is making

a turn, the absolute value of roll increases (the vehicle is rolling to one side), making

laser points from sides of the LIDAR less accurate, as shown in the middle picture. The

most noisy situation comes when the vehicle traverses through bumpy road: the vehicle

keeps pitching up and down, making 3D points accumulated from this time unreliable,

as shown in the lower picture. In real experiments, we found that the noise in pitch an-

gle contributes to the most noisy points. It is desired to filter 3D points collected from

this time in a pre-filtering process before applying the road detection algorithm, which

is shown in Figure 6.7. In the curvature plot, one light blue swathe of points appearing

in the middle of road is noisy. These noisy points are filtered through the pre-filtering

process, and visualized in pink. To train the binary classifier using SVM, there are in

total 24309 scans collected and labeled, among which 1546 scans are noisy scans. The

classifier is trained using 5-fold cross validation, and achieves 99.4% total accuracy.

The second experiment is to test the cascaded road detection process. It takes less

than 0.1 second to process the data from the rolling window, whose width is 0.5m with

2000 to 3000 points. Since our vehicle moves at the low speed of 3.0m/s, the road

detection can be run as an online process. After region-growing and boundary adjust-

ment, road surface and boundary points are extracted. A binary classifier using SVM is

applied to filter the extracted boundary candidates. To train this classifier, we labeled in

total 14893 candidates, and 2963 of them are false boundary points. Table 6.1 shows the

classification performance under 5-fold cross validation. The “Original” column shows

the detection results from region growing. Among all the boundary candidates, only

85.3% are the boundary points, while the rest are the misclassified surface points, due
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(a) Case 1: General straight line traverse

(b) Case 2: Right turn

(c) Case 3: Traverse through bumpy road

Figure 6.6: Three typical cases of rolling window. The left column of each case shows
the corresponding angle plots over data accumulation; the middle column is the angular
rate plots; the right column shows the accumulated point cloud colored by the variance
value, and the red line shows vehicle trajectory over the time.

(a) Angular rate (b) Angle (c) Curvature plot (d) Filtered scans

Figure 6.7: Noisy scan rolling window filtering. In the curvature plot, one light blue
swathe of points appearing in the middle of road is noisy. These noisy points are filtered
through the pre-filtering process and visualized in pink color.
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Table 6.1: classification accuracy for boundary candidates
classification methods Original OneR SVM1 SVM2
recall of boundary (%) 100.0 95.8 95.7 98.2
recall of surface (%) 0.0 84.8 88.3 91.8
total accuracy (%) 85.3 94.2 94.6 97.3

to a small curvature threshold value. For comparison, we apply the “OneR” classifica-

tion method to boundary candidates using only the curvature feature, and 94.2% total

accuracy is achieved. This is the best classification performance that can be achieved

using only the curvature feature. “SVM1” denotes SVM classification using curvature

and z-variance features. It is found that point z-variance helps improve the recall rate of

the surface in the boundary candidates considerably. In other words, it reduces the false

positive boundary points. “SVM2” denotes classification using full features of curvature,

z-variance, local density, and maximum local height difference. The total accuracy of

boundary candidate classification can be considerably improved by applying the SVM

filtering process. Figure 6.8 shows one instance of improved road detection. The green

points are the extracted road boundary, and the yellow points are the road surface. More

results of road detection can be found in Figure 6.9.

The third experiment is about road mapping. To generate the road map, our vehicle

is driven around the Engineering Campus three times with vehicle localization and road

detection running. The localization algorithm helps to transform road detection results

in the global “map” coordinates, and the transformed road detection results are used

to estimate one occupancy grid road map. For the inverse sensor model, k1 and k2

are chosen to be 0.9 and 0.2 respectively. Figure 6.10 shows results of road mapping.

The left figure shows one occupancy grid map of the surveyed road with an area of

429m× 475m. Its resolution is 0.1 m/pixel. The road surface is overlaid on a satellite

map for comparison, as shown in the right figure. It can be seen that the proposed

algorithm mapped out the driven road with good accuracy.

More details of our experiments can be found in Video (9) in Appendix B.

6.6 Summary

In this chapter we present a road detection and mapping algorithm using the 3D rolling

window. The probabilistic characteristics of the rolling window are studied. A cascaded
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(a) Curvature Based Classification (b) SVM Based Classification

Figure 6.8: Increased classification accuracy through SVM

Figure 6.9: Results of the SVM classification of road boundary and surfaces
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(a) Occupancy Grid Map (b) Road map overlaid on satellite image

Figure 6.10: Road mapping results

process is developed for road detection using region growing and classification methods.

A probabilistic framework is proposed for road mapping purposes. The accuracy of road

detection and performance of road mapping are shown through experimental results.

The contributions of our work are two-fold. Firstly, we realize road surface-boundary

detection using accumulated 3D data; compared to the existing 2D approaches [84], our

algorithm does not have strong assumption on the sensing scenario and is able to handle

temporal noise. Secondly, we study the probabilistic characteristics of the accumulated

3D data, which is important for the road detection and other recognition tasks.
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Chapter 7

A Spatial-Temporal Approach for

Moving Object Recognition with 2D

LIDAR

For an autonomous vehicle to safely navigate in the urban environment, it has to be able

to detect and interact with other static objects and dynamic human agents. While Chapter

5 and Chapter 6 present our work on static object recognition, to be more specific, road

detection, this chapter is going to address the detection of dynamic human agents.

Compared to road detection, the recognition of dynamic human agents appears much

more challenging. The main difficulty comes from the high intraclass variance of human

agents [69]. For example, pedestrians may be dressed in different colors, vehicles may

have different shapes and sizes, etc. To robustly and efficiently recognize these human

agents remains a challenging problem nowadays. In our research on “dynamic” human

agents recognition, a reduced problem of “moving” object recognition is studied: while

every human agent has the potential to move - noted as “dynamic”, our attention is

focused on recognizing those entities actually moving.

7.1 Introduction

For an autonomous vehicle’s safe navigation in an urban environment shared by other

dynamic agents, the capability of reliable moving object recognition is desired. In this

chapter, we propose a spatial-temporal (ST) approach for moving object recognition
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recognized moving vehicle

own vehicle

Figure 7.1: One example to illustrate spatial-temporal method. The red-green axes at-
tached to the own vehicle represent the mounted 2D LIDAR. This image also captures a
typical snapshot of a cluttered campus environment.

using only modest sensory data. Compared to more elaborate and costly solutions (e.g.,

outdoor depth cameras and 3D ranger finders), our method works with range readings

obtained from a planar 2D LIDAR on a mobile platform. Using only range readings

complicates object recognition because information is sparse relative to richer modalities

such as vision. Furthermore, noise introduced by ego-motion (and other sources) can

make static objects appear dynamic. We show that it is possible to obtain highly accurate

object classification via temporal accumulation and a coupled classification process.

Existing work in moving object recognition decomposes the problem into two dis-

tinct sub-tasks: detection and classification. The former aims to discern the existence of

moving objects, while the latter aims to recognize the objects’ identities. As reviewed in

Section 2.3.3, existing methods employ either the tracking or SLAM techniques for the

moving evidence detection. However, as the tracking techniques may fail in cluttered en-

vironments and the SLAM techniques have high computational cost, reliable real-time

detection of moving objects remains a challenging problem. In addition, while object

classification in existing methods is usually based on individual measurements at each

time cycle, it is vulnerable to similar-looking background noise.

A spatial-temporal approach for moving object recognition couples detection and

classification into a single process. The basic idea of our approach derives from the ob-

servation that accumulated laser scans generally provide sufficient information for the
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task. For example, it is difficult to recognize a vehicle from a single scan segment, be-

cause of its simple shape contour. However, Figure 7.1 illustrates that in the ST domain,

the moving vehicle shows unique geometric features, i.e., a chain of shifted “L” shapes.

The uniqueness of these features comes from not only the vehicle’s appearance in the

spatial domain, but also from its motion pattern in the temporal domain. We show that

these features can be exploited to create accurate classifiers.

Our method consists of three basic steps: (1) laser scans are first accumulated over

a certain time window, (2) segmentation is then performed on the accumulated data

to generate clusters, and (3) moving objects are finally recognized using the spatial-

temporal features of these clusters. Compared to existing methods, our approach does

not rely on object tracking nor local environment mapping and hence, it is more robust

in cluttered environments and computationally lighter. Furthermore, since detection and

classification are conducted in one single process, better recognition accuracy can be

achieved. The rationale is that while motion patterns in the T-domain can aid object

classification, appearance features in the S-domain can also help determine whether an

object is moving (e.g, a bizarre-shaped cluster is more likely to be a static bush rather

than a moving vehicle). A coupled process is able to fully utilize the ST information and

benefit both sub-tasks.

7.2 Technical Approach

In brief, our method segments and clusters accumulated laser scans in a time-window,

extracts relevant spatio-temporal features and then classifies each cluster. Segmenta-

tion is performed using a graph-based algorithm in the ST domain and classification is

performed using the widely-used Support Vector Machine (SVM). The flowchart of our

algorithm is illustrated by Figure 7.2.

7.2.1 Data Accumulation in T-domain

Laser scans are accumulated over a defined time window to collect N scans: S =

{st1 , st2 , ..., stN}, where S denotes the collected scan set, and si each scan component.

To represent ego-motion, we record the LIDAR’s pose (according to the robot’s odome-

try system) at each corresponding time stamp: X = {xt1 , xt2 , ..., xtN}, where each xi is
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Temporal AccumulationLaser Scan ST-Data Segmentation 
Feature Extraction

& Classification

Figure 7.2: Flowchart of the spatial-temporal algorithm. Laser scans are received from
the LIDAR sensor, and then accumulated in the temporal domain, visualized as blue
points; the accumulated ST-data are then segmented into different ST-clusters, visual-
ized in various colors; feature extraction and classification are performed on each ST-
cluster, to recognize the moving objects, colored in red. The clay-colored vehicle model
visualizes the own car.

the LIDAR pose corresponding to scan si. The accumulated laser scans S and associated

poses X carry all the raw information required in our system.

7.2.2 Graph-based ST Segmentation

To segment the accumulated scans, we first convert the scan set S into a point set D,

where each point di contains the position information pi in the robot’s fixed odometry

coordinate system, and its collected time ti. In addition to this information, we maintain

the conversion relationship between the scans and the points, such that each point in D

is mapped to its angle and range reading in S.

We employ the graph-based region merging method [146] for segmentation of the

transformed set D. The advantage of this approach is that it is able to find a segmen-

tation that is neither too coarse nor too fine. In brief, the data are treated as a graph,

with points as nodes and edge weights indicating the dissimilarities between nodes. Ini-

tially each node is an individual component, and the algorithm performs pairwise region

merging iteratively if the minimum edge weight connecting two components is less than

the minimum internal difference (a scoring function); see [146] for more details. In our

work, the edge weight (dissimilarity measure) between two points in the ST-domain is
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the weighted Euclidean distance:

Ew(di, dj) = ‖pi − pj‖+ α× |t1 − t2| (7.1)

where α is a weight parameter. Intuitively, this metric ensures that points which are close

in both spatial and temporal domains are placed in the same cluster.

After the segmentation process, clusters of points in the ST-domain are obtained.

Preliminary results showed that if we used each cluster as unorganized data and simply

extracted its statistical features as a whole, performance was degraded, presumably due

to a loss of information. As such, we define a ST cluster, denoted as ST , as a collection

of scan segments in a sequence together with their LIDAR poses:

ST = {zt1 , zt2 , ..., ztN , xt1 , xt2 , ..., xtN} (7.2)

where zti is the scan segment collected at time ti, and xti its corresponding LIDAR pose.

Given the segmentation results of data D, to construct ST is straightforward.

7.2.3 Spatial-Temporal (ST) features

In this section, we discuss the design of our spatial-temporal features. Recall that ST not

only contains the information about the object’s shape, but also the information related

to their motion patterns. We construct our feature vector F to maximize the amount of

original information, while keeping its structure invariant to the scan number N :

F = {{ẑti}N ,M,X} (7.3)

where ẑti is a compressed representation for raw scan segment zti ,M is a set of “shape

moments” that captures the shape characteristics of the cluster, and X is the pose set.

The compressed segment (ẑ). The compressed segment (CS) approximates each

scan segment by a fixed number of key points and selected statistical features. Figure 7.3

illustrates the idea of the compressed segment. Here, we have used the Douglas-Peucker

algorithm [147] to find the relevant key points. In addition, the number of points in

between each pair of neighboring key points, and the variance of their distances to the

line formed by the pair are also incorporated in the feature vector. To represent positional
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LIDAR-𝑡𝑖

∆ 𝑟𝑎𝑛𝑔𝑒

Key Point

Figure 7.3: Compressed segment.

information relative to the background, range differences between the extreme points and

their respective neighboring background points are also used. Table 7.1 summaries all

the features in a CS feature vector.

The shape moments (M). Although the scan segment information is incorporated

into the feature vector by way of the compressed segments ẑti , some geometric infor-

mation may still be lost due to compression. To better preserve the information, we

project the scan points into the global odometry coordinates, and then extract the Hu-

Moments [148] of the contour to convey the shape information of the overall point set.

The pose set (X ). To take into account robot ego motion, LIDAR poses at different

time are incorporated into the feature vector. However, rather than using their original

pose values in the global odometry frame, we transfer all the LIDAR poses into the latest

LIDAR coordinates. This helps remove the irrelevant information of absolute positions

and concentrate the classification on the relative movements.

Pose-Variant and Pose-Invariant Feature Sets. Figure 7.4(a) illustrates the spatial-

temporal feature vector F . Note that it captures not only object appearance and move-

ment, but also the information relating to the sensing scenario, such as how far away

Table 7.1: Feature vector of the compressed segment
Feature Name Description
Key Points x, y position of the points in the LIDAR coordinates; Intensity

values of these points (if intensity values are provided)
Points in between
key points

Number of points in between a pair of key points; variances of
distances from these points to their key point lines;

Range distances to
background

Range differences between two extreme points to their neighbor-
ing background points.
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LIDAR-𝑡𝑁

LIDAR-𝑡1
Odom Coordinate

CS-𝑡1

CS-𝑡𝑁
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(a) Pose-variant set

CS-𝑡1

CS-𝑡𝑁

Shape Moments M

Cd-𝑡1

Cd-𝑡𝑁

(b) Pose-invariant set

Figure 7.4: Pose-variant and Pose-invariant feature sets

the object is and at what angle. The scenario information is important for multiple rea-

sons. First, the distance to the object affects the number of laser points cast on it, due to

LIDAR’s limited angular resolution and detection range. Second, the observation angle

on the object determines the measurements, e.g., the side of an object may be occluded

when observed from the front. The importance of scenario information for object recog-

nition is demonstrated by the experiment results described in Section 7.4.

Because the compressed scan ẑti is defined in the sensor coordinates LIDAR−ti, F

is pose-variant and a large number of training instances may be needed to cover differ-

ent sensing situations. For this reason, we also propose a pose-invariant feature vec-

tor, where the compressed scan ẑti is transformed into an object-attached coordinate, as

shown in Figure 7.4(b). Denoting the centroid of LIDAR segment zti as Cdti , the origin

of the object-attached coordinate is defined to be Cdt1 , with its x axis pointing from Cdt1

to CdtN . Compared to the pose-variant feature vector, the pose-invariant vector is more

general in terms of object positions and orientations, but at the cost of losing scenario

information.

7.3 Experiments

The objective of our experiments is three-fold. First, we seek to validate that accumu-

lated scans will result in higher accuracies compared to single scans. Second, we at-

tempt to better understand the effect the length of the time-window has on classification

accuracy. Third, we seek to analyze the performance of our designed spatial-temporal
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Planar LIDAR

Figure 7.5: Testbed for moving object recognition

features.

Our test bed is a converted iMiev with a 2D LIDAR (SICK LMS 151) mounted on

the front of the vehicle, as shown by Figure 7.5. The LIDAR runs at 50 Hz, with 270◦

FOV. The entire system is developed using the Robot Operating System (ROS) [149].

To test the performance of our algorithm, we conduct experiments in two different en-

vironments: a university campus and a highway. The former is a cluttered environment

with average vehicle speeds of 10–30 km/h, while the highway is a more “structured”

environment with vehicle speeds of 60–100 km/h. In this experiment, we focus on rec-

ognizing moving vehicles, but our algorithm is applicable to general-purpose moving

object recognition. Ground truths of moving vehicles are obtained via manual labeling

for both environments, with 232 positive vehicle samples labeled for the campus envi-

ronment and 1212 positive samples for the highway one. Note that negative samples

are also manually labeled in the experiments, the numbers of which change with the

temporal window lengths, as will be shown in the next section.

7.4 Results

We evaluate our algorithm using five different metrics: segmentation ratios, classifica-

tion accuracy, spatial analysis, performance of different feature sets, and the computa-

tional cost. Note that all the analyses are performed with the pose-variant feature vector,

except where performances of different feature sets are studied. Major insights of the

experimental results will be summarized at the end of this section. More details of our
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Figure 7.6: Non-vehicle to vehicle ratios in different environments.

experiments can be found in Video (10)(11) in Appendix B.

Segmentation Ratios: Figure 7.6 shows the ratios of background clusters to ve-

hicle clusters. Compared to the highway environment, the campus environment is far

more cluttered, resulting in a larger number of background clusters. However, the num-

ber of background clusters decreases drastically as the number of accumulated scans is

increased. This suggests that the temporal accumulation prevents the background from

being over-segmented, which as we will see, leads to an improvement in classification

accuracy.

Classification Accuracy: Figure 7.7 shows the classification results for moving ve-

hicle recognition under 5-fold cross validation. Note that the classification problem here

is a unbalanced binary classification problem, and the number of background clusters

varies with the accumulated scan number. For the above reasons, while apparently good

total accuracies (> 97%) are achieved in both environments, we analyze the precision

and recall rates to better evaluate our algorithm: precision measures what fraction of the

detections are actually moving vehicles, and recall measures what fraction of the actual

moving vehicles are detected [150].

In the clean highway environment, both the precision and recall rates are high (>

94%) even when using only single scan segments. With a temporal window length larger

than two, the SVM attains performances above 97%. In the cluttered campus environ-

ment, vehicle detection appears more challenging. However, we observe that it is in

this environment that our approach yields the most positive effect. While the precision

remains decent (> 85%), the recall rate using no temporal windowing is at a low 55%.

The recall rate rises rapidly with the temporal accumulation from 55% to a high of 86%
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Figure 7.7: Classification at different environments

(at N = 6). The F-measure (F1-score) shows a weighted average of the precision and

recall, where our algorithm achieves best performance at N = 6. As N continues to

grow, the performance seems to tail off. We believe this occurs due to the “curse of

dimensionality”, which hampers the classification process as the feature vector length

grows.

Figure 7.8 shows examples of moving vehicle detection in the two environments

(N = 2 for highway, and N = 6 for campus). The top row shows the images captured

from an on-board camera, which is calibrated with the LIDAR sensor, and the bottom

row shows the recognition results from the accumulated LIDAR data. Temporal accu-

mulation and ST segmentation are performed to extract individual ST-clusters (shown in

different colors), which are then classified to extract the moving vehicles (shown as red

blobs). The results are also projected into the camera image for visualization purpose.

Since the camera has a much smaller field of view (≈ 70◦) compared to the LIDAR,

some of the results are not shown in the image. Note that a minor misalignment ex-

ists between the camera images and the LIDAR data, which is attributed to the time

difference between the laser points (accumulated in the past) and the captured image.

From the two examples it is easily observed that the campus environment is much
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(a) Vehicle detection on highway (b) Vehicle detection on campus

Figure 7.8: Moving vehicle detection examples
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more cluttered than the highway. In the highway example, the road barrier and bushes at

the two sides are generally neat and consistent, making it relatively easy to differentiate

the foreground objects and the background noise. There are 20 clusters extracted in

the shown case, with 10 of them recognized as moving vehicles. Compared to the clean

highway scenario, the campus environment is much more “dirty”: its background usually

consists of various unconnected objects, and the bumpiness of the ground may also cause

noise when the LIDAR scans strike the road surface. Given all these challenges, our

algorithm is still able to perform robust recognition: 2 moving objects are correctly

identified from the 37 extracted clusters in the shown case.

Spatial Analysis: Figure 7.9 presents us with more insights into the performance of

our algorithm from a spatial perspective (N = 2 for highway, and N = 6 for campus).

Since our test locations are left-hand drive, many of the vehicle samples in our collected

training data are at the front and right sides of the iMiev. In Figure 7.9(b), we see that

high vehicle detection errors occur at the boundary of the LIDAR FOV, where only parts

of the clusters are observed. Other errors take place over > 20 meters away from the

LIDAR center. We posit that this is due to the fact that when observing objects from

a distance, the LIDAR readings are occluded by other objects or missing due to low

reflectivity. Importantly, the results show that in the vicinity of the LIDAR, the detection

accuracy is nearly 100%, which is essential for safe navigation.

Different Feature Sets: In our research, we compare the performance of our de-

signed features with existing feature sets proposed in the literature. Together with our

designed pose-variant and pose-invariant features, we include three more feature sets:

Ensemble of Shape Functions (ESF) [151], Viewpoint Feature Histogram (VFH) [152],

and Ultrafast Shape Recognition (USR) [153]. Unlike our feature sets extracted from

compressed scan segments, these three methods operate on 3-D spatial data. Here, 3-D

data are constructed by shifting the accumulated points (point set D in Section 7.2.2) in

the z direction (the shifted distance is proportional to the elapsed time from when they

are received to the latest time).

To assess the performances of different feature sets, the same temporal window

length is used, with N = 2 for highway and N = 6 for campus. Our results are shown

in Table 7.2. It is observed that the pose-variant and pose-invariant features outperform

the 3D feature sets, which are designed for dense 3D data and appear unsuitable for
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(a) Highway

(b) Campus

Figure 7.9: Overall vehicle detection performance. The center of each plot is the LIDAR
origin, with LIDAR orientation shown by the legend. Each pixel in the figures represents
a 5 × 5m grid place. The grey pixels are places where insufficient samples were col-
lected, and the dark areas are places beyond the LIDAR FOV. In the distribution plots,
the density value of each cell represents the number of collected samples in this place,
which is normalized by the largest value.
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Table 7.2: Classification using different feature sets
(a) Highway environment with N=2

FeatureSets vehicle recall (%) vehicle precision (%) vehicle F-measure (%) total accuracy (%)

Pose-Variant 95.87 97.48 96.67 97.61
Pose-Invariant 94.68 94.50 94.59 96.87

ESF 73.86 94.39 82.87 91.17
VFH 50.42 87.80 64.06 83.63
USR 82.45 79.48 80.93 88.77

(b) Campus environment with N=6

FeatureSets vehicle recall (%) vehicle precision (%) vehicle F-measure (%) total accuracy (%)

Pose-Variant 86.21 90.91 88.50 98.32
Pose-Invariant 70.96 89.35 79.10 96.70

ESF 50.37 77.40 61.02 94.33
VFH 24.63 82.72 37.96 92.90
USR 37.50 70.34 48.92 93.10

the ST data accumulated from the LIDAR. The better performance of pose-variant over

pose-invariant features indicates the usefulness of the scenario information as discussed

in Section 7.2.3.

Computational Cost: On our experimental platform (computer equipped with a

Core i7-4770 processor), the computational time required to process one new scan is

5 ∼ 10 ms for the campus environment with N = 6. In the highway environment with

N = 2, the processing time is only 1 ∼ 4 ms. In short, computational costs are low,

making our method suitable for real-time applications.

Summary: From the proceeding discussion, three major insights can be derived

from our experimental results:

1. Accumulation in the temporal domain helps to prevent over-segmentation of sen-

sor data in the cluttered environment (Figure 7.6).

2. The spatial-temporal features enable more accurate classification compared to us-

ing only spatial features from a single measurement (Figure 7.7 and Figure 7.9).

3. Increased size of the accumulation time window improves recognition accuracy in

the cluttered environment up to a maximum time window (Figure 7.7).
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7.5 Summary

In this chapter, we propose and investigate a novel spatial-temporal approach for moving

object recognition with a single 2D LIDAR. By using crafted spatial-temporal features,

we obtain promising classification results in two different experimental settings. Our

results suggest that our approach is particularly applicable in cluttered environments,

where temporal windowing prevents over-segmentation of the observations and the ac-

cumulation of sensor information makes moving object recognition more accurate. As

future work, we plan to investigate the performance of our approach on other classes of

moving objects (e.g., pedestrians and motorcycles).

The contributions of our work include two parts. Firstly, we develop a spatial-

temporal approach for moving object recognition using a 2D planar LIDAR, which

achieves equivalent/better performance than the state-of-art algorithm [154] (although

different databases are used, their experiment is carried out in a similar campus envi-

ronment, and our algorithm achieves equivalent or better performance both qualitatively

and quantitatively). Secondly, we design two sets of spatial-temporal feature specifically

for the accumulated 2D laser scans, which outperform the existing 3D feature sets and

achieve good recognition results.
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Chapter 8

From Human Activity Learning to

Semantic Mapping

For vehicle autonomous navigation in the urban environment, object recognition func-

tions are developed to detect and identify different objects of interests, as discussed in

the previous chapters. The detection is performed online in the local neighborhood of

the own vehicle, to help it handle various momentary conditions reactively. While the

detection is generally short-term and object-oriented, some long-term understanding of

the environment can be gained from these temporal detections. Environment understand-

ing targets acquiring long-term knowledge about the environment. The knowledge, also

called the model, serves as the prior information for robot autonomous navigation, which

can be used to help vehicle localization, path planning, and all the other purposes. The

knowledge of an environment can be about any dimension of its properties, such as its

spatial layout, its temperature, the types of objects placed in it, etc. In our research, three

dimensions of knowledge important for autonomous navigation are identified: the met-

ric dimension about its geometric layout, the semantic dimension about the semantic

meanings of different places, and the activity dimension about the activity patterns of

human agents living in it.

In traditional robotics studies, enormous efforts have been spent on the problem of

metric mapping to derive a metric model of the environment. The output of metric

mapping is a metric model of the environment, which captures its geometric layout and

is mainly used for the localization purpose. Nowadays researchers are trying to augment

traditional metric maps with more high-level knowledge, such as semantic information
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and activity information, to help the robot to really understand its environment. This

chapter introduces our research on semantic mapping and activity learning.

8.1 Introduction

Semantic mapping has become a popular research topic in recent years. By augmenting

traditional metric/topological maps with higher-level semantic knowledge, researchers

aim to help robots to really “understand” their environments. A semantic map can not

only facilitate human-robot interaction, but also help a robot perform advanced reason-

ing and planning. In the past few years, various methods have been proposed for se-

mantic mapping. Depending on the sources of semantic information, these methods can

be roughly classified into three categories: appearance-based approach, object-based ap-

proach, and activity-based approach, as discussed in Section 2.4.

In our research, we present a semantic mapping method based on pedestrian activity

patterns in the urban road environment. While an environment serves as the space for

different agents to conduct different activities, it can be divided into different functional

areas, with each area corresponding to certain types of activities. For this reason, we

can infer the semantic meaning of an area from its associated activity information. The

activity information of a place should be another important dimension of information,

together with the metric information and the semantic information. The metric dimen-

sion of a place usually describes some geometric shapes or occupancy information, the

semantic dimension denotes its meaning, and the activity dimension describes the agent

behaviors in it. Our philosophy is that these three dimensions are highly correlated, and

can be inferred from each other.

In our specific application, we want to recognize different functional areas for pedes-

trians in the urban road environment, i.e., “pedestrian path”, “entrance/exit”, “crossing”

and “sidewalk”. By observing pedestrian activity over time, the semantic properties of a

place can be inferred from the learned motion patterns in it. Without loss of generality,

we focus on motion patterns as the key features of pedestrian activity representation. A

pedestrian activity model of the environment is first learned, and then 2D grid seman-

tic mapping is performed by classifying the semantic properties of each cell using the

learned activity model. Our proposed method is tested through experiments, and has
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shown good performance. In general, our method can be extended beyond pedestrian

activities to vehicles, cyclists, or other agents in the outdoor environment.

The contribution of this chapter is clear: to our knowledge, it is the first time to pro-

pose the idea of semantic mapping by learning agents’ spatial activity models, especially

with a mobile platform. The remainder of this chapter is organized as follows. Section

8.2 gives a brief overview of our system. Section 8.3 describes pedestrian activity learn-

ing. In Section 8.4, we introduce our algorithm for semantic mapping from pedestrian

activity. Experimental results and analysis are presented in Section 8.5. Finally, Section

8.6 concludes the chapter.

8.2 System Overview

8.2.1 Multi-dimensional Grid Map

In the field of metric mapping, the Occupancy Grid Map (OGM) is one of the most pop-

ular representations [16]. It represents the environment by an evenly spaced grid, with

each cell corresponding to a variable of occupancy to be estimated. In this work, we

extend the idea of OGM to a multi-dimensional grid map, where each cell has multiple

dimensions of information. The multi-dimensional grid map can be formulated as fol-

lows: M = {mij| 0 ≤ i ≤ w− 1, 0 ≤ j ≤ h− 1}, mij = (Mij,Sij,Aij)
T . M denotes

the map, mij the grid cell indexed by i and j, which is composed of multiple dimensions

of information: metric information Mij , semantic information Sij , and activity infor-

mation Aij . The width and height of the map are denoted by w and h respectively. These

different dimensions of information are correlated, and can be inferred from each other:

knowing the metric property of a place will help to infer its semantic meaning, and vice

versa; the semantic meaning of a place may help the robot to infer its normal agent ac-

tivity, and vice versa; etc. In our application, we want to infer the semantic dimension

of information from the activity dimension, as shown in Figure 8.1.

8.2.2 System Framework

We want to realize semantic mapping from learning pedestrian activity in the urban road

environment, with a mobile platform of an autonomous vehicle. The system framework
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Figure 8.1: Correlated multiple dimensions of information

is illustrated by Figure 8.2. Firstly, pedestrians are detected and tracked using on-board

sensors, and the collected tracks are then transformed into the global map frame using the

vehicle localization function. Secondly, track classification and clustering is performed.

Thirdly, activity information from moving tracks is registered into the grid map, and then

a pedestrian activity model is learned. Finally, the semantic information Sij is inferred

from the learned activity pattern Aij , together with prior road network information.

Pedestrian tracks 

registering

Pedestrian Detection and 

Tracking Input

Semantics Output

Track classification 

and clustering

Localization Input

Road Network

Pedestrian activity 

learning

Activity-based 

semantic reasoning

Figure 8.2: Flowchart of semantic mapping from activity learning

8.3 Pedestrian Activity Learning

This section presents our method of pedestrian activity learning from a mobile platform.

We will learn the activity information of each cell Aij from collected pedestrian tracks.
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Activity model learning is not a new topic in the computer vision community, where

researchers have proposed various methods to learn pedestrian motion patterns. Some

representative work can be found in [118, 119]. However, most of the algorithms use

a stationary camera and assume the observability of complete trajectories, which is not

a valid assumption for applications using mobile robots. A. Lookingbill et al. in [120]

use a helicopter to identify moving objects on the ground and learn their motion patterns.

This work shows interesting results and enlightens us about representing motion patterns

in the form of grid map. However, it only estimates the motion patterns of cells where

moving objects are observed, and it also neglects the relationship between neighboring

places. In our work, we use Gaussian Processes to learn the activity model of the entire

environment, which is able to overcome the above problems.

In this section, we will first discuss the acquisition of pedestrian tracks, then intro-

duce the classification and clustering of tracks, and finally present the GP-based motion

model learning.

8.3.1 Pedestrian Detection and Tracking

Pedestrian detection and tracking is one fundamental function for pedestrian activity

learning, which is performed using onboard sensors. A laser range finder is used for

pedestrian hypothesis generation and tracking, and a camera is used for hypothesis veri-

fication. For more details, please refer to our previous work in [155]. The output tracks

are sequences of pedestrian positions with time stamps, from which moving speed and

direction can also be calculated. While pedestrians are initially detected in the local co-

ordinates of the vehicle, we transform the track information into the global frame of the

map, using the vehicle localization function.

8.3.2 Track Classification and Clustering

Before using the collected tracks for pedestrian activity learning, track classification and

clustering should be applied. Due to the noise in the pedestrian detection and tracking,

plus the noise incurred by localization error during track transformation, the motion of

some tracks may be very unstable, or they are simply not tracks for pedestrians. In

some other cases, static tracks may appear when pedestrians stand still for long time in

some places. These tracks are not useful for pedestrian activity (dynamic) learning, and

123



8.3. Pedestrian Activity Learning

should be filtered out. A classification process is used to classify the tracks into three

types, “moving”, “static”, and “noisy”. The classification is based on several features of

the track, such as track length, moving speed, etc. Only ”moving” tracks will be used

for the activity learning purpose.

Track clustering is performed to cluster heterogeneous tracks into different homoge-

neous groups. In related research from the computer vision community, pedestrian tracks

are usually carefully clustered into multiple groups of high similarity. In our work, how-

ever, the mobile platform works in a fairly large area and may collect pedestrians from

many heterogeneous motion types. Performing careful clustering and learning the ac-

tivity model for each of these types are computationally expensive or even infeasible.

On the other hand, since our interest is the activity patterns at individual places, rather

than those of the complete pedestrian trajectory spanning in the temporal domain, there

is hence no need to perform such clustering and learning.

In fact, from a microscopic point of view, for an individual place in the urban road

environment, there are usually only two dominant motion patterns of pedestrians, which

have similar speed but opposite directions. We denote this assumption as the “bidirec-

tional property” of pedestrian activity. While this assumption appears arbitrary at first

glance, it generally holds true for the urban road environment, where pedestrians walk

either along or across the road links. This “bidirectional property” simplifies our cluster-

ing problem: we cluster the moving tracks scattered over the map into two groups, and

only need to guarantee that the activity of each group is consistent at the microscopic

cell level.

Our clustering algorithm can be formulated as follows. The set of pedestrian tracks

is denoted as S = {s1, . . . , sm}. One track s is a set of position-speed-angle tuples:

s = {t1, . . . , tn}, ti =< xi, yi, vi, θi >, where xi, yi are pedestrian positions, vi the

speed, and θi the moving direction. The input of the clustering is S, and the output is

two clusters of tracks A and B. During the clustering process, each cluster will maintain

a set of tuples as its characteristic quality, which is an assembly of the tuples from all its

member tracks. The two tuple sets are denoted as α and β respectively.

The similarity between two tuples p, q is defined as:

simp,q =
1− 2|θP − θq|/π

||xp − xq, yp − yq||+ const.
(8.1)
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The similarity score between a track s and a cluster with tuple set γ is defined as:

SIMs,γ =
n∑
i

(maxp∈γsimti,p +minq∈γsimti,q) (8.2)

During the clustering process, the longest track is first picked out as the seed track

for cluster A, and its tuples form the tuple set α. Then the track having the minimum

similarity value with α is selected as the seed track for cluster B, whose tuples then form

the tuple set β. The track having the highest similarity score with either cluster A or B is

assigned to cluster A or B accordingly, until all the tracks are clustered. The pseudo-code

of the cluster algorithm can be found in Algorithm 2.

8.3.3 Activity Learning with Gaussian Process

After the classification and clustering process, we get two clusters of moving tracks.

The tracks from the same cluster share similar cell-level motion patterns, which are of

interest to us and need to be learned. We use the Gaussian Process (GP) method for this

activity learning purpose. To briefly introduce GP, it is a collection of random variables,

any finite number of which have (consistent) joint Gaussian distributions. GP can be

Algorithm 2: Pseudo-code for track clustering
Input: The set of pedestrian tracks S = {s1, . . . , sm}
Output: clusters of tracks A and B

1 A = B = α = β = ∅;
2 Find the longest track sl;
3 Add sl to A; Add tuples into α; Erase sl from S;
4 Let sk = arg minsk∈SSIMsk,α;
5 Add sk to B; Add the tuples into β; Erase sk from S;
6 while S! = ∅ do
7 score A = maxsp∈SSIMsp,α;
8 sp = arg maxsp∈SSIMsp,α;
9 score B = maxsq∈SSIMsq ,β;

10 sq = arg maxsq∈SSIMsq ,β;
11 if score A ≥ score B then
12 add sp to A; add tuples into α; erase sp from S;
13 else
14 add sq to B; add tuples into β; erase sq from S;
15 end
16 end
17 return A and B;
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used to solve both regression and classification problems. Please refer to [155] for more

details. We model our activity learning as Gaussian Process Regression (GPR). The

set of position-speed-angle tuples for each cluster serves as the observation input, and

the prediction output is the information on pedestrian speed vij and angle θij: Aij =

{v̄ij, σ2
vij
, θ̄ij, σ

2
θij
}T .

It should be mentioned that while the speed value can be estimated directly from

GPR, it is not suitable to do so for the pedestrian moving angle. Unlike a linear variable

distributed in (−∞,+∞), the angle variable is a circular variable in [0, 2π), whose mean

and variance are “circular mean” and “circular variance” to be calculated in different

ways. For a simple example, the difference between angle 1◦ and 359◦ is actually 2◦,

rather than 358◦ as calculated in the linear way. Based on direction statistics [156], we

model the angle distribution as a Projected Normal Distribution, which can be calculated

from the bivariate normal distribution of the speed vector ~v = (vx, vy). In the activity

learning process, three separate GPRs will be trained, with one for the scalar speed

v, and the other two for speed values in x and y directions vx , vy. By assuming the

independence of vx and vy, we can synthesize the bivariate distribution of the speed

vector, from which the distribution of the moving angle can be calculated.

Gaussian Process Regression Model

Let X be the 2-dimensional position vector in the map coordinate, X ∈ R2, X = (x, y).

Let Y be the output value, Y ∈ R. Our Gaussian Process Regression model is as follows:

Y = F (X) + ξ, F ∼ GP (m,K), ξ ∼ N(0, σn
2) (8.3)

F (X) is a function distributed as a GP with mean function m and covariance function

K. It can be calculated that the output function Y is also distributed as a GP:

Y ∼ GP (m,K + σn
2σii′) (8.4)
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where ii′ = 1 iff i = i′. Given a set of training data (X, Y ), the posterior distribution for

a set of test points X∗ is a Gaussian distribution:

Y ∗|Y ∼ N(m(X∗) +KT (X,X∗)K−1(X,X)(Y −m(X)), (8.5)

K(X∗, X∗)−KT (X,X∗)K−1(X,X)K(X,X∗))

In our application, we want to get the posterior distribution for v, vx, vy at each test

point Xij , where Xij is the position of mij in the map frame. For this purpose, three

separate GPRs are trained, using the tuple set of each cluster as the training data. Zero

mean function m and squared exponential covariance function K are used in our GPRs,

where m(X) = 0, K(X,X ′) = σy
2 exp −(X−X′)2

2l2
. The hyperparameters (σn, σy, l) are

learned by maximizing the log-likelihood of the observation in the training data.

Projected Normal Distribution of Moving Angles

We use a Projected Normal Distribution (PND) to model the probabilistic density func-

tion of the pedestrian moving angle. Let ~x be a random two-dimension vector which has

a normal distribution N2(µ,Σ), in which case the angle of ~x is said to have a projected

normal (or angular Gaussian) distribution PN2(µ,Σ). The probabilistic density function

of PN2(µ,Σ) is as follows:

p(θ;µ,Σ) =
ϑ(µ; 0,Σ) + |Σ|−

1
2D(θ)Φ(D(θ)) φ(|Σ|−

1
2 (xTΣ−1x)−

1
2µ ∧ x)

xTΣ−1x
(8.6)

where ϑ(µ; 0,Σ) denotes the value of the probability density function for N2(0,Σ) at

point µ, Φ and φ denote the probability density function and cumulative density function

of N(0, 1), x = (cosθ, sinθ)T , D(θ) = µT Σ−1x
(xT Σ−1x)−1/2 , and µ ∧ x = µ1 sin θ − µ2 cos θ

with µ = (µ1, µ2)T .

In our application, pedestrian moving direction is actually distributed according to

PND. To calculate the distribution, the normal distribution of the pedestrian speed vector

~v is used. It is synthesized using the marginalized distribution of vx and vy by assuming

their independence: ~v ∼ N(diag(µvx , µvy), diag(σvx
2, σvy

2)) With this bivariate normal

distribution, the probabilistic density function of the moving angle can be calculated.

In our semantic reasoning, the circular mean of the distribution θ̄ij is adopted as the
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pedestrian moving angle, and the circular variance is used to represent the uncertainty of

this moving angle σ2
θij

. For the detailed definition and calculation of circular mean and

variance, please refer to [156].

Bidirectional Property of Pedestrian Activity

As discussed in Section 8.3.2, we classify the collected pedestrian tracks into 2 clus-

ters, and learn their activity models independently. According to real experiments, two

learned activity models are actually like a mirror-pair: the moving direction of one place

is actually the opposite direction of the other. This leads us to the assumption that pedes-

trian activity at a place is often “bidirectional”, which allows us to learn the activity

model of one track cluster, and infer the other via rotating its direction by 180◦. In our

application, we choose to learn the activity model of the first cluster. Track information

from the second cluster is also utilized in the activity learning: the angle values in its

activity tuples are increased by 180◦, and the tuples are used together with the training

data from the first cluster.

In the later section of semantic reasoning, we will use the right angle between pedes-

trian moving direction and road link direction as a feature to infer a place’s semantics.

Since this angle difference calculated with either of the two activity models is the same,

we will use the first model as the surrogate for both.

8.4 Activity-based Semantic Reasoning

This section introduces our method of activity-based semantic mapping. We want to

perform two levels of semantic reasoning, one coarse-level to identify “pedestrian path”

(shorthand as “PP”), and one refined-level reasoning to recognize three different types

of functional areas from the path, which includes “entrance/exit” (EE), “crossing” (CR),

and “sidewalk” (SW). It should be mentioned that these three types of areas are not nec-

essarily mutually exclusive, considering the fact that the same area may serve different

purposes at the same time. To capture the semantic properties at place mij in the map, a

semantic vector of four binary variables is introduced: Sij = (pij, eij, cij, sij)
T , where

• pij , a binary variable for “path”, Λp={PP, non-PP}, pij ∈ Λp;

• eij , for “entrance/exit”, Λe={EE, non-EE}, eij ∈ Λe;
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• cij , for “crossing”, Λc={CR, non-CR}, cij ∈ Λc;

• sij , for “sidewalk”, Λs={SW, non-SW}, sij ∈ Λs;

The input information of the semantic reasoning process is the activity information

Aij , and prior road network information.

8.4.1 Pedestrian Path Learning

Pedestrian Intensity

In the urban road environment, there are certain explicit or implicit paths that pedestrians

can take. The more pedestrians that pass through a certain place, the higher likelihood

for it to be part of pedestrian paths. In other words, the pedestrian number counted in

one place can be a useful indicator to distinguish its semantic type. Based on this idea,

we introduce a measurement “pedestrian intensity” as a feature for pedestrian path clas-

sification. The intensity at place mij is denoted as Iij , which is a function of pedestrian

count Nij:

Iij = Ilocalij × Iglobalij ; (8.7)

Ilocalij = Ni,j/max
a,b

(Ni+a,j+b); (8.8)

Iglobali,j =
1

1 + exp(−Nij +Nexp)
− 1

1 + exp(Nexp)
; (8.9)

where a, b ∈ Z ∩ [−l/2, l/2]. The pedestrian intensity is the multiplication of two fac-

tors, the local factor and the global factor, denoted by Ilocalij and Iglobalij . The local

factor is used to normalize the pedestrian count with the maximum values in a l× l local

window. This factor will help to mitigate the problem of data imbalance, which will

arise when the observation periods for different areas are too different, leading to the im-

balance that pedestrian tracks in some areas are intensively collected while other areas

may be overlooked. This local factor has similar effects to the adaptive threshold in im-

age processing, in which it can be used to recover image details when image brightness

is unbalanced. The global factor is namely a logistic function of Ni,j , which increases

quickly when Ni,j is near Nexp, but changes slowly when far away. Nexp is a constant

value chosen as the expected pedestrian count at a “path” place.
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Classification using Markov Random Field (MRF)

Based on pedestrian intensity calculated from the previous step, we use a Markov Ran-

dom Field (MRF) for path classification. MRF is a popular technique in image process-

ing, which can capture the dependency between neighboring pixels and is widely used

for image segmentation, restoration and other purposes. For more details please refer

to [157].

We model our classification problem as a pairwise MRF: Given the intensity data

I = {Ii,j}, we want to estimate the “path” semantics of the map P = {pij}. Let’s

assume that Ii,j|pij ∼ N(µpij , σpij), where µpij and σpij can be learned through training

data. We get the energy function

U =
∑
ij

(
log(
√

2πσpij) +
(Iij − µpij)2

2σ2
pij

)
+
∑
i,j,h,k

βδ(pij, phk) (8.10)

where pij and phk are “path variables” of neighboring places mij and mhk, and β is a

weighting parameter, β ≥ 0. By minimizing this energy function, the optimal classifica-

tion for pedestrian paths can be found, denoted as P̂ = {p̂ij}.

8.4.2 Refined Semantics Learning

After the coarse-level semantic learning for pedestrian paths, we want to perform re-

fined semantic reasoning to learn the functional areas in the path, i.e. ”entrance/exit”,

”crossing”, and ”sidewalk”. We use Naive Bayes Classifiers (NBC) to learn the seman-

tic variables eij , cij and sij . A Naive Bayes Classifier is a simple probabilistic classifier

based on Bayes’ theorem assuming independence between features given the class vari-

able. The probability model for a classifier is a conditional model:

p(C|F ) = p(C|F1, . . . , Fn) =
1

Z
p(C)

n∏
i=1

p(Fi|C) (8.11)

where C is the class variable, F is the feature set F = {F1, . . . , Fn}, z a normalizer,

p(C) the class prior, and p(Fi|C) the feature model for Fi given class C, Fi ∈ F .

In our application, three different NBCs are built to classify the three types of func-

tional areas separately, denoted as p(eij|F ), p(cij|F ) and p(sij|F ).We use the similar set

of features F for the three NBCs, with different feature models. The set of features used
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here includes “path property” Fppij , “moving direction” Fdij , “direction variance” Fdvij ,

and “position” Fpij . Fij = {Fppij , Fdij , Fdvij , Fpij}.

• Fppij is a binary feature, which is actually the classification result p̂ij from the

coarse-level “path” classification. The feature model p(Fppij |C) is designed to

carry the idea that if a place is not a pedestrian path, it is not likely to be some

functional area.

• Fdij is about the angle of the pedestrian moving direction. θ̄ij in Aij is chosen as

its value. This feature carries the typical motion information at each cell, which is

highly related to its semantic meaning.

• Fdvij is about the uncertainty of the learned pedestrian moving angle. σ2
θij

is cho-

sen as its value. The bigger Fdvij is, the more unreliable the calculated moving

direction Fdij .

• Fpij is about a place’s position relative to the road network. This feature is intro-

duced with the idea that the functional semantics of a certain place are actually

related to its position on the road.

In the rest of this subsection, we will first introduce the prior road information used in

the semantic classification process, and then present the classification for each type of

semantics. The feature models in different NBCs will be discussed.

Prior Road Information

In our previous work [10], we are able to get two kinds of maps for the road network,

one binary grid map and one topo-metric map. The binary grid map denotes the binary

status of each place cell, “road” or “non-road”. The topo-metric map is a compact rep-

resentation for the road network, in which road links are represented by fitted splines.

We use above two types of road maps to get the required position information in the

semantic reasoning process. For example, based on the binary grid map, road boundary

information can be retrieved; based on the topo-metric map, the angle of a road link can

be calculated from its spline representation; etc.
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Entrance/Exits p(eij|F )

For urban road environments, pedestrian entrance/exits are where pedestrians enter onto

and depart from the road. Due to the bidirectional property of pedestrian motion, people

usually use the same pathway for entrance as well as exit into a spatial region. The

knowledge of pedestrian entrances and exits in a road network is of vital importance and

can help an autonomous vehicle’s safe navigation. We use Naive Bayes Classifiers to

recognize such areas, based on the feature set Fij . The feature models are built as below.

(It should be mentioned that the above feature model is just a “simplistic abstract” model,

which can have different variants in real applications.)

i) p(Fppij |eij): The entrance/exits (EE) are functional areas of pedestrians, which should

only appear on a pedestrian path. If an area is “EE”, it should be “PP”. The infinitesimal

ε is to avoid degenerate cases. If an area is “non-EE”, its possibility to be a “PP” is

denoted as kee, which is approximated by the ratio of extracted “PP” area over the road

surface region. It should be mentioned that the same feature models are chosen for the

other two semantic properties cij and sij , except that different parameters kcr and ksw

are used for kee.

p(Fppij = PP |eij = EE) =1.0− ε;

p(Fppij = non-PP |eij = EE) =ε;

p(Fppij = PP |eij = non-EE) =kee;

p(Fppij = non-PP |eij = non-EE) =1.0− kee;

ii) p(Fdij |eij): When a pedestrian enters or leaves a road link, its moving direction is

usually perpendicular to the road direction. This basic idea is reflected in the feature

model, where Fdij is the pedestrian moving direction, rdij is the direction of the nearest

road link calculated from its spline representation, and ∆(, ) is the function to find the

right angle between these two directions.

p(Fdij |eij = EE) =
4

π
∆(Fdij , rdij);

p(Fdij |eij = non-EE) =
2

π
;
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iii) p(Fdvij |eij): The feature of angle variance is used to carry the uncertainty of the

moving direction estimation. This feature model is the same for the other two NBCs.

p(Fdvij |eij = EE) =
2(maxi,j Fdvij − Fdvij)

(maxi,j Fdvij −mini,j Fdvij)
2

p(Fdvij |eij = non-EE) =
1.0

maxi,j Fdvij −mini,j Fdvij

iv) p(Fpij |eij): Pedestrian entrances/exits should appear nearby the road boundary. Fpij

denotes a place’s distance to the boundary of the road, and EEr is a fixed parameter to

control the probability. For an area that is “non-EE”, the probability density function of

Fpij is assumed to be a uniform distribution over [0,
road widthij

2.0
].

p(Fpij |eij = EE) =1.0−
Fpij
EEr

p(Fpij |eij = non-EE) =
2.0

road widthij

With the Naive Bayes Classifier, we can get the “EE” probability of a place. The place

with p(eij = EE|F) > 0.5 is classified as an EE cell. However, these results are in the

format of individual cells, and we want to further cluster them into individual EE objects.

A Gaussian Mixture Model (GMM) is used for the clustering purpose, with which EE

cells of places are clustered as EE objects. Each EE object corresponds to a 2D position

in the map. The Bayes Information Criterion (BIC) is used to select the best cluster

number. After the clustering, we get a set of EE objects ξξ = {EE1, . . . ,EEn}.

Crossing p(cij|F )

A pedestrian crossing is where pedestrians move across the road. A “crossing” place

should be part of the pedestrian “path”. From the activity view, pedestrian moving di-

rection should be perpendicular to the road direction. From the position view, the sum

of the distances to its two nearest entrance/exits should be around the road width. With

these ideas, the feature models can be built. With the NBC, we are able to learn a place’s

semantic property of “crossing”. While we can get the classification results directly from

NBC, the results may not be smooth in neighbouring areas. In our application, we treat
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a place’s probability of “crossing” as a feature, and input it into our MRF framework, to

generate better classification results.

Sidewalk p(sij|F )

A sidewalk is a place where pedestrians walk alongside the road. It should appear near

the road boundary, and pedestrian moving direction should be parallel to the road direc-

tion. Given these ideas, the feature models of p(sij|F ) can be built. To generate smooth

classification results, a MRF is used to generate more homogeneous results for sij , as

for cij discussed previously.

8.5 Experiments

8.5.1 Experiment Setup

Our test bed is a Yamaha G22E golf cart with autonomous driving ability, as shown

by Figure 4.4. The pedestrian detection and tracking are performed using a 4-layer

LIDAR (SICK LD-MRS400001) mounted at waist height, and a simple webcam above

it. Vehicle localization is performed using a tilted-down LIDAR (SICK LMS-291) at the

upper front, together with the vehicle’s odometry system. Our experiment environment

is the Engineering Campus of the National University of Singapore, where pedestrian

activities in two typical areas (“Area MCD” and “Area CR”) are observed and collected,

as shown in Fig 8.3(a).

A multi-dimensional grid map is built to cover the Engineering Campus, whose size

is 1099 × 973 cells, with its resolution 0.5 m/cell. For visualization purposes, we are

showing the complete map, but highlight the activity learning and semantic mapping

results of the two interesting regions. The size of “Area MCD” is 338 × 100 cells, and

“Area CR” is 90 × 90 cells.

8.5.2 Experiment Results

Pedestrian Activity Learning

There are 306 tracks collected in our experiment, as shown in Figure 8.3. Figure 8.3(a)

shows the satellite image of our experiment environment, where the two areas of interest
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(a) Satellite image

(b) Binary road map

(c) Topo-metric graph

Figure 8.3: Experiment environment and road network information (zoom in when read)
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(a) Clustering results in Area MCD (b) Clustering results
in Area CR

Figure 8.4: Track clustering results

are highlighted. Collected pedestrian tracks are also overlaid in the picture, drawn in

different colors. Figure 8.3(b) shows a binary road image from our previous work [9],

where white areas are road surface. Pedestrian tracks are overlaid on it. Figure 8.3(c)

shows the topo-metric graph of the road network, with two sub-images showing the

pedestrian detection results in the two areas.

The track classification and clustering results are summarized as follows: moving

tracks number 205, with 100 in cluster A and 105 in cluster B; static tracks number 10;

noisy tracks number 91. It can be seen that static tracks are only a small portion of the

track set, meaning that pedestrians in the two surveyed areas are mostly in movement.

The relatively large number of “noisy tracks” is due to our strict criteria of track classi-

fication, which help us to get reliable moving tracks. For the moving tracks, the similar

sizes of the two clusters incidentally show the “bidirectional property” of pedestrian ac-

tivity. Figure 8.4 visualizes the results of moving track clustering, where cluster A and

cluster B are colored in blue and green respectively, and red dots are their end points.

Tracks in cluster A generally move from right to left, up to down, where tracks in clus-

ter B takes the opposite direction. The clustering results are checked manually and no

errors are found. (An error here denotes the case where a pedestrian track moves in one

direction is falsely grouped into the opposite cluster.)

Given the results from the track classification and clustering, we try to learn the

activity model using Gaussian Processes. As discussed in Section 8.3.3, we only need

to learn the activity model in one direction. In this experiment, we learn the activity

model in the direction of cluster A. Figure 8.5 illustrates the pedestrian moving direction

θ̄ij of the learned activity model. The direction values are shown by red arrows, which

are overlaid onto the satellite image for visualization. We can have an overview of the

pedestrian motion flow in the environment from this figure.
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(a) Pedestrian activity in Area MCD (b) Pedestrian activity
in Area CR

Figure 8.5: Moving direction of activity model (zoom in when read)

Activity-based Semantic Mapping

Together with the road network information, semantic mapping can be performed. Table

8.1 shows the mapping results for semantic properties of the four types.

For the “path” property, it can be seen that our defined feature of “pedestrian inten-

sity” is able to boost the path trunk which most people take and depress any erratic tracks.

The classification results from the MRF show a complete path and no false positives. For

the “entrance/exit” property, the output probability of NBC is shown by a grayscale im-

age, which is overlaid on the satellite image for visualization. The classification results

that we get from the NBC are individual “EE cells”. We use the GMM technique to

cluster these cells, and recognize the “EE objects”. The best cluster number is selected

automatically with BIC, and finally we recognize the 7 entrances/exits in the two areas.

This result is a perfect result according to our ground truth. For the “crossing” property,

we are able to recognize the important crossing area in Area CR. However, some cells

in Area MCD (no crossing exists) are misclassified as “crossing”. The accuracy for the

classification result is 80.3%. This number can be further improved by filtering out those

small pieces of areas according to their size. For the “sidewalk” property, we recognize

a long sidewalk in Area MCD, which has several disconnected pieces at the right end.

According to our definition of pedestrian sidewalk, these disconnected pieces do have

a “sidewalk” property. They can be filtered out according to their sizes if our purpose

is to find individual “sidewalk objects” rather than “sidewalk cells”. In summary, our

activity-based semantic mapping provides promising results. The four types of semantic

properties are mapped well in our two survey areas.
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Area MCD Area CR

Pedestrian intensity

Path classification

EE probabiliy

EE objects

CR probability

CR classification

SW probability

SW classification

Table 8.1: Mapping results for semantic properties of the four types
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8.6 Summary

In this chapter, we propose a novel semantic mapping method based on pedestrian ac-

tivity in the urban road environment. Pedestrians are detected and tracked using an

autonomous vehicle, and the collected track information is used to learn the pedestrian

activity model in the environment. Based on the learned pedestrian activity patterns and

prior road network information, semantic mapping is performed. Our work is tested

through real experiments, and shows promising results.

The contribution of our work is that we propose the novel idea of semantic mapping

via pedestrian activity learning. Unlike existing approaches which usually solve the

environment understanding problem of different dimensions independently, we utilize

the correlations between them and demonstrate the feasibility of learning knowledge

from each other.

To detect and track pedestrians using a mobile platform is not as convenient as using a

surveillance camera. In this work, only 306 tracks are collected to test our method. In the

future work, we will test our method with more experiments in different road scenarios.

Besides pedestrians, there are other equally important agents moving on urban roads,

such as vehicles and motorbikes. In our future work, we will extend our method to other

types of agents, and learn richer semantic information from their behaviors.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis focuses on developing the perception functions for vehicle autonomous driv-

ing in the urban road environment. Fundamental perception requirements are identified

through literature reviews. We demonstrate that with the minimal sensing configura-

tion, our algorithms are able to achieve equivalent or better performance compared to

the existing work.

9.1.1 A Brief Review

We first study the history and current status of autonomous vehicle technology, and sum-

marize the important perception requirements for autonomous navigation in the urban

road environment. Three fundamental perception tasks are studied in detail, including

localization, object recognition, and environment understanding. Our research around

these topics are the main body of this thesis.

To address the problem of vehicle localization, we manage to utilize the typical fea-

tures in the urban road environment for pose estimation, with only a tilted-down 2D

LIDAR and the odometry system. In the first stage of our research, curb-intersection

features are extracted to localize the vehicle. Compared to existing approaches that

purely use curb features for vehicle localization [43] [44] [45] [46], we introduce an “in-

tersection feature” as a complement, and utilize the combined curb-intersection feature

for better localization. Our algorithm achieves accurate estimation results in both the

lateral and the longitudinal directions. However, the curb-intersection-based algorithm
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only applies to roads where curbs exist, and may not be general enough for all the urban

road scenarios. For this reason, in the second stage of the research, we consider incor-

porating other urban features for localization. Since the urban environment is composed

of artificial objects or structures which usually have vertical surfaces, we try to utilize

these vertical surfaces as the localization features. Compared to the curb-intersection

algorithm, the “vertical surface” algorithm is applicable to general urban road scenarios

(with/without curbs), and has better localization accuracy. Our method achieves equiv-

alent performance to the state-of-art algorithm using a 3D LIDAR [15], however, with

the much reduced sensing ability of a 2D laser sensor.

Problems of object recognition are also studied in this thesis. While object recogni-

tion is a broad research topic, our attention is focused on two specific tasks that are more

relevant to vehicle autonomous driving, i.e., road detection and moving object recogni-

tion. For the task of road detection, we investigate two categories of research, i.e., road

marking detection using vision, and road surface-boundary detection using LIDAR. For

vision-based marking detection, we propose a general framework for the detection and

analysis of various types of markings. For LIDAR-based surface-boundary detection,

we introduce the idea of a rolling window and solve the problem in a 3D manner. As for

the task of moving object recognition, we propose a spatial-temporal approach to solve

it, with only a 2D planar LIDAR. Avoiding using more elaborate and costly sensors like

a Velodyne, we show that it is possible to obtain highly accurate object classification via

temporal accumulation. Our algorithm is tested in both campus and highway scenarios,

and shows good accuracy.

Besides the object recognition functions developed for the short-term object-oriented

detection purpose, to endow the robot with higher-level intelligence, we are also in-

terested in acquiring some long-term environment-oriented understanding. While the

understanding of an environment can concern anything about its properties, in our re-

search, we concentrate on the semantic and activity dimensions. Unlike existing research

approaching different dimensions of understanding independently, we argue that these

dimensions are highly correlated and can be learned from each other. We implement

this idea to infer semantic understanding from learned activity knowledge, and achieve

promising results.
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9.1.2 Insights of Minimal Sensing

We summarize three key insights of “perception under minimal sensing” as follows,

which can be treated as the essence of our research:

1. Make use of prior knowledge. The prior knowledge of an environment is of vital

importance for a vehicle to navigate in it. This prior knowledge can be a metric

map, which assists vehicles in performing map-aided localization: Chapter 3 uti-

lizes a “curb map” as the prior, and Chapter 4 makes use of a “vertical surface

map” generated beforehand. The prior knowledge can also be semantic or activ-

ity related, as we learned in Chapter 8. Although no concrete implementations

are shown in this thesis that utilize the semantic or activity knowledge, it is well

acknowledged that such information is quite beneficial for vehicle perception and

navigation.

2. Make use of the characteristics of the environment. Due to limited sensing

ability, the characteristics of the environment have to be well studied and utilized.

For vehicle localization, we avoid using expensive GPS/INS units, and make use

of the typical features in the urban road environment for pose estimation, i.e. curb-

intersection features (Chapter 3) and vertical surface features (Chapter 4). Since

the urban roads are usually flat with only large curvatures at the boundaries, we uti-

lize this observation for road surface-boundary detection (Chapter 6). In addition,

well painted roads make it possible for us to extract and recognize the markings

on them (Chapter 5).

3. Make use of the temporal relationship between adjacent measurements. Through

the whole thesis, we rely on the two 2D LIDARs as the major exteroceptive sen-

sors, and realize most of the perception functions. While 2D LIDARs only provide

a series of range values whose information is very sparse, we manage to overcome

this difficulty by referring to the temporal relationships between adjacent mea-

surements. The idea of a 3D rolling window captures the temporal relationships

between laser scans from a tilted-down LIDAR, and allows us to accumulate 3D

data and reconstruct the static environment as the vehicle moves. We rely on the

accumulated 3D data for not only vehicle localization (Chapter 4), but also road

surface-boundary detection (Chapter 6). Chapter 7 introduces our spatial-temporal
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approach for moving object detection, where we utilize the temporal patterns of

consecutive scans from a planar LIDAR for object classification.

9.1.3 Contributions

In summary, this thesis introduces our research into the perception functions of vehicle

autonomous driving in the urban road environment. Table 9.1 summarizes the sensors

usage of different perception functions studied in this thesis. We demonstrate that with

the minimal sensing configuration, our algorithms are able to achieve equivalent or better

performance compared to the existing work. The contributions can be summarized as

follows:

1. We develop a curb-intersection feature based Monte Carlo Localization algorithm,

which achieves accurate estimation results in both the lateral and the longitudinal

directions of urban roads. Compared to existing approaches that purely use curb

features, we introduce an “intersection feature” as a complement, and utilize the

combined curb-intersection feature for the localization purpose. The contributions

of our algorithm also include the way we represent and utilize the curb-intersection

features. The idea of “synthetic LIDAR” enables us to encode the features into the

format of laser scans, and use the standard measurement models of laser sensors

for accurate and robust localization (Chapter 3).

2. We propose a vertical-surface feature based localization algorithm, which achieve

equivalent performances to the state-of-the-art algorithm using a 3D LIDAR, how-

ever with the much reduced sensing ability of a 2D laser sensor. Similar to the

curb-intersection algorithm, the contributions of our algorithm also include the

idea of “synthetic LIDAR”, enabling us to use the standard measurement model

of laser sensors for localization on the projected 2D plane, both efficiently and

precisely (Chapter 4).

3. We design a general framework for road marking detection and analysis using

vision; unlike existing approaches which are usually case-specific, the proposed

method is able to detect various types of markings under a uniform framework

(Chapter 5).
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Table 9.1: Sensor usage of different perception functions

Perception Functions Chapter
Required Sensors

Odometry Tilted LIDAR Planar LIDAR Webcam

Localization Curb-intersection Feature based 3 √ √ × ×
Synthetic LIDAR based 4 √ √ × ×

Object Recognition
Road marking detection 5 × × × √
Road surface-boundary detection 6 √ √ × ×
Moving object recognition 7 √ × √ ×

Environment Understanding 8 √ √ √ √

4. We introduce a cascaded approach for road surface-boundary detection using ac-

cumulated 3D data; compared to existing 2D approaches, our algorithm does not

have strong assumptions on the sensing scenario, and is able to handle temporal

noise; the contributions here also include the study for the probabilistic character-

istics of the accumulated 3D data (Chapter 6).

5. We develop a spatial-temporal approach for moving object recognition using a 2D

planar LIDAR, which achieves equivalent/better performance than the state-of-

the-art algorithm; the contributions include not only the spatial-temporal method

itself, but also the designed spatial-temporal features of 2D laser scans (Chapter

7).

6. We study the different dimensions of environment understanding, and propose the

novel idea of semantic mapping through pedestrian activity learning; while exist-

ing approaches usually solve the environment understanding problem at different

dimensions individually, we study the correlations between them and demonstrate

the feasibility of learning knowledge from each other (Chapter 8).

7. We summarize three key insights of “perception under minimal sensing”, which

can be treated as the essence of our research (Chapter 9).

9.2 System Integration and Practical Issues

This section introduces the integration of the developed perception functions in our au-

tonomous vehicle system, and discusses some practical issues of the current sensor con-

figuration.
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Perception Planning Control

Localization

Moving Object 

Recognition

Road Detection

General Obstacle 

Detection

Mission Planning

Behavior Planning

Motion Planning

Steering Control

Speed Control

Figure 9.1: Software system of our autonomous vehicle

Figure 9.1 illustrates the software system of our autonomous vehicle, which is con-

sisted of three modules: perception, planning and control. The perception module esti-

mates the states of the surrounding environment as well as the states of the vehicle itself,

and provides the information to the planning module. We adopts a three-layer architec-

ture for the planning module [158], which includes the mission-planning layer for global

path selection, the behavior-planning layer to choose appropriate driving mode, and the

motion-planning layer for local path generation and obstacle avoidance. The control

module takes care of the low-level speed and steering control. From the figure, it can

be illustrated that the localization function plays a vital role for the planning module,

depending on which the vehicle carries out all the three layers of planning. The outputs

of moving object detection and road detection are used for motion planning, where the

vehicle determines its trajectory as well as speed to drive on-road and avoid other mov-

ing objects. For safety considerations, we also implement a “general object detection”

function in the perception module, which takes the input from the planar LIDAR, and

treats every laser point as an obstacle. This guarantees the safety of the vehicle in the

presence of general obstacles, and in case of the failures of other perception functions.

In our current prototype, we use on two LIDARs for different purposes: a tilted-

down LIDAR for localization and road detection (chapter 3, chapter 4, and chapter 6),

145



9.3. Future Work

and a planar LIDAR for obstacle detection (chapter 7). Generally the current sensor

configuration achieves satisfactory performance; however, there are two practical issues

to be considered in real applications.

The first issue is related to the sensor coverage. In the current sensor configuration,

obstacle recognition is handled by the planar LIDAR, which assumes that obstacles ap-

pear at the height of the planar LIDAR. While this assumption generally holds in the real

road traffic, it may fail in some extreme cases such as short kids or dogs. Although the

tilted-down LIDAR may be used for the detection of these low obstacles, it is only able

to detect them from a particular distance (depending on its mounting height and tilted-

down angle). To tackle this limitation but avoid using 3D LIDAR, we are exploring the

idea of active sensing: the planar LIDAR will be mounted on a pan-tilt mechanism to

achieve complete sensor coverage.

The second issue is related to the sensory modality. Currently our perception algo-

rithms rely heavily on the LIDAR sensors. Although LIDARs are well-known for their

robustness and accuracy, they also have their own limitations. One of the biggest chal-

lenges with the LIDAR is the black glossy vehicles, whose surfaces have low rate of

diffuse reflection, leading to missing data in the laser scans. For this reason, our planar

LIDAR has difficulty in recognizing such vehicles from a distance. To tackle this limita-

tion, other sensory modalities have to be employed. Currently we are working on fusing

the vision-based vehicle detection technology with our LIDAR-based method.

9.3 Future Work

This section introduces the possible topics in our future work. Besides the planned

works discussed at the end of each chapter, our future research will be performed in the

following four areas:

1. Extend the current algorithms from a single sensory modality to multiple sen-

sory modalities. While most of our existing work is carried out using a single sen-

sory modality, to have redundancy as well as to make the algorithms more robust,

we plan to utilize multiple sensory modalities for each perception function. For

example, vision-based localization will be developed as a complement and fused

to the current LIDAR-based algorithm.
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2. Extend the research from a single vehicle to multiple vehicles. While this thesis

only discusses the perception issues with a single robot, some interesting percep-

tion problems may appear when multiple autonomous vehicles work together, such

as cooperative localization, cooperative SLAM, etc. The problems of cooperative

perception will be studied to realize better perception.

3. Realize Metric-Semantic-Activity SLAM in the dynamic environment. In the

research into environment understanding, we argue that the three dimensions of

environment understanding are correlated and can be learned from each other. We

want to apply this idea to realize metric-semantic-activity SLAM in the dynamic

environment. While traditional metric SLAM research treats the environment as

static, the assumption does not hold in the crowded and dynamic urban environ-

ment. By incorporating semantic and activity information in the SLAM process, a

better and more meaningful model of the environment can be built.

4. Explore active sensing. In the current setup, all of our algorithms can be treated

as “passive” sensing, in the sense that the sensors are fixed, and cannot change

their positions and orientations actively to achieve better perception performance.

The idea of active sensing will be explored in our future research. Enabling us

to dynamically allocate the limited sensing resources to more urgent perception

tasks, it fits perfectly into our idea of “perception under minimal sensing”.
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Video Links

1. Autonomous Rebalancers for Mobility on Demand

http://www.youtube.com/watch?v=G8y5X-JtXNE

2. Autonomy for Mobility on Demand

http://www.youtube.com/watch?v=666awITIn o

3. The Future with Self-Driving Cars

http://www.youtube.com/watch?v= 3oTYHYblFY

4. Curb-Intersection Feature Based Monte Carlo Localization

http://www.youtube.com/watch?v=XoZK1OS2dTE

5. Autonomous Navigation Demo - 2011 July

http://www.youtube.com/watch?v= YvPh56p0dk

6. Visual Difference Between Two Separate Autonomous Runs

http://https://www.youtube.com/watch?v=lOxgYmPrMEg#t=107

7. Synthetic 2D LIDAR for Precise Localization in the 3D Urban Environment

http://www.youtube.com/watch?v=o8Ue7-qEWUQ

8. A General Framework For Road Marking Detection and Analysis

http://www.youtube.com/watch?v=wkZb6-LXvJQ

9. Road Detection and Mapping using 3D Rolling Window

http://www.youtube.com/watch?v=fle1MhqnL5I
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10. Moving Object Recognition Using a Planar LIDAR - Highway Scenario

http://www.youtube.com/watch?v=T2xbWknsJig

11. Moving Object Recognition Using a Planar LIDAR - Campus Scenario

http://www.youtube.com/watch?v=Y6XnLUhRxIg
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