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Summary
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Autonomous vehicle has been touted as the next generation automobile that

can change the way how people commute from one place to another. There are

many benefits of having an autonomous vehicle. In order to allow safe navigation,

an autonomous vehicle must maintain knowledge of its surrounding environment

at all time.

Using our own instrumented vehicles, mapping is done using a single tilted down

LIDAR with odometry information derived from vehicle’s Inertia Measurement

Unit and wheel encoder. The LIDAR in a push-broom configuration is used to

sweep through the environment. By augmenting the raw sensor measurements, we

show that it is sufficient to perform navigation in an urban environment by using

a map that consists of only curb and intersection information.

This virtual sensors is further generalized by the notion of a synthetic LIDAR.

A synthetic LIDAR makes use of the structure from motion of a moving vehicle

by maintaining a rolling window. The rolling window reflects the most recent

observations of the environment by reconstructing the environment in 3D. This

way, meaningful features that can describe an environment can be extracted.

The matching between 2 synthetic LIDAR is performed with an extended cor-

relative scan matching. Usually, a match only consider the point coordinates of an

observation. In the extended matching, other features such as intensity and its sur-

face normal relevant to a point sampled from the environment are considered. This

scan matching is robust to local maxima and we show how it can be accelerated

through Graphic Processing Unit.
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In order to maintain a consistent map of the environment, observations obtained

from synthetic LIDAR are put together using pose graph representation. In a

simple graph construction, features from a single rolling window is used and a

node in a graph is added at a fixed interval with respect to the width of the

rolling window. Optimization of the graph is performed as loop closure is detected

between the major nodes, as given by the matching result. The addition of loop

closures can be performed in a supervised manner or in a completely automated

fashion. The maps produced by different vehicles at different time can be updated

by merging the maps together. It is subsequently updated with 3D occupancy grid

using Octree representation.

The map is used to perform localization. We performed experiments to evaluate

localization performance using curb based and synthetic LIDAR sensor models. We

also discussed how the topology of a map can be extracted and represented by a

topo-metric graph that can describe a map in a compact representation.

To include non-static objects, we also show how activity mapping can be per-

formed using a known map. In particular, we show how pedestrian’s activity map-

ping can be done. We also show how semantic information can be extracted using

an activity map.

In conclusion, we show that we are able to perform mapping in different kinds

of urban environment we have encountered so far. The extension to this work is

to include more data analysis on the map to extract complete prior knowledge

presented from the environment. This is with the goal that the map is where the

knowledge is shared among all other autonomous vehicles, in order to perform a

safe and timely navigation.
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Chapter 1

Introduction

1.1 Autonomous Vehicle

An early presentation of driverless car was envisioned by highway futurist Norman

Melancton Bel Geddes back in 1939 during World’s Fair sponsored by General

Motors [1]. He depicted that the car of the future could have sensors detecting the

electron-magnetic fields that controls both the speed and the path of travel. Not

only that, the car is equipped with radios so that nearby vehicles able to keep a

safe distance between them while traveling.

For many years, research on fully autonomous vehicle has been pursued inter-

nationally. In 2004, the first long distance competition for autonomous vehicle,

the DARPA Grand Challenge [2] was held in the Mojave Desert. The competition

reflected on how technology has evolved in a way that allows unmanned vehicle to

navigate through a vast area while following a designated route. Since then, a series

of Grand Challenges [3,4] were held. The DARPA Urban Challenge in 2007 took a

step further. In the challenge, a driverless vehicle has to navigate through difficult

terrain, involving merging of intersections and avoiding obstacles while obeying to

traffic laws.

Self-driving car was made popular with the report of Google’s autonomous car

project by The New York Times [5].This is followed by Nevada Legislature passing

state law [6] to allow the use of autonomous vehicle on public road, clearing the

way where many has seen as the main obstacles that could hinder the progress of

the development for autonomous vehicle.
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1.2. Mobility-on-Demand

Since then, many of the traditional car manufacturer companies introduced

their own version of self-driving car. Showing off their recent development, BMW

announced the ConnectedDrive Connect (CDC) [7] by navigating the vehicle using

a highly accurate pre-mapped highway in 2012. Audi, on the other hand, has its

Audi TTS [8] driving the Pikes Peak autonomously. Meanwhile, Toyota, the giant

in the automotive industry announced its Prius Automatic Vehicle Operation Sys-

tem (AVOS) at November 2011 during Tokyo Auto Show [9]. Nissan too announced

their autonomous car effort by aiming to be the first to perform public road test in

Tokyo using Nissan’s LEAF [10]. As recent as 30 July 2014, UK announced that

autonomous vehicle will be allowed to perform testing on the road starting from

January 2015 [11].

1.2 Mobility-on-Demand

The Mobility-On-Demand (MoD) system has emerged as a viable alternative to

the conventional use of private transportation [12,13]. As cities today facing over-

saturated traffic demands, the rethinking of a modern solution is born. To meet the

ever increasing demand of urban mobility, new type of transportation that is able

to supplement the current infrastructure in place is required. As such, the MoD

system is introduced as the solution to mitigate the first and last mile problem

with the emphasis of being economical and sustainable.

Part of the main design of MoD system is the use of light-weight, short ranged

vehicles that is powered by clean energy. Most important of all, a vehicle’s own-

ership deployed under MoD system is both private and public. It is public since

the vehicles of such system is provided as part of the MoD service. On the other

hand, it can be used as if this is your own private vehicle since the end user of a

MoD system is able to pick up a vehicle, drive it to the destination and drop it off.

The system is designed to have the comfort of owning a private automobile with-

out the usual burden of owning a private car, which includes costly maintenance,

insurance, refueling or the need to provide a parking space.

A MoD system can also supplement and stimulate the use of public transport

by providing a convenient means as a first- and last- mile transportation. The

2



1.3. Navigation and Localization

first- and last- mile problem occurs when a user having difficulties of getting from

their starting location to a transport central, for example from home to a MRT

station and back. This is especially crucial when the distance from train station

to home is not within a walking distance. The feasibility of MoD system has been

demonstrated in many cities with bike sharing system [14].

One of the key challenges of a MoD system is to always keep a balanced distri-

bution of vehicles. If not managed properly, it is bound to be unbalanced as the

demand of the vehicles can be affected by many external events which can be hard

to anticipate. An optimal real-time rebalancing policy [15] has been proposed for

load balancing in anticipation of the demand. However, transporting the vehicles

for the return trips remained an open question. Hence, it is highly desirable to

put autonomy in a vehicle. The process can then be handled in an efficient way, in

which load rebalancing of a fleet of vehicles can be achieved automatically. Putting

autonomy into vehicles can play many other important roles too. Rebalancing the

MoD system aside, autonomy allows realization of pick up and drop off at any

place. This way, the system can handle virtually any number of stations. This

becomes very similar to dynamic one-to-one pick-up and delivery problems [16,17],

albeit the system is self-sustained with minimal human assistance.

There are other compelling reasons for enabling autonomous capability in the

MoD system: The removal of a human driver for example, could potentially bring

improvement towards productivity as a typical American spends an average of 100

hours a year in traffic [18]. Introduction of autonomous car also bring benefits in

many other areas too. This includes fewer crashes; alleviate the problem of scarcity

of parking area and elimination of constraint on the occupant’s state, for example,

underage road users and disabled people.

1.3 Navigation and Localization

To allow safe and timely navigation of autonomous vehicle from one point to an-

other, an autonomous vehicle must maintain the most updated state of its sur-

rounding at all time, in order to predict and react to the future state by applying

necessary control actions. Typically, dead reckoning is available as the basic nav-

3



1.3. Navigation and Localization
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Figure 1.1: A sample RNDF map provided by DARPA

igation information that can be derived from wheel encoders, visual odometry,

inertial measurement unit etc. This information alone is sufficient to allow robot

to move from one place to another. However, it does not guarantee a collision free

traversal, a basic criteria for safe navigation. In the DARPA Urban Grand Chal-

lenge (DUGC), a multitude of sensors are used to allow safe maneuver of a vehicle

in real traffic environment. To sense the world, all of the finalists have vehicles

equipped with a combination of LIDAR, radar and vision camera to observe the

environment.

In DUGC, a Route Network Definition File (RNDF) is provided by the orga-

nizer, where topology of the road network and parking zones is encoded as GPS

waypoints. The RNDF effectively serves as the map as every autonomous vehicle

is allowed to travel within the region defined in the map. Figure 1.1 shows an ex-

ample of the RNDF. In RNDF, the road is generally consists of segments of lanes.

Each lane is made up of multiple way points given as GPS coordinates. The lane

information can also optionally includes checkpoint, boundary information, stop

sign and lane width.

The winning entry of the DUGC, Boss by Tartan Racing team employed 2

4



1.3. Navigation and Localization

separated behaviors to navigate through the urban environment: on-road driving

and unstructured driving [19, 20]. During on-road driving, the vehicle is given a

desired lane to follow with a stop-line at the end of the lane as the navigation goal.

For the unstructured driving (parking maneuver, making U-turn etc.), the goal is

represented as the desired pose of the vehicle in the world. In this case, a more

capable, 4D lattice planner that searches over vehicle position (x, y) , orientation

θ, and velocity v will invoke to generate a global path to the desired pose.

The other finisher of DARPA Urban Challenge, Tarlos by MIT uses a more gen-

eral approach to navigate throughout the urban environment. Based on Rapidly-

exploring Random Trees (RRT) planning algorithm [21], Tarlos has shown to be

able to handle numerous traffic and intersection scenarios that were never tested

before. To always guarantee a dynamically feasible trajectory, forward simulation

of a closed-loop system which consists of vehicle model and controller is performed.

By sampling control inputs to the vehicle model, forward simulation is done to pro-

duce many possible paths. Each path is then check for feasibility and finally, the

best path is selected by executing the steering controls of the sampled input [22].

In order to perform meaningful navigation, position estimate of a robot is a

fundamental requirement. With the advent of the availability of Global Position-

ing System (GPS) based localization, it seems to be an obvious way to obtain

position information. After all, it is now built-in into every modern mobile devices.

However, GPS is not without its pitfall. Quality of the GPS is not guaranteed

especially in an urban canyon environment as discussed in [23]. GPS signals may

suffer from multipath errors due to the presence of tall buildings. More crucially

in some cases, GPS signal is not available at all, for example when traveling in

tunnels and indoor parkings. These vulnerabilities can be partially eliminated by

fusing the GPS signals with other type of information, such as Inertial Navigation

System (INS) which fuse the GPS data with IMU information.

Even though there are great progress on GPS and INS based positioning sys-

tem, other types of localization method is explored in order to achieve accurate

positioning. This leads to approaches where localization is done with the vehicle

comparing it’s own observation against a known environment. Since the vehicle is

expected to drive in a known space, localization is typically done in 2 stages. In

5



1.4. Scope of the Thesis

the first stage, a manual drive is performed to learn the environment. After which,

the model obtained as the result from the first stage can be applied to perform

localization.

1.4 Scope of the Thesis

There are many challenges involved in the navigation of autonomous vehicle. This

thesis addresses one of these challenges, namely that of mapping in urban en-

vironment. Mapping of the environment is a fundamental requirement that can

significantly affects the ability of an autonomous vehicle to navigate. The focus

is on urban environments where the environment is connected with dense network

of roads, towns, parks and industrial estates. Thus, the thesis concentrates on

building a general framework that allows mapping under different kinds of urban

environments.

The first objective of the thesis is to ensure the applicability of the proposed

mapping framework to many vehicles. Thus, the thesis focuses on minimalist ap-

proach through the use of single planar LIDAR to perform mapping. The single

LIDAR, mounted in a tilted-down position at the frontal part of vehicle is used to

collect observations of the environment. Then, different types of sensors are syn-

thesized based on this configuration to show the ability of using a single LIDAR to

augment obtained observations.

Next, in order to allow mapping to be done efficiently, a specific scenario of

matching between synthetic LIDAR is considered that quickly search for best so-

lution between two observations. The normal based synthetic LIDAR shows how

two observation at different places can be matched that finally contribute to a con-

sistent map. To show how matching speed can be improved using General Purpose

Graphics Processing Unit (GPGPU), NVIDIA’s CUDA programming language is

used as an example.

The mapping framework is designed to be updated in short-medium term. A

well developed urban environment usually contains features that are remained sta-

ble enough that a long term mapping update is not required. We assume that

changes in the environment are temporary and any changes will be restored thanks
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to a well-maintained urban environment.

The resultant map can be used for many purposes. To show that the resultant

map can be used over an extended period of time, the same map is used to perform

localization repeatedly over a stretch of road in NUS campus environment. In the

environment, there can be uncontrollable amount of changes occur over this period

of time, for example dynamic movement of traffic agents (vehicles and pedestrians)

and different weather conditions (day and night, sunny and rainy days).

To discuss on how further mapping can be done on top of an existing map,

the same NUS Engineering environment is used as an example to show how topo-

metric graph can be extracted. While activity mapping can be applied to any

moving objects within a map, only movement of pedestrian is considered to show

how mapping of the pedestrian activity can be done.

1.5 Contributions

To allow mapping in urban environment using single LIDAR, the thesis proposes

a novel notion of synthetic LIDAR as a virtual sensor using observations obtained

from a 2D LIDAR. This is a generalized version from our earlier work that proposed

curb and intersection virtual sensors. The synthetic LIDAR is constructed in real

time with interest points extracted from a 3D rolling window. This is with the

basic assumption that many surfaces in the urban environment are rectilinear in

the vertical direction.

To improve the correctness of a scan matching, an extended correlative scan

matcher is proposed, where the problem of falling into false global maxima can

be avoided. Implementation of scan matching is done using different computing

architecture, where CPU and GPGPU approaches are benchmark against each

other to show the improved runtime by using GPGPU to perform computation.

The mapping framework is built to be robust by using Monte Carlo based loop

closure detection to perform place recognition.

With the idea of synthetic LIDAR, we develop algorithms that allows accurate

localization in a 3D urban environment. The thesis include experiments to demon-

strates its accuracy. For the topo-metric graph mapping, the method described

7
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in the thesis allows road network to be extracted by reusing the generated map.

This is with the advantage that accurate metric information detected locally can

be obtained.

The activity mapping has been developed with a mobile platform, allowing

activity to be recorded while vehicles navigate on a road network. By learning

agents’ spatial activity model, semantic mapping is performed to extract useful

information based on this activity map.

1.6 Thesis Outline

In this thesis, a general framework for mapping in the urban environment based

on single LIDAR is developed for autonomous vehicle. The generated map is then

applied in different ways that is important to allow navigation of autonomous

vehicles in urban environment.

After this introductory chapter, Chapter 2 reviews previous work done on map-

ping, localization, road detection and semantic mapping. Chapter 3 and Chapter 4

presents the construction of synthetic LIDAR and the mapping algorithm that in-

cludes mapping results on several places in Singapore respectively. The application

of the generated map is presented in the next chapter, where localization and road

mapping is discussed. This is followed by the presentation of activity mapping.

The final chapter presents the conclusions and suggestions for the future work.
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Chapter 2

Literature Review

2.1 Mapping

To allow vehicles to travel in an urban environment, availability of a precise map

representing its surrounding is one of the key components. The DARPA Challenge

uses a predefined GPS points as the main guidance to the unmanned vehicles. The

GPS point represents the knowledge of the robot’s current position and it is used

to guide the robot where to go next. The use of the GPS requires guarantee of

service level by an external agent: availability of satellite service. Although one

could argue that it is sufficient to navigate by using only an external reference

system, there are many cases where GPS signals are not reliable or even become

totally unavailable. For example indoor environment and underground tunnel.

In contrast, by leveraging on the fact that rich environmental features can be

collected by the on-board sensors, it is possible to build a library of knowledge

about this particular environment. Often refer to as Simultaneous Localization

and Mapping (SLAM), there are 2 different method to perform SLAM in the liter-

ature: filtering and smoothing. In filtering, the problem is formulated as an state

estimation problem, where it seeks to estimate the robot’s current position and

the map. The estimation is obtained by first predicting the states and is refined

by new observations as they become available. Extended Kalman Filter (EKF),

Extended Information Filter (EIF), and Particle Filter (PFs) are among the most

popular techniques that falls into this category [24–27].

Murphy [28] introduced Rao-Blackwellized particle filters (RBPF) as a solution
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2.1. Mapping

to the SLAM problem. In RBPF, the robot’s trajectory and the associated map

is represented by each particle. The key idea of the RBPF is to estimate the joint

posterior p(x1:t, m | z1:t, u1:t−1) about the map m and the robot’s trajectory x1:t =

x1, . . . , xt. The joint posterior is estimated given its measurements z1:t = z1, . . . , zt

and input control of the robot, typically an odometry u1:t−1 = u1, . . . , ut−1. The

factorization of the above posterior can be done in SLAM for RBPF with the

following equation:

p(x1:t, m | z1:t, u1:t−1) = p(m|x1:t, z1:t) · p(x1:t | z1:t, u1:t−1)

The equation allows us to first calculate the trajectory of the robot, then com-

pute the map given that trajectory. This technique is often referred to as Rao-

Blackwellized, as this approach provides an efficient computation since the map is

strongly dependent on the calculated trajectories.

To calculate the posterior p(x1:t | z1:t, u1:t−1), a particle filter is used, in which

the initial proposal distribution is seeded by using the odometry, to be refined later

by an external observation. As each particle is incorporated with the most recent

observation that is part of the map, a particle that is representative of the robot’s

trajectory will build a map that is associated with the observation. In other words,

every one of the particles carries an unique map since every particle represents a

possible trajectory of the robot.

One of the more basic particle filters is Sampling Importance Resampling (SIR).

In RBPF, the SIR is used to update the posterior distribution of the robot’s trajec-

tory incrementally as new measurements become available while the robot is moving

in the environment. The RBPF SIR can be summarized in the following [29]:

1. Sampling: Using a probabilistic odometry model, proposal distribution can

be generated using a control input u
(i)
t with the associated particle set at

x
(i)
t−1. Sampling is then done using the generated proposal distribution before

finally obtain the next generation of particles x
(i)
t .

2. Importance Weighting: According to the importance sampling principle, each
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particle will be assigned with an importance weight ω
(i)
t where

w
(i)
t =

p(x
(i)
1:t | z1:t, u1:t−1)

π(x
(i)
1:t | z1:t, u1:t−1)

3. Resampling: Resampling is done by drawing a finite set of particles with

replacement according to the importance weight. It is necessary to apply

a target distribution that is different from the proposal distribution and to

keep a finite number of particles filters to be used to approximate a continuous

distribution.

4. Map Estimation: Based on the trajectory x
(i)
1:t of each particle, the corre-

sponding map is estimated using the history of observations z1:t.

An example of smoothing based SLAM is pose graph mapping. Initially pro-

posed by Lu et al. in [34], the seminar work shows that solving the error minimiza-

tion problem can be done efficiently. By exploiting the inherent sparsity of a map,

the optimization-based approach proved to be highly effective in solving large scale

mapping problems. To perform pose graph mapping, one could use TreeMap [38],

TORO [39], iSAM [40], iSAM2 [41] or g2O [42].

The construction of a pose graph is not complete without loop closures. In [35],

a simple loop closure detection is used by performing pair wise matching for possible

loop closures by considering all observations that are within some bounded radius

from the current node. A more elaborate loop closure detection is proposed by

Granstorm et al. [36]. In the work, a strong classifier is trained using AdaBoost.

Then, a positive match is used after performing scan registration. Newman et

al. in [37] described an automated loop closure detection using a probabilistic

measure with sequences of images. After an image is recognized to be a loop

closure candidate, the corresponding pair of laser scans is retrieved to obtain the

relative transformations.

However, the mapping backends in its native form are not able to reject a false

loop closure constraint. This is currently an active research area where methods are

being investigated in order to build a robustified pose graph that are able to reject

false close loop while recovering true close loops directly on a SLAM backends. The

developed extensions to current graph SLAM backends are Switchable Constraints
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[43], Max-Mixture Model [44] and Realizing, Reversing, Recovering (RRR) [45].

Sunderhauf et al. performs in depth analysis comparing these proposed methods

that can perform a robustified pose graph mapping [46].

To support pose graph construction, a scan matching algorithm is usually em-

ployed. One of the most pervasive algorithm is Iterative Closest Point (ICP) [30].

In ICP, a reference scan is matched with a query scan by aligning them according

to a distance metric. Steder et al. [31] performed place recognition by using 3D

range data. To allow efficient matching, invariant features are extracted from the

3D range data and stored in database. Another approach is by Normal Distribution

Transform (NDT) [32]and Spin Images [33] where matching is done by comparing

feature histogram.

2.2 Localization

Mobile robot localization is the problem of determining the pose of a robot given

a map of the environment [47]. As one of the fundamental requirements to re-

alize vehicle autonomy, there are extensive research for indoor robots localization

on a planar surface. However, there are many challenges in developing an accu-

rate, robust and low-cost approach for vehicle localization in an outdoor urban

environment.

The fusion of Global Positioning System (GPS) and Inertial Navigation System

(INS) to estimate a vehicle’s position has become the most popular localization

solution in recent years [48–50]. This solution works well in open areas; however, it

is not suitable for dense urban environment where GPS signals suffer from satellite

blockage and multipath propagation problem [51]. To alleviate this problem, road-

matching algorithms are proposed, where a prior road map is used for determining

motion constraint to update the localization estimation [52,53]. While this solution

achieves a good global localization, it is not designed for precise estimation relative

to the local environment.

Map-aided algorithms are proposed for highly precision localization using local

features. In [54], single side curb features are extracted by a vertical LIDAR to build

a boundary map in the form of line segments to improve vehicle localization. In [55],
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lane markers are used as local features from the reflectivity values of LIDAR scans,

where a digital lane marker map is used as prior. The performance of the algorithm

is similar to those in [54]. While these algorithms reduce lateral localization error

considerably, they suffer from longitudinal accuracy.

In another work by Hentschel et al. [56], the same approach is used. However,

instead of using a self learned map, the prior knowledge is obtained from Open-

StreetMap. This effectively eliminates the learning stage since the map is readily

available. To perform matching, virtual 2D ranging extracted from 3D point clouds

generated from a rotating LIDAR is used [57]. Then, particle filters is used to pro-

vide position estimation by coupling together the data from GPS and LIDAR.

Propagation of particles is done by using GPS points as the control input and the

particles are weighted according to the evidence obtained from the LIDAR map

matching before a final estimate of its position is obtained.

Levinson et al. in [58,59] utilize road surface reflectivity for precise localization.

A particle filter is used to localize the vehicle in real time with a 3D Velodyne

LIDAR. The algorithm first analyses the laser range data by extracting points from

road surface. Then, the reflectivity measurements of these points are correlated to

a map containing ground reflectivity to update particle weights. One assumption

underlying this algorithm is that road surfaces remain relatively constant, which

may undermine the performance in some cases. Besides, the need for a costly 3D

LIDAR sensor limits its usage.

Baldwin et al. in [60] utilizes accumulated laser sweeps as local features. The

algorithm first generates a swath of laser data by accumulating 2D laser scans

from a tilted-down LIDAR. Then the swathe is matched to a prior 3D survey

by minimizing an objective function. This algorithm demonstrates its accuracy

and robustness in GPS-denied areas. Although the algorithm proposed does not

require an accurate 3D model of the environment, we argue that an accurate and

consistent prior is always desired when the localization is integrated with other

navigation functions. Similarly in [61, 62], a 3D point cloud of the environment is

obtained by servoing a 2D LIDAR, and a reduced 2D feature is used to perform

localization. This algorithm has been shown to work well in an indoor environment

with a well structured ceiling features. In [63], a microwave radar sensor is used
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to perform SLAM. While the radar has the ability to “see through” obstacles,

association of radar targets is a complex task and SLAM processing is done offline.

2.3 Road Detection

Road detection is one of the fundamental requirements for autonomous vehicle

driving on urban roads. Road surfaces are the traversable areas that give strong

prior where vehicles can safely navigate through. Road detection can be used

directly for vehicle control and path planning. In addition, it can also provide con-

textual information to help other perception processes. Current researches related

to road detection can be categorized as lane marker detection, and road boundary

detection.

Lane marker detection has been studied in the context of Autonomous Driver

Assistance Systems (ADAS). Researchers aim to detect and locate lane markers on

the road, and utilize the results for lane departure warning, adaptive cruise control

and other purposes. Vision has been the most popular sensory modality for lane

marker detection. Aly in [64] presents a real-time algorithm to detect lane markers

in urban streets. In the work, an Inverse Perspective Mapping (IPM) process is first

applied to generate a bird’s eye view of the road surface from the original image,

then the transformed image is filtered and thresholded to extract pixels belonging

to vertical lanes. Hough Transform and Random Sample Consensus (RANSAC)

spline fitting are conducted to get a mathematically compact representation for

the detected lanes. Similar works can be found in [65–67]. While vision-based lane

detection has shown to be able to achieve good performance, it can be vulnerable to

challenging light conditions like shadows and highlights, due to the passive nature

of perception vision. On the other hand, there are other studies which use active

sensors, particularly by using the intensity values obtained from LIDARs to perform

lane marker detection. Related work can be found in [68,69].

While lane marker detection is only applicable for structured road where mark-

ers exist, road boundary detection can be applied for both structured and unstruc-

tured road. LIDARs have played a dominant role in this area. The work from

Thrun et al. uses LIDARs to perform Probabilistic Terrain Analysis (PTA) in
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desert driving [70]. The driving terrain is represented by a 2D grid map, and the

grids are then classified into different terrain types according to the height dif-

ference in their local neighborhood. Zhang proposes a road boundary detection

algorithm for urban roads in [71]. A Gaussian differential filter is applied to the

range values of each laser scan, and road boundary points are extracted as local

maximal of the filter response. Other similar researches can be found in [72–74].

One common feature of the above algorithms is that they process individual 2D

scans for road boundary detection.

2.4 Semantic Mapping

Semantic mapping has become a popular research topic in recent years. By aug-

menting the traditional metric/topological maps with higher-level semantic knowl-

edge, researchers aim to help robots to really “understand” their environments.

A semantic map is commonly used to facilitate human-robot interaction. More

recent works started to focus on how it can be used to further enhance a robot’s

capability to perform advanced reasoning and planning. In the past few years, var-

ious methods have been proposed for semantic mapping. Depending on the type of

semantic information, these methods can be roughly group into three categories:

appearance-based approach, object-based approach, and activity-based approach.

The appearance-based approach is the most popular approach in the research

of semantic learning, where semantic knowledge is acquired by interpreting appear-

ance features from sensory data. In [75], Mozos et al. use geometric features from

a planar laser range finder for indoor place classification. This work is extended to

incorporate vision features for better and finer classification [76]. In [77], Posner et

al. use fused vision and 3D laser data for semantic labeling of urban scenes. Visual

features and 2D/3D geometric features are extracted and fed into a hierarchical

classifier for scene recognition. Some other appearance-based semantic mapping

approaches can be found in [78, 79].

Unlike the appearance-based approach where semantics is directly learned from

sensor readings, the object-based approaches infer the semantic meaning of an

environment by checking the occurrence of key objects. In [80], Galindo et al.
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infer the semantic type of a room by detecting the typical objects in it. In [81],

Vasudevan et al. propose to perform place classification using not only object count

information, but also the position relationship between objects.

The activity-based approach is to learn the semantic knowledge of an environ-

ment based on agent activities in it. Compared to the extensive literature for the

appearance-based approach, relatively few are found in this category. In [82], Wolf

et al. build a semantic 2D grid map according to the occupancy of the space by

dynamic entities. Activity-related features are used to classify a place into two

semantic types, “street” or “sidewalk”. In [83], Xie et al. present a method to

localize functional objects that affect people behavior in surveillance videos.
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Chapter 3

Synthetic LIDAR

An accurate estimation of a vehicle’s position is a fundamental requirement for

autonomous driving. In this thesis, a map-based localization is developed for au-

tonomous navigation. We propose the use of single LIDAR to perform mapping.

However, measurements obtained from a single LIDAR are sparse as it only mea-

sures one 2D layer at a time. The following chapter describes how a single LIDAR

can be used to augment the observed data in such a way that it is expressive enough

for map building in order to perform autonomous navigation.

3.1 Road Network

An urban environment typically contains expansive road networks that are unique

to different cities around the world. Streets in the city typically contains pedestrian

sidewalk and road surface separated by curbs. The curbs provide rich information

of the road network both topologically and metrically [84]. As one of the most

dominant features in an urban environment, the curb provides excellent lateral

information of the vehicle while traveling on a straight road, while a cornering

road can provide vehicle’s position longitudinally.

The intersections on the other hand, where there are no curbs exist, carries

rich longitude information. This is the main motivation on using only curbs and

intersections as the only observable features. This section shows a single LIDAR

can be used to detect the curbs and intersections.
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3.1. Road Network

Figure 3.1: Road model for curb detection

3.1.1 Curb Points Detection

A typically urban street contains road surface and curb plane, as depicted in

Fig. 3.1. The lines, AB, BC, CD, DE, EF represents the observed measure-

ments from a single plane LIDAR located at point O. The extraction of curb

points (BC and ED) started with a second-order differential filter, which is given

by:

rf (θ) =
i=−3∑

i=−5

r(θ + i× µ) +
i=5∑

i=3

r(θ + i× µ)−

i=0∑

i=−2

r(θ + i× µ)−
i=2∑

i=0

r(θ + i× µ) (3.1)

where µ is the angular resolution of the LIDAR and θ ∈ [−π/2 + 5µ, π/2 − 5µ].

To obtain the edges where transitions occur from one surface to another, local

minima/maxima points are used to extract segments of scan. Fig. 3.2 shows one

typical scan with filter’s response.

Next, to extract scan segments that are belong to curb points, the edge points

C and D are first selected by locating center of 2 sequential edges that are closest

to the sensor origin, O. The curb lines, BC and ED can then be determined.

This simple model allows measurement of the curb to be extracted. However it

does not always correspond well in practice. There could be a moving vehicle or a

pedestrian passing by resulting in a false detection. Hence, a series of verification

processes is performed by adding constraints to ensure that only real curb points
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Figure 3.2: A typical filter response from a single reading of LIDAR

Figure 3.3: Curb feature classification

are extracted.

To ensure moving objects are not included as part of the observation, the length

segment CD must be larger than an expected road width. This filter is strengthened

by ensuring that segments BC or ED should be below a height threshold and the

number of laser beams on BC or ED should be more than a chosen height. Only

when all these criteria is satisfied, the segment is thought to be valid and included

as the detected curb point. Thus most noise like vehicles and pedestrians is filtered.

One typical classification result is shown in Fig. 3.3

3.1.2 Constructions of Virtual Sensors

With the curb measurements extracted, construction of virtual sensors are per-

formed, namely the curb sensor and intersection sensor. The construction of curb

sensor is obtained directly from the result of curb measurements. When a new

LIDAR obtains a new measurement, the curb segments, BC and DE are projected

onto a virtual flat ground, forming the initial part of the virtual laser beam. The
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Figure 3.4: Construction of virtual LIDAR

(a) Curb Sensor (b) Intersection Sensor

Figure 3.5: Virtual sensors

curb points are then stored in memory. When new measurements from the next seg-

ment become available, there are combined with the previously stored curb points.

Once there are enough curb points collected from different scans at different time,

a virtual beam is constructed centered around O′ (Fig. 3.4). One could imagine

this as an ordinary laser scan but it only outputs accumulated curb points with

adaptive angular resolution. Fig. 3.5(a) depicts a single instance of curb sensor

constructions.

The intersection sensor works compliment to the curb sensor. This sensor exists

when there is no curb points detected consecutively. When an intersection point is

found, it is represented by having a beam tangential to current orientation of the

vehicle. This is further elaborated by having the beam measuring at the maximum

range of a virtual sensor. The intersection sensor works independently detecting

left and right intersections. An instance of the intersection sensor detecting right

intersection is shown in Fig. 3.5(b).
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3.2 Synthetic LIDAR

In the previous section, curb and intersection features extraction using single LI-

DAR is presented. Although this is sufficient to perform navigation as we will

show in Chapter 5, the application is limited to environments that are similarly

structured that contains curbs and intersections.

To allow safe navigation, adaptability of a virtual sensor responding to different

types of environment in urban scenario is essential. Therefore a much richer set

of features should be used. While a tilted down LIDAR allows detections of the

road boundary, this configuration when set in motion is making a cylindrical sweep

throughout the whole region that falls within the detection range of a LIDAR. In

other words, a titled down LIDAR in motion able to cover a large surface area of

the environment. This allows a full reconstruction of an environment where a much

richer set of features can be used.

To enable feature recognition of an environment, an accurate model of the world

is required. Different from conventional methods which uses nodding LIDAR and

Velodyne, we show that how a fixed, tilted down single planar LIDAR can be used

to enable the reconstruction of the environment accurately. The main motivation of

using only single planar LIDAR is with the emphasis of minimalist design principle.

Not only a rigidly mounted single beam LIDAR costs less comparing with other

laser based sensors, this also allow one to design algorithms that is effective and

efficient since only minimal sensory data need to be processed.

We proceed to show how a single fixed LIDAR is used to perform feature ex-

traction in real time specific to this configuration.

3.2.1 3D rolling window

To reconstruct the environment, a rolling window sampling is used by maintaining

a variable amount of scan lines. The scan lines are collected and stored as point

clouds, where a point in the environment is defined by its x, y, z coordinates. By

using a rolling window, the point clouds form a collection of observations that

combines temporal features with high probability of reflecting more recent samples

by the ranging sensor. In a way, a 3D rolling window is used to accumulate different
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Figure 3.6: A 3D rolling window

scans recorded in a short distance. The size of the window is flexible and the rolling

window forms a local map of the environment, i.e., it rolls together with the vehicle,

where new incoming scans actively added into the window, and the old samples

get discarded.

A 3D rolling window is defined as the following: Given the window size w, the

points p in n-th scan, Pn is accumulated according to

Pn =
⋃

k=n−ω

{pk, . . . , pn} n > ω (3.2)

As shown in Fig. 3.6, ω is used to control the number of accumulated scans such

that the size of the window is fixed. Also, a new scan is only inserted when a

sufficient distance, denoted by β, is achieved. Consequently, a small β will have

denser points but the overall window size will become shorter. Conversely, a large

β can reconstruct a larger area but with sparser points.

The rolling window works in the odometry frame of the system, where each

scan from a physical LIDAR is projected based on the odometry information de-

rived from IMU and wheel encoder as discussed in A.6. Although this means that

some form of odometry is required, (usually provided by IMU and wheel encoders,

see Appendix A.6) these sensors are becoming standard parts for modern vehi-

cles equipped with anti-lock braking system (ABS) and electronic stability control

(ESC). Thus, odometry information can be obtained without incurring additional

cost.

A LIDAR usually output a range data consist of K total ranges. Each range

data rk, k ∈ {0 . . . K} is sampled at a fixed angle increment with a fixed amount
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of time ∆t. To perform LIDAR projections, a constant motion is assumed where

transformation between each point in the LIDAR is interpolated linearly and spher-

ically. Then, each point of the LIDAR can be transformed into the odometry frame

given the transformations of the vehicle base, OBTn.

3.2.2 Feature Extraction

In this section, the reconstructed environment is further analyzed to provide salient

features that can be used to uniquely define an environment. Two kinds of features

are discussed: normal surface and intensity. The difference between these two

features is a prominent one, the first feature is purely geometrical based, while the

other is texture based.

Normal surface

To extract features that are perpendicular to the ground, estimation of surface nor-

mal is used. While many method exists [85], we used normal estimation proposed

by [86]. It is based on a first order 3D plane fitting, where the normal of each point

in the space is approximated by performing least-square plane fitting to a point’s

local neighborhood PK [87]. The plane is represented by a point x, its normal

vector ~n and distance di from a point pi ∈ PK , where di is defined as

di = (pi − x) · ~n (3.3)

By taking x = p = 1
k

∑k

i=1 pi as the centroid of pk, the values of ~n can be

computed in a least-square sense such that di = 0. The solution for ~n is given

by computing the eigenvalue and eigenvector of the following covariance matrix

C ∈ R
3x3 of PK [88]:

C =
1

k

k∑

i=1

·(pi − p) · (pi − p)T , C · ~vj = λj · ~vj, j ∈ {0, 1, 2} (3.4)

Where k is the number of points in the local neighborhood, p as the centroid of

the neighbors, λj is the j
th eigenvalue with ~vj as the j

th eigenvector.

The principal components of PK corresponds to the eigenvectors ~vj. Hence, the

23



3.2. Synthetic LIDAR

approximation of ~n can be found from the smallest eigenvalue λ0. Once the normal

vector ~n is found, the vertical points can then be obtained by simply taking the

threshold of ~n along the z axis.

To find the local neighborhood points efficiently, KD-tree [89] is built from all

the points obtained from the rolling window, then a fixed radius search at each

point can be performed efficiently. Although the surface normal can be calculated

as a whole, performing normal calculation at each point in the rolling window can

be very expensive. To further reduce the computation complexity, two successive

rolling windows are maintained, where

P φ
n+1 = P φ

n

⋃
Φ(Pn+1 \ Pn) (3.5)

Φ can be any points classification function, P φ consists of the processed points and

P contains the raw points. This way, surface normal calculation is only required

for the much smaller rolling window Pn+1 \ Pn. In other words, this ensures that

classification will only perform on the newly accumulated point cloud and the

processed points from the previous instance can be reused.

Intensity

A modern LIDAR also measures the intensity return from a laser beam. Fig. 3.7

shows a reconstructed environment using false color based on the intensity return.

This is especially useful in extracting meaningful textual information from road

surface.

A näıve approach is to simply perform a global threshold such that any objects

with high reflectivity can be used as the feature. The other more comprehen-

sive feature extraction is to use techniques developed from vision community. For

example adaptive threshold, edge detection, etc.

To take advantage of common image processing pipeline, each scan point ob-

tained by the LIDAR can be aligned in a more conventional pixel method, with

some loss of geometry information. In this case, an image can be composed by

generating a 2D image with its horizontal axis as angular increment and vertical

axis as accumulated distance. In other words, each point collected in the rolling

windows is transformed to an image frame by simply copying the point buffer to
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Figure 3.7: Environmental reconstruction through rolling window. The false color
reflects the return of intensity value by the LIDAR

an image buffer. This process involves only memory transfer, hence the resultant

frame can be generated immediately.

The frame is then passed through an edge detection operator for feature ex-

traction. The Canny edge detector was found to be effective in detecting distinct

road marking. The filtered image can then be used as a binary mask to perform

point classification in a rolling window.

3.2.3 Synthetic LIDAR construction

The result from the classified points consists of collection of interest points in 3D.

For the construction of synthetic LIDAR, the interest points in 3D are projected

into a virtual horizontal plane parallel to X−Y plane. It can be seen that this syn-

thetic LIDAR has a very special feature: the ability to “see through” the obstacles.

This is possible since feature extractions are performed in 3D point clouds.

This synthetic LIDAR is comprehensive in the sense that it is as if having

multiple short ranged LIDARs arranged at different height at a forward facing

configuration, with the height adapted to wherever there exists a vertical surface
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LIDAR accumulation with 

3D rolling window

Surface Normal Calculations Point Classification Interest Points

Synthetic LIDAR Construction

Figure 3.8: Construction of synthetic LIDAR using surface normal

in the environment. The construction of synthetic LIDAR is completed by inserting

the virtual sensor’s origin at the base of the vehicle and perform transformation of

all the interest points from odometry to this reference frame.

In many applications where a standard LIDAR is desired (equally spaced angle

increment), the synthetic LIDAR can be further reconstructed to fulfill this con-

straint. This would involve performing ray tracing at each fixed angle incrementally

and obtain minimum range value from the possible end points. The overall 3D per-

ception is summarized in Fig. 3.8. The 3D perception is done with the Point Cloud

Library [90].

Fig. 3.9 shows an example of a constructed synthetic LIDAR by extracting

different features by using a 3D rolling window. Fig. 3.9(a) shows the result using

method described in 3.2.2. In the figure, texture information of the road surface

can be observed, where zebra crossing is featured prominently in the top part of

the image. The second figure, Fig. 3.9(b) shows the synthetic LIDAR constructed

using surface normal. It can be seen that the road boundary is clearly outlined with

the building facade located at the right side of the road. The vegetation features,
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(a) Intensity Based Synthetic LI-
DAR

(b) Normal Based Synthetic LI-
DAR

Figure 3.9: 2 different synthetic LIDARs

tree trunks and branches are recognized as part of the feature from normal surface

extraction.

3.2.4 Probabilistic Characteristic

In order to understand how the accumulated points can be affected by a moving

vehicle, probabilistic characteristics of the accumulated 3D data is derived. A

general analysis is given for the accumulation process followed by an example on

how a point is distributed along z-axis.

Fig. 3.10 shows different coordinate frames that is used to determine the proba-

bilistic characteristic of the accumulated points. During the accumulation process,

each point originated from LIDAR frame is transformed into Base frame and pro-

jected into odometry frame according to rolling window. When accumulation is

done, the points in a rolling window are then transformed into V Base frame, for

the eventual reconstruction. This can be expressed as:

Bvpn = Bv
B T

n
B
LT n

Lpn , (3.6)

where Bvpn = (xn, yn, zn, 1)
T is the augmented points pn in V Baset coordinate

frame, and Bv
B T

n
denotes the 4 × 4 homogeneous transformation matrix relating

the frame Baset to frame V Baset, Transformation matrix B
LT i gives the relative

frame LIDARn relative to frame Basen. Hence, distribution of Bvpn is affected by

Bv
B T

i
and B

LT i matrices. Assuming that the LIDAR is rigidly attached to the Base
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x

z

Figure 3.10: Coordinate frames in a 3D rolling window

frame, then the distribution of Bvpn can be described by Bv
B T

i
, which estimates the

vehicle pose.

Let Bv
B X

n
represent the position of Base with respect to Basev, and let Bv

B X̄n as

the estimated value for Bv
B Xn from vehicle odometry system, the probability distri-

bution function of Bv
B Xn can be approximated by a Gaussian Distribution with mean

value as Bv
B X̄, and the covariance matrix Bv

B Σn:
Bv
B Xn = (x, y, z, α, β, γ)T , Bv

B Xn ∼
N(Bv

B X̄n,
Bv
B Σn) .

Vehicle orientation is represented in Euler angles as discussed in Section A.4.

BvΣn reflects the uncertainty of the dead-reckoning system, increasing with vehicle

driving distance and turning angle. When the LIDAR mounting is fixed, Bvpn

is only a function determined by Bv
B Xn, which is Bvpn = f(x, y, z, φ, θ, ψ). By

linearizing the function f , distribution of Bvpn can be represented as a Gaussian

Distribution:

Bvpn ∼ N(Bv p̄n,Σp) , (3.7)

Where

Bv p̄n = f(x̄, ȳ, z̄, φ̄, θ̄, ψ̄)

Σp = F Bv
B Σn F

T (3.8)

F is the Jacobian Matrix of function f with respect to Bv
B Xn. The full distribution

for single point Bvpn can be obtained with the above equation. Let’s focus our

derivation for point distribution along z axis as an example. Since the tilted-down

LIDAR is affixed at frontier of the vehicle and its mounting position is B
LXn =
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3.2. Synthetic LIDAR

(xl, yl, zl, 0, θl, 0), which determines the transformation matrix Bv
B T . Then we have:

zn = fz(θ, ψ, xl, yl, zl, θl, r, k) (3.9)

Where

fz =− sin θ(cos θl(r cos k) + xl) + cos θ sinψ((r sin k)

+ yl) + cos θ cosψ(− sin θl(r cos k) + zl) + z .

r denotes the range value in laser scan, and k is the laser beam angle. To cal-

culate the variance of z, Bv
B Σn can be simplified into a diagonal matrix similar

to [70], keeping in mind that these six state variables can be correlated Bv
B Σn =

diag(σ2
x, σ

2
y , σ

2
z , σ

2
φ, σ

2
θ , σ

2
ψ) .

Considering the fact that θ and ψ are usually very small, Fz (Jacobian Matrix

of f related to z) can be calculated and approximated as:

Fz = (0, 0, 1, 0,
∂fz
∂θ

,
∂fz
∂γ

) (3.10)

≈ (0, 0, 1, 0, −r cos k cos θl − xl, r sin k + yl) .

The distribution of the points in the z direction will be:

zi ∼N(z̄i, σ
2
zi
) , (3.11)

z̄i = fz(θ̄, ψ̄, xl, yl, zl, θl, r, k),

σ2
zi
= σ2

z + (r cos k cos θl + xl)
2σ2

θ

+ (r sin k + yl)
2σ2

ψ

Given the fact that the width of the rolling window is small, and the road

surface is generally horizontal, σ2
z is usually very small and negligible. It can be

seen that point variance in z is mainly determined by variances of vehicle pitch and

roll angles, and points from side beams of LIDAR are more sensitive to roll angles

rather than those from the central ones.

In our system, roll and pitch values are inferred directly from IMU. Their vari-

ances are approximated as: σψ = a1
dψ

dt
+ a2ψ, σθ = b1

dθ
dt

+ b2θ where a1, a2, b1,
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b2 are fixed parameters.

3.3 Summary

In this chapter, synthetic LIDAR is introduced. We discussed how information of

road network can be extracted using single tilted down LIDAR. The curb points in

particular, can be uniquely identified and thus detection can be done. We showed

how a collection of curb points can be used to form a virtual sensor. The curb

sensor is constructed by projecting a small sequence of curb points onto a virtual

plane using vehicle’s odometry. The intersection points, working in tandem with

the lack of curb points, form the second virtual sensors that describes the road

network.

Synthetic LIDAR generalizes the curb and intersection virtual sensors, where

features in the environment are determined by a set of descriptors. Using rolling

windows to reconstruct the environment in point clouds, interpretation of the sur-

rounding is done in 3D to produce a unique fingerprint for each different places.

Examples are included on how synthetic LIDAR can be constructed using normal

and intensity features. Finally, we conclude the chapter by characterizing the prob-

abilistic nature of a rolling window to understand the possible source of uncertainty

from the collected observations.

30



Chapter 4

Mapping with Synthetic LIDAR

The mapping process starts with the acquisition of raw sensor data produced by

2D LIDAR, encoders and IMU. The raw sensor data is then processed through

a real time 2D synthetic LIDAR, as discussed in chapter 3. In this chapter, we

discuss how these features are used to build a consistent map of the environment.

The overall mapping process is depicted in Fig. 4.1, where it can be separated

into two processes, front-end and back-end. The front-end usually has different

modules depending on the type of sensor used, the back-end usually consist of

least-square optimization depending on the information matrix given by the front-

end.

In the following discussion, we show how scan matching works together with

loop closure detection to generate a graph which form part of the front end. The

graph is then used by the back-end to generate a globally consistent map, while

optionally performing loop constraint rejection.

4.1 Scan Matching with Synthetic LIDAR

The correlative scan matcher (CSM) [91] is a family of cross-correlation scan match-

ing algorithms. It employs probabilistic framework to search for a rigid transfor-

mation that maximizes the probability of having the observed data. While many

matching algorithm exist, as discussed in Section 2.1, correlative scan matching

is robust to large initialization error while taking advantage of fast computation

using lookup-table rasterization.
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Raw Sensor Data 
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Figure 4.1: The mapping framework

To understand how a correlative scan matcher works, let’s start by having a

robot moving from one point xi to another point xi+1. Then, the robot posi-

tion, given some motion input u and observation z that is dependent on envi-

ronment model m, the posterior distribution of the robot’s position is given by

p(xi|xi−1, u,m, z). Applying Bayes’ rule, the posterior can be written as

p(xi|xi−1, u,m, z) ∝ p(z|xi,m)p(xi|xi−1, u) (4.1)

While the second term p(xi|xi−1, u) is usually known as multivariate Gaussian

distribution, the observation model is usually complex in nature and can contain

many local extrema. By assuming each point in the synthetic LIDAR is indepen-

dent, we have:

p(z|xi,m) =
∏

j

(zj|xi,m) (4.2)

To approximate the probability distribution for the whole synthetic LIDAR

points, ray casting calculation, occlusion and visibility is neglected and thereby

allowing us to approximate zj in terms of Euclidean distance from a surface m.

Lookup-table Rasterization

The rasterization process starts with a map m. Then for each point observed by

the LIDAR, the conditional probability that a feature is detected can be calculated.
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4.1. Scan Matching with Synthetic LIDAR

The computation of p(z|xi,m) is accelerated by using a lookup table, where a log

probability is computed for each of the observed points. Since the lookup table

must be view point independent, it makes sense that the shape of the distribution

has a radially-symmetric function. More specifically, in each (x, y) position in the

world, we compute the probability of the nearest distance selected from LIDAR

points under a zero-centered Gaussian distribution with a variance σ2
hit.

Optimization through Multi Resolution

Correlation method at its simplest implementation involve brute-force search over

3D x, y, θ volume. This can be very costly. At each evaluation on p(z|xi,m), a

single point is expected to perform the following procedures:

• Projection of points into a selected 3D slice

• Calculating matching score using the lookup table

• Memorize the value

A multi resolution can reduce the look up table process significantly, hence

significant acceleration can be achieved. The correlation process then becomes:

• Evaluate p(z|xi,m) over desired search window at low resolution

• Denote the 3D slice that has the highest probability

• Evaluate p(z|xi,m) inside this slice at higher resolution

The steps above can be cascaded at different resolutions to achieve desired

search speed while avoiding falling into local maxima. In practice, 3 different

resolutions are used that achieve a good balance between speed and the search of

the global maxima.

Multiple Lookup-table Rasterization

Instead of using only point information in the lookup-table m, other features as-

sociated with the point can be included in multiple lookup-table mn, where n

corresponds to the number of different features. In a single lookup-table rasteri-

zation, each point mi in a map contains a value which describes the conditional
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probability that a nearby point pi can be observed. In a multiple lookup-table

rasterization, other features of the point pni
are included. This can either be the

point’s curvature, normal, depth/height, or color value. To encode an additional

lookup-table for a different feature, the nearby point pi’s feature value is used.

Loosely speaking, the feature value from a nearest point is written to an additional

lookup-table, taking the value at mni
. The observation model is then becomes:

p(z|xi,m,mn) =
∏

j

p(zj|xi,m,mn) (4.3)

The additional term mn represents the new features that are encoded in the

additional look-up table. To obtain the value of P (zj|xi,m,mn), a weighted sum

of each feature can be used:

p(zj|xi,m,mn) =
∑

n

wn p(zj|xi,m)f(zj, xi,mn) (4.4)

where
∑
wn = 1.0 and f(zj, xi,mn) is an evaluation function that has value of

[0, 1]. Should none but only the Euclidean point information is used, by having

f(xi,mn) = 1.0 the equation above becomes equivalent to Eq. 4.2.

Different evaluation functions are used for specific types of additional features

that is to be encoded. In this work, surface normal of a point is used in addition

to a point’s euclidean information. To build the look-up table, encoding of the

elements in the table is done by obtaining the surface normal value of the point,

derived from ~v of the x and y axis. This information is readily available as the

result from the construction of the surface normal based synthetic LIDAR. Fig.

4.2 shows side-by-side comparison of look-up tables with the additional normal as

the corresponding prior. Please note the seemingly striking contrast is expected

since the normal is operate on a continuous circle of [−π, π]. To speed out the

initialization of the raster table, only grids that are within the logarithmic bound

of the distance from a point is initialized.

Then, the evaluation function can be constructed by the following equation

1 − |~wxy − ~vxy|/π where ~wxy is the rotation value along xy axis of the normal

surface from the matching points, and ~vxy is the value obtained from the additional

look-up table. The normalization factor π is used since that is the maximum
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Figure 4.2: Multiple look-up table rasterization. Different features are encoded
showing points feature obtained from the euclidean distance (left) metric and sur-
face normal (right) of the point

range expected. This occurs when the rotation of the normal surface between the

matching points and the prior points is completely out of phase by 180◦

In order to quickly identify areas that might contain the correct match, the

same approach of a multi-level resolution correlation can be used. The correlation

is started with an exhaustive search on the low resolution search window, covering

large volumes of 3D search space (x, y, θ). The search is to identify slices that might

have the global maximum. By reducing the amount of slices need to be searched,

a scan matching can be accelerated.

Scan Matching Verification

While so far the focus has been on searching for the maximum likelihood of a scan

based on a prior, directly inferring the score from the scan matching result can

sometime ended up with a wrong match. This is especially true when covering a

large urban environment where two places that are far away from each other can

share many similar structures geometrically.

The verification is essentially the reversed process of a normal scan matching.

Since the transformation of the supposed match is known, a scan matching can

be done without going through the search space. While this takes a performance

penalty since lookup table need to be reinitialized, a correlative matching is mostly

dominated by optimization in a 3D slices, hence only a fraction of the time is

needed to perform verification.
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(a) CSM with points information only (b) Extended CSM with points and normal
information

Figure 4.3: Comparative examples with extended correlative scan matcher. The
cost function is visualized with each tile represents a slice of the cost volume for a
fixed θ. In each example, the maximum numerical value is marked with a cross-hair

The comparative result of using multiple raster table is shown in Fig. 4.3, and

the 3D correlation cost function of the matching is provided. As evidenced from

the matching result, the use of multiple raster tables allowed precise matching and

correctly inferred a true match. The value of the cost function also reveals the

nature of a match that can contain many local maxima. By using multiple raster

table, the true global maxima can be correlated correctly. An example of the use

of the verification process is shown in Fig. 4.4. Here, the scan matching produced

a high score although it is a wrong match. This is successfully resolved through

the verification process that lowers the score substantially.

GPU Based Scan Matching

A correlative scan matching lends itself favorably to parallel process due to the

heavy usage of lookup table. In this work the CUDA framework from NVIDIA is

used. Different from a conventional programming, a GPU programming model for

CUDA requires declaration of a kernel with a grid of thread blocks, signifying its

parallel programming paradigm.

To further increase the efficiency of GPU computing, rasterization is not per-
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Figure 4.4: A wrong matching resolved through scan matching verification. The
scan matching score was 64% while verification through reversed process shows the
score of only 17%

formed at first. Instead, a Voronoi diagram is generated to represent the key

points of a map surface. This way the extended features describing one particular

point can be calculated on the fly without the need of rasterization. Initialization

of Voronoi diagram is implemented using a variant of Jump Flooding Algorithm

(JFA) [92].

In a simple flooding [93] process, a content located at (x, y) can be shared to all

other pixels by passing the information to its nearest eight neighbors, with position

(x + i, y + j) where i, j ∈ {−1, 0, 1}. This is depicted in Fig. 4.5. The other way

where jump flooding can be done is through step halving. At the beginning of an

iteration, a step size is selected at least half the size of the map. Then at each

iteration, the step size is halved until the step length of 1. Using the same idea,

information passing can be done in parallel to make full use of the massive parallel

computation available from a GPU.

For the purpose of Voronoi construction, each point from the synthetic LIDAR

is populated as the seeds Pj on a map surface, where the seed is a pointer to a more

descriptive point, for example x, y, normx, normy. The map surface is initialized at

a given desired resolution ε and search space (Sx, Sy). For each round with step k,

corresponding pixel on the map surface is filled with the nearest seed. When k = 1,

each pixel in the map would contains the seed that have the smallest Euclidean

Distance and a Voronoi is constructed. This process is illustrated in Fig 4.6.
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Initialize

Initialize

k=1 k=2 k=4

k=1k=2

a)

b)

k=4

Figure 4.5: A jump flooding example: a) doubling step length b) halving step
length

Fig. 4.7 shows computation time needed to construct a Voronoi diagram using

JFA across different CPUs and GPUs. In all cases, GPU show significant improve-

ment over CPU implementation. The obtained Voronoi diagram is then bound into

GPU texture in a 2D array. A texture memory in CUDA is a type of read-only

memory. Although designed for classical OpenGL and DirectX rendering pipeline,

texture memory excel in memory access where it exhibit a spatial locality pattern.

This can be exploited to provide speed boost since correlative scan matching mostly

involves a look-up table with entries that are close to each other.

Once a Voronoi diagram is constructed, scan matching correlation between a

pair of synthetic LIDARs can be performed. The matching process is started with

each search space given by its rotation range and resolution. At each rotation

interval, transformation of points is performed by CPU, then the rotated points is

passed into a CUDA kernel in order to evaluate the most probable matching at one

particular translation.

Each kernel is initialized with a 2D grid size and 1D thread, where the 2D

grid size represents the total steps required to cover the whole translational search

space. This setup also allows reduction of best probable match to be performed

in a parallel fashion. The size of a kernel’s thread is determined by the number of

matching points. Since the thread size is limited, only a subset of the points from

the observed data is processed. In each loop, CUDA Stream programming model

is used to encourage concurrent running of CPU and GPU codes.

In the kernel, each rotated point is evaluated according to its thread index

and grid indices. The grid indices specify the translation offset while the thread
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(a) initialize (b) k=256 (c) k=128

(d) k=64 (e) k=32 (f) k=16

(g) k=8 (h) k=4 (i) k=2

(j) k=1

Figure 4.6: A JFA with a 500x500 image with step halving process
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Figure 4.7: Acceleration of Voronoi construction through GPU.

index gives the rotated point index. The correlation occur by reading the Voronoi

data from texture memory, and perform necessary cost function as specified by

Equation 4.4. Communication between threads happen over the shared memory

where summation reduction is performed after every point is correlated. The result

is then transferred back to main memory before finally deduce the most probable

match.

Fig. 4.8 shows performance of ECSM using different approaches. In this bench-

mark, 3 set of matching are chose in order to include different matching conditions.

In each test, the search space of the matching is set at 5 m × 5 m at 45◦, with

the resolution of 0.1 m and 5◦. From the result, it is clear that GPU continues to

enjoy improved performance across different set of matching.

4.2 Mapping with Pose Graph

In the previous section, the construction of synthetic LIDAR and how 2 observa-

tions can be matched using extended correlative scan matching is described. In

this section, we will show how each of the synthetic LIDAR is used to obtain a

coherent map.
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Figure 4.8: Comparison of ECSM matching computation time using different CPUs
and GPUs.

4.2.1 Pose Graph Construction

A pose graph is a way to represent mapping problem by using a graph. In the

graph, each robot’s pose is represented by a node. An edge connecting 2 nodes

represents the constraint according to its spatial relationship. This connection is

usually obtained directly from a robot’s odometry.

A simple construction of a pose graph based on synthetic LIDAR can be done

by treating the synthetic LIDAR as though it is just a normal planar LIDAR. In

this case, the addition of nodes occurred only at a distance larger than the width

of the rolling window. By defining a system that have a set of poses x1:T with

odometry constraints u1:T , a pose graph can be constructed.

More accurate pose graph should include all the original scan lines that are

originated from one single instance of a synthetic LIDAR. In other words, each

measurement obtained from the LIDAR is given a node to construct a pose graph.

In addition, a major node is added at the same distance as the width of the rolling

window. This way, the pose graph’s construction matches the physical observation

model of a synthetic LIDAR.

Although this adds more constraints into the graph, the work load on the front

end remain the same by restricting the loop closure search on the major nodes

only. Then, the least square problem can be solved quickly with an efficient solver.

With the odometry based pose graph built, the graph is now ready for optimization
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(a) A Consistent Map (b) An Inconsistent Map with Single
False Closeloop

Figure 4.9: A Comparison of pose graph optimization with a false loop closure

by adding loop closures cij between 2 poses xi and xj. Because a pose graph is

formulated as a least square problem, a single false positive can adversely affect the

final optimized result, yielding an inconsistent map. Fig. 4.9 shows an optimized

graph when a wrong loop closure is added to the mapping system.

To ensure that this will not occur during mapping, a supervised loop closure

can be done. Whereby a hard constraints are injected at the beginning of a graph

optimization cycle by visually identifying loop closure manually. This ensures a

stable graph and any addition of constraints should results in a smoothed graph

updates.

The mostly consistent graph at the macro scale can now concentrate on adding

loop closure locally. This can be done by performing a simple best match search

around neighborhood nodes. Optionally, the matching algorithm can be made to

restrict the search window to encourage loop closure at different orientation, by

having a smaller search space on the scan matching algorithm. For example, 2 dif-

ferent search windows at different rotation: [−π
2
, π
2
], [−π

2
, 3π

2
] are used at each pass.

Effectively, this allows potential loop closures to be included in both directions,

which covers most type of the close loop encounters in an urban environment.

4.2.2 Automatic Loop Closures

The pose graph construction described above involve a rather laborious step where

hard constraints are added manually. To allow a fully automated mapping process,

particle filter is proposed to recognize the loop closures.

The particle filter is used extensively for robot’s localization. The well-known
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Monte Carlo Localization [94, 95], which uses particle filter has been applied suc-

cessfully that provide accurate positioning [74,96] of a robot moving within known

environment. The use of the particle filter is the key that enables localization to

be done efficiently. Liu et al. in [97] used particle filter to perform loop closure

detection between 2 visual pair images. Here, the particle filter is adapted to take

the advantage of the view point invariance of a synthetic LIDAR.

In a particle filter based loop closure detection, each particle corresponds to a

node in the map and the particle set Xt describes the posterior probability distri-

bution of the current active node. As more nodes are being added to the map, loop

closure is detected when there is a high probability density on a different node.

The details of the loop detection process is described below.

Motion Model

A motion model is applied to propagate the particles when a new node is being

added, which has the following form:

xt = p(xt|ut, xt−1) (4.5)

The motion model is part of the important function in the iterative nature of

particle sampling framework. Due to 1D nature of the graph topology, a simple

forward motion is used with large probability of particles moving from a node

to another at each step. In a LIDAR measurement, the forward motion can be

ambiguous since the measurements are rotational invariant. A forward motion

may not necessary imply an increment to the node. To overcome this ambiguity,

heading information from the scan matching result is used when propagation of

the particles is performed. The motion models is given as follows:

p(xt = ̺ · n|xt−1 = n, ut) = p0 (4.6)

p(xt = ̺ · (n+ 1)|xt−1 = n, ut) = p1 (4.7)

p(xt = ̺ · (n+ 2)|xt−1 = n, ut) = p2 (4.8)

p(xt = ̺ · (n+ 3)|xt−1 = n, ut) = p3 (4.9)
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4.2. Mapping with Pose Graph

Figure 4.10: Visualization showing the mapping process.

Here p1 is normally assigned with high probability while a small value is given

to the rest of the pn, to account for the noise in the system. ̺ is the value that is

initialized from the rotation value, φ from the result of scan matching, where

̺ = 1− 2|φ|
π
, − π ≤ φ < π (4.10)

4.2.3 Overall Algorithm

The overall process is summarized in Alg. 1. The algorithm is activated with

each addition of node. The input to the algorithm are the previous particles Xt−1,

the updated measurement of each particle zt and current total number of nodes

N . Parameter M is the total number of particles used. From line 12-16, random

samples is added to maintain diversity of the particles.

To add a random sample, different random number generators are used. To

generate j, the particle index is drawn according to the weighted Euclidean distance

from the current node based on the latest updated position available from the

optimized graph. This is to allow more chance of discovering close loop even when

low number of particles is used. On the other hand k is generated according to a

discrete uniform distribution.

Fig. 4.10 shows a snapshot of the mapping process. In the mapping, 50 particles

are used for loop closure detection, and a loop closure that has a difference in

residual error below 10 is accepted as a loop constraint. The green lines are the

factor graph and red circles represent the position of the particles. The red circle

has radius drawn according to the total number of particles in a node, a larger
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4.3. Map Updates

Algorithm 1: Monte Carlo Close Loop Detection

Input: Xt−1, zt, N
Output: Xt, x̂t

1 Xt = X̄t = ∅;
2 for i = 1 →M do

3 x
[i]
t = p(xt|ut, x[i]t−1);

4 w
[i]
t = p(zt|x[i]t );

5 X̄t = X̄t + 〈x[i]t , w[i]
t 〉;

6 end
7 for i = 1 →M do

8 draw j ∈ {1, · · · , N} with probability ∝ w
[j]
t ;

9 add x
[j]
t toXt;

10 end
11 for i = 1 → αM // addition of random samples

12 do
13 j = R[1, N ];
14 k = U [1,M ];

15 x
[k]
t = j;

16 end
17 x̂t = mode(Xt);
18 return Xt;

radius represents higher density of particles. The visualization shows that the

scan matcher is able to perform accurate matching of 20 m offset at the opposite

direction. The other challenging area present in this environment is along the

overhead bridge connecting between NUS main campus and NUS UTown (Fig.

4.11b). The long stretch of highly uniform environment (2̃50 m) poses a stiff

challenge to the mapping framework. In this area, the use of Monte Carlo loop

detection and loop constraint rejection successfully created an accurate map of the

environment. In this map, the vehicle travels more than 6 km while covering an

area of 720 × 900 m.

4.3 Map Updates

While the discussion so far only involves a single vehicle perform mapping in one

particular region within a same period of time. By introducing anchor points that

share a single common global frame, multiple maps with independent trajectories

can be combined and updated. This is true even when the map is performed at
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4.3. Map Updates

Figure 4.11: Mapping of the NUS campus area

different time with different vehicles. This concept is introduced by Kim et al. [98].

The key that allows map merging is the discovery of encounters, in which addi-

tional constraints connecting 2 different graphs are added. In other words, as long

as there are some overlapping region, different map performed at different time by

different vehicles can be updated into one consistent map. More formally, robot

trajectories ri,i ∈ 1 . . . R for R robots, an anchor Λr is added to each trajectory,

sharing a same global coordinate. Λr specifies the rigid transformation of a tra-

jectory relative to the global coordinate. This formulation allows optimization to

perform jointly with all the pose graphs, connected by encounters. Fig. 4.12 shows

the result of a map merging with dataset collected at time separated by 3 weeks.

The single consistent pose graph is further processed to give a good summary

on the environment, thereby providing a simpler, more coherent way to store the

map and keep it updated. One of the most common map representation is using

a 2D occupancy grid. Due to the see through nature of a synthetic LIDAR, a

lot a features can be lost due to the ray casting operation on 2D. Instead, the

probability at each cell being occupied is estimated by a Bayes filter normalized by

its neighboring cells. A free space is initialized as a polygon based on the geometry
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4.3. Map Updates

Figure 4.12: A merged map

of the extracted features from a single LIDAR.

On the other hand, a compact representation of a 3D space can be constructed

with an Octree [99]. The Octree is specified by a minimum voxel size, where a

single volume is the result of a combined volume that is made up of 8 voxels. As a

result, a hierarchical structure is maintained to represent this 3D space, where one

layer is subdivided into 8 layers, and additional layers are added until the smallest

voxel size is achieved.

The implementation of update on each voxel is performed in a probabilistic

manner. To build an Octree based map, all the raw observations from an optimized

graph are integrated. Using the poses available from the pose graph, each of the

raw observation is integrated using ray casting. Finally, a threshold value is used

to determine the occupancy of a voxel. One immediate improvement that can be

seen from this process of map update is the use of a more complete model of sensor

47



4.4. Mapping Results

(a) A 2D Occupancy Grid Map (b) A 3D Octree Map

Figure 4.13: Map updates in 2D or 3D, showing the same section of the route

fusion method, where by each voxel is updated by performing ray tracing. This

way, changes in the environment are included where each cell may become occupied

or empty, depending on the probability of the cell. For example, if a parked car

become disappeared in a merged map, the existence of the car will be removed.

Fig. 4.13 shows the different map generated separately through 2D and 3D update

process.

4.4 Mapping Results

This section includes mapping that is done on different places in Singapore. The

resolution is fixed to 0.1 m and the corresponding statistics is reported. For clar-

ity, figures of the dataset only visualize the occupied cell of the map. The file

size reported in the result reflects the amount of memory required to store the

2D occupancy grid map in lossless bitmap image format using Portable Network

Graphics.
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4.4. Mapping Results

NUS Engineering:

Map size: 1086.4 m x 454.8 m

Distance: 6.5 km

File Size: 999.8 kb

This map captures part of the NUS campus hilly roads that host most of the

engineering buildings. It contains a sizable amount of parking lots and wide public

roads. The map includes the a overhead bridge that connects between NUS main

campus and NUS UTown.
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4.4. Mapping Results

NUS UTown:

Map size: 490.2 m x 599.9 m

Distance: 5.2 km

File Size: 999.8 kb

This map contains a good mixture of indoor and outdoor environment. The vehicle

travels through inner part of the campus comprising offices and residential area.

This demonstrates the capability of the synthetic LIDAR working under different

condition and stresses the mapping framework.

Gardens by the Bay:

Map size: 887.4 m x 966.6 m

Distance: 5.3 km
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4.4. Mapping Results

File Size: 1.95 MB

A rare chance as we brought Rudolph to the Marina Bay Sand. We manage to

perform mapping at the Garden by the Bay. The garden contains man-made

sculptures, natural foliage and buildings. The mapping framework continues to

adapt well into different environment.

Riffle Range Road:

Map size: 1806.1 m x 2207.9 m

Distance: 6.9 km

File Size: 2.7 MB

A long and windy road of Riffle Range Road, where the road is covered by dense

tree canopy.
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4.4. Mapping Results

Commonwealth Ave:

Map size: 477.8 m x 1166.5 m

Distance: 13.3 km

File Size: 3.26 MB

One could find almost every traffic elements in this environment. This map includes

2 MRT stations with its surrounding road networks, truly represent an urban en-

vironment. The road network provides connection to many residential areas with

traffic lights and pedestrian crossing.
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Chinese and Japanese Garden:

Map size: 683.4 m x 887.4 m

Distance: 6.9 km

File Size: 2.7 MB

Participation in Jurong Lake District Project allows an opportunity to perform

mapping in the gardens. These 2 gardens is connected by bridges and share very

similar environment with the Gardens by the Bay.

4.5 Summary

The synthetic LIDAR is used to perform mapping of the environment. One of

the contributions is the proposal of extended correlative scan matching. To include

more features available from a synthetic LIDAR, multiple lookup-table rasterization

is used. An example is included where we show how the inclusion of surface normals

can improve the scan matching result by locating an accurate global maxima.
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4.5. Summary

The thesis also includes the use of GPU based scan matching algorithm and

shows significant speed up when performing a match. In particular, the lookup-

table rasterization is replaced by Voronoi construction through Jump Flooding

Process. The process is further accelerated by the use of the CUDA framework’s

texture and shared memory.

The map is constructed using pose graph. Although it is shown to be highly

effective, a single false loop closure renders an inconsistent map, where the recon-

struction does not correspond correctly to the physical dimension of an environ-

ment. To this end, we show how it can be efficiently done automatically through

particle filter based loop closure detection. The algorithm, running in parallel with

the graph construction, allows mapping to be done concurrently while the vehicle

is exploring the environment.

Finally, the map is updated using a 2D occupancy grid or a 3D Octree based

map. This way, the map can be updated constantly by incorporating new mea-

surements. To evaluate the mapping framework, the map generated from many

different places are presented.
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Chapter 5

Map application

Previous chapters show how a precise map can be built using synthetic LIDAR.

Having an consistent map is one of the key components in autonomous navigation,

as the map serves as the backbone of the underlying applications. In this chapter,

we show how the map can be used to solve problems related to vehicle navigation in

an urban environment, specifically localization, road mapping, and graph learning

of an urban road network.

5.1 Localization

In this section, we examine how a map is used to perform localization. We first

look at how virtual sensor proposed in Section 3.1.2 is used to perform localization.

In the localization, we assumed that the map is given. As part of our earlier work,

the curb lines are extracted manually with reference to a satellite map represented

by occupancy grid. In the map, an occupied cell represents curb while a free space

is the road surface.

To perform robust localization, Adaptive Monte-Carlo Localization (AMCL)

is used [100]. In AMCL, particle filter is employed to estimate the position of a

vehicle. More formally, the position of a vehicle is represented by a belief bel(xt)

which is represented by a set of M particles x
(m)
t :

bel(xt) ∼ {x[m]
t , ω

[m]
t }Mm=1 (5.1)

where w
[m]
t is the importance weight. The estimation of the position for each
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5.1. Localization

particle is performed recursively using the following steps:

1. Prediction: Control input at time t, ut and particles set at previous time step,

{x[m]
t−1, ω

[m]
t−1}Mm=1 is used to generate a new set of particles {x[m]

t , ω
[m]
t }Mm=1, given

a motion model p(xt|ut, xt−1).

2. Correction: The importance weight, associated with each particle {x[m]
t , ω

[m]
t }Mm=1

is then updated with a new measurement zt, with a measurement model

p(zt|xt,m).

3. Resampling: The particle set will be resampled when the importance weight

does not contain a good variance. After resampling, position of the vehicle

bel(xt) can be obtained by approximating the distribution of the particles.

The constructions of curb and intersection sensors allow tight integration into

AMCL. This is achieved by using 2 different sensor models: beam and likelihood

model.

Beam Model A beam model closely resemble the physical working principal of

a LIDAR. Assuming that each line of observation is independent, where a scan z

containsK measurements, z = z1, z2, . . . , zk, then the probability of a measurement

z given that a robot is at x with a known map m is:

P (z|x,m) =
K∏

k=1

P (zk|x,m) (5.2)

To specify P (z|x,m), the following scenario are considered:

1. A normal measurement reflected by an obstacle

Phit(z|x,m) = η
1√

2πσ2
hit

e
− 1

2

(z−zexp)
2

σ2
hit

2. A noisy measurement due to moving objects

Pmov(z|x,m) = ηλe−λz
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5.1. Localization

3. A random measurement,

Prand(z|x,m) = η
1

zmax

4. An out of range measurement,

Pmax(z|x,m) = η
1

zsmall

All the different distributions above are mixed together by a weighted average,

where the sum of zhit, zmov, zrand, zmax is 1.0. These are all intrinsic parameters.

σhit is another intrinsic parameter of the measurement model which encapsulate the

inherent noise in a good measurement value. One way to obtain these parameters

is to learn from actual data through maximum likelihood estimators [47].

Likelihood Model Although a beam model closely model physical causes of a

measurement, it is not without its drawback. A beam model requires ray casting

which is computationally expensive. On top of that, in order for a measurement

to hit a reasonably likely obstacle, a large number of samples are required. This

is because a nearby points can have very different likelihood and hence lack of

smoothness. A likelihood model overcomes this by not considering the beam but

only the end point of the LIDAR. This is different from a beam model where each

observed point needs to compute the line of sight to obtain its probability value.

In a likelihood model, each end point of the LIDAR is model as the probability of

the point being accurately measured. Typically the model is given as

p(z|x,m) =
1√

2πσ2
hit

e
− d2

2σ2
hit

where d the measured distance to the nearest obstacle. The implication of using

likelihood model is that the evaluation on a single measurement do not need to

perform ray tracing, and the likelihood filed can be calculated by a precomputed

lookup table. Hence, this greatly speed up the probability calculation.

For curb sensor, likelihood model is used for its computation efficiency and for

its less sensitive to noise. On the other hand, a beam model is used for intersection
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5.1. Localization

Figure 5.1: A curb map. The black curves shows the curb line drawn at priori with
detected curb drawn with green curves

sensor. To exploit a beam model’s tight relation to the geometry and physics of a

LIDAR, an intersection point is represented by a maximum range. This correspond

well to an intersection’s free space towards the road side.

Experiments are performed to evaluate the capability of the virtual sensors.

Fig. 5.1 shows the manually drawn map of size 200m× 240m overlaid with points

output from the curb sensor. Using an instrumented vehicle, a rough initial position

is given at S, and driven autonomously for about 430 meters to G. An overview of

different localization solutions are shown in Fig. 5.2. Fig. 5.4 shows the standard

deviation of the particles while the vehicle is navigating through the route. In

general, longitudinal variance is higher than the latitudinal. This is expected as

the vehicle’s movement mostly parallel with the curb lines. Section S-A shows

a curvy section of the road, where the particles’ standard deviation remain well

within 1.5 m. The same can be said at section C-D-E. Points A, C, E and G shows

the effect of recognizing intersections whereby particles homing to the intersection

region. From Table 5.1, one can also observe that position errors at some critical

points of intersections and turnings (like A, C, D, F) are much smaller than that of

the straight road (similar to B). The errors are obtained by having the vehicle stops

at the same designated virtual stop point repeatedly and compare the difference
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5.1. Localization

Figure 5.2: An overview of position estimates based on different types of localiza-
tion solutions. The light-blue lines denote road boundary. The red line marks the
localization result of the curb-intersection feature based MCL, and raw odometry
trace is shown by yellow line. GPS output from GPS/INS module (Ublox EVK-6R)
is included showing as green dotted line.

Figure 5.3: Typical particle behaviors at points marked in Fig. 5.2
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5.1. Localization

Figure 5.4: Position estimation variance

by markers placed on the ground.

To get a sense of how the virtual sensors work, Fig. 5.3 shows the particles’

behaviors at different places of the map. The elongated particles running parallel

with the curb is the typical behavior expected from this sensor model. This is

attributed to the uniform longitudinal features of the road section. Even with a

small curve, it shows that there is enough feature differentiation. Hence, a more

precise location estimates is achieved where it is reflected by more confined parti-

cles. This is more evident in D, where a similar argument can be used to explain

the phenomenon of the increased in confidence of the estimates, reflected by higher

density of particles concentrated in a smaller area. C shows the effect of the acti-

vation of the intersection sensor. In this scenario, particles that falls outside the

intersection that is not in agreement with the existence of non-curb observation

have a smaller importance weight. With lower probability to survive in the resam-

pling step, particles that are located within the intersection have higher chance to

survive.

More experiments are performed using synthetic LIDAR, which is constructed

as discussed in Section 3.2. By extracting interest points from a reconstructed

detailed environment model, the synthetic LIDAR shows excellent adaptability

with different types of urban environment scenario. As with before, the localization

Table 5.1: Localization error at several marked points

Marked Points A B C D E F G

Position Error (m) 0.20 0.55 0.06 0.20 0.32 0.06 0.08

Orientation Error (deg) < 3
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Figure 5.5: Mapping of the NUS engineering area

Figure 5.6: Synthetic LIDAR localization results

method uses MCL scheme to estimate the vehicle pose. Since a synthetic LIDAR

is more expressive in its observations, i.e. it can have more than one point within

a small angle, likelihood measurement model is used. The likelihood model, where

only a beam’s end point is required to perform calculation is translated directly to

the measurements from a synthetic LIDAR.

Fig 5.5 shows the map we used to perform the localization experiment overlaid

on top of a satellite image. When compared with the previous localization exper-

iment, it covers large part of NUS engineering campus with an area of 550 m ×
487 m. The map generation technique is described in detailed in Section 4.3. Fig

5.6 shows the particles’ uncertainty while the vehicle is driven around the campus

covering all the traversable region in the map 5.7. Traveling for about 1.6 km, the

experiment results show much lower standard deviation compared with previous
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Figure 5.7: Vehicle path estimated using synthetic LIDAR localization
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Figure 5.8: Autonomous navigation with synthetic LIDAR. Images on the right
from top to bottom correspond to visual validation of localization repeatability
from checkpoint A to E

method with maximum standard deviation value of 0.2 m. As with curb and inter-

section based localization, the position estimation exhibit higher confidence along

the lateral direction. This make sense as features are richer on the lateral direction.

One should note that the longitudinal standard deviation is almost as good as the

latitudinal values. This observation shows that the longitudinal features also quite

as rich providing strong indication of the capability of the synthetic LIDAR to

carry equally descriptive features along the longitudinal direction.

Using the same localization method, autonomous navigation is performed at

one section of the map. 2 separate autonomous navigations are performed on the

same path to validate the precision of the localization. Fig 5.8 shows the path

where the vehicle drove autonomously from A to E. To compare the localization
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results, 5 checkpoints are selected where a camera mounted looking forward is used

to capture the scene once the vehicle is arrived at this point.

2 pictures captured at each run are processed by obtaining an absolute difference

between each pixel of the images. 5 smaller images from Fig 5.8 show the result

of the subtraction. Subtraction of 2 equal images result in zero pixel values, and

hence are completely dark. So darker patches indicate better accuracy. The sharp

edges of all the images show strong evidence that the synthetic LIDAR localization

is performed precisely. The bright spots observed at images B, C and E are actually

moving objects.

We should emphasize that we are not explicitly handle the unexpected read-

ing from the sensor, for example a newly parked vehicle or other moving objects.

Rather we treat them as part of the sensory noise. In experiment, this has shown

to be effective in handling changes occur in an urban environment. Part of what

made this possible is the interpretation of sensory data in a 3D model. This give

more expressive view of the environment. Although part of the view is hindered by

a parked vehicle or any other objects, there are always other features that are still

observable beyond the object. In short, as long as the salient features presented in

the map are not overwhelmed by the unexpected obstacles, the localization system

will work properly.

5.2 Road Mapping

In previous section, we discuss how the map can be used to perform localization. In

many other scenarios, it is more desirable to obtain interpreted data. Since we are

dealing with vehicle traveling in an urban environment, road surface information

is critical since this is where the vehicle is expected to travel on. In this section,

we describe methods on how the road surface is extracted based on the map by

performing region growing and classification.

5.2.1 Region growing Method

Region growing algorithm is used to perform segmentation on the map that has

similar properties: the road surface. In this work, we make use of the observation
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Figure 5.9: Curvature of a road surface

that the road surface is generally smooth in the center, with some apparent edges

towards the boundary of the road. Where region growing was originally designed

for image segmentation, it can be generalized to 3D point clouds as well [101].

To perform region growing, surface properties nx, ny, nz, c are calculated for each

point cloud on a map x, y, z, where nx, ny, nz are the surface normals, and c is the

point’s local curvature.

Fig 5.9 shows a short segment of the map with calculated curvature. Observe

that the road surface has a low curvature value and higher curvature values exist

around the road edges. To extract this planar region, a seed point is selected from

within this region. Then the algorithm will recursively travel through this segment

and hence the road surface can be extracted. By assuming that the vehicle always

travel on the road surface, we can reprocess the map data in a rolling windows style,

i.e. simulating a vehicle traveling through the exact same path as how the map is

collected. This way each point in the map can be projected into vehicle frame and

the seed point is placed at frame’s origin. The pseudo-code for the region-growing

algorithm is shown in Algorithm 2.

5.2.2 Dealing with Noisy Data

While the road surface data can be extracted directly from a map, the observation

collected is sparse that contains noisy data. To obtain a good road surface, the

data is processed in a cascaded manner. The raw input data is first goes through

a pre-filtering classifier to extract only the stable points.
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Algorithm 2: Pseudo-code for region-growing algorithm

Input: 3D point cloud P , seed point po ∈ P
Output: Output: Road surface point set S, boundary point set B

1 S := Φ, B := Φ;
2 add po to S;
3 for every point pi in S do
4 find its neighbourhood points Pi within a searching radius l;
5 for every point pj in Pi do
6 if pj’s curvature < curvature threshold T then
7 if pj /∈ S then
8 add pj to S
9 end

10 end
11 else
12 if pj /∈ B then
13 add pj to B
14 end

15 end

16 end

17 end

Pre-filter

Since road surface extraction relies on the curvature value, it is important to make

sure that the scan lines along the z direction is well aligned. Recall in Section

3.2.4, height measurements are affected by roll and pitch value which is derived

from IMU. This value is affected depending on how it varies in a short period of

time. The error can be significant when a vehicle is traveling through a bumpy

road or a speed bump, for example, where a sudden change in pitch angle results

in a large variation on the measured values. This could render a noisy point as

large variance in height being falsely segmented as a road boundary.

To actively recognize the noisy measurements, binary classifier is used. A Sup-

port Vector Machine (SVM) is trained with feature vectors θ, φ, θ̇, φ̇ from IMU

together with curvature values. The feature vectors from IMU provides a good

temporal states of the vehicle to enable good classification. In the training process,

a short segment of the map is used for labeling where a wrongly classified road

boundary observation is labeled as the negative samples.

Fig. 5.10 shows an example of a pre-filter in road extraction process. The

pink segments represent the detected noisy scan and it is then removed from the
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(a) Angular rate (b) Angle

(c) Curvature plot (d) Filtered scans

Figure 5.10: Noisy scan rolling window filtering. In the curvature plot, one light
blue swathe of points appear in the middle of road are recognized as noise. These
points are filtered through the pre-filtering process as shown in (d) visualized as a
pink strip.
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Figure 5.11: Boundary point adjustment

consideration of region growing process.

5.2.3 Road Boundary Retrieval

After the pre-filter, the region growing algorithm will proceed to extract road sur-

face with its boundary. A conservative threshold value is chosen to reduce false

positives where a road boundary is detected as road surface. However, due to the

varying density of the observed point clouds, the road boundary always results in

a smaller region of an actual road surface. This is due to the fact that fewer points

being observed as scan angle is increased from the center of the LIDAR. This re-

duces the density of the point clouds and thus fewer supporting points can be used

to perform curvature calculation. Consequently, there will be some region where

surface is wrongly segmented as road boundary when a single threshold value is

used. This can be alleviated by further examining the boundary of each obser-

vation, where a hill climbing search is performed until a local maxima is found.

Fig. 5.11 shows the adjusted boundary point, where purple points are boundaries

before the adjustment, and green points are the adjusted boundary points.

5.2.4 Post-Filtering

The road boundary points obtained through the steps described above in general

contain a good estimate of the road surface. It is however still susceptible to

road surface recognized as road boundary. Here another binary classifier is used

to further confirm the boundary points are indeed correct. For the post filtering,
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(a) Curvature Based Classification (b) SVM Based Classification

Figure 5.12: Increased classification accuracy through SVM

3 additional feature vectors are used to perform SVM training and classification.

There are z-variance, point density and maximum height variance.

The training data is obtained from manually labeled boundary points extracted

after boundary adjustment. This post-classification process improves the accuracy

of the road boundary classification, and hence the road surface extraction. To train

all the classifiers, LIBSVM is used. There are in total 14893 road boundary samples

are used. In the samples, there are 2983 labeled as the false boundary points.

We trained 3 different classifiers and compare the post-filtering results. Ta-

ble 5.2 shows the result of the classification. The “Original” column is the base

benchmark with the result obtained directly from region growing. The first classi-

fier (OneR) tries to perform boundary classification using only curve data as the

most basic classification. The second classifier (SVM1) adds z-variance as another

feature vector and the third (SVM2) uses the full array of feature vectors, i.e. cur-

vature, z-variance, local density and maximum local height difference. The total

accuracy is improved as more features are added and Fig. 5.12 shows one instance

of improved road detection. The green points are the extracted road boundary and

road surfaces represented in yellow color. More results can be found in Fig. 5.13.

Table 5.2: Classification accuracy for boundary candidates

classification methods Original OneR SVM1 SVM2

recall of boundary (%) 100.0 95.8 95.7 98.2

recall of surface (%) 0.0 84.8 88.3 91.8

total accuracy (%) 85.3 94.2 94.6 97.3
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Figure 5.13: Results of the SVM classification of road boundary and surfaces

Figure 5.14: Point cloud segmentation example
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5.2.5 Road Detection for Point Cloud Segmentation

Road surface is the most dominant feature in the urban road environment. The

detection of road surface from 3D point cloud can be used for point cloud seg-

mentation of road environment. Since the road surface serves as the supporting

ground shared between objects, by detecting and removing the road surface from

the 3D point cloud, points from different objects are naturally separated. Then

the remaining point cloud can be segmented and clustered easily. Fig. 5.14 shows

one example of point cloud segmentation, where different point cloud clusters are

shown in different colors.

5.2.6 Probabilistic Road Mapping

The road surface detected is put together in a probabilistic fashion sharing a com-

mon global frame. The road map can be used for variety of purposes, vehicle

path planning for example. In this case, the vehicle operates on a well-defined

region, allowing a safe and efficient path planning. It can also provides contextual

information for vehicle localization and for other perception purposes [53, 102].

Occupancy Grid Mapping (OGM) [47] is used for this mapping purpose. Since

the vehicle poses are already known, the road mapping problem is simplified to

an OGM problem, which is to estimate the posterior of the map given the data:

p(m|z1:t, x1:t), where m is the map, z1:t is the measurement from start time 1

to end time t, and x1:t is the set of vehicle poses from time 1 to t. By assum-

ing the independence between grids, the posterior can be further factorized into

p(m|z1:t, x1:t) =
∏

i p(mi|z1:t, x1:t), where mi denotes a grid cell in a map m [47].

An inverse sensor model p(mi|zt, xt) is needed for the above estimation process.

The map provides optimized poses which gives an accurate sensor poses at each

LIDAR scans. Given vehicle poses from the map, the road mapping problem can

be solved by estimating p(m|z1:t, x1:t). In our application, mi is a binary variable

with two possible values, road surface and road boundary; zt is the extracted road

surface and boundary points in the vehicle attached coordinate at time t; xt is the

vehicle pose in the global coordinate. The extracted points zt can be transformed

into map coordinate given the knowledge of xt . Then, p(mi|zt, xt) = p(mi|zti) is
obtained, where zti is the point that falls into grid mi. The inverse sensor model
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is defined as:

p(mi = road surface|zti = surface point) = k1, (5.3)

p(mi = road surface|zti = boundary point) = k2, (5.4)

(5.5)

where k1, k2 are parameters to be selected in experiments. Generally k1 is larger

than (1 − k2), reflecting the fact that there are more noise in boundary points

than that in surface points. This noise may come from false-positive boundary

points, or temporal boundary points caused by vehicles or pedestrians. Given the

inverse sensor model, a Static Bayes Model is applied to calculate the posterior

p(m|z1:t, x1:t).

5.3 Graph Learning of Urban Road Network

The extracted road map can be used to perform automatic analysis on a road

network. Earlier, we described a method where accurate metric mapping is per-

formed to generate occupancy grid map of road surface and boundary. Based on

this metric map, further analysis can be done to extract a topo-metric graph which

captures both topological and metric information of an urban environment.

5.3.1 Topo-metric Graph

The topo-metric graph captures both topological and metric information of a road

network. By encapsulating both topological and metric attributes in the nodes and

edges, a topo-metric graph is established. From the topological aspect, each node

maintains the IDs of its connected edges. This topological connectivity between

nodes and edges captures the basic structure of the road network. From the metric

aspect, the graph maintains its metric information via different attributes of nodes

and edges. A node has attributes of its position and covering area, while an edge

will have a spline representation for its shape, together with its road width.
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Figure 5.15: An example of road skeleton map after processed from a binary road
surface map

5.3.2 Road Skeletonization

To construct a topo-metric graph, road skeleton is first extracted using skeletoniza-

tion process. Skeletonization is a common pre-processing operation in raster-to-

vector conversion used in a digital binary image. The digital binary image is ob-

tained by applying global thresholding on the occupancy grid map. We obtained

the required binary image (Fig. 5.15(a)) by thresholding the grayscale map, i.e.

the white pixels of road surfaces will form the foreground object, while dark pixels

of road boundary and gray pixels of unknown areas will become the background.

However, due to noise from the road detection process, the binary image may

not be perfect, with defects appearing as a hole at the center of road, or protruding

spurs at the sides. The holes appear where the region has low density of surface

points, leaving their probability as road surface low. The spurs appear where

road boundary points are wrongly classified as surface places, making related grids

falsely categorized as surfaces. Usually the size of spurs are bigger than those of

the holes. To remove these defects, morphological operations are applied. Since

the holes are usually smaller than the spurs, we fill the holes using morphological

closing with a smaller mask, and then remove the spurs using opening operation

with a bigger mask.
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After the binary image is prepared, we apply skeletonization to extract the

road skeleton. Image thinning method is employed for the skeletonization purpose,

which have several beneficial properties: it preserves the shape and topology of the

original object, and forces the skeleton to be placed in the middle of the object.

While there are many image thinning algorithms available in the computer vision

literature, we choose two-subiteration thinning algorithm in [103], which produces

a single-pixel width skeleton with few redundant pixels (right in Fig. 5.3.2).

5.3.3 Topological Structure Learning

The skeleton obtained previously captures the topological and shape information

of the road network. We will use this to construct a topo-metric graph.

After skeletonization using image thinning, a skeleton with single-width pixel

is obtained that can contain a few redundant pixels. A redundant pixel appears

in the skeleton does not affect the skeleton of the road network. It is neither an

endpoint nor a link that could break a road skeleton, i.e. deletion of a redundant

pixel does not in any way alter the skeleton. In an ideal case where a skeleton

has no redundant pixels, a pixel from a road link should not have more than two

connected neighbors, while a pixel at one intersection should have three or more.

To remove the redundant pixels, we iterate through all the points in the skeleton

except for the endpoints, and loop through a verification process. In the checking

process, the pixel under examination is first turned off and a connected component

analysis is performed on its 8-connected neighbors. If there is one connected-

component formed by the 8 neighbors, then this pixel is a redundant pixel to be

removed.

Given the minimal skeleton with no redundant pixels, it is trivial to build the

topological structure of the road network. We first extract intersection pixels which

have three or more neighbors, and store them as the nodes of our topo-metric

graph. Then the intersection pixels are deleted from the skeleton, decomposing

the skeleton into disconnected road links. These road links will serve as edges of

the topo-metric graph. In the end, the connections between nodes and edges are

constructed.
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5.3.4 Metric Property Learning

An intersection can have metric properties that include its position and its covering

area. For a road link, the metric properties include a spline representation of

its shape, and the average road width. It should be clarified that these metric

properties are learned in the image coordinate of the metric map, and can be easily

transformed into real-world global coordinate given the map’s origin and resolution.

Road links are the most fundamental components of a road network. While a

road link is originally extracted as a string of connected pixels, a more compact

representation can be used where each road lane is model after a spline curve [104].

Cubic spline is chosen to guarantee that a road link has continuous curvature.

We use chord length parameterization to ensure that the parameterized length is

proportional to the road length. Least square fitting technique is applied to obtain

an optimal spline given the input pixels. The cubic spline incorporates the shape

information of a road link, which is compact and precise, and represented by a

continuous mathematical model. Besides a cubic spline, another metric property

of a road link is its width. By assuming that a road link has uniform width, the

road segment is represented with the average value of widths measured along the

link.

An intersection is a junction with three or more road links. Its position and

covering area are of vital information for vehicle navigation. We define the position

of an intersection to be the actual position of the intersection pixel, and the covering

area to be approximated as a radius centered on this position. Fig. 5.16 shows an

example of a complete topo-metric graph map, where each edge is visualized as a

thick spline with the thickness corresponds to the road’s width. Each intersection

is marked by a yellow circle with its radius represents covering area.

5.4 Summary

The map can be used for many purposes. The most direct application is local-

ization. The contribution of the thesis was made through the notion of achieving

highly accurate positioning estimation using minimalist approach. In particular,

virtual sensors are constructed from curb and intersection points to perform lo-
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Figure 5.16: A topo-metric graph map of NUS engineering

calization. Using these 2 virtual sensors, we show that it is sufficient to perform

autonomous navigation using information derived from a single LIDAR. This is fur-

ther expanded through the use of synthetic LIDAR. We show how it can be used

not only for mapping purposes by can also be used for localization. Through ex-

periments, we show how a synthetic LIDAR is adaptable to many different kinds of

environment while not restricted to road environment with curbs and intersections.

For a vehicle to travel in an urban environment safely, road surface information

is an important metrics as this is where the vehicles are allowed to perform navi-

gation tasks. Although a raw map can be used directly for localization, we showed

how the map can be interpreted through road mapping. Contribution was made on

how to deal with noisy, real sensory information available to perform road network

extraction. Through a multistage process that includes pre- and post-filtering, we

performed road mapping probabilistically. With the road surface map extracted,

urban road network can be learned to generate a road network graph.

We also proposed how a map can be further process to obtain a topo-metric

graph, where it captures both topological and metric information of road networks.
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This is done by using the extracted road surface to obtain a skeleton map. Then,

the road links and edges can be extracted from the single pixel road surface map.

The topo-metric map is completed by inserting road width and intersection covering

areas.
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Chapter 6

Activity Mapping

While so far the work has been focused on static structure, this chapter discusses

on how moving objects can be learned as part of the knowledge in the mapping

framework. This is realized through an activity map, where it stores a summary

on how objects move within a region of the map. The method that is presented

here focuses on pedestrians as the moving objects, since they are not moving as

fast relative to the speed of a golf cart. But the same concept we are proposing

can also be extended to vehicles or other moving objects.

6.1 Gaussian Process for Pedestrian Modeling

The activity model learning is well established in computer vision community,

where researchers have proposed various methods to learn pedestrian motion pat-

terns. Some representative works can be found in [105, 106]. However, most of

the works assumed a static observers where a stationary camera is used with the

ability to observe complete trajectories of pedestrians. This is not a valid assump-

tion for applications using mobile robots. This is because a moving robot will most

likely only able to observe a small segment of a pedestrian’s track. Given that most

sensors have line-of-sight limit, it is susceptible to occlusions with limited visibility.

Lookingbill et al. in [107] uses a helicopter to identify moving objects on the

ground to learn their motion patterns. It shows interesting results and enlightens

us about representing motion pattern in the form of grid map. However, it only

estimates the motion patterns in a grids where moving objects are observed, it
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Figure 6.1: Pedestrian detection algorithm

also neglects the relationship between neighboring places. In our work, we use

Gaussian Process to learn the activity model of the entire environment, which is

able to overcome the above problems.

6.1.1 Pedestrian Detection and Tracking

Pedestrian detection and tracking is the basic requirement for pedestrian activity

learning. In our work, on-board sensors are used. A laser range finder is used for

moving object tracking, and a camera is used for pedestrian verification. Fig. 6.1

shows the overall flow of the algorithm and Fig. 6.2 shows the result of the detection

algorithm for a single data frame. The algorithm runs in two phases: pedestrian

candidate detector and pedestrian verification.

In pedestrian candidate detector phase, the LIDAR is segmented and clustered

based on their position and relative velocity (Fig. 6.3b). Potential candidate clus-

ters for pedestrians are filtered out based on their size and velocity where a simple

linear velocity model is used in our implementation. For pedestrian verification

part, a common webcam is used to verify whether extracted objects are pedestri-

ans. Extrinsic calibration of webcam and LIDAR is done beforehand, then the

candidates are projected as a region of interest in the webcam image correspond-

ingly. The whole image is then cropped into several smaller sub-images. This is in
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Figure 6.2: Snapshot of the onboard pedestrian detector

order to keep the computation as low as possible with a more focused region. Then,

Histogram of Oriented Gradient object detection (HOG) is used. We found that

the default trained people detector from OpenCV is sufficient to detect pedestrian.

A faster verification is made possible through GPU accelerated HOG algorithm. By

labeling the LIDAR track accordingly, we are able to recover a complete track of a

pedestrian that comes within the view of the LIDAR. This reduces the computation

load significantly allowing us to run such detectors in real time.

Fig. 6.3 shows how the system perform pedestrian detection and tracking. In

Fig. 6.3f, the pedestrian first gets tracked by LIDAR, showing as white track. As

the pedestrian enters the field of view of the camera, the object get verified as a

pedestrian and the tracks turn green. This way we can recover the whole track by

back-tracking the path.

The output tracks are sequences of pedestrian positions with time stamps, from

which moving speed and direction can also be calculated. While pedestrians are

initially detected in the local coordinate of the vehicle, we transform the track

information to the map frame. Thanks to the use of mapping and localization

method discussed previously (Section 5.1), the transformation can take place in

real time.

6.1.2 Track Classification and Clustering

After the pedestrian tracks are obtained, track clustering is performed. The pur-

pose of the clustering is to cluster heterogeneous tracks into different homogeneous

groups. While related works usually have pedestrian tracks that are clustered into
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(a) Camera Input (b) Laser Input

(c) laser based image segmentation (d) HOG classifier output

(e) Robust pedestrian detection (f) Track of single pedestrian

Figure 6.3: Pedestrian detection module

multiple groups of high similarity. In our work, however, data collection occur

over a mobile platform works in a fairly large area. Hence it is going to collect

pedestrians from many different heterogeneous motion types. This would result in

a very involved computation if we were to try to perform clustering and learning

the activity model for each of these types.

Instead, we simplify the problem by clustering moving tracks scattered on the

map based on the directionality of the track. In fact, when viewing an urban en-

vironment microscopically, a place in an urban road environment can be described

by two dominant motion patterns of pedestrians, where they share a similar speed

but opposite directions. We call this a “bidirectional property” of pedestrian ac-

tivity. This “bidirectional property” simplifies our clustering problem: we cluster

the tracks into two groups, and only need to guarantee that the activity of each

group is consistent at the microscopic grid level.
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The clustering problem is formulated as follow: Given a set of pedestrian tracks,

denoted as S = {s1, . . . , sm} where a single track s is a set of position-speed-angle

tuples:

s = {t1, . . . , tn}, ti =< xi, yi, vi, θi > (6.1)

where xi, yi are the pedestrian positions, vi the speed, and θi the moving direction.

The similarity between two tuples, p, q are defined as:

simp,q =
1− 2|θP − θq|/π

||xp − xq, yp − yq||+ const.

The similarity score between a track s and a cluster with tuple set γ is defined as:

SIMs,γ =
∑n

i (maxp∈γsimti,p +minq∈γsimti,q)

The overall problem is to find two clusters of tracks A and B given input clusters

S. During the clustering process, each cluster will maintain a set of tuples as its

characteristic quality, which is an assembly of the tuples from all its member tracks.

The two tuple sets are denoted as α and β respectively.

Alg. 3 shows the pseudo-code of the clustering algorithm. The clustering pro-

cess starts with the longest track in the input tracks S. Then, the track that has

the smallest similarity value is selected as track cluster B, with its tuple set β.

Then the remaining tracks are perform similarity test recursively by comparing the

tracks to cluster A and B and assigning them to the cluster that has the higher

similarity value.

6.1.3 Activity Learning with Gaussian Process

Now that we have got 2 groups of tracks consist of moving clusters, each track

share similar motion pattern on the grid-level that is to be learned. For the learn-

ing procedure, Gaussian Process (GP) is used. A GP is completely determined by

its mean and covariance functions. Please refer to [108] for more details on Gaus-

sian Process. In our work, activity learning can be model as a Gaussian Process

Regression (GPR) problem. The set of position-speed-angle tuples for each cluster

are used as the observation input, and we ought to find a predictor that outputs a

pedestrian’s speed vij and angle θij: Aij = {v̄ij, σ2
vij
, θ̄ij, σ

2
θij
}T .

It is worth noting that angle value is circular in nature, unlike a speed value
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Algorithm 3: Pseudo-code for track clustering

Input: The set of pedestrian tracks S = {s1, . . . , sm}
Output: clusters of tracks A and B

1 A = B = α = β = ∅;
2 Find the longest track sl;
3 Add sl to A; Add tuples into α; Erase sl from S;
4 Let sk = arg minsk∈SSIMsk,α;
5 Add sk to B; Add the tuples into β; Erase sk from S;
6 while S! = ∅ do
7 score A = maxsp∈SSIMsp,α;
8 sp = arg maxsp∈SSIMsp,α;
9 score B = maxsq∈SSIMsq ,β;

10 sq = arg maxsq∈SSIMsq ,β;
11 if score A ≥ score B then
12 add sp to A; add tuples into α; erase sp from S;
13 else
14 add sq to B; add tuples into β; erase sq from S;
15 end

16 end
17 return A and B;

which is a linear variable spanning from (−∞,+∞). A simple example is when

subtracting between 2 angles, say 1◦ and 360◦, the difference is 10. This is overcome

by modeling the angle distribution as a Projected Normal Distribution [109], where

the angle can be inferred from the bivariate normal distribution of speed vector

~v = (vx, vy).

We used 3 separate GPR to obtain the posterior distribution of v, vx, vy for

each point in a map Xij. The tuple set of each cluster A,B are used as the training

data that fed into the GPRs. In the training, zero mean function m and squared

exponential covariance function K are used, which is given by

m(X) = 0, K(X,X ′) = σy
2 exp

−(X −X ′)2

2l2
(6.2)

The X here is the 2-dimension position vector in global coordinate, X ∈ R2, X =

(x, y). By letting Y be the output of GPR, our GPR model is defined as follow:

Y = F (X) + ξ, F ∼ GP (m,K), ξ ∼ N(0, σn
2) (6.3)

where F (X) is a function distributed as a GP with mean functionm and covariance
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functionK. It is shown that the output of Y is also has a GP distribution with Y ∼
GP (m,K+σn

2σii′), with σii′ = 1 iff i = i′ This allows us to give an input set (X,Y)

as training data, and obtain the posterior distribution for a set of test points X∗

which has Gaussian distribution Y ∗|Y ∼ N(m(X∗) +KT (X,X∗)K−1(X,X)(Y −
m(X)), K(X∗, X∗)−KT (X,X∗)K−1(X,X)K(X,X∗))

By using log-likelihood maximization, (σn, σy, l) are learned from the training

data. As explained earlier, a pedestrian moving angle’s probability density function

is model after Projected Normal Distribution (PND). Let ~x be a two-dimensional

random vector which has a normal distribution N2(µ,Σ), then, the angle of x is

said to have a projected normal (or angular Gaussian) distribution PN2(µ,Σ). The

probabilistic density function of PN2(µ,Σ) is obtained as follow:

ϑ(µ; 0,Σ) + |Σ|− 1
2D(θ)Φ(D(θ))φ(|Σ|− 1

2 (xTΣ−1x)−
1
2µ ∧ x)

xTΣ−1x
(6.4)

where ϑ(µ; 0,Σ) denotes the value of the probability density function for N2(0,Σ)

at point µ, Φ and φ denote the probability density function and cumulative den-

sity function of N(0, 1), x = (cosθ, sinθ)T , D(θ) = µTΣ−1x

(xTΣ−1x)−1/2 , and µ ∧ x =

µ1 sin θ − µ2 cos θ with µ = (µ1, µ2)
T .

Finally, to calculate the PND distribution, normal distribution of pedestrian

speed vector ~v is used. Assuming that the marginalized distribution of vx and vy

is independent, where: ~v ∼ N(diag(µvx , µvy), diag(σvx
2, σvy

2))

Calculation of the probabilistic density function of moving angle is calculated

with this bivariate normal distribution. Mean of the distribution, θ̄ij is the pedes-

trian moving angle with its variance representing the uncertainty of this moving

angle σ2
θij
. Detailed definition and calculation of circular mean and variance can

be found in [109].

6.1.4 Bidirectional Property of Pedestrian Activity

Recall that in the earlier part we cluster pedestrian tracks into 2 groups according

to a similarity measure, then the activity model is learned independently. As

more data are collected, it was found that these 2 activity models have reciprocal

properties, i.e. they are mirror of each other where the moving direction is opposite
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to each other. Hence, it is reasonable to assume that pedestrian activity at one

place is often bidirectional. This make sense, as pedestrian moving in between the

buildings, and the doors act as both entry and exit points for the occupants. This

assumption allows us to learn the activity model of single track cluster, by adding

the angle values in the second activity tuples with 180◦. While in a wide open space

area, this assumption (walking in opposite directions) may not be valid, since the

pedestrian tracks may have many different directions. But in our environment

where the autonomous vehicle operates, this assumption holds.

6.1.5 Activity-based Semantic Mapping

Further activity related analysis can be done now that we have the activity map of

a pedestrian track. One application is to use the pedestrian and road link direction

as a feature to infer a place’s semantics.

Here, we want to perform two layers of semantic map, the first layer is to identify

“pedestrian path” (“PP”), and a more refined layer that recognize three different

types of functional areas from the path, namely the “entrance/exit” (EE), “cross-

ing” (CR), and “sidewalk” (SW) areas. These areas are not necessarily mutually

exclusive, as the same area can share different purpose at any time. To capture

the semantic properties at place mij in the map, a semantic vector of four binary

variables is introduced as: Sij = (pij, eij, cij, sij)
T , where

• pij, a binary variable for “path”,Λp={PP,non-PP},pij ∈ Λp;

• eij, for “entrance/exit”,Λe={EE,non-EE},eij ∈ Λe;

• cij, for “crossing”,Λc={CR,non-CR},cij ∈ Λc;

• sij, for “sidewalk”,Λs={SW,non-SW},sij ∈ Λs;

Then, the given information are the activity information Aij, and prior road net-

work information.
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6.1.6 Pedestrian Path Learning

Pedestrian Intensity

In an urban road environment, a pedestrian path usually located at the side road

with a raised walkway. This can be inferred from the frequency of pedestrian

appearance. In other words, when there are more pedestrians passing through one

particular place, the more likelihood it is be part of a pedestrian path. Based

on this, a measurement of “pedestrian intensity” as a feature for pedestrian path

classification is used.

Let’s define that the intensity at place mij is denoted as Iij, then the intensity

is a function of pedestrian count

Nij : Iij = Ilocalij × Iglobalij (6.5)

where Ilocalij = Ni,j/max
a,b

(Ni+a,j+b), Iglobali,j = 1
1+exp(−Nij+Nexp)

− 1
1+exp(Nexp)

;

a, b ∈ Z ∩ [−l/2, l/2].
The pedestrian intensity is the multiplication of these two factors, the local

factor and the global factor, denoted by Ilocalij and Iglobalij . The local factor is

used for pedestrian count normalization by making use the maximum counts in a

l× l local window. This normalization is important as the observations were made

at different time using a mobile platform. Without this normalization factor, the

difference in pedestrian count at different areas can become too large leading to an

unbalance tracks. One can think of this as having a similar effects with adaptive

threshold commonly used in image processing, in which it is used to recover details

in an image that has varying brightness in the background. The global factor is

namely a logistic function of Ni,j, which increases quickly when Ni,j is nearby Nexp,

while changes slowly when far away. Nexp is a constant value chosen as the expected

pedestrian count at a “path” place.

Based on pedestrian intensity calculated from the previous step, Markov Ran-

dom Field (MRF) is used for path classification. MRF is a popular technique in

image processing, which captures the dependency between neighboring pixels. It

is widely used for image segmentation, restoration and other purposes. A seminal

work by Kindermann et al. explains this in details [110].
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We model our classification problem as a pairwise MRF: Given the intensity

data I = {Ii,j}, we want to estimate the “path” semantics of the map P = {pij}.
Let’s assume that Ii,j|pij ∼ N(µpij , σpij), where µpij and σpij is given, which can

be obtained from the above learned model, the energy function is defined as U =
∑

ij

(
log(

√
2πσpij)j +

(Iij−µpij )
2

2σ2
pij

)
+
∑

i,j,h,k βδ(pij, phk) where pij and phk are “path

variables” of neighboring places mij and mhk, β is a weighting parameter, β ≥ 0.

Then, optimization can be done by minimizing this energy function, denoted as

P̂ = {p̂ij}.

6.1.7 Refined Semantics Learning

After the coarse-level semantic learning for pedestrian path, a refined seman-

tic is performed to search for ”entrance/exit,”, ”crossing”, and ”sidewalk” areas

along the path with Naive Bayes Classifier (NBC). By assuming independence

between features given the class variable, the probability model is: p(C|F ) =

p(C|F1, . . . , Fn) =
1
Z
p(C)

∏n

i=1 p(Fi|C), where C is the class variable, F is the fea-

ture set F = {F1, . . . , Fn}, z a normalizer, p(C) the class prior, p(Fi|C) the feature
model for Fi given class C, Fi ∈ F .

In our application, three different NBCs are built to classify the three types of

functional areas separately, denoted as p(eij|F ), p(cij|F ) and p(sij|F ).We use the

similar set of features F for the three NBCs, with different feature models. The

set of features used here include “path property” Fppij , “moving direction” Fdij ,

“direction variance” Fdvij , and “position” Fpij . Fij = {Fppij , Fdij , Fdvij , Fpij}.

• Fppij is a binary feature, which is actually the classification result p̂ij from the

coarse-level “path” classification. The feature model p(Fppij |C) is designed

to carry the idea that if a place is not pedestrian path, it is not likely to be

some functional area.

• Fdij is about the angle of pedestrian moving direction. θ̄ij in Aij is chosen as

its value. This feature carries the typical motion information at each grid,

which is highly related to its semantic meaning.

• Fdvij is about the uncertainty of the learned pedestrian moving angle. σ2
θij

is

chosen as its value. The bigger Fdvij is, the more unreliable is the calculated
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moving direction Fdij .

• Fpij is about a place’s relative position to the road network. This feature is

introduced with the idea that the functional semantics of a certain place is

actually related to its position on the road.

Using the maps generated previously for the road network, i.e. the binary grid

map and topo-metric map, the maps are used to obtain the prerequisite positional

information for the following semantic reasoning process. To give some examples,

road boundary can be obtained based on the binary grid map and the direction of

a road link can be obtained using a topo-metric map.

Entrance/Exits p(eij|F )

The knowledge of pedestrian entrances and exits in a road network is of vital

importance and can help an autonomous vehicle’s safe navigation. Pedestrians’

entrance/exits are defined where pedestrians enter onto or depart from the road.

Using bidirectional property, we can assume that the same pathway is used for

entrance as well as exit in a single spatial region. Based on the feature set Fij. The

feature models are built as below.

i) p(Fppij |eij): The entrance/exits (EE) are functional areas of pedestrians, which

should only appear on pedestrian path. If an area is “EE”, it should be “PP”. The

infinitesimal ǫ is to avoid degenerate cases. If an area is “non-EE”, its possibility

to be a “PP” is denoted as kee, which is approximated by the ratio of extracted

“PP” area over the road surface region. It should be mentioned that the same

feature models are chosen for the other two semantic properties cij and sij, except

that different parameters kcr and ksw are used for kee.

p(Fppij = PP |eij = EE) =1.0− ǫ;

p(Fppij = non-PP |eij = EE) =ǫ;

p(Fppij = PP |eij = non-EE) =kee;

p(Fppij = non-PP |eij = non-EE) =1.0− kee;

ii) p(Fdij |eij): When a pedestrian enters or leaves a road link, its moving direction
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6.1. Gaussian Process for Pedestrian Modeling

is usually perpendicular to the road direction. This basic idea is reflected in the

feature model, where Fdij is the pedestrian moving direction, rdij is the direction

of the nearest road link calculated from its spline representation, and ∆(, ) is the

function to find the right angle between two these two directions.

p(Fdij |eij = EE) =
4

π
∆(Fdij , rdij);

p(Fdij |eij = non-EE) =
2

π
;

iii) p(Fdvij |eij): The feature of angle variance is used to carry the uncertainty of

moving direction estimation. This feature model is the same for other two NBCs.

p(Fdvij |eij = EE) =
2(maxi,j Fdvij − Fdvij)

(maxi,j Fdvij −mini,j Fdvij)
2

p(Fdvij |eij = non-EE) =
1.0

maxi,j Fdvij −mini,j Fdvij

iv) p(Fpij |eij): Pedestrian entrances/exits should appear nearby the road boundary.

Fpij denotes a place’s distance to the boundary of road, EEr is a fixed parameter

to control the probability. For an area that is “non-EE”, the probability density

function of Fpij is assumed to be a uniform distribution over [0,
road widthij

2.0
].

p(Fpij |eij = EE) =1.0− Fpij
EEr

p(Fpij |eij = non-EE) =
2.0

road widthij

With the Naive Bayes Classifier, we can get the “EE” probability of a place. The

place with p(eij = EE|F) > 0.5 is classified as an EE grid. However, these results

are in the format of individual grids, we want to further cluster them into individual

EE objects. Gaussian Mixture Model (GMM) is used for the clustering purpose,

with which EE grids of places are clustered as EE objects. Each EE object corre-

sponds to a 2D position in the map. Bayes Information Criteria is used to select the

best cluster number. After the clustering, a set of EE objects ξξ = {EE1, . . . ,EEn}
is obtained.
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Crossing p(cij|F )

A pedestrian crossing is where pedestrians move across the road. A “crossing”

place should be part of the pedestrian “path”. From the activity view, pedestrian

moving direction should be perpendicular to the road direction. From the position

view, the sum of the distances to its two nearest entrance/exits should be around

road width. With these ideas, the feature models can be built. With the NBC,

we are able to learn a place’s semantic property of “crossing”. While we can get

the classification results directly from NBC, the results may not be smooth in

neighboring areas. In our application, we treat a place’s probability of “crossing”

as a feature, and input into our MRF framework, to generate better classification

results.

Sidewalk p(sij|F )

A sidewalk is a place where pedestrians walk alongside the road. It should appear

near the road boundary, and pedestrian moving direction should be parallel to the

road direction. Given these ideas, the feature models of p(sij|F ) can be built. To

generate smooth classification results, MRF is used to generate more homogeneous

results for sij, as for cij discussed previously.

6.1.8 Experiment Results

Fig. 6.4 visualizes the results of moving track clustering, where cluster A and

cluster B are colored in blue and green respectively, and red dots are their end

points. Tracks in cluster A generally move from right to left, up to down, where

tracks in cluster B takes the opposite direction. The clustering results are checked

manually and no errors are found.

Given the results from the track classification and clustering, we try to learn

the activity model using Gaussian Process. As discussed in Section 3.3, we only

need to learn the activity model in one direction. In this experiment, we learn

the activity model in the direction of cluster A. Fig. 6.5 illustrates the pedestrian

moving direction θ̄ij of the learned activity model. The direction values are shown

by red arrows, which is overlaid onto the satellite image for visualization. We can

have a glance of the pedestrian motion flow in the environment from this figure.
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Figure 6.4: Track clustering results

(a) Clustering results at A (b) Clustering
results at B

Figure 6.5: Moving direction of activity model

(a) Pedestrian activity at A (b) Pedestrian ac-
tivity at B

Activity-based Semantic Mapping

Together with the road network information, semantic mapping can be performed.

Tab. 6.1 shows the mapping results for each of the 4 predefined semantic properties:

pedestrian path, entrance/exit, crossing and sidewalk.

For the pedestrian path property, “pedestrian intensity” shows the normalized

frequency of pedestrian appearance. The white line exhibit a smoothed gradient,

this shows the effectiveness of the normalization factor although incomplete pedes-

trian tracks appear during data collection. The classification results from MRF

successfully retrieve complete path with no false positives.

For the entrance/exit property, the output probability of NBC is shown in the

row labeled as “EE probability”. Since the classification results obtained from NBC

are made up of individual “EE grids”, GMM is used to cluster these grids. “EE

objects” shows the clustering results labeled with different colors. The clusters are

selected automatically with Bayes Information Criteria, which successfully extract

7 entrances/exits in both Area A and Area B, which corresponds exactly to the

ground truth.

For the crossing property, we are able to recognize the crossing area in Area B.

However, some grids in Area A where no crossing exists are misclassified as “cross-
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Table 6.1: Mapping results for semantic properties of the four types
Area A Area B

Pedestrian intensity

Path classification

EE probabiliy

EE objects

CR probability

CR classification

SW probability

SW classification

ing”. The accuracy for the classification result is 80.3% which can be improved by

further filtering out those small pieces of areas according to their size.

For the sidewalk property, we recognize a long sidewalk in Area A, which has

several disconnected pieces at the right end, as shown in “SW classification”. Ac-

cording to our definition of pedestrian sidewalk, these disconnected pieces indeed

have “sidewalk” property.

In summary, our activity-based semantic mapping corresponds well to real en-

vironment, where all of the predefined semantic properties are mapped well in our

two survey areas.
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Figure 6.6: Pedestrian avoidance scenario

6.2 Motion Planning with POMDP

In previous section, we show that information about pedestrian tracks can be ex-

tracted as an activity map with its semantics information. In this section, an

application where the semantic information obtained is used for pedestrian avoid-

ance is presented.

In order to have a more principled way to handle pedestrian avoidance, an ap-

proach to integrate pedestrian intentions into motion planning for autonomous ve-

hicle has been proposed [111]. We argue that in many cases, traditional approaches

of proximity based reactive avoidance, or picking the most likely pedestrian inten-

tion failed to generate a safe and successful avoidance.

The solution in predicting the intention of the pedestrian is formulated as a

Partial Observable Markov Decision Process (POMDP). In the formulation, the

assumptions of finite number of pedestrian intentions, known environment and

pedestrian models are used. More formally, for a known environment ω and known

possible pedestrian goal location{gk} in ω, find an optimal policy Π, to minimize

the time taken for robot R to reach its goal Rg in the presence of multiple pedestrian

pi moving towards Gi ∈ {gk} where Gi is unknown to the robot.

We formulate the avoidance of pi by discrete Mixed Observability Markov De-

cision Process (MOMDP), Mi : (X, Y,A,O, Z, TX , TY , R, γ). Where X is the ob-

served state variables (The robot’s state: location xr, velocity, vr and pedestrians

state: xi). Y is the unobserved state (The pedestrian’s intention), A is the robot

actions (cruise, accelerate, decelerate), O is the set of all possible observations, Z

the observation function, R the reward function and γ the discount factor. The
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6.2. Motion Planning with POMDP

(a) Avoidance for a single pedestrian (on-board camera picture
merged at different times to show the evolution of the belief)

(b) Avoiding multiple pedestrians. (goals reordered and labeled dif-
ferently than (a)). Each pedestrian generates a avoidance MOMDP
and the beliefs are shown based on asynchronous set of observation
history for each pedestrian.

Figure 6.7: Pedestrian crossing experiment

transition function Tx and Ty each gives the transition of the observed variables

from current state to future state upon taking an action a and transition of the

pedestrian intentions Gi. Tx incorporates the pedestrian and the robots motion

models, in which we assume the motion of the pedestrian to follow a trajectory to-

wards its intended goal in a shortest possible path, similar to [112]. Finally, policy

is obtained by applying SARSOP [113], a leading point-based approximation algo-

rithm into our model. To handle multiple pedestrian, we threat each pedestrian

independently and combine the actions in a conservative manner.

We tested the algorithm on a real pedestrian crossing in NUS campus. To

perform the experiment, the vehicle is required to navigate through a pedestrian
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crossing autonomously while running the proposed motion planner. In this section

of the road, the vehicle not only needs to detect the pedestrians and their intentions

on the pedestrian crossing but also deal with jay walkers, a common phenomena

in a campus environment. Fig. 6.7(a) shows the robot interacting with such a

pedestrian. There are 3 sections in the figure. The section on the top left shows the

on-board camera view, bottom left shows the evolution of belief over pedestrian’s

goal as the pedestrian moves towards its intended goal, with the color of each line

encodes the goal index. Also shown in the same section is the commanded speed.

The right section shows the simplified environment representation used for solving

the policy. The green box represent the location of the robot and orange curve

shows the pedestrian track.

When a pedestrian is detected, initial belief over the goals are equal. At this

moment, the robot stops due to high initial uncertainty. As the robot continues

to observe the pedestrian’s intention, the belief values over G1 and G2 increase

while G0 and G3 drop. This reflects the pedestrian wants to move towards the

other side of the road. Slowly the belief over G1 grows stronger as the pedestrian

starts moving diagonally. The vehicle starts moving as soon as the belief over G1 is

sufficiently large. Fig. 6.7(b) shows the vehicle responding to multiple pedestrians.

The formulation of the problem allows us to elegantly handle multiple pedes-

trian without the need to encode the desired behavior of the robots explicitly.

Given the suitable model of the pedestrian and the right assumption of observabil-

ity, real life experiments shown that it can handle multiple pedestrians robustly.

Even though the approach was presented for pedestrians on the road, such an ap-

proach could also be used to identify intention of other drivers on the road. With

proper adaptation and generalization, the same approach can be implemented in

an unstructured indoor environment.

6.3 Summary

Activity mapping tries to recognize motion patterns within a region of a known

map. In this work, we used combination of LIDAR and camera mounted on a

moving vehicles to model pedestrians activity. We assumed a bidirectional property
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to solve the problem, where the recorded pedestrian tracks are first clustered into 2

main groups to obtain pedestrian activity distribution through a Gaussian Process

Regression Model. We show that the activity map can be used to learn semantic

properties of a map.

The semantic property is used to perform pedestrian avoidance with POMDP.

In this work, intention of the pedestrian is formulated with known goals. Exper-

iment shows that the approach can handle single and multiple pedestrian in real

time.
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Chapter 7

Conclusion

A map is the key enabler for autonomous navigation in an urban environment. In

this thesis, we discussed how to build a map using minimal, self contained sensors

using LIDAR and vehicle’s odometry. We started the discussion showing how a

single LIDAR can be augmented into curb and intersection virtual sensors. Later,

the same approach is generalized by introducing the construction of a synthetic LI-

DAR. The synthetic LIDAR, with its full 3D point cloud modeling, has been shown

to be able to produce expressive feature points under different urban environments.

Using full 3D perception, one could perform road surface and boundary detection

without using strong assumption. By processing 3D point clouds obtained from an

optimized map, temporal relationship between adjacent scans are used implicitly.

This way it is more robust to noise as features of each point will incorporate the

information from their neighboring points too.

Using synthetic LIDAR, we show how a map can be constructed in a consistent

manner at different places. To perform mapping we collected dataset that consist

of raw sensor data from LIDAR, IMU and encoders. In all the dataset, an instru-

mented vehicle is driven manually through the region, then the collected data is

used to create the map. The instrumented vehicle has to be driven around this new

environment first to create a map. Then the map is used to perform navigation.

The data structure of a map is designed in the same way on how the graph is con-

structed. Since each node in the graph correspond to a single LIDAR scan, a single

node in the graph contains data of the raw LIDAR, the processed synthetic LIDAR,

and the odometry measurement. The map also maintain a list of nodes that are
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connected through loop closure. A pose graph, which represent the map is sensi-

tive to a wrong loop closure. A single false closure will render a map useless with

inconsistent representation of the real environment. We alleviate these limitations

by avoiding a wrong loop closure in the first place. By performing scan matching

verification, only matching results that are consistent is added to the graph. This

ensures a consistent graph. Under the circumstances where wrong loop closure is

added, large difference in the residual from the results of optimization is used to

remove the loop closure, thereby recovering a consistent map.

With a map, localization can be performed. We show how virtual sensors, curb

and intersection sensors can be used to perform autonomous navigation given a

known map. The same can be said when performing localization using synthetic

LIDAR. With this approach, we are able to achieve higher precision while using

only one LIDAR. The map can also be used for other applications. We show how

the map can be processed to extract accurate road surface information. This road

surface information is then used to automatically produce a topo-metric graph. In

this format, both the road network connectivity and its metric information (road

width and intersection covering area) are captured automatically.

Lastly, semantic mapping method based on pedestrian activity patterns in the

urban road environment is presented. By associating activity information with the

road networks, different functional areas corresponding to certain types of activities

can be inferred. This is an example of how 3 different dimensions of a map: metric,

semantic and activity are jointly correlated. Hence, different kinds of information

can be extracted that describe a specific function in one specific area in a map.

7.1 Contributions

In this thesis, mapping in urban environment for autonomous vehicle is discussed.

The use of one LIDAR in a push-broom configuration shows the potential of using

single planar sensor. The idea of using minimal sensor allows one to focus on what

kind of information could be used to produce a robust solution. We thus propose

using curbs and intersections as virtual sensors. Synthetic LIDAR make use of

the full potential of a single LIDAR by using rolling window to reconstruct the
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environment. Since we require a real time performance while at the same time

workable in almost any kind of urban environment, we found that vertical surface

as the feature descriptor works very well.

The mapping framework is tested in many different types of environment, e.g.

campus, major road network near train stations, parks and gardens. To ensure a

good match between 2 synthetic LIDAR, Extended Correlative Scan Matching is

developed that performs matching using features available from a point measure-

ment. Acceleration through GPU is worth noting that when it is used correctly,

it can produce a tremendous boost on the performance, as evidenced from Section

4.1. For automatic graph construction, Monte Carlo based loop closure detection

is designed that efficiently close the loop when building a pose graph.

By exploiting the unique geometrical structure of road boundary, localization

based on curbs and intersections allowed vehicle to autonomously navigate through

hilly part of the NUS engineering road. Synthetic LIDAR further expand the usage

on allowing localization to be performed under different kinds of urban environ-

ment more accurately. The topo-metric graph mapping includes both topology and

metric information of the map that is done using a ground vehicle. This allows

automatic generation of the road topological from a map, which gives a compact

description of the mapping region.

Activity mapping is shown to be effective with data collected from a moving

vehicle. To obtain the semantic information of a map, activity and road network

data are used. These extracted data can be used to aid autonomous navigation.

We showed an example on how we can perform path planning using POMDP by

knowing before hand a pedestrian crossing is presented in the map.

The list of publications resulted from this thesis’s work is included in Appendix

A.

7.2 Limitation and Future Work

Map applications Localization is the direct application to the mapped data.

Thanks to the consistent map, localization in a known environment can be done

precisely. For the moment we rely on the geometrical features of an environment
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which works very well. Part of the future work is to include texture information

available from the intensity value of a LIDAR. This can be further extended by

combining RGB color pixels.

The reliance on odometry while building the rolling window can be a problem.

Although most of the errors are compensated through loop closure, the failure to

recognize a closed loop or errors in localization can occur with a very poor odometry

estimates. This can be avoided through online calibration that always maintain

accurate extrinsic calibration on all sensors mounted on a moving vehicle.

Long term mapping

The mechanics of map updates can be further developed to always ensure an

always up-to-date map. This should include all types of the map discussed in the

thesis: static, topo-metric, activity and semantic map. One specific improvement,

for example, is the map should learn about places where changes occur consistently.

Parking lots for instance, changes throughout a day where an empty lot can become

occupied and vice versa.

The topo-metric map can be expanded to include detailed path that automat-

ically provides specific lane information that can inform an autonomous vehicle

exactly where a nominal path is. Other semantic information, for example a traffic

light equipped intersection, an upcoming tight bend should be used collectively to

define an autonomous vehicle’s navigation behavior.
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Appendix A

Vehicle Platform

Our autonomous vehicle fleet consist of Rudolph, Driverless Jockey (DJ), and

Shared Computer-Operated Transport (SCOT). To evaluate different scenario in

urban environment, different classes of vehicles are used. Rudolph and DJ can

traverse alongside pedestrian with its relative low speed, making it suitable for use

in indoor pedestrian environments. This type of vehicles have been used in airports

to help passengers who needed an urgent transfer to make connection flights. It

is also being used in amusement parks, where it is used to transport visitors to

different areas of a park. On the other hand, a roadworthy car is suitable for use

to travel road networks at a higher speed, covering a larger area in shorter time.

A.1 Golf Carts

The instrumented golf carts, Rudolph (Fig. A.1) and DJ (Fig. A.2) are based on

a Yamaha G-Max 48 Volt Golf Car G22E. It has a seating capacity of 2 persons

with maximum forward speed of 24 km/h. To enable drive by wire for computer

control, a servo is attached to the golf cart’s steering column. Similarly, a motor is

fitted near the brake pedal to actuate the brake mechanically. On the other hand,

the throttle signal is voltage regulated that completes the control of the vehicle’s

speed and directional controls.

Both rear wheels of the golf carts are mounted with encoders that provide an

estimate of the distance traveled. This is evident on Rudolph, where the encoders

are mounted externally. It is later redesigned to place the encoders directly to
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A.1. Golf Carts

Figure A.1: First instrumented golf cart - Rudolph

Figure A.2: Second generation golf cart - DJ
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A.2. SCOT

Figure A.3: SCOT

the wheel shaft, resulting a cleaner look. An Inertial Measurement Unit (IMU)

is mounted at the center of the rear axle to provide attitude and heading of the

vehicle.

For external sensing, 2 LIDARs are mounted at the frontal part of the golf cart

at different heights. The LIDARs, a Sick LMS151 is a single plane LIDAR with 50

m range measurements with a 270 degree field of view. Both LIDARs are connected

using on-board Local Area Networks, which enable high speed connection to the

LIDARs. The LIDAR is able to provide measurements at 0.5 degree of resolution

running at 50 Hz. The top LIDAR is mounted in push broom configuration and

the second LIDAR is mounted looking forward horizontally.

There are 2 regular desktop PCs fitted with Intel i7 quad-core CPUs and in-

terface cards, along with supporting electronic circuits, this includes DC-DC con-

verters and microcontrollers.

A.2 SCOT

SCOT (Fig. A.3) is based on an electric car (the Mitsubishi’s iMiev). The iMiev is

a five door hatchback electric car. The car is fitted with a strap on kit from Kairos

Autonomi [114] to allow computer control on steering, brake, throttle and gears.

The sensor configuration is similar to a golf cart. 2 LIDARs are mounted at the
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A.3. Coordinate Systems

car’s front. Similarly, an IMU is positioned at the center of the rear axles, mounted

underneath the back seat with 2 mini-ITX PCs located at the trunk space of the

car. There are no external encoder mounted, as the same information of distance

traveled is available through the CAN-bus of iMiev.

A.3 Coordinate Systems

East-North-Up (ENU) coordinate system is adopted on all vehicles. Its origin and

axes are given as follows:

1. The origin is located at the center of rear axle attached to the ground

2. The X-axis points forward, along the symmetry plane of the vehicle

3. The Y-axis points to the left side of the vehicle

4. The Z-axis completes the right-hand rule points upwards from the ground

A.4 Euler Angles

A relative orientation between any two Cartesian frames can be described by Euler

Angles. In this thesis, Z-Y-X rotation sequence is adopted to move a child frame

to a parent frame. These three rotations are known as yaw, pitch and roll angles,

which is defined as the following:

1. Yaw Angle, denoted by ψ, is the right-handed rotation about the Z-axis. It

is the projection of the X-axis from one frame to another on the X-Y plane.

It is sometime referred to as the heading of the vehicle.

2. Pitch Angle, denoted by θ, is the projection of the Y-axis to the referred

frame on the Z-X plane. It is the right-handed rotation about the Y-axis.

3. Roll Angle, denoted by φ, is the right-handed rotation about the X-axis. It

is the projection of the Z-axis on the Y-Z plane.
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A.5. System Architecture

Figure A.4: System architecture for our autonomous vehicles. Only the orange
section may vary for each vehicle type.

A.5 System Architecture

The system architecture is common to all vehicles in the fleet, shown in Fig. A.4.

Note that only some portion of the internal sensors and vehicle controls (shown in

orange) may vary between vehicles, thus those portions of the software is unique

to different type of vehicles. The external sensors and bulk of the software would

be maintained; this includes all high-level algorithms, such sensor data fusion and

localization [115], mapping [116], and motion planning with RRT* [117] in our case.

The Robot Operating System (ROS) is employed to standardize communication

across modules [118].

A.6 Odometry

Odometry gives an estimate on the state of the vehicle. In the platform, dead

reckoning derived from the encoders and IMU is used. Using a unicycle model, the

2D state estimation is given by
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A.6. Odometry

xk+1 = xk + d cosΨ

yk+1 = yk + d sinΨ

ψk+1 = ψk +Ψ

Where d is the distance travel and Ψ is the difference in yaw angle. Usually, this

2D information is enough to handle state estimation along a relatively flat ground.

However, it is not sufficient when traveling on a hilly surface. In this case, another

measurement θ is included to perform estimation in 3D. As such, equation above

can be expanded into pseudo 3D state estimation, given by

xk+1 = xk + d cosΨ cos θ

yk+1 = yk + d sinΨ sin θ

zk+1 = z − d sin θ

ψk+1 = ψk +Ψ

where θ is the pitch angle as measured by the IMU. The estimation, although

accurate within a short distance, the error on the estimation increases as the vehicle

traveling in longer distance. This can be attributed by many factors, for example

unequal wheel diameters, tire slippage and the error increments of the yaw estimate

from IMU.
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