48 research outputs found

    Comparison of different cue-based swarm aggregation strategies

    Get PDF
    In this paper, we compare different aggregation strategies for cue-based aggregation with a mobile robot swarm. We used a sound source as the cue in the environment and performed real robot and simulation based experiments. We compared the performance of two proposed aggregation algorithms we called as the vector averaging and naïve with the state-of-the-art cue-based aggregation strategy BEECLUST. We showed that the proposed strategies outperform BEECLUST method. We also illustrated the feasibility of the method in the presence of noise. The results showed that the vector averaging algorithm is more robust to noise when compared to the naïve method

    Power-law distribution of long-term experimental data in swarm robotics

    Get PDF
    Bio-inspired aggregation is one of the most fundamental behaviours that has been studied in swarm robotic for more than two decades. Biology revealed that the environmental characteristics are very important factors in aggregation of social insects and other animals. In this paper, we study the effects of different environmental factors such as size and texture of aggregation cues using real robots. In addition, we propose a mathematical model to predict the behaviour of the aggregation during an experiment

    A study of the Beeclust algorithm for robot swarm aggregation

    Get PDF
    Swarm robotics is a topic that has gained momentum in recent years thanks to its possibility to solve different engineering problems. Many robots are expected to work collaboratively to solve a given task. One of the main challenges is the design of the robot controller since it must be defined at the robot level to accomplish a task at the swarm level. The characteristics and properties of natural swarms have been studied to solve this problem. From these studies, basic behaviors have been defined, one of them being aggregation. This work explores the classical aggregation algorithm known as Beeclust. The Beeclust algorithm was implemented in MATLAB. Test were performed to determine its effectiveness in forming aggregates and the factors that affect its efficiency. © 2022 IEEE

    Development of a bio-inspired vision system for mobile micro-robots

    Get PDF
    In this paper, we present a new bio-inspired vision system for mobile micro-robots. The processing method takes inspiration from vision of locusts in detecting the fast approaching objects. Research suggested that locusts use wide field visual neuron called the lobula giant movement detector to respond to imminent collisions. We employed the locusts' vision mechanism to motion control of a mobile robot. The selected image processing method is implemented on a developed extension module using a low-cost and fast ARM processor. The vision module is placed on top of a micro-robot to control its trajectory and to avoid obstacles. The observed results from several performed experiments demonstrated that the developed extension module and the inspired vision system are feasible to employ as a vision module for obstacle avoidance and motion control

    Colias-Φ: an autonomous micro robot for artificial pheromone communication

    Get PDF
    Ants pheromone communication is an efficient mechanism which took inspiration from nature. It has been used in various artificial intelligence and multi robotics researches. This paper presents the development of an autonomous micro robot to be used in swarm robotic researches especially in pheromone based communication systems. The robot is an extended version of Colias micro robot with capability of decoding and following artificial pheromone trails. We utilize a low-cost experimental setup to implement pheromone-based scenarios using a flat LCD screen and a USB camera. The results of the performed experiments with group of robots demonstrated the feasibility of Colias-Φ to be used in pheromone based experiments

    Self-Organised Swarm Flocking with Deep Reinforcement Learning

    Get PDF
    corecore