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Abstract—Optimising a set of parameters for swarm flocking
is a tedious task as it requires hand-tuning of the parameters.
In this paper, we developed a self-organised flocking mechanism
with a swarm of homogeneous robots. The proposed mechanism
used deep reinforcement learning to teach the swarm to perform
the flocking in a continuous state and action space. Collective
motion was represented by a self-organising dynamic model
that is based on linear spring-like forces between self-propelled
particles in an active crystal. We tuned the inverse rotational
and translational damping coefficients of the dynamic model
for swarm populations of N ∈ {25, 100} robots. We study the
application of reinforcement learning in a centralised multi-agent
approach, where we have a global state space matrix that is
accessible by actor and critic networks. Furthermore, we showed
that our method could train the system to flock regardless of the
sparsity of the swarm population, which is a significant result.

Index Terms—Swarm Robotics, Reinforcement Learning, Self-
organised Flocking, Multi-agent Learning.

I. INTRODUCTION

Swarm robotics is the study of coordination control in a
large number of simple robots using collective mechanisms
that are mainly inspired by nature [1]. Many bio-inspired
swarm behaviours have been successfully implemented by
robotic swarms, e.g. aggregation [2], flocking [3], explo-
ration [4], etc. Flocking is one of the important swarm
behaviours that took inspiration from the collective motion of
social animals [5]. There are many real-world applications for
flocking, e.g. underwater exploration [6] and formation control
in autonomous cars [7].

One of the first works in flocking was proposed by
Reynolds [8], who defined three behaviours that are important
for a swarm of agents to form a flock. Reynolds termed these
behaviours as collision avoidance, velocity matching, and flock
centering, and demonstrated that flocking can be achieved if
each individual has access to the range and orientation of their
respective local neighbours. Reynolds’ boids simulation was
inspired by the mathematical model proposed by Vicsek et
al. [9] to describe the phenomena of collective motion from
a physics point of view. They modeled swarm flocking in
the presence of perturbations and reported a kinetic phase
transition from ’disordered to ordered’ as the number of
perturbations were decreased. Further, Toner and Tu [10]
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developed theoretical work in flocking from thermodynamics
and control points of view. The aforementioned studies were
the first works in the field and led to the emergence of other
works that relied on effective information exchange between
agents.

One such work was [11], which introduced the self-
propelled collective motion (CM) mechanism, termed as Ac-
tive Elastic Sheet (AES), that is based on a two-dimensional
active crystal. Agents are coupled by linear attraction-
repulsion forces, where each agent’s force is a linear com-
bination of the elastic forces that exist between the agent and
its set of neighbours. Another study [12] proposed a modified
version of the CM mechanism introduced by [11] that was
based on spring-like forces between particles that lead to self-
organisation of a group of individuals. This method relied on
the exchange of relative positions, but not the relative headings
between robots.

There are a few challenges in implementing swarm flocking
one of which is the requirement of manual tuning of the
parameters to their optimal values. This study aims to address
this challenge by proposing an automatic tuning of flocking
parameters.

In this paper, we proposed a novel flocking mechanism with
combination of bio-inspired collective motion and reinforce-
ment learning. The proposed method is based on convolutional
Deep Deterministic Policy Gradient (DDPG) algorithm. We
chose the elastic model proposed by [12] because their
work relied on the relative exchange of positions instead
of headings. To the best of our knowledge, this is the first
work to study the application of reinforcement learning on an
elasticity-based collective motion dynamic model. We trained
the model in a particle simulator and showed that DRL
can be used to train a group of robots to achieve flocking
successfully whilst eliminating the tedious task of hand-tuning
CM parameters.

II. MULTI-AGENT REINFORCEMENT LEARNING

With advances in deep learning, Mnih et al. [13] proposed
a deep-Q network for an agent that approximates state-
value function in continuous state spaces by taking in high-
dimensional sensory inputs and outputting low-dimensional
discrete actions for the agent. Their formulation combined
reinforcement learning theory with deep learning to select
actions that maximise the approximated optimal policy using a



loss function. Extensions of DQN-based algorithms have been
shown to work on enormous action spaces well, as proposed
in [14] and [15]. Learned policies can be in the form of
stochastic, or deterministic actions. Stochastic policies sample
probability distribution to output an action as a = P [s|a; θ],
where deterministic policies output an action a = µ(s), which
is always deterministic. In [16], David et al. showed that
deterministic policies exist and can be learned more efficiently
than stochastic policy gradients. Following this idea, [17]
proposed DDPG that combined the policy gradient method
proposed in [16], with the DQN approach proposed in [13].
Hence, we propose our DRL setting with DDPG as it is
designed for continuous action spaces, which satisfies the
requirements of our problem formulation.

Multi-agent reinforcement learning for cooperative swarm
intelligence is a difficult task, mainly because each agent has
partial access to the global state of the swarm, and also due to
the curse of dimensionality for a large number of agents in a
swarm. Hüttenrauch et al. [18] explored the incorporation of
actor-critic approach, where critic has access to the swarm’s
global state, but actors are based on the locally observed
sensory data. They used a variant of DDPG for the simulation
of 2D robots. However, their method was decentralised and
did not explore the applicability of a centralised application
of reinforcement learning to a biologically inspired dynamic
model. In [19], further use of mean embedding distributions
was introduced, where each agent is considered a sample. They
studied global and local cases with a communication protocol
proposed for the local case in pursuit evasion and rendezvous
problems in swarm systems. In a followup study [20], they
proposed a leader-follower mechanism by using inverse RL to
recover unknown reward functions in a flock of birds.

III. COLLECTIVE MOTION

In this study, we used Active Elastic Sheet (AES), a
dynamic model, to define our flocking mechanism [11]. AES
is inspired by nature and provides interaction between agents
in an attraction-repulsion manner by having spring-like forces
between neighbours, without the exchange of orientation
information. This is a true reflection of nature; a flock of birds
does not have access to their neighbours orientation.

A. Active Elastic Sheet Dynamics

Active elastic sheet (AES) consists of a force for each robot
that influences the linear and angular velocities of each robot in
the flock. It consists of summation over the linear spring-like
interactions between each robot and its neighbours to compute
the new linear and angular velocities of the robot, with noise
added. A more detailed explanation of the mechanics of AES
can be found in [12].

Individual linear and rotational velocities are given as,

ẋi(t) =

(
v0(t) + α[(fi(t) +Dr ε̂r(t)).n̂i(t)]

)
n̂i(t) , (1)

θ̇i(t) = β{[fi(t) +Dr ε̂r(t)]n̂
⊥
i (t)}+Dθεθ(t) , (2)

where n̂i(t) =
[

cos θi(t)
sin θi(t)

]
is the heading vector and n̂⊥i (t)

is the vector perpendicular to it.
Force vector for the flock can be computed by the summa-

tion of the individual force vectors for each individual i over
its respective neighbours in set S, where j is a member of set
S,

fi(t) =
∑ −k

lij
(‖rij(t)‖ − lij)

rij(t)

‖rij(t)‖
, (3)

where rij(t) = xi(t)−xj(t) is defined as the relative position
vector of neighbour j in frame i, lij is defined as the desired
equilibrium spring length that the model should maintain. We
used the Euler integration method.

As stated above, when the angle between the force and
agent’s heading is approximately 0◦, the dot product is equal to
‖f‖, which results mostly in linear translation. When the angle
between the desired direction and agent’s heading is 90◦, the
dot product results mostly in the rotation of the agent, as this is
equivalent to the dot product of f and n⊥i being closer to ‖f‖.
This means that the more the agent’s orientation is pointing
in the desired direction, the more the linear translation, the
less the rotation. Similarly, the more the vector perpendicular
to the orientation of the agent is pointing in the direction of
the desired movement, the more the rotation and the agent
stays at the same (x, y) positions. Ultimately, this means that
to have a rapid convergence of the CM model, we need to
ensure each agent’s orientation is as close as possible to the
desired direction of motion for each respective agent. This
brings us to the next topic, the degree of alignment, and its
use in optimisation.

B. Degree of Alignment

The degree of alignment for agent i is ψi that is defined
as the dot product of the desired direction movement and the
heading of the agent, which is equal to 1 at maximum.

ψi = | cos γi| =
fi.n̂i

‖fi‖
(4)

Alignment of the entire flock, ψ, can be calculated by the
summation of each individual, and then by averaging the sum,
as shown below:

ψ =
1

N
‖
N∑
i=1

ψi‖ (5)

The degree of alignment for an agent can be 1 at maximum
and 0 at minimum, with 0 indicating no alignment between the
unit force vector and unit heading vector of the agent. For the
fastest rate of convergence, we need the degree of alignment
of the entire flock to be 1, i.e. we need the force vector and
heading vector of each pointing in the same direction to avoid
the individual from rotating. This is because if an agent keeps
rotating it will take a longer time to move in the desired
direction until the dot product of the desired direction and the
heading of the agent equate to 1. Hence, understanding the
influence of the degree of alignment of the flock is important
for the convergence of the algorithm.



Fig. 1. Architecture overview of DDPG with multi-agent learning. Environ-
ment constitutes of N robots, actor produces the action at, which is observed
as st. Critic provides the actor with action gradients.

C. Convergence

Raoufi et al. [12] suggested optimising two objectives for
converging to the solution,

1) To minimise the sum of individual forces in the swarm
2) To maximise the rate of convergence of the solution,

which is achieved when the individuals are aligned with
their respective desired direction of motion at each time
step.

In our study, we use these two objectives to design our
reinforcement learning solution for a self-organised swarm
flocking dynamic system.

IV. SWARM FLOCKING

A. Problem Formulation

Our state-space is a high dimensional continuous vec-
tor space. Thus, our actor and critic networks begin with
convolutional layers in their first few layers. This enables
us to reduce the higher-dimensional state space to a low-
dimensional representation which is useful for combining the
actions with the intermediate layers in the critic.

State: The state-space of a swarm of robots is represented
as a combination of three matrices, where each matrix is
composed of x, y and θ values of each robot in the swarm.
Each agent has a spot in the global state matrix but with pixel
values replaced with pose and orientation of each robot. In our
case, the first channel is x-, the second channel is y-, and the
last channel is θ values of each robot. We implemented two
swarm population cases, with N ∈ {25, 100} robots, where
the former is represented as 5 × 5, and the latter as 10 × 10
grids. Our states are normalised channel-wise to have a mean
of zero and a variance of one to ensure speed up the training
of both networks.

Action: We designed our action space with two scenarios
– individual and collective. Individual action involves each
robot in the swarm having its own set of parameters {k, β, α}
and collective action involves one set of parameters for CM

model that is being shared across the swarm. Hence, for the
collective action case, our action set that is applied to CM is
composed of 3 parameters, corresponding to {k, β, α}. With
the individual-wise action case, each robot has its own set
of {k, β, α} parameters, hence, our actions are a set of 3N
parameters. To ensure the dynamics of the CM converges,
we tune the {k, β, α} parameters, which in turn influences
the heading and force vectors appropriately. These are simply
weights given to the dot product of force and heading vectors.
The last layer of the actor-network is passed through a tanh
layer to ensure symmetry in actions. We found out that when
the {k, β, α} parameters become negative, the flock fails to
converge. Hence, we shift the output of the tanh layer to
ensure values are between 0 and 1. We also tried using
sigmoid, since this is what a sigmoid does, but we obtained
better performance with tanh. Our action space scaling vector
is given as {2.0, 3.0, 0.07}, corresponding to scaling boundary
for {k, β, α}.

Reward: Reward design is composed of the degree of
alignment and the global force for the entire swarm, which
is obtained by summing over the individual forces for each
robot in the swarm, given in Eq. (7). As explained in Section
3, the degree of alignment needs to be maximised, and the
global force is to be minimised. Hence, we formulated a
reward function that is the negated global force function with
a weighted sum of the degree of alignment and the mean of
actor output. We then maximise this reward to ensure that a
swarm of flocking robots is formed, and the rate of formation
is maximised. We incorporated actor-network output in the
design of the reward function because during learning actor
can sometimes output values around zero, which halts efficient
learning. This happens when the actor outputs a zero action,
the gradient of which is then multiplied with the gradient of
the critic to be fed back during backpropagation, which causes
a deadlock in learning, as is explained by the work proposed
in [21]. Hence, our reward function is given in 6 as,

R(Fg, ψ) = −ωFFg + ωψψ + ωa
1

Na

Na∑
j=1

aj , (6)

where Fg is the global force obtained as the norm of the sum
of individual forces of each robot in a swarm of N robots,

Fg =
1

N
‖
N∑
i=1

fi‖ (7)

and ψ is the degree of alignment of the swarm.

B. System Architecture

As shown in Figure 1, the first layers of our actor and critic
networks were composed of convolutional layers, the output
of which was flattened out and fed as input into the three fully
connected layers. For both networks, the first fully connected
layer was composed of 200 neurons, the second layer of 200
neurons, and the third layer of 1 neuron for the critic, which is
the estimated Q-value, and N or 3N for the actor depending
on the scenario being studied. The first five layers had ReLU



Fig. 2. Actor (bottom) and critic (top) network architectures.

as an activation function, with the sixth layer having a linear
activation function. The actions were not fed until the fifth
layer of the network.

We used a filter size of 3 for the first convolution layer and
2 for the following convolution layers. The final action outputs
were then scaled with their respective values. Our system
architecture and parameter selection were chosen empirically,
as it enabled us to explore with various settings for our
experimentation.

C. Weight Initialisation

For the critic network, the weight initialisation for the first 5
layers was drawn from a uniform distribution with a standard
deviation of 1/

√
fan in and mean of zero where fan in is

the number of input neurons from the previous layer. The last
layer was drawn from a uniform distribution with a standard
deviation of 3e−4 and mean zero. For the actor-network, the
weight initialisation for the first 5 layers was drawn from the
uniform distribution with a standard deviation of 1/

√
fan in

and a mean of zero. The last layer was drawn from a uniform
distribution with a standard deviation of 3e−3 and a zero mean.

D. Learning Schedule

We trained for 100000 steps, where each episode had a
duration of 1000 steps. We used momentum optimiser with
stochastic gradient descent for both networks, where network
weights were updated with a learning rate of 0.0001 and
a momentum of 0.3 for both networks. Our minibatch size
was 32. We evaluated the performance of our method with
various alignment and force weights, which highly affect the
convergence.

V. RESULTS & DISCUSSION

We conducted experiments with swarm populations of
N ∈ {25, 100} robots, where a multi-agent problem was
formulated as a single-agent learning problem by composing
sparse reward function as one dense reward function. We used
a natural spring length, lij of 0.2 for each case. This means

the agents should maintain a length of 0.2 when the solution
has converged.

Figure 3 shows the plots generated after training for 100
episodes. It is important to note that the global force in
Figure 3(b) is averaged across the swarm network. This
indicates that the initial starting point of the global force for the
swarm is smaller when the swarm population is small. This is
indicated by the green and blue lines in Figure 3(b). Our results
also showed that the force converges to the global minimum
as it reaches zero over time. Comparing N=100 robots and
N=25 robots cases, we can add that the smaller the swarm,
the faster the convergence of the force, as blue and green lines
converge faster compared to orange and purple. This could be
explained by the sparsity of the reward function in a population
of N=100 robots compared to N=25 robots. The greater the
population size the more sparse the reward function and the
harder to solve the problem.

Next, we analyse the reward function. In Figure 3(a), it
is clear that both swarm populations demonstrated learning
by maximising the reward function. If we look in detail,
we can further see that the convergence for individual cases
was much faster than that of the collective cases, regardless
of the population of the swarm. Even though the collective
case with N=25 robots (green line) starts above the orange
line (collective case with N=100 robots), they both seem to
converge around the same number of episodes. This indicates
that the starting value of the reward has almost no impact on
the rate of finding the solution, which is an interesting topic
for further analysis.

Furthermore, we showed that our Q-value was increasing
during training and approaches to zero as shown in 3(c),
which further proves that the system was learning to form a
collective motion. Once again, blue and purple lines, which
are both individual-wise action spaces, had a much faster Q-
value learning experience compared to the collective version
of their respective populations.

However, neither case leads to reward greater than 0 and
force equal to zero, which could be due to (1) training did not
suffice long enough, (2) team learning simplification inspired
by [22] in the formulation of the reward function did not
suffice to address the credit assignment problem, as the reward
function is very sparse in a swarm population of 100. It can
be seen that the plots for the individual cases are much more
oscillatory than the shared action case. This could be due to
(1) each robot having its own set of action parameters, so the
convergence of the global force function might take longer,
(2) actor-network is much larger due to the last layer of 300
neurons, and so it takes longer to train the network.

Besides, we ran experiments with the weights given in
Eq. (6). We found that the optimal values of weights were in
the range [20, 10] for the global force, 1 for swarm alignment,
and [1, 3] for the actions weights. These weights can be
thought of as priorities given to certain blocks of the system
in the reward function. Increasing too much of alignment
weight leads to an unstable response, as the priority is given
to the alignment of each individual in the swarm, neglecting



Fig. 3. Learning a centralised policy during 100 episodes of training,
(a) presents the maximisation of reward during learning, (b) shows the
convergence of the global force, (c) shows the progression of Q-value during
learning for all cases, and (d) shows the impact of action weight on the
minimisation of force.

the need to decrease the force to its minimum. Similarly,
reducing alignment weight too much led to a very slow
learning experience. This is shown in figure 3(d). Overall,
we believe the tuned parameters should balance both cases.
Lastly, we found that increasing the action weight significantly
improves the rate of convergence. This could be explained
by the fact that the actor-network might get stuck in local
minima during learning and hence might give an output that is
around 0 in centre. This would then halt the learning for some
time until the critic provides non-zero gradients. However,
incorporating the mean of actions in the reward design, enables
us to maximise the mean of actions which in turn forces the
actor to give non-zero output. This significantly improves the
reduction of force function and the rate at which this happens.
However, increasing this weight can cause the force to become
unstable during learning.

VI. CONCLUSION

In this paper, we proposed two different mechanisms for
achieving collective motion in a swarm of homogeneous
robots. By treating the swarm as one agent and using a global
reward, we could then feed in the individual-wise actions
{k, β, α} for each robot, or have the actor-network generate
one set of {k, β, α} which would then be shared across each
agent. We formulated a reward function for our problem and
showed that RL can be effectively used in the optimisation of
the parameters of the CM by i) minimising the global force
which means that a flock is formed and maintained and ii)
maximising the rate of convergence of CM, which means that
each agent is aligned while forming the flock. Furthermore, it
shows that DRL can enable us to tune systems of collective

motions in a way that would not be as easy and as simple
using conventional optimisation algorithms.
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