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Abstract. Bio-inspired aggregation is one of the most fundamental
behaviours that has been studied in swarm robotic for more than two
decades. Biology revealed that the environmental characteristics are very
important factors in aggregation of social insects and other animals. In
this paper, we study the effects of different environmental factors such
as size and texture of aggregation cues using real robots. In addition, we
propose a mathematical model to predict the behaviour of the aggrega-
tion during an experiment.
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1 Introduction

Aggregation is a common phenomenon in social behaviour of animals which can
be observed from microscopic amoeba to insects and other animals [8]. A cue-
based aggregation helps to gather a group of animals at the optimal zones with
following the environmental cue. In swarm robotics [16], aggregation is defined
as gathering of randomly distributed robots into a single aggregate. It is one
of the fundamental behaviours in swarm robotics which helps the robots to get
closer to each other and interact in order to perform other behaviours such as
flocking and collective transport.

BEECLUST aggregation method proposed in [19] is inspired from simple
behaviours in honeybees aggregation. The aggregation method is based on colli-
sions between robots. A gradient light source in the arena is used as the aggre-
gation cue. Each robot moves randomly and stops when it meets another robot.
The waiting time depends on the intensity of the light at the particular loca-
tion where the robot collied. The more the intensity, the longer it waits. After
the waiting time is over, the robot turns randomly and moves forward. Results
of the performed experiments showed that robots are able to aggregate on the
optimal zone where the intensity of the light is the highest. Schmickl et al.
[18] proposed two types of experiments: (i) static experiments in which there
is a single light source and (ii) dynamic experiments in which there are two
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light sources with different intensities. The intensities of the sources are changed
during an experiment. They showed that, robots aggregated on the optimal
zone in static experiments. Whereas, in dynamic experiments, robots are able
to aggregate under the highest intensity source. To improve the performance
of the cue-based aggregation, two modifications on BEECLUST were proposed
in [4]. One is the dynamic velocity in which robots are allowed to select three
different speeds based on intensity of light; higher intensity results in slower
speed. The second modification is the comparative waiting time in which the
waiting time of a robot increases in the presence of the other robots. The results
showed that both methods improve aggregation performance. In addition, the
effects of turning angle has been studied in [6]. In this study, the performance of
two proposed aggregation algorithms – vector averaging and näıve – was com-
pared with BEECLUST. The results showed that the proposed strategies outper-
form BEECLUST method. Fuzzy-based aggregation method has been introduced
in [5]. The results showed that the proposed fuzzy decisioning method improves
the performance of BEECLUST especially in the presence of noise.

In order to analyse a collective behaviour in swarm robotics, macroscopic
modelling is considered to be a more comprehensible approach to analysis
different effective parameters of the behaviour. Stochastic characteristic of
swarm algorithms leads to use a probabilistic modelling to depict the collec-
tive behaviour of the swarm systems [20]. To that end, various models from
macroscopic behaviours of swarms have been proposed in [10,13,14]. The swarm
scenarios are mostly the result of the inter-agent interactions which can be mod-
elled by chemical reaction network model [15]. Macroscopic model of an aggre-
gation behaviour must be able to predict the final distribution of the cluster
[21]. Bayindir and Şahin [7] proposed a macroscopic model for a self-organized
aggregation using probabilistic finite state automata. Schmickl et al. [17] pro-
posed Stock & Flow model to model the macroscopic behaviour of a cue-based
aggregation.

In this paper, we analyse a cue-based aggregation scenario based on the state-
of-the-art BEECLUST method. In particular, we investigate different character-
istics of a cue in the environment (size and texture) to check the influence of the
changes on the swarm performance with a real robot, Colias.

2 Power-Law Distribution

The power-law distribution is a mathematical model that depicts a dynamic and
functional relationship between two variables [9]. This is an important approach
to model performance pattern of a long-term activity in an experiment and can
reveal the reliability of a system. Mathematically, it is said that two quantities
are related by power-law relationship, when one quantity varies as a power of
another one (Eq. 1).

y = αxk , (1)
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where y and x are variables of interest, k is called the power-law exponent, and
α is a constant amplitude. Distributions of the form Eq. 1 are said to follow
a power-law. Power-law is very important because it reveals reliability in the
properties of a system. Therefore, the result we get at one level would be very
similar to the obtained result at former levels. This self-similar property makes
the system predictable. A simple way to test whether an activity follows the
power-low is construct a histogram representing the frequency distribution and
re-plot the data on a log-log scaled graph. Hence, if we take the logarithms of
both sides of Eq. 1, we get log y = k log x + log α. This says that if we have a
power-law relationship, and we plot log y as a function of log x, then we should
see a straight line. Such a plot thus provides a quick way to see if one’s data
exhibits an approximate power-law. Assuming log y = V and log x = U , simply k
and α can be obtained from: V = kU +log α, where k is slope of the straight line
and log α is the value of the intercept when U = 0. Practically, some empirical
phenomena completely comply with power-law for all values. Therefore, we can
hardly ever be certain that an observed quantity is drawn from a power-law
distribution. The most we can say is that our observations are consistent with
a form of probability distribution like Eq. 1. Usually power-law applies only
for values greater than a lower bound. In such cases, we say that the tail of
the distribution follows a power-law. Therefore, a probability distribution that
follows the power-law is possible:

P (x) = Cx−k for x > xmin (2)

Generally, if distribution of variables follows a strict/pure power-law, then:

P (x) =
k − 1
xmin

(
x

xmin

)−k

, (3)

where xmin is the smallest value for which the power-law exist. Assuming xmin =
1 simplifies the distribution form to Eq. 2. We rewrite the power-law for our
purpose as following equation where D(t) is the size of aggregation at time t.

D(t) = α tk (4)

Examining the size of aggregate on our method outputs, parameters α and
k for different experiments are extracted and listed in the results section.

3 Swarm Scenario

We implement a cue-based aggregation scenario with two different configura-
tions: i) effects of different sizes of cue and ii) effects of the cue’s texture on the
performance of the swarm.
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3.1 Aggregation Method

We use BEECLUST method [18] as the aggregation scenario. In BEECLUST,
robots move randomly in the environment. When they detect an object, they
check whether it is an obstacle or another robot. If it is an obstacle, the
robot avoids the obstacle. If not, it stops and waits for a particular amount
of time, w(t), depends on the intensity of the light.

3.2 Size of Cue

In this setup, we study the effects of the different cue sizes on the performance of
the aggregation with the simulated gradient light. We assume Ar = πR2

s is the
area which a robot covers using its sensory system with radius of Rs. Therefore,
the total area which can be covered by radial arrangement of the robots is
Asw = NAr, where N is the number of the robots in an experiment. In this
phase of the experiments, we use three different sizes of cue for each population,
Ac = βNAr, β ∈ {2, 2.5, 3}. Therefore, with an increase in population size we
increase the size of the cue relatively.

3.3 Texture of Cue

In this experiment, we study on effects of two types of cues with different lighting
which are gradient and non-gradient. In the gradient cue, the luminance reduces
gradually from the center to the edge of the cue; however the non-gradient cue
has similar luminance at every part of the cue. We study effects of the texture
on the performance of the aggregation at two fixed sizes of cues, a small cue with
radius of Rc =16 cm and a big cue with radius of Rc =20 cm. We then extract
the model parameters (Eq. 4) from the observed results to investigate the effects
of the different texture of cue on the model.

4 Experiments

4.1 Experimental Setup

We use Colias [2] as the robot platform in our experiments. It is specially
designed for swarm robotics research with a very compact size of 4 cm. Fig.
1(a) shows a Colias robot and its different modules. Two micro DC gearhead
motors each connected to a wheel with diameter of 2.2 cm actuate Colias attain-
ing a maximum speed of 35 cm/s. The rotational speed for each motor is con-
trolled individually using pulse-width modulation [1]. The basic Colias uses only
IR proximity sensors to avoid obstacles as well as the collision with the other
robots [3], and a light sensor to read intensity of the ambient light. Colias is
a modular robot which supports extension modules such as bio-inspired vision
board developed in [11].

We used a horizontally placed 42” LCD flat screen as the ground that the
robots move on as shown in Fig. 1(b). A very useful feature of Colias is the
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Fig. 1. (a) Colias micro robot. (b) Experimental setup.

Fig. 2. Aggregation time in different population sizes at different cue sizes β ∈
{2, 2.5, 3}

light (illuminace) sensor face to the bottom side of the robot which gives an
opportunity to use a LCD screen. In our experiments, all the aggregation cues
are circular light spots with maximum illuminance of 420 lux. We use visual
localisation software [12] to track the robots.

4.2 Results

Aggregation time, Ta, and size of the aggregate, Da, are two metrics used in
this study. Aggregation zone is defined as the area at the cue zone and set the
robots within that area as an aggregated robot. Therefore, the aggregation time
is defined as the time that the aggregate size reaches at 70% of the total number
of robots.

The results of the aggregation at different cue sizes are shown in Fig. 2.
In general, an increase in population size reduces the aggregation time. In the
experiments with the same number of robots, aggregation at a big cue accom-
plishes faster than at a small size cue. It is because of the increase in probability
of the successful collisions which result in a longer resting time for the robot at
the high luminance spots. The reduction in aggregation time also depends on
the population size, which in the big population the reduction is less than the
small populations.

Fig. 3 shows size of the aggregate and the best fitted model. The model
fitting is investigated in three population sizes of minimum, middle and maxi-
mum number of robots (N = {6, 12, 18}). The results show that, the proposed
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Fig. 3. Median of size of the aggregate during aggregation process with different β
values

model meets the captured aggregation size from the experiments with different
populations and sizes of cue.

In case of the different sizes of cue, model parameters are extracted from the
recorded results in different population sizes. In general, for all β, with increasing
the population size, the constant amplitude parameter of the model (α) increases
and the exponent parameter (k) decreases. In similar populations, an increase in
the size of cue, increases α and reduces k. As shown in the extracted parameters,
the changes on environments have clear influence on the model parameters. In
addition, all the results are fitted to the model with high coefficient of determi-
nation (R2 > 0.97).

Table 1. Extracted model parameters for different cue sizes

β = 2 β = 2.5 β = 3
Population α k R2 α k R2 α k R2

6 Robots 0.063 0.714 0.99 0.145 0.580 0.99 0.353 0.447 0.99
12 Robots 0.470 0.547 0.97 0.626 0.505 0.98 0.994 0.431 0.98
18 Robots 3.999 0.288 0.98 5.072 0.249 0.99 6.407 0.203 0.99

Fig. 4. Aggregation time with gradient and non-gradient lights in different population
sizes at (a) a small size cue (with radius of 16 cm) and (b) a big size cue (with radius
of 20 cm)

In the second configuration, we study the effects of different methods of
lighting on swarm performance. Fig. 4 reveals the results of four different
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configurations with different number of robots. As shown in the all experiments,
an increase in number of robots reduces the aggregation time. In addition, it
is observed that, in all runs the non-gradient cue reduces the aggregation time
slightly due to its higher average luminance which resulted in longer resting
time. However, in higher populations (12 and 15 robots) the aggregation time
increased. Since cue has same luminance, in high populations the aggregate
formed nearby the edges hence the way to reach the centre of the cue by other
robots is blocked. However, the swarm performance in the big size cue was less
affected by the phenomenon.

In addition, we modelled the recorded data from aggregation experiment
using Eq. 4 and extracted the model parameters for the different population
sizes in the small size cue. Median of the size of aggregate during an aggregation
process and the predicted model are shown in Fig. 5. We stop the experiments
when the aggregate is formed (t = Ta).

Fig. 5. Median of size of the aggregate in gradient and non-gradient environments

Table 2 shows the model parameters in different populations and the coef-
ficient of determinations for each configuration. All the results are fitted in the
model with high R2 values. The results of the modelling reveal that, an increase
in the population size increases parameter α and reduces parameter k. Moreover,
α and k in a similar population size are different for gradient and non-gradient
cues. In non-gradient cue, α is higher than the gradient cue, however, k is less
than the gradient cue, except in the case of 6 robots which both α and k showed
an opposite behaviour than the higher populations which could be due to lower
population size in a large swarm arena.

The anticipated changes on the model parameters due to the physical changes
on the swarm configuration demonstrate that, the environmental changes can
also be predicted by the proposed model.

5 Conclusion

In this paper we analysed the effects of two environmental factors in a cue-based
aggregation method called BEECLUST. We investigate two metrics, namely,
aggregation time and size of the aggregate and evaluated the performance of
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Table 2. Extracted model parameters for small cue

Gradient light Non-gradient light
Population α k R2 α k R2

6 Robots 0.134 0.576 0.95 0.099 0.641 0.98
9 Robots 0.431 0.479 0.96 0.515 0.449 0.98
12 Robots 0.811 0.460 0.98 1.272 0.372 0.99
15 Robots 3.113 0.289 0.96 3.854 0.249 0.99
18 Robots 4.555 0.253 0.99 5.870 0.198 0.99

the swarm aggregation using real mobile robots. We also modelled the exper-
imental data with the simplified Power-Law distribution. The model parame-
ters were extracted from the results observed from the experiments in different
configurations.
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