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Abstract. In this paper, we compare different aggregation strategies for cue-
based aggregation with a mobile robot swarm. We used a sound source as the cue
in the environment and performed real robot and simulation based experiments.
We compared the performance of two proposed aggregation algorithms we
called as the vector averaging and naı̈ve with the state-of-the-art cue-based
aggregation strategy BEECLUST. We showed that the proposed strategies
outperform BEECLUST method. We also illustrated the feasibility of the method
in the presence of noise. The results showed that the vector averaging algorithm
is more robust to noise when compared to the naı̈ve method.
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1 Introduction

Aggregation is a widely observed phenomenon in social insects and animals such as
cockroaches, honeybees and birds [1]. It provides additional capabilities to animals
such as forming a spore-bearing structure by slime mold or building a nest by termites
[2]. In general, two types of aggregation mechanisms are observed in nature: cue-
based or clueless. In cue-based aggregation, animals follow external cues to identify
optimal zones such as a humid location for sow bugs and then they aggregate on these
zones. Whereas in clueless aggregation, animals aggregate at random locations in an
environment such as aggregation of cockroaches [3]. From swarm robotics perspective
[4], aggregation can be defined as gathering randomly distributed robots to form an
aggregate. Due to limited sensing capabilities of the robots, aggregation turns out be
one of the challenging tasks in swarm robotics.

Many different studies have been performed in cue-based and clueless aggregation
in swarm robotics. We first discuss cue-based aggregation. In one of the earliest studies
on cue-based aggregation, Kube and Zhang [5] proposed an aggregation algorithm in
which robots are required to aggregate around a light box and then push it. Melhuish
et al. [6] proposed an algorithm for aggregation of robots around an infrared (IR)
transmitter. The robots after reaching the IR transmitter start to emit sound resembling
the vocalization of frogs and birds in order to help the other robots to estimate the
size of the aggregate they are in. Honeybee aggregation is another example of cue-
based aggregation method that was studied in [7,8]. In these studies, micro robots were
deployed in a gradually lighted environment to mimic the behavior of honeybees which
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aggregate at a zone that has the optimal temperature. An aggregation algorithm called
BEECLUST that relies on inter-robot collisions was proposed [9]. The aggregation
method has been used and evaluated in several researches [10,11,12]. In another study
[13], two modifications on BEECLUST – dynamic velocity and comparative waiting
time – were applied to increase the performance of aggregation. In addition, a fuzzy-
based reasoning method has been proposed in [14,15] which increases the performance
of the system significantly.

Clueless aggregation mechanism was employed in various studies. Trianni et al.
[16] proposed an aggregation behavior of mobile robots using artificial evolution with
static and dynamic strategies. In static strategy, when robots create an aggregate, they
are not allowed to leave it. However, in the dynamic strategy, robots are allowed to
leave an aggregate with a certain probability depending on the size of the aggregate.
Static strategy resulted in many small compact aggregates, whereas with the dynamic
one robots are able to form a few larger aggregates. Soysal and Şahin [17] proposed
a probabilistic aggregation method using a combination of basic behaviors: obstacle
avoidance, approach, repel, and wait. They studied the effects of various parameters
such as control mechanisms, time, and arena size in performance of the system. This
study was continued by using an evolutionary approach in order to investigate the
various effective parameters in aggregation, such as the number of generations, the
number of simulation steps which are used for fitness evaluations, population size, and
size of arena [18]. Bayrindir and Şahin [19] proposed a macroscopic model to study
the effects of population size and probability of leaving an aggregate on aggregation
performance in a clueless aggregation scenario.

In this paper, different than the previous studies, we compare three different
aggregation mechanisms in a cue-based aggregation scenario. Specifically, we extend
the BEECLUST algorithm and propose two new algorithms which we call as vector
averaging and naı̈ve aggregation algorithms. Through systematic real-robot and
simulation-based experiments, we analyze and compare the performance differences
between those two algorithms and the BEECLUST algorithm.

2 Aggregation Methods

2.1 BEECLUST

BEECLUST aggregation [9] follows a simple algorithm as shown in the Fig. 1. When a
robot detects another robot in the environment, it stops and measures the magnitude of
the ambient audio signal and waits based on this magnitude. The higher the magnitude is
the longer the waiting time (w) becomes. The waiting time is estimated by the following
formula assuming that four microphones are used to detect the ambient audio signal:

w(t) = wmax · Ma(t)
2

Ma(t)2 + μ
, (1)

where Ma(t) =
1
4

∑4
i=1 Mi(t) is the average magnitude of the four microphones, Mi

is the magnitude of signal from the ith microphone ranging from 0 and 255, wmax is
the maximum waiting time, and μ is a parameter which changes the steepness of the
waiting curve. wmax and μ are determined empirically: wmax = 65 sec and μ = 5500.
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Fig. 1. Control diagram of the aggregation

When the waiting time is over, the robot rotates φ degree, which is a random variable
drawn uniformly within [−180◦, 180◦].

2.2 Naı̈ve Method

In the naı̈ve aggregation method, we employ a deterministic decision making
mechanism based on both the intensity and the direction of the sound signal. The
waiting time is still calculated using (1) based on the average intensity (Ma), but in
addition to that, we estimate the direction of the sound source by setting it to the angle
of the sound sensor that has the highest reading. φ = θi, i ∈ {1, 2, 3, 4} and θi is the
angle of the sensor {45◦, 135◦, 225◦, 315◦} with respect to the frontal axis of the robot
having the highest reading.

2.3 Vector Averaging Method

In vector averaging method, the direction information and intensity of the sound source
are utilized. We employ an averaging calculation based on both intensity and direction
of sound signal to estimate φ.

φ = atan2

(∑4
i=1 M̂i sin(βi)

∑4
i=1 M̂i cos(βi)

)

(2)

φ is the estimated angular position of the source speaker, βi is the angular distance
between ith microphone and the robot’s head. M̂i, i ∈ {1, 2, 3, 4} is the captured audio
signal’s intensity levels from microphone i.

3 Experimental Setup

3.1 Robot Platform

AMiR (Autonomous Miniature Robot) as shown in Fig. 2 (a) is an open hardware mobile
robot platform [20]. AMiR is specifically developed for swarm robotics studies. The
robot has two small geared DC motors that make it move with a maximum speed of
8.6 cm

s [21]. Six IR proximity sensors using 60◦ topology is used, which allows AMiR
to scan its surrounding area without turning [22]. AMiR also has an audio extension
module which is composed of four condenser microphones (45◦, 135◦, 225◦, and 315◦)
as shown in Fig. 2 (b).
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Fig. 2. (a) Autonomous Miniature Robot (AMiR) is equipped with an audio extension module
and (b) architecture of developed audio signal processor module

3.2 Simulation Software

In order to test the proposed algorithm in large scale, Player/Stage simulation software
is utilized. We modeled AMiR and its sensors in Player and used Stage as the simulation
platform.

3.3 Experiment Configuration

Real Robot Experiments. In real robot experiments, due to laboratory limitations, a
rectangular arena with a size of 120x80 cm2 is utilized. When compared to the sensing
range of the robots, the arena is approximately two times larger than the total sensing
area of 6 robots. The experiments are performed with different number of robots N ∈
{3, 4, 5, 6}. We placed a sound source at one of the edges of the arena, that plays a
single tone of frequency of approximately 1050 Hz. The sound source serves as the
environmental cue in the experiment. With the current configuration of the arena, the
intensity and waiting times are shown in Fig. 3. Each experiment is repeated 10 times
and at the start of each run, the robots are placed in the arena with random positions and
orientations.

Fig. 3. (a) Intensity of audio signals in the arena and (b) relative waiting time in different positions
of the arena. Dashed arc shows the predefined optimal aggregation zone around the sound source.
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Simulation-Based Experiments. In simulation-based experiments, in order to use
large number of robots N ∈ {5, 10, 15, 20, 25}, we used an arena with a size of
240 × 160 cm2. Similar to the real-robot experiments, the experiments are repeated
10 times and position and orientation of the robots are set randomly at the beginning of
each experiment. We perform two sets of experiments: One set without sensing noise,
the other with sensing noise. In the latter, we add noise to the sound measurements,
which is modeled as a uniformly distributed random variable. For the ith microphone,
the noise is added as Mi = |Mi + σρ| where Mi is sensor reading of ith microphone,
σ ∈ {0.1, 0.3, 0.5} is the noise scaling factor which determines the amount of noise to
be added to the reading and ρ is a random value within [−255,+255].

3.4 Metrics

In this study, we are interested in having fast aggregation around the sound source.
Therefore, we use aggregation time as one of our metrics. In order to calculate
aggregation time, T , we define an aggregation area which is shown with a dashed arc
in Fig. 3. The aggregation time is the duration of an experiment in which the number of
the robots aggregated in the aggregation area reaches 80% of the total robots.

4 Results and Discussion

4.1 Real Robot Experiments

We first performed experiments with real robots. In general, when the number of
robots increases, the aggregation time reduces significantly as shown in Fig. 4a, since
increasing the population size increases the number of collisions eventually causing
faster aggregation. It should be noted that, the reduction rate in the aggregation time is
not the same in the three algorithms. Results show that, vector averaging aggregation is
faster than naı̈ve and BEECLUST.

Fig. 4. Aggregation time as a function of population size for vector averaging, naı̈ve, and
BEECLUST aggregation methods with (a) real robot and (b) simulated robot experiments
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4.2 Simulation-Based Experiments

In these experiments, the aggregation methods are implemented using the simulator.
Fig. 4b shows the aggregation time as a function of population size in vector
averaging, naı̈ve, and BEECLUST methods. Results show that, population size has
a direct impact on the aggregation time. Simulation results also showed that the
vector averaging method performs faster aggregation in comparison with naı̈ve and
BEECLUST owing to more precise estimates φ values after each collision, which
increases the performance of the aggregation. In case of BEECLUST that relies on
random rotation, the aggregation time is longer than the others. Due to random rotations,
robots occasionally move in opposite direction of the sound source, that results in robots
leaving the aggregation zone. Therefore, it increases the aggregation time and number
of collisions.

Fig. 5. Effects of different noise values in different population sizes for vector averaging, naı̈ve
and BEECLUST methods

Although aggregation time decreases with increasing population size, when the
density of swarm reaches a certain value the performance decreases. This is due to
over-crowding effect observed, when the density of robots reaches a certain value [23].
In our current setting, the performance increases up to 25 robots.

The results of the experiments performed with sensing noise is depicted in Fig. 5 .
The rotation angle, φ, for naı̈ve and vector averaging methods relies on the prediction
of the direction of the sound source. However, in BEECLUST method which a random
value is used as the rotation angle, robots do not employ the magnitude of the audio
signal. Hence, only naı̈ve and vector averaging methods are tested against sensing noise.
Results show that the vector averaging algorithm is more robust to noise than naı̈ve
algorithm.

4.3 Statistical Analysis

We statistically analyzed the results of simulated robot experiments with and without
noise using analysis of variance (ANOVA), the F-test method (see Table 1).
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Population size has the highest influence on aggregation time for the vector averaging
method (Fρ = 116.60), which means that increasing the swarm density improves the
performance of the vector averaging method the most. Noise has the least influence
on the vector averaging method (7.327, and 12.39 for the vector averaging and naı̈ve
methods, respectively).

Table 1. Results of F-test in analysis of variance (ANOVA)

Experimental Parameters Aggregation Method
Setup Averaging Naı̈ve BEECLUST
Without Noise Population 116.60 85.51 76.75
With Noise Noise 7.32 12.39 –

Population 34.28 28.43 –

5 Conclusion

In this paper we evaluate three cue-based aggregation methods, namely, vector
averaging, naı̈ve and BEECLUST. The aggregation methods were implemented using
real- and simulated-robots with different population sizes. The results showed that
the proposed vector averaging method improves the performance of the aggregation
significantly. The swarm density has direct impact on the performance of the
aggregation. Hence, an increase in population improves the performance of aggregation
in all three algorithms. In addition to these, results revealed that the additional noise has
less impact on vector averaging method in comparison to the naı̈ve method.
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16. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors
in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.)
ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003)
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