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Abstract—In this paper, we present a new bio-inspired vision 
system for mobile micro-robots. The processing method takes 
inspiration from vision of locusts in detecting the fast 
approaching objects. Research suggested that locusts use wide-
field visual neuron called the lobula giant movement detector to 
respond to imminent collisions. We employed the locusts’ vision 
mechanism to motion control of a mobile robot. The selected 
image processing method is implemented on a developed 
extension module using a low-cost and fast ARM processor. The 
vision module is placed on top of a micro-robot to control its 
trajectory and to avoid obstacles. The observed results from 
several performed experiments demonstrated that the 
developed extension module and the inspired vision system are 
feasible to employ as a vision module for obstacle avoidance and 
motion control. 

Index Terms—Bio-inspired, Collision avoidance, Locusts 
vision, Mobile robot 

I. Introduction 

The ability to avoid a collision is an important issue for 
the mobile robots. There are different sensory systems which 
are used for collision avoidance such as ultrasonic [1], 
infrared [2, 3], laser [4], radar [5] and vision system [6]. 
These sensory systems are mainly used on mobile robots for 
obstacle detection and avoiding the obstacles. However, it is 
still not easy task for mobile robots to run autonomously in 
complex environments without human intervention. One of 
the greatest challenges is to understand and to deal with the 
dynamic scenes [7] like complex background or rapidly 
changing the ambient light. Therefore, we need to apply fast 
and reliable methods to address the problem.  

Nature demonstrates variety of the successful methods in 
collision avoidance, which are employed by very small 
insects and other animals [8, 9]. For insects such as locusts, 
an ability to detect the fast approaching objects is important 
to avoid bumping into each other or caught by predators. 
After millions of years evolving, these vision-based collision 
avoidance systems are both reliable and efficient [10, 11]. 
Therefore, it can be a feasible approach if we take inspiration 
from nature and apply on autonomous mobile robots. 

It is identified anatomically that, there is a wide-field 
visual neuron that is located in the lobula layer of the locust 
nervous system called the Lobula Giant Movement Detector 
(LGMD) [12]. The LGMD spikes when objects approach in 
a direct collision course rapidly [13]. The LGMD’s firing rate 

is related to the approaching speed and the texture details of 
the moving object. Therefore, locusts can act quickly to avoid 
an imminent collision. LGMD is tightly tuned to respond to 
objects approaching in a direct collision course [14], however 
it produces a little or no response to receding objects [13]. 
Compared to the vision processing systems in the large 
mammals like humans, LGMD is much simpler. All these 
features make it an ideal model for developing the specialized 
fast and low-cost sensory system for autonomous collision 
avoidance [15-17]. 

A functional neural network based on the LGMD’s input 
circuitry was developed by Rind and Bramwell [18]. This 
neural network showed the same selectivity as the LGMD 
neuron for approaching objects and responded best to objects 
approaching on collision rather than near-miss trajectories. 
The expanding edges of colliding objects and the lateral 
inhibition were the key features computed by the model. This 
neural network has also been used to mediate collision 
avoidance in a real-world environment by incorporating it 
into the control structure of a miniature robot [15, 19].  

As a miniature robot, the size and power consumption 
should be controlled carefully due to the limitations of 
computing power and hardware resources. In the previous 
collision avoidance researches based on LGMD [15-17], 
robots only served the captured images and the motion 
control, hence the major LGMD processing task is done by 
the PC-based software like MATLAB. Then the software 
controls the robot remotely using cable or wireless signals. 
The whole system is cumbersome and complicated to be 
utilized in miniature multi-robot systems such as swarm 
robotics scenarios [20]. In other words, the robots are not 
independent (or fully autonomous). Therefore, we need a new 
implementation to avoid the remote controllers and to 
provide fully autonomy via bio-inspired LGMD-based 
collision avoidance on a low-cost miniature mobile robot. 

In this paper, an extension vision module is developed to 
imply by a low-cost micro-robot (Colias) [21]. The extension 
module enables the robot to implement collision avoidance 
method based on the LGMD. The vision module along with 
the robot is tested in various scenarios and environments to 
demonstrate the reliability of the system in obstacle 
avoidance. The observed results showed that the developed 
vision system for a miniature robot is amenable to be used in 
real-world autonomous motion applications. 

The rest of this paper is organised as follow. Section II 
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gives a brief description of LGMD algorithm, which also 
explains our initial work. Section III describes the hardware 
implementation. Following that, in section IV, we explain the 
proposed software design. The experiments and results are 
described in Section V. 

II. Algorithm description 

The LGMD algorithm used in this robot is based on our 
previous model described in Yue and Rind [16] as Fig. 1 
shows, with some simplification and approximation. The 
model is composed of five groups of cells, which are P-cells 
(photoreceptor), I-cells (inhibitory), E-cells (excitatory), S-
cells (summing) and G-cells (grouping) and also two 
individual cells, namely, the feed-forward inhibitory and 
LGMD. 

 
Fig. 1 A schematic of the LGMD based neural network for collision 
detection. The input of the P cells is the luminance change. Lateral inhibition 
is indicated with dotted lines and has one frame delay. Excitation is indicated 
with black lines and has no delay. The FFI also has one frame delay. 

The first layer of the neuron is composed by the P cells, 
which are arranged in a matrix, formed by the change of 
luminance in adjacent frames captured by camera. 
Comparing to the former algorithm, the visual persistence 
part which occupies a lot of computation power is removed. 
The output of P layer can be described as below: 

 1( , ) ( , ) ( , )f f fP L Lx y x y x y   (1) 

where ( , )fP x y  is the change of luminance of pixel 

( , )x y  at frame f, ( , )fL x y  and 1( , )fL x y  are the 

luminance in current frame and the previous frame. 

Subsequent processing is quite similar to our previous 
model as well. The output of P cells forms the inputs to two 
separate cell types in the next layer. One type is the excitatory 
cells, through which excitation is passed directly to the 
retinotopic counterpart of the cell in the third layer. The 
second type of cells are lateral inhibition cells which pass 
inhibition after one image frame delay to their retinotopical 
counterpart’s neighbouring cells in the E layer. 

      
1f f I

I P w


   (2) 

where 
I

w  is the local inhibiting weight matrix. 

The excitation of E cells and the inhibition of I cells are 
combined in the S layer.  

 
f f f I

S E I W   (3) 

where 
I

W  is the inhibiting coefficient. 

When reaches the G layer, the expanded edges which 
represented by clustered excitations are enhanced to extract 
colliding objects against complex backgrounds. This 
mechanism is implemented with a passing coefficient for 
each cell, which is defined by a convolution operation in the 
S layer. The excitation correspond to each cell becomes: 

       1
, , ,

f f f
G x y S x y Ce x y   (4) 

where   is a scale and computed at every frame. The 
passing coefficient can be described as: 
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 (5) 

where  ,
e

w i j  represents the influence of its neighbours 

and this operation can be simplified as a convolution mask 
and the passing coefficients can be computed in a matrix. 

Following by a threshold set to filter decayed excitations. 
The membrane potential of the LGMD cell Kf at frame f is 
summed after G layer with a rectifying operation, which will 
turn the responses in negative values to positive before 
summing. Then Kf is then transformed through a normalizer. 
Considering of saving computing power and easier tuning, a 
new normalizing function is adopted, given by: 

   1 2tanh
f f

k K C C      (6) 

The excitation f varies within [0,1]. C1, C2 and k are 

constant. If f  exceeds the threshold, a spike is produced. 

An impending collision is confirmed after several (in our 
tests, four) successive spikes generated. However, spikes 
may be suppressed by the FFI cell when the robot is turning.  

It is not surprised during turning, the neuron network may 
produce spikes and even false collision alerts because of the 
sudden change in the visual scene. The feed forward 
inhibition and lateral inhibition work together to cope with 
such whole field movement. The FFI is proportional to the 
summation of excitations in all cells with one frame delay. 
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Once 
f

F  exceeds its threshold 
FFI

T , spikes in the LGMD 

are inhibited immediately.  

As described in the above subsections, the LGMD based 
collision detection system only involves low level image 
processing, such as excitation transferring and neighbouring 
operation; computationally expensive methods, such as 
object recognition or scene analysis, are not used. Because of 
this, the collision detection system is able to work in real time 
and is independent of object classification. 

III. Hardware description 

A. Camera 
Camera is the most important sensor in the vision based 

control of a robot. We chose a low voltage CMOS image 

P layer

I layer

E layer

S layer

G layer

FFI

LGMD
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sensor OV7670 module, which has a compact package size 
of 8x8x4 mm with 24-pin flexible flat fable (FFC) connector. 
The power supply is from 1.7 V to 3.0 V with active power 
consumption of 60 mW. The camera is capable of operating 
up to 30 frames per seconds (fps) in VGA mode with output 
support for RGB422, RGB565 and YUV422. The viewing 
angle is approximately 70 degrees. All these features make 
the camera suitable to be used in miniature mobile robots. As 
a trade-off for image quality and data consumption, we 
choose a resolution of 72x99 pixel at 30 fps, with output 
format of 8-bit YUV422. 

Three groups of digital interfaces are used, which are 
serial camera control bus (SCCB) for camera configuration, 
clock/timing signals and 8-bit parallel port for image data.  

B. The microcontroller 
An ARM® Cortex™-M4F core microcontroller is 

deployed as the main processor for monitoring all the 
modules and serves the image processing method. The 32-bit 
MCU STM32F407 clocked at 168 MHz provides the 
necessary computational power to have a real-time image 
processing. It contains 192 Kbyte SRAM that provides 
enough spaces for image buffing and computing.  

The images captured by the camera are transmitted 
through the digital camera interface (DCMI) which is an 
embedded camera interface. It can connect to the camera 
modules and CMOS sensors through an 8-bit to 14-bit 
parallel interface to receive image data. The camera interface 
can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz.  

Images received by DCMI are transmitted into SRAM 
trough a specific DMA channel. There are two image buffers 
in SRAM to store the raw images which can be read and 
written simultaneously. To maintain the efficiency, when 
CPU deals with one of the buffers, the other one receives the 
next frame. Fig. 2 shows the proposed architecture for the 
vision module. 

 
Fig. 2  Hardware architecture of the extension vision module 

C. Robot Platform 
Robot platform Colias with diameter of 4 cm is the 

platform which is employed in this research. The developed 
extension vision module is placed on top of the basic Colias.  

The bottom board provides motion and power 
management systems. It uses an AVR microcontroller with 8 
MHz clock source. Two micro DC motors employing direct 
gears and two wheels with diameter of 2.2 cm actuate Colias 
with a maximum speed of 35 cm/s. Motors are controlled 
individually using a pulse-width modulation (PWM) 

technique [22]. Fig. 3 shows the utilized robot platform  

D. Debugging module 
A full-duplex serial port is applied as the debugging 

interface. The robot sends image samples and algorithm data 
to PC when debugging is enabled. Meanwhile, the robot can 
receive configuration commands from PC, including 
commands for camera, the algorithm and reaction behaviour. 
The baud rate is set at 256 Kbps, with eight data bits and one 
stop bit. 

  
Fig. 3  The pictures of the developed micro-robot from back and front 
side. Upper board (green) executes LGMD based control and the bottom part 
(red) is the actuator. 

IV. Software design 

The software design mainly includes four parts: i) image 
acquisition, ii) the LGMD algorithm, iii) the decision making 
and iv) motion control. The flowchart of the system is shown 
in Fig. 4. 

A. Camera configuration and image acquisition 
The camera has hundreds of build-in registers, providing 

various functions like scaling, image enhancement, output 
format and data communication rate. Most of them remain 
default, while some need to be configured separately. 

B. The LGMD algorithm 
As described in the previous sections, the LGMD 

algorithm is the most complicated computing task of the 
system. Working at 30 fps, CPU has only about 30 ms to 
accomplish the whole process. Due to the limited computing 
power, minor simplifications and approximations are taken. 
Convolution operations at edge pixels are skipped, 
Consequently, black frames of layer S and G appeared, as 
shown in Fig. 5. 

C. Decision making and control commands 
There are three types of motion control commands, which 

are ‘F’ for going forward, ‘L’ or ‘R’ for turn left or right and 
‘S’ for stop. The decision is determined by both LGMD and 
FFI outputs. The control commands are defined in TABLE I. 

1. By default, LGMD and FFI stays under threshold, 
which means the environment is safe for robot to go forward. 
Thus, the command ‘F’ is given to the motion control unit. 

2. If some objects move towards the robot or the robot 
attempts to move towards them, the image of certain object 
in the robot’s eye expands, which leads to an output spike of 
LGMD cell increases under appropriate expanding speed. 
Meanwhile, the FFI cell does not produce output since there 
is no sudden change visually. This situation is judged as a risk 
of collision, thus the robot turns immediately. 

It should be noted that, LGMD cell cannot tell where the 
object exactly is, so the turning direction can be chosen 
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randomly. To imitate a real animal and avoid swing from side 
to side, the robot is designed to have a higher chance to turn 
right (75%) than left (25%). 

3. During turning phase, there would be whole-frame 
movement, which activates the outputs of FFI cell. In this 
case, a command ‘S’ is sent to the motion control unit causing 
a pause in its motion after turning action. When confirmed 
the new direction is safe, the robot will move on. 

TABLE I.  CONTROL COMMANDS DEFINITION 

Neuron Status 
Decision Command word 

LGMD FFI 
0 0 Go forward ‘F’ 
1 0 Turn left or right ‘L’ or ‘R’ 
X 1 Stop ‘S’ 

V. Experiments and results 

Several experiments are performed to test the sensitivity 
and robustness of the system. One is LGMD processing test 
which mainly tests the performance of the algorithm. Then 
the system is challenged when combined with motion 
controller when wandering in a certain arena.  

A. LGMD processing  
1) Approaching object 

First we tested the sensitivity and robustness of the 
LGMD output. A plank was set on a plain table with 
adjustable inclination θ°, as illustrated in Fig. 6. A guide track 
was set diagonally along the plank that allows a tennis ball 
(φ=66 mm) which starting from rest at the top of the track roll 
down to the table in a certain trajectory with different 
acceleration when θ changes. The robot is placed in fix 
position on the table. 

 
Fig. 4  The flow chart of software processing. 

(a) (b) (c) 

Fig. 5  Different layers of LGMD processing. (a) shows the original 
image, which is a hand holding a jar waving in front of the camera; (b) shows 
the output of P layer. The background detail is inhibited, while the hand with 
the jar stands out; (c) shows the output of G layer. The most significant 
difference comparing to the P layer is the enhanced edges. Note the black 
frames in the image of P and G layer, that is because of those incomplete 
convolution which are eliminated. 

Several sets of tests were taken respectively. Each set 
were repeated 15 times. The average of the obtained results 
are shown in Fig. 7 (a). We can see that the model works well 
on every set of experiments, which offers alerts on 
approaching balls, although their speed are different. 

  
 (a) (b) 

Fig. 6  Testing table for LGMD processing. In (a), the robot (A) is 
placed on the table surface, fixed in the trajectory of the tennis ball in the 
first experiment; and different distances away from the trajectory in the 
second experiment (B). (b) shows a photo of experiment setup. The vision 
module is at the upright corner of the photo. 

2) Passing object 
Another experiment is designed for testing the behaviour 

of the model when object pass by. Based on the first testing 
environment, we put the robot aside from the trajectory with 
certain offset. Experiments are executed in 5 sets, each set is 
repeated 15 times. The average of captured results are shown 
in Fig. 7 (b). 

From the records we can find that the LGMD output 
increases at first, indicates the approaching ball, but soon 
after the ball moves out of sight, the LGMD output drops 
immediately. FFI outputs also increase along with the LGMD, 
with smaller growth. Comparing the distance from the robot 
to the trajectory of tennis ball and the LGMD output, they 
showed a negative correlation as expected. 

 
(a) 

 
(b) 

Fig. 7  Average records for each set in experiment A. LGMD and FFI 
outputs are shown. The x axis represents time in seconds, y axis is for neuron 
network output. Records are aligned at when the outputs exceed LGMD 
threshold, which are set time zero. (a) records of approaching object 
experiments with different speed; (b) records of passing object experiments 
with different offset from the robot. 
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B. Vigilance distance at different speed 
The obstacle avoidance behaviour performances 

differently under different moving speed. It is important to 
estimate the distance between the robot and obstacle when 
LGMD exceeds the threshold during the approaching a 
certain obstacle at different speeds. We called this distance 
the vigilance distance. 

We decorated a wall with texture of black and white 
squares that provides clear edges as shown in Fig. 8. Robot 
starts running towards the wall 50 cm away until the vigilance 
distance is reached, then it halts. Experiments are taken in 
nine groups, with different speed ranging from 1.5 to 17 cm/s. 
The results are shown in Fig. 9. 

As expected, the vigilance distance increases as the robot 
moves faster. When speed is between 5 and 14 cm/s, the robot 
performed coherent. When the robot moves at a high speed 
(e.g., 17 cm/s), the movement becomes unstable and image is 
blurred, causing fake alarms. 

 
Fig. 8 The environment set for testing the vigilance distance. Textured 
wall provides clear and stable clues for the robot. 

 
Fig. 9  Result in diagram of the nine groups of experiment B. For each 
group, the central mark is the median, blue square is formed by the first and 
third quartiles. Outliers are represented by red pluses.  

C. Real time tests 
In the previous experiments, obstacles and scenes 

remained unchanged for each test. However, the real world 
test provides unpredictable situations anytime. Thus it is the 
best way to test if the collision detection system works 
reliably.  

In the real time tests, the LGMD algorithm works together 
with collision avoidance commands. As mentioned earlier, 
the LGMD based collision detection can deal with more 
complex situations. The background used in the experiments 
are kept complex as well as inhomogeneous ambient light. 
The robot is allowed to move at the speed of about 10 cm/s 
in the arena. Once an imminent collision is detected, the robot 

turns without the debugging unit. The experiment lasts for at 
least 5 minutes without collision as in Fig. 10. Because of the 
biases of turning direction, the robot behaves more like an 
insect. Images taken from the robot’s eye in the test are 
shown in Fig. 12. Fig. 11 shows a series of the LGMD and 
FFI outputs during the test. 

 
(a) 

 
(b) 

Fig. 10  (a) the photo of experiment set for the real time test. The robot 
moves within an arena surrounded by several textured paper rolls; (b) A brief 
example of the experiment. The solid line indicates the trajectory. Note that 
right turns are more frequent than left turns.  

 
Fig. 11  A series of both LGMD and FFI normalized outputs under real 
time test. The robot has moved for more than 30 seconds. The X axis 
represents the time in seconds and Y axis is for the normalized outputs within 
[0,1]. The upper blue trace shows the LGMD output; the lower black trace 
shows the FFI output. During the time period, 4 successive turning was 
executed at around 10s, 17s, 23s and 30s. 

 
Fig. 12  Sample frames taken by the robot while approaching paper poles. 
Distances from the robot are  60cm(a), 50cm(b), 40cm(c), 30cm(d), 20cm(e), 
10cm(f) and 5cm(g).  
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VI. Conclusion 

An extended vision module for a new low-cost micro-
robot is presented in this paper, which enables implementing 
of collision avoidance method based on bio-inspired LGMD. 
The robot uses its on-board LGMD algorithm to detect 
imminent collision with obstacles using tiny camera module 
and executes avoiding behaviour. Results of the performed 
experiments demonstrated that the developed module has 
strong robustness to adapt environment and it can be 
employed in real-world applications. For the future work, 
several number of robots will be equipped with the vision 
module to test the method in multi-robot scenarios. 
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