1,116 research outputs found

    ERPs and their brain sources in perceptual and conceptual prospective memory tasks: commonalities and differences between the two tasks

    Get PDF
    The present study examined whether Event-Related Potential (ERP) components and their neural generators are common to perceptual and conceptual prospective memory (PM) tasks or specific to the form of PM cue involved. We used Independent Component Analysis (ICA) to study the contributions of brain source activities to scalp ERPs across the different phases of two event-based PM-tasks: (1) holding intentions during a delay (monitoring) (2) detecting the correct context to perform the delayed intention (cue detection) and (3) carrying out the action (realisation of delayed intentions). Results showed that monitoring for both perceptual and conceptual PM-tasks was characterised by an enhanced early occipital negativity (N200). In addition the conceptual PM-task showed a long-lasting effect of monitoring significant around 700 ms. Perceptual PM-task cues elicited an N300 enhancement associated with cue detection, whereas a midline N400-like response was evoked by conceptual PM-task cues. The Prospective Positivity associated with realisation of delayed intentions was observed in both conceptual and perceptual tasks. A common frontal-midline brain source contributed to the Prospective Positivity in both tasks and a strong contribution from parieto-frontal brain sources was observed only for the perceptually cued PM-task. These findings support the idea that: (1) The enhanced N200 can be understood as a neural correlate of a ‘retrieval mode’ for perceptual and conceptual PM-tasks, and additional strategic monitoring is implemented according the nature of the PM task; (2) ERPs associated with cue detection are specific to the nature of the PM cues; (3) Prospective Positivity reflects a general PM process, but the specific brain sources contributing to it depend upon the nature of the PM task

    Hard to "tune in": neural mechanisms of live face-to-face interaction with high-functioning autistic spectrum disorder

    Get PDF
    Persons with autism spectrum disorders (ASD) are known to have difficulty in eye contact (EC). This may make it difficult for their partners during face to face communication with them. To elucidate the neural substrates of live inter-subject interaction of ASD patients and normal subjects, we conducted hyper-scanning functional MRI with 21 subjects with autistic spectrum disorder (ASD) paired with typically-developed (normal) subjects, and with 19 pairs of normal subjects as a control. Baseline EC was maintained while subjects performed real-time joint-attention task. The task-related effects were modeled out, and inter-individual correlation analysis was performed on the residual time-course data. ASD-Normal pairs were less accurate at detecting gaze direction than Normal-Normal pairs. Performance was impaired both in ASD subjects and in their normal partners. The left occipital pole (OP) activation by gaze processing was reduced in ASD subjects, suggesting that deterioration of eye-cue detection in ASD is related to impairment of early visual processing of gaze. On the other hand, their normal partners showed greater activity in the bilateral occipital cortex and the right prefrontal area, indicating a compensatory workload. Inter-brain coherence in the right IFG that was observed in the Normal-Normal pairs (Saito et al., 2010) during EC diminished in ASD-Normal pairs. Intra-brain functional connectivity between the right IFG and right superior temporal sulcus (STS) in normal subjects paired with ASD subjects was reduced compared with in Normal-Normal pairs. This functional connectivity was positively correlated with performance of the normal partners on the eye-cue detection. Considering the integrative role of the right STS in gaze processing, inter-subject synchronization during EC may be a prerequisite for eye cue detection by the normal partner

    Negation cues detection using CRF on Spanish product review texts

    Get PDF
    This article describes the negation cue detection approach designed and built by UPC's team participating in NEGES 2018 Workshop on Negation in Spanish. The approach uses supervised CRFs as the base for training the model with several features engineered to tackle the task of negation cue detection in Spanish. The result is evaluated by the means of precision, recall, and F1 score in order to measure the performance of the approach. The approach was ranked in 1st position in the official testing results with average precision around 91%, average recall around 82%, and average F1 score around 86%. © 2018 CEUR-WS. All rights reserved.Postprint (published version

    Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales

    Get PDF
    SummaryCholinergic neurons originating from the basal forebrain innervate the entire cortical mantle. Choline-sensitive microelectrodes were used to measure the synaptic release of cortical acetylcholine (ACh) at a subsecond resolution in rats performing a task involving the detection of cues. Cues that were detected, defined behaviorally, evoked transient increases in cholinergic activity (at the scale of seconds) in the medial prefrontal cortex (mPFC), but not in a nonassociational control region (motor cortex). In trials involving missed cues, cholinergic transients were not observed. Cholinergic deafferentation of the mPFC, but not motor cortex, impaired cue detection. Furthermore, decreases and increases in precue cholinergic activity predicted subsequent cue detection or misses, respectively. Finally, cue-evoked cholinergic transients were superimposed over slower (at the timescale of minutes) changes in cholinergic activity. Cortical cholinergic neurotransmission is regulated on multiple timescales to mediate the detection of behaviorally significant cues and to support cognitive performance

    The Influence of Emotional Material on Encoding and Retrieving Intentions: An ERP Study in Younger and Older Adults

    Get PDF
    Prospective memory is a cognitive process that comprises the encoding and maintenance of an intention until the appropriate moment of its retrieval. It is of highly relevance for an independent everyday life, especially in older adults; however, there is ample evidence that prospective memory declines with increasing age. Because most studies have used neutral stimuli, it is still an open question how emotional factors influence age-related differences in prospective remembering. The aim of the study was to investigate the influence of emotional material on prospective memory encoding, monitoring, maintaining, and retrieval in younger and older adults using behavioral and electrophysiological measures. We tested 24 younger adults (M = 26.4 years) and 20 older adults (M = 68.1 years) using a picture one-back task as ongoing activity with an embedded prospective memory instruction. The experimental task consisted of three sessions. In each session, participants had to encode series of images that represented the prospective memory cues for the consecutive block. The images were either of pleasant, unpleasant, or neutral valence. The pictures used in the ongoing task were likewise of pleasant, unpleasant, or neutral valence. Event-related potentials (ERPs) were recorded to assess the neural correlates of intention encoding, maintenance, and self-initiated retrieval. We did not find age differences between younger and older adults on the behavioral level. However, the ERP results revealed an interesting pattern that suggested for both age groups elevated attentional processing of emotional cues during encoding indicated by an elevated LPP for the emotional cues. Additionally, younger adults showed increased activity for unpleasant cues. During the maintenance phase, both age groups engaged in strategic monitoring especially for pleasant cues, which led to enhanced sustained positivity. During retrieval, older adults showed increased activity of ERP components related to cue detection and retrieval mainly for pleasant cues indicating enhanced relevance for those cues. In conclusion, emotional material may influence prospective remembering in older adults differently than in younger adults by supporting a mixture of top-down and bottom-up controlled processing. The results demonstrated a negativity bias in younger adults and a positivity bias in older adults

    Prospective Memory in Older Adults : Where We Are Now and What Is Next

    Get PDF
    M. Kliegel acknowledges financial support from the Swiss National Science Foundation (SNSF).Peer reviewedPostprin

    Cortical transformation of spatial processing for solving the cocktail party problem: a computational model(1,2,3).

    Get PDF
    In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.R01 DC000100 - NIDCD NIH HHSPublished versio

    Pathogen disgust sensitivity:More sensitive cue detection or stronger cue avoidance?

    Get PDF
    Humans differ in their tendency to experience disgust and avoid contact with potential sources of pathogens. Pathogen disgust sensitivity has been used to explain a wide range of social phenomena, such as prejudice, conformity, and trust. Yet, its exact role in the motivational system that regulates avoidance of pathogens, the so-called behavioral immune system, remains unclear. Here, we test how individual differences in pathogen disgust sensitivity relates to the information processing structure underlying pathogen avoidance. Participants (n = 998) rated the perceived health of individuals with or without facial blemishes and indicated how comfortable they would feel about having physical contact with them. Participants with high disgust sensitivity viewed facial blemishes as more indicative of poor health. Moreover, for participants with high disgust sensitivity, perceived health was a stronger determinant of comfort with physical contact. These findings suggest that increased pathogen disgust sensitivity captures tendencies to more readily interpret stimuli as a pathogen threat and be more strongly guided by estimated infection risk when deciding who should be approached or avoided. This supports the notion that pathogen disgust sensitivity is a summary of investment in pathogen avoidance, rather than just an increased sensitivity to pathogen cues
    corecore