10 research outputs found

    Hermite Interpolation Using Möbius Transformations of Planar Pythagorean-Hodograph Cubics

    Get PDF
    We present an algorithm for C1 Hermite interpolation using Möbius transformations of planar polynomial Pythagoreanhodograph (PH) cubics. In general, with PH cubics, we cannot solve C1 Hermite interpolation problems, since their lack of parameters makes the problems overdetermined. In this paper, we show that, for each Möbius transformation, we can introduce an extra parameter determined by the transformation, with which we can reduce them to the problems determining PH cubics in the complex plane ℂ. Möbius transformations preserve the PH property of PH curves and are biholomorphic. Thus the interpolants obtained by this algorithm are also PH and preserve the topology of PH cubics. We present a condition to be met by a Hermite dataset, in order for the corresponding interpolant to be simple or to be a loop. We demonstrate the improved stability of these new interpolants compared with PH quintics

    Fairing arc spline and designing by using cubic bézier spiral segments

    Get PDF
    This paper considers how to smooth three kinds of G 1 biarc models, the C-, S-, and J-shaped transitions, by replacing their parts with spiral segments using a single cubic Bézier curve. Arc spline is smoothed to G 2continuity. Use of a single curve rather than two has the benefit because designers and implementers have fewer entities to be concerned. Arc spline is planar, tangent continuous, piecewise curves made of circular arcs and straight line segments. It is important in manufacturing industries because of its use in the cutting paths for numerically controlled cutting machinery. Main contribution of this paper is to minimize the number of curvature extrema in cubic transition curves for further use in industrial applications such as non-holonomic robot path planning, highways or railways, and spur gear tooth designing

    Development of an Integrated Intelligent Multi -Objective Framework for UAV Trajectory Generation

    Get PDF
    This thesis explores a variety of path planning and trajectory generation schemes intended for small, fixed-wing Unmanned Aerial Vehicles. Throughout this analysis, discrete and pose-based methods are investigated. Pose-based methods are the focus of this research due to their increased flexibility and typically lower computational overhead.;Path planning in 3 dimensions is also performed. The 3D Dubins methodology presented is an extension of a previously suggested approach and addresses both the mathematical formulation of the methodology, as well as an assessment of numerical issues encountered and the solutions implemented for these.;The main contribution of this thesis is a 3-dimensional clothoid trajectory generation algorithm, which produces flyable paths of continuous curvature to ensure a more followable commanded path. This methodology is an extension of the 3D Dubins method and the 2D clothoid method, which have been implemented herein. To ensure flyability of trajectories produced by 3D pose-based trajectory generation methodologies, a set of criteria are specified to limit the possible solutions to only those flyable by the aircraft. Additionally, several assumptions are made concerning the motion of the aircraft in order to simplify the path generation problem.;The 2D and 3D clothoid and Dubins trajectory planners are demonstrated through a trajectory tracking performance comparison between first the 2D Dubins and 2D clothoid methods using a position proportional-integral-derivative controller, then the 3D Dubins and 3D clothoid methods using both a position proportional-integral-derivative controller and an outer-loop non-linear dynamic inversion controller, within the WVU UAV Simulation Environment. These comparisons are demonstrated for both nominal and off-nominal conditions, and show that for both 2D and 3D implementations, the clothoid path planners yields paths with better trajectory tracking performance as compared to the Dubins path planners.;Finally, to increase the effectiveness and autonomy of these pose-based trajectory generation methodologies, an immunity-based evolutionary optimization algorithm is developed to select a viable and locally-optimal trajectory through an environment while observing desired points of interest and minimizing threat exposure, path length, and estimated fuel consumption. The algorithm is effective for both 2D and 3D routes, as well as combinations thereof. A brief demonstration is provided for this algorithm. Due to the calculation time requirements, this algorithm is recommended for offline use

    Path planning algorithms for atmospheric science applications of autonomous aircraft systems

    No full text
    Among current techniques, used to assist the modelling of atmospheric processes, is an approach involving the balloon or aircraft launching of radiosondes, which travel along uncontrolled trajectories dependent on wind speed. Radiosondes are launched daily from numerous worldwide locations and the data collected is integral to numerical weather prediction.This thesis proposes an unmanned air system for atmospheric research, consisting of multiple, balloon-launched, autonomous gliders. The trajectories of the gliders are optimised for the uniform sampling of a volume of airspace and the efficient mapping of a particular physical or chemical measure. To accomplish this we have developed a series of algorithms for path planning, driven by the dual objectives of uncertainty andinformation gain.Algorithms for centralised, discrete path planning, a centralised, continuous planner and finally a decentralised, real-time, asynchronous planner are presented. The continuous heuristics search a look-up table of plausible manoeuvres generated by way of an offline flight dynamics model, ensuring that the optimised trajectories are flyable. Further to this, a greedy heuristic for path growth is introduced alongside a control for search coarseness, establishing a sliding control for the level of allowed global exploration, local exploitation and computational complexity. The algorithm is also integrated with a flight dynamics model, and communications and flight systems hardware, enabling software and hardware-in-the-loop simulations. The algorithm outperforms random search in two and three dimensions. We also assess the applicability of the unmanned air system in ‘real’ environments, accounting for the presence of complicated flow fields and boundaries. A case study based on the island South Georgia is presented and indicates good algorithm performance in strong, variable winds. We also examine the impact of co-operation within this multi-agent system of decentralised, unmanned gliders, investigating the threshold for communication range, which allows for optimal search whilst reducing both the cost of individual communication devices and the computational resources associated with the processing of data received by each aircraft. Reductions in communication radius are found to have a significant, negative impact upon the resulting efficiency of the system. To somewhat recover these losses, we utilise a sorting algorithm, determining information priority between any two aircraft in range. Furthermore, negotiation between aircraft is introduced, allowing aircraft to resolve any possible conflicts between selected paths, which helps to counteractany latency in the search heuristic

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≄ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore