171 research outputs found

    A Transitional Gundi (Rodentia: Ctenodactylidae) from the Miocene of Israel

    Get PDF
    abstract: We describe a new species of gundi (Rodentia: Ctenodactylidae: Ctenodactylinae), Sayimys negevensis, on the basis of cheek teeth from the Early Miocene of the Rotem Basin, southern Israel. The Rotem ctenodactylid differs from all known ctenodactylid species, including Sayimys intermedius, which was first described from the Middle Miocene of Saudi Arabia. Instead, it most resembles Sayimys baskini from the Early Miocene of Pakistan in characters of the m1-2 (e.g., the mesoflexid shorter than the metaflexid, the obliquely orientated hypolophid, and the presence of a strong posterolabial ledge) and the upper molars (e.g., the paraflexus that is longer than the metaflexus). However, morphological (e.g., presence of a well-developed paraflexus on unworn upper molars) and dimensional (regarding, in particular, the DP4 and M1 or M2) differences between the Rotem gundi and Sayimys baskini distinguish them and testify to the novelty and endemicity of the former. In its dental morphology, Sayimys negevensis sp. nov. shows a combination of both the ultimate apparition of key-characters and incipient features that would be maintained and strengthened in latter ctenodactylines. Thus, it is a pivotal species that bridges the gap between an array of primitive ctenodactylines and the most derived, Early Miocene and later, gundis.The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.015180

    Large-sized species of ctenodactylidae from the Valley of Lakes (Mongolia): An update on dental morphology, biostratigraphy, and paleobiogeography

    Get PDF
    Our study of the large and medium-sized species of Yindirtemys from the Valley of Lakes in Mongolia yielded three species: Yindirtemys deflexus, Y. suni and Y. birgeri. They differ in size and dental morphology. Yindirtemys suni is the largest and Y. birgeri the smallest species. Yindirtemys deflexus and Y. suni increase in body size but do not change dental morphology within their time range. The medium-sized Yindirtemys birgeri co-occurs in Mongolia with Y. deflexus in the late Oligocene (biozone C1) and is the easternmost occurrence of the species so far. Hitherto, Y. birgeri has been recorded from the Aral region in Kazakhstan only. Both Yindirtemys deflexus and Y. suni are used as biostratigraphic markers. Yindirtemys deflexus is a “key fossil” of the Chinese Land Mammal Age Tabenbulukian and for the Mongolian biozone C1; the latter correlates with the Oligocene. Yindirtemys suni is one of the “key fossils” of the Chinese Land Mammal Age Xiejian. In Mongolia the species ranges from the OligoceneMiocene transition (biozone C1-D) to the earliest Miocene (biozone D). The wide geographic range of Yindirtemys in the Oligocene of Asia suggests that no major physical barriers hampered mammal distribution between Kazakhstan, Mongolia and northern China, but local paleoecological and climatic conditions might have influenced mammal community structures in these areas.Peer Reviewe

    First Miocene rodent from Lebanon provides the 'missing link' between Asian and African gundis (Rodentia: Ctenodactylidae)

    Get PDF
    International audience5 Ctenodactylinae (gundis) is a clade of rodents that experienced, in Miocene time, their greatest diversification and widest distribution. They expanded from the Far East, their area of origin, to Africa, which they entered from what would become the Arabian Peninsula. Questions concerning the origin of African Ctenodactylinae persist essentially because of a poor fossil record from the Miocene of Afro-Arabia. However, recent excavations in the Late Miocene of Lebanon have yielded a key taxon for our understanding of these issues. Proafricanomys libanensis nov. gen. nov. sp. shares a variety of dental characters with both the most primitive and derived members of the subfamily. A cladistic analysis demonstrates that this species is the sister taxon to a clade encompassing all but one of the African ctenodactylines, plus a southern European species of obvious African extraction. As such, Proafricanomys provides the 'missing link' between the Asian and African gundis. The Ctenodactylinae is a subgroup of the Ctenodactylidae (Ctenohystrica) that likely appeared around the Oligocene-Miocene boundary. These unique animals have since experienced a remarkable evolution involving both a shift in habitats (from moist to arid) and distribution (from Asia to Africa). Our understanding of the phylogenetic relationships within the clade has been recently much improve

    Hystricognathy vs Sciurognathy in the Rodent Jaw: A New Morphometric Assessment of Hystricognathy Applied to the Living Fossil Laonastes (Diatomyidae)

    Get PDF
    While exceptional for an intense diversification of lineages, the evolutionary history of the order Rodentia comprises only a limited number of morphological morphotypes for the mandible. This situation could partly explain the intense debates about the taxonomic position of the latest described member of this clade, the Laotian rock rat Laonastes aenigmamus (Diatomyidae). This discovery has re-launched the debate on the definition of the Hystricognathi suborder identified using the angle of the jaw relative to the plane of the incisors. Our study aims to end this ambiguity. For clarity, it became necessary to revisit the entire morphological diversity of the mandible in extant and extinct rodents. However, current and past rodent diversity brings out the limitations of the qualitative descriptive approach and highlights the need for a quantitative approach. Here, we present the first descriptive comparison of the masticatory apparatus within the Ctenohystrica clade, in combining classic comparative anatomy with morphometrical methods. First, we quantified the shape of the mandible in rodents using 3D landmarks. Then, the analysis of osteological features was compared to myological features in order to understand the biomechanical origin of this morphological diversity. Among the morphological variation observed, the mandible of Laonastes aenigmamus displays an intermediate association of features that could be considered neither as sciurognathous nor as hystricognathous

    The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thin-spined porcupine, also known as the bristle-spined rat, <it>Chaetomys subspinosus </it>(Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus <it>Chaetomys </it>was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome <it>b </it>gene and karyotypic information to address this issue. Our molecular analyses included one individual of <it>Chaetomys subspinosus </it>from the state of Bahia in northeastern Brazil, and other hystricognaths.</p> <p>Results</p> <p>All topologies recovered in our molecular phylogenetic analyses strongly supported <it>Chaetomys subspinosus </it>as a sister clade of the erethizontids. Cytogenetically, <it>Chaetomys subspinosus </it>showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid <it>Sphiggurus villosus</it>, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial.</p> <p>Conclusion</p> <p>Both molecular phylogenies and karyotypical evidence indicated that <it>Chaetomys </it>is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological divergence suggest that <it>Chaetomys </it>belongs to an early radiation of the Erethizontidae that may have occurred in the Early Miocene, and should be assigned to its own subfamily, the Chaetomyinae.</p

    Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments

    Get PDF
    The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using approximately 7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics
    corecore