831 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery

    Get PDF
    The land area covered by freely available very high-resolution (VHR) imagery has grown dramatically over recent years, which has considerable relevance for forest observation and monitoring. For example, it is possible to recognize and extract a number of features related to forest type, forest management, degradation and disturbance using VHR imagery. Moreover, time series of medium-to-high-resolution imagery such as MODIS, Landsat or Sentinel has allowed for monitoring of parameters related to forest cover change. Although automatic classification is used regularly to monitor forests using medium-resolution imagery, VHR imagery and changes in web-based technology have opened up new possibilities for the role of visual interpretation in forest observation. Visual interpretation of VHR is typically employed to provide training and/or validation data for other remote sensing-based techniques or to derive statistics directly on forest cover/forest cover change over large regions. Hence, this paper reviews the state of the art in tools designed for visual interpretation of VHR, including Geo-Wiki, LACO-Wiki and Collect Earth as well as issues related to interpretation of VHR imagery and approaches to quality assurance. We have also listed a number of success stories where visual interpretation plays a crucial role, including a global forest mask harmonized with FAO FRA country statistics; estimation of dryland forest area; quantification of deforestation; national reporting to the UNFCCC; and drivers of forest change

    行動認識機械学習データセット収集のためのクラウドソーシングの研究

    Get PDF
    In this thesis, we propose novel methods to explore and improve crowdsourced data labeling for mobile activity recognition. This thesis concerns itself with the quality (i.e., the performance of a classification model), quantity (i.e., the number of data collected), and motivation (i.e., the process that initiates and maintains goal-oriented behaviors) of participant contributions in mobile activity data collection studies. We focus on achieving high-quality and consistent ground-truth labeling and, particularly, on user feedback’s impact under different conditions. Although prior works have used several techniques to improve activity recognition performance, differences to our approach exist in terms of the end goals, proposed method, and implementation. Many researchers commonly investigate post-data collection to increase activity recognition accuracy, such as implementing advanced machine learning algorithms to improve data quality or exploring several preprocessing ways to increase data quantity. However, utilizing post-data collection results is very difficult and time-consuming due to dirty data challenges for most real-world situations. Unlike those commonly used in other literature, in this thesis, we aim to motivate and sustain user engagement during their on-going-self-labeling task to optimize activity recognition accuracy. The outline of the thesis is as follows: In chapter 1 and 2, we briefly introduce the thesis work and literature review. In Chapter 3, we introduce novel gamified active learning and inaccuracy detection for crowdsourced data labeling for an activity recognition system (CrowdAct) using mobile sensing. We exploited active learning to address the lack of accurate information. We presented the integration of gamification into active learning to overcome the lack of motivation and sustained engagement. We introduced an inaccuracy detection algorithm to minimize inaccurate data. In Chapter 4, we introduce a novel method to exploit on-device deep learning inference using a long short-term memory (LSTM)-based approach to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. In Chapter 5, we introduce a novel on-device personalization for data labeling for an activity recognition system using mobile sensing. The key idea behind this system is that estimated activities personalized for a specific individual user can be used as feedback to motivate user contribution and improve data labeling quality. We exploited finetuning using a Deep Recurrent Neural Network (RNN) to address the lack of sufficient training data and minimize the need for training deep learning on mobile devices from scratch. We utilized a model pruning technique to reduce the computation cost of on-device personalization without affecting the accuracy. Finally, we built a robust activity data labeling system by integrating the two techniques outlined above, allowing the mobile application to create a personalized experience for the user. To demonstrate the proposed methods’ capability and feasibility in realistic settings, we developed and deployed the systems to real-world settings such as crowdsourcing. For the process of data labeling, we challenged online and self-labeling scenarios using inertial smartphone sensors, such as accelerometers. We recruited diverse participants and con- ducted the experiments both in a laboratory setting and in a semi-natural setting. We also applied both manual labeling and the assistance of semi-automated labeling. Addition- ally, we gathered massive labeled training data in activity recognition using smartphone sensors and other information such as user demographics and engagement. Chapter 6 offers a brief discussion of the thesis. In Chapter 7, we conclude the thesis with conclusion and some future work issues. We empirically evaluated these methods across various study goals such as machine learning and descriptive and inferential statistics. Our results indicated that this study enabled us to effectively collect crowdsourced activity data. Our work revealed clear opportunities and challenges in combining human and mobile phone-based sensing techniques for researchers interested in studying human behavior in situ. Researchers and practitioners can apply our findings to improve recognition accuracy and reduce unreliable labels by human users, increase the total number of collected responses, as well as enhance participant motivation for activity data collection.九州工業大学博士学位論文 学位記番号:工博甲第526号 学位授与年月日:令和3年6月28日1 Introduction|2 Related work|3 Achieving High-Quality Crowdsourced Datasets in Mobile Activity Recognition|4 On-Device Deep Learning Inference for Activity Data Collection|5 On-Device Deep Personalization for Activity Data Collection|6 Discussion|7 Conclusion九州工業大学令和3年

    Enhancing Mobile App User Understanding and Marketing with Heterogeneous Crowdsourced Data: A Review

    Full text link
    © 2013 IEEE. The mobile app market has been surging in recent years. It has some key differentiating characteristics which make it different from traditional markets. To enhance mobile app development and marketing, it is important to study the key research challenges such as app user profiling, usage pattern understanding, popularity prediction, requirement and feedback mining, and so on. This paper reviews CrowdApp, a research field that leverages heterogeneous crowdsourced data for mobile app user understanding and marketing. We first characterize the opportunities of the CrowdApp, and then present the key research challenges and state-of-the-art techniques to deal with these challenges. We further discuss the open issues and future trends of the CrowdApp. Finally, an evolvable app ecosystem architecture based on heterogeneous crowdsourced data is presented
    corecore