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Abstract

In this thesis, we propose novel methods to explore and improve crowdsourced data la-
beling for mobile activity recognition. This thesis concerns itself with the quality (i.e.,
the performance of a classification model), quantity (i.e., the number of data collected),
and motivation (i.e., the process that initiates and maintains goal-oriented behaviors) of
participant contributions in mobile activity data collection studies. We focus on achiev-
ing high-quality and consistent ground-truth labeling and, particularly, on user feedback’s
impact under different conditions. Although prior works have used several techniques to
improve activity recognition performance, differences to our approach exist in terms of the
end goals, proposed method, and implementation. Many researchers commonly investi-
gate post-data collection to increase activity recognition accuracy, such as implementing
advanced machine learning algorithms to improve data quality or exploring several pre-
processing ways to increase data quantity. However, utilizing post-data collection results
is very difficult and time-consuming due to dirty data challenges for most real-world situ-
ations. Unlike those commonly used in other literature, in this thesis, we aim to motivate
and sustain user engagement during their on-going-self-labeling task to optimize activity
recognition accuracy. The outline of the thesis is as follows:

In chapter 1 and 2, we briefly introduce the thesis work and literature review. In Chap-
ter 3, we introduce novel gamified active learning and inaccuracy detection for crowd-
sourced data labeling for an activity recognition system (CrowdAct) using mobile sensing.
We exploited active learning to address the lack of accurate information. We presented
the integration of gamification into active learning to overcome the lack of motivation
and sustained engagement. We introduced an inaccuracy detection algorithm to minimize
inaccurate data.

In Chapter 4, we introduce a novel method to exploit on-device deep learning inference
using a long short-term memory (LSTM)-based approach to alleviate the labeling effort
and ground truth data collection in activity recognition systems using smartphone sensors.
The novel idea behind this is that estimated activities are used as feedback for motivating
users to collect accurate activity labels.

In Chapter 5, we introduce a novel on-device personalization for data labeling for an
activity recognition system using mobile sensing. The key idea behind this system is that
estimated activities personalized for a specific individual user can be used as feedback to
motivate user contribution and improve data labeling quality. We exploited finetuning
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using a Deep Recurrent Neural Network (RNN) to address the lack of sufficient training
data and minimize the need for training deep learning on mobile devices from scratch. We
utilized a model pruning technique to reduce the computation cost of on-device person-
alization without affecting the accuracy. Finally, we built a robust activity data labeling
system by integrating the two techniques outlined above, allowing the mobile application
to create a personalized experience for the user.

To demonstrate the proposed methods’ capability and feasibility in realistic settings,
we developed and deployed the systems to real-world settings such as crowdsourcing. For
the process of data labeling, we challenged online and self-labeling scenarios using inertial
smartphone sensors, such as accelerometers. We recruited diverse participants and con-
ducted the experiments both in a laboratory setting and in a semi-natural setting. We also
applied both manual labeling and the assistance of semi-automated labeling. Addition-
ally, we gathered massive labeled training data in activity recognition using smartphone
sensors and other information such as user demographics and engagement.

Chapter 6 offers a brief discussion of the thesis. In Chapter 7, we conclude the thesis
with conclusion and some future work issues.

We empirically evaluated these methods across various study goals such as machine
learning and descriptive and inferential statistics. Our results indicated that this study
enabled us to effectively collect crowdsourced activity data. Our work revealed clear
opportunities and challenges in combining human and mobile phone-based sensing tech-
niques for researchers interested in studying human behavior in situ. Researchers and
practitioners can apply our findings to improve recognition accuracy and reduce unreli-
able labels by human users, increase the total number of collected responses, as well as
enhance participant motivation for activity data collection.
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Chapter 1

Introduction

Technologically-advanced mobile device accessibility provides researchers the chance to
recognize human behavior in everyday situations. This research tool enables us to system-
atically capture human action in natural settings rather than observing human behavior
through extensive surveys or artificial laboratory settings. Thus, the measurements ob-
tained would provide researchers insights into the problem of interest. This method can
be used across a wide range of research fields and applied to various applications. For
example, in the field of Human-Computer Interaction (HCI) to perceive how people use
and experience new technologies in daily life, in Medical Sciences to assess the pain level of
patients experienced, in Psychology to infer the nature of human well-being, in Economics
to predict customer decisions, as well as in Nursing Care to create automatic nursing
care services to improve the efficiency of nursing care works. Although originating from
different research fields and applications, these cases are directed to the same goal: un-
derstanding human behavior and experience by repeatedly gathering human-labeled data
in situ using mobile devices.

Researchers commonly employ mobile devices to capture two valuable different data
streams. First, talking the sensor data embedded within these devices to study partici-
pants’ context. Second, asking participants to frequently and actively describe data on
events that cannot be reliably collected using the aforementioned sensor streams. This
process is known as label collection (i.e., data labeling or data annotation) for mobile
activity recognition. Label collection is a vital part of preparing training data for learning
tasks to design and evaluate activity recognition systems. Consequently, the quality of
labeled data can significantly impact the performance of the derived systems. Label col-
lection using mobile devices yields many considerable advantages over existing methods,
such as observing changes in participant experiences over time and context and reducing
participants’ cognitive overload to recall past experiences. Since data collection’s respon-
sibility relies on participant contributions rather than researchers, collecting the reliability
of the participants’ participation is important and increasingly considered by researchers.
While increasing the number of participant contributions has been explored over the years,
these contributions’ quality remains scarce.
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This thesis, we propose novel methods to explore and improve crowdsourced data la-
beling for mobile activity recognition. This thesis concerns itself with the quality (i.e.,
the performance of a classification model), quantity (i.e., the number of data collected),
and motivation (i.e., the process that initiates and maintains goal-oriented behaviors) of
participant contributions in mobile activity data collection studies. We focus on achiev-
ing high-quality and consistent ground-truth labeling and, particularly, on user feedback’s
impact under different conditions.

This chapter introduces the motivation underlying my doctoral thesis and presents the
existing research issues and challenges. Furthermore, it describes my thesis’s goals to
address those research issues and how to achieve them. Finally, it summarizes and reviews
the organization of my thesis.

1.1 Background and Motivation
Labeling collection for activity recognition with smartphone sensors refers to the process
of segmenting and assigning labels to data gathered from smartphone sensors. The data
are related to a person’s behavior, activity, health or mood state, at different times-
tamps [80]. Activity or behavior recognition is mostly implemented using supervised
learning algorithms. The training of these supervised algorithms requires labeled data, or
“ground truth”. Incomplete or inaccurate labeling may result in classification errors that
lead to unreliable systems; thus, achieving high-quality labels is a critical requirement.
Data labeling using smartphone sensors can be done in various ways, depending on the
type of data being labeled and the situations in which the activity is being performed and
observed. We categorize the approaches to data labeling concerning four different criteria:
when, who, where, and how is the data labeled.

First, data can be labeled when the activity of concern is being performed (online) [31],
or it can be labeled later (offline) [19]. Both ways impose challenges. Labeling while the
activity is being performed is difficult because it requires an accurate timestamp. On the
other hand, offline data labeling is subject to response bias challenges since it is difficult
to recall past experiences.

Second, data labeling can be done either by the individual performing the activity (self-
labeling) [31, 149] or by an observer [65]. Self-labeling has the advantage of being less
invasive and less costly, so it can be used in natural environments. Additionally, some
instances can only be assessed by the person experiencing it, such as personalized emotion
recognition. Contrarily, observers might give more accurate labels in other instances,
e.g., when individuals might be impaired to or have great difficulty labeling their data.
For example, in real nursing activities, nursing the patient has the highest priority, so,
when self-labeling, there are many missing labels and inaccurate timestamps. However,
recruiting observers to label large amounts of data can be costly, or the observers may
not have enough context to accurately label the data. In sum, labeling data either by the
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individual or by an observer is a challenging task.
Third, smartphone sensor data labeling can be performed in three scenarios based on

the level of naturalness with which the data is collected. First, we examine a laboratory
scenario [45], where users perform activities systematically in a controlled environment
with previously defined steps. Second, semi-natural scenarios [65, 80, 128], where users
perform their daily activities as usual but are asked to complete the activities from the ex-
periments at least once to ensure that the activities have been performed. Third, a natural
scenario [15], where users perform their daily activities commonly without intervention in
their behavior by the application. Literature shows that laboratories typically facilitate
data labeling and tend to generate more accurate classification models. However, the
models produced in laboratory settings lose accuracy when applied to real contexts owing
to the diversity of users’behavior. Contrarily, the models produced with natural datasets
tend to be more generic, can be applied to groups of people with similar behaviors, and
provide feasible solutions to scale data collection. Still, naturalistic data collection is more
complicated.

Finally, data labeling can be undertaken by manual [74], fully automated [164], or semi-
automated [62] mechanisms, depending on specific cases (e.g., reliability, cost, and time).
While employing domain experts to manually label data typically results in more reliable
labeling, it can be costly and time-consuming. Nevertheless, the use of fully automated
labeling tools can reduce time and costs compared to domain experts; still, the resulting
labeling may not be as accurate as those produced by a domain expert, and it still requires
a pre-trained model. Alternatively, the use of semi-automated labeling allows the use of
machines in combination with human domain expertise, such as active learning. Although
semi-automated labeling has led to the reduction of the human labeling burden without
sacrificing the model’s performance, it is still inefficient under some circumstances. For
instance, the acquisition of a large number of human labeling is impractical or entirely
unfeasible.

Overall, label collection for activity recognition with smartphone sensors has various
challenges according to the criteria outlined above. This thesis challenges the online
and self-labeling scenarios using inertial smartphone sensors, such as accelerometers. We
employ the participants both in a laboratory setting and in a semi-natural setting such
as crowdsourcing. We also apply semi-automated labeling assistance such as using active
learning.

1.2 Problem Statement
Although researchers in the broader scientific community are increasingly considered label
collection for mobile activity recognition, researchers employing this method face many
challenges when designing their studies. We classify remained challenges into three main
categories and elaborate on the challenges addressed in this thesis below.



Chapter 1 Introduction 9

1.2.1 Response Quality and Quantity

The better of quality and quantity response of the labeling, the more time it demands.
Human labeler needs additional time to label data precisely and collect sufficiently reliable
data, but time is undoubtedly a limited resource for internal labeling. Although contact-
ing outsourcing companies specializing in training data preparation instead of recruiting
temporary employees or relying on a crowd might give more high-quality results, it is more
expensive than crowdsourcing. As a result, the current literature on label collection has
primarily focused on obtaining sufficient data from crowdsourcing. Although asking others
to label data gives fast results and cost-saving and has the ability to evaluate participants’
skills, the risk of obtaining a low-quality dataset is the main one. Participants whose daily
income depends on the number of finished tasks may fail to follow task instructions to get
as much work done as possible. Sometimes mistakes in data labeling can occur due to an
inexperienced or unskilled participant in the field. This situation causes the inconsistent
quality of the labeled data. Furthermore, crowdsourcing and outsourcing to individuals
require the need to organize workflow. For instance, if researchers have sensor data, they
must create a task template (e.g., a mobile app interface) and ensure it is intuitive for
labeling tasks. In sum, we categorize the problem labeled training data in a supervised
learning setting concerning three different criteria:

• Insufficient quantity of labeled data: there is often insufficient training data available
to apply traditional processes when machine learning techniques are initially used
in new industries or applications.

• Insufficient subject-matter expertise to label data: creating a usable training data
set can quickly become costly when labeling training data requires specific relevant
expertise (e.g., in nursing care applications of machine learning).

• Insufficient time to label and prepare data: preparing data sets is most of the time
required to implement machine learning. When a research field has to do with
rapidly evolving problems, it is often impossible to gather and prepare data quickly
enough for results to be useful in real-world applications (e.g., in fraud or anomaly
detection applications).

1.2.2 Participant Motivation

Researchers or other internal experts ordinarily intend to perform a great job because
they are the ones who will be working with a labeled dataset. On the other hand, an on-
demand workforce exhibits early enthusiasm but often loses interest and drops out over
time. However, researchers usually rely on the data collected by study participants instead
of in-house labeling owing to a limited resource, understanding participant motivation is
crucial. The use of crowdsourcing or outsourcing labeling for mobile activity recognition
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introduces many motivation challenges and uncertainties. Due to the frequency of label-
ing for each activity change, participant annoyance may increase over time, potentially
reducing the collected information’s reliability. Establishing motivation for long hours or
over multiple days is much more challenging when relying on participant data. A study
observing an extraordinary event, such as nursing activities, will expect a longer duration
to capture sufficient data points. Asking numerous pieces of information in a day will
quickly reduce participant motivation, making it infeasible to run for longer durations of
time. Furthermore, the nature of the complexity of mobile activity recognition and its
interpretation affects participant motivation.

1.2.3 Smartphones as a Research Instrument

Using a wide range of sensor-rich and highly interactive smartphones consolidated with
the capability to deploy custom-developed software to these devices, researchers have the
potential to adopt smartphones as advanced research tools. Additionally, these devices
can monitor the participants’ lives due to integrating human-labeled data and automated
sensor data collection. Therefore, researchers increasingly consider smartphones as a sci-
entific instrument. Mobile technologies have allowed new opportunities for a widespread
label collection in activity recognition while simultaneously leading to new methodological
and technological challenges. Examples of methodological challenges include assuring con-
sistent data quality across devices, designing effective user interfaces, exploring novel sens-
ing modalities and strategies for data labeling and personalization, as well as examining
the performance of these solutions in real-world settings with diverse populations. Simi-
larly, technological challenges include device-to-device communication across devices and
software systems, computational constraints reduction, extreme energy efficiency, model
optimization, federated learning, and diverse input techniques between devices.

1.3 Research Questions
Regarding my problem statements, several issues of human-labeled data collection focusing
on mobile activity recognition aspects must be solved to design and build the system that
can collect high-quality datasets. Based on these issues, I particularly set out to answer
the following research questions:

• RQ1: How can researchers improve the quality and increase the number of partic-
ipant contributions in data collection for mobile activity recognition studies?

• RQ2: How can researchers motivate participants to participate and carry out data
labeling tasks to their best abilities?

• RQ3: How can researchers employ smartphones as an effective research instrument
in data collection for mobile activity recognition studies?
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1.4 Key Contributions
This thesis contributes to the methodological application of smartphones in data collection
for activity recognition studies. Specifically, it introduces and evaluates novel techniques to
assess participants’ contributions in data collection for mobile activity recognition studies
and provides suggestions and insights to researchers employing this method. Researchers
can employ our findings to improve the reliability and contextual diversity of participant
contributions and increase the total number of contributions.

This thesis aims to improve the collection of human-labeled data in activity recognition,
strengthening smartphones’ role as valuable research instruments. The research goals and
contributions are described below.

1. This thesis proposes novel gamified active learning and inaccuracy detection for
crowdsourced data labeling for a mobile activity recognition system to achieve high-
quality crowdsourced datasets by overcoming three main issues in crowdsourced
labeling: lack of accurate information, loss of motivation and engagement, and
inaccurate data.

2. This thesis proposes using on-device deep learning inference instead of using cloud-
based deep learning inference to alleviate the self-labeling effort for a mobile activity
recognition system to address the main limitation of adopting the cloud-based ap-
proach.

3. This thesis proposes a novel on-device personalization using resource-constrained
mobile devices and mobile optimization to create individualized recommendations
and operate effectively on mobile devices for data labeling for a mobile activity
recognition system.

4. This thesis deployed the proposed systems to realistic settings demonstrating their
capability and feasibility. They gathered real activity labels with smartphone sen-
sors. They empirically evaluated the systems’ quality by comparing the proposed
conditions with baseline conditions using various techniques such as machine learn-
ing and descriptive and inferential statistics. Lastly, they reported that all proposed
systems could achieve the goals we set out.

This thesis discusses the results, challenges, limitations, as well as implications of the
proposed system on the design of efficient human-labeled data collection for mobile activity
recognition.

1.5 Thesis Outline
This thesis consists of seven chapters, including this one. The remainder of this thesis is
organized as follows:
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Chapter 2 surveys the critical researches in achieving my thesis goals. The first three
subsections provide an overview of the related work in crowdsourced labeling for activity
recognition, active learning and activity recognition, and gamification that contributed
to Chapter 3. The two following subsections present a literature review of the current
research in on-device deep learning and decentralized machine learning that contributed
to Chapter 4 and Chapter 5.

Chapters 3–5 present original work conducted per the objectives of this thesis.
Chapter 3 describes a field study investigating crowdsourced data labeling for an ac-

tivity recognition system. This study applied active learning and inaccuracy detection to
crowdsourcing to assess and improve the quality of labels provided by participants. This
knowledge can be used to effectively collect crowdsourced activity data and demonstrate
the validity of crowdsourced data for a real application.

• Nattaya Mairittha and Sozo Inoue. Crowdsourcing system management for activity
data with mobile sensors. In 2019 Joint 8th International Conference on Infor-
matics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on
Imaging, Vision & Pattern Recognition (icIVPR), pages 85–90. IEEE, 2019.

• Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue. Optimizing activity data
collection with gamification points using uncertainty based active learning. In Ad-
junct Proceedings of the 2019 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium
on Wearable Computers, pages 761–767, 2019.

• Nattaya Mairittha and Sozo Inoue. Improving annotation for activity recognition
with active learning and gamification. 研究報告高齢社会デザイン (ASD), 2019(5):1–
8, 2019.

• Nattaya Mairittha, Tittaya Mairittha, Paula Lago, and Sozo Inoue. Crowdact:
Achieving high-quality crowdsourced datasets in mobile activity recognition. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
5(1):1–32, 2021.

Chapter 4 reports on a user study in which we quantify the effect of using on-device
deep learning for activity collection on participant response quality and quantity. This
study discussed the implications of the research outcomes and identified future research
opportunities in exploiting on-device deep learning for mobile activity recognition before
making it more advanced in the next chapter.

• Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue. On-device deep learning
inference for efficient activity data collection. Sensors, 19(15):3434, 2019.

• Nattaya Mairittha and Sozo Inoue. Robust activity data collection with on-device
recognition using long short-term memory. 研究報告高齢社会デザイン (ASD),
2019(12):1–8, 2019.
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Chapter 5 explores the impact of on-device personalization on the accuracy of human
contributions in achieving high-quality and consistent ground-truth labeling for mobile
activity recognition. This study employed the idea of deep transfer learning for personal-
ization, investigated model optimization and computational constraints reduction, as well
as examined the performance of these solutions in real-world settings.

• Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue. Improving activity data col-
lection with on-device personalization using fine-tuning. In Adjunct Proceedings of
the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2020 ACM International Symposium on Wearable
Computers, pages 255–260, 2020.

• Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue. On-device deep personal-
ization for robust activity data collection. Sensors, 21(1):41, 2021.

Following the presentation of our original research contributions, Chapter 6 discusses
this thesis, especially how it was researched, built, evaluated, and solved. Furthermore, we
discuss the remaining limitations and challenges that stimulate future research. Finally,
Chapter 7 presents a summary of the thesis and offers concluding remarks.
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Chapter 2

Related work

In this section, we introduce five key ideas that drive this thesis: (1) a survey on mobile
crowdsensing systems: applications, challenges, solutions, and opportunities; (2) practical
challenges in crowdsourced labeling for activity recognition; (3) implementation of active
learning and minimization of the effort of data labeling in activity recognition applications;
(4) exploiting gamification to incentivize participation in ubiquitous crowdsourcing; (5)
adopting on-device deep learning for activity data collection; and (6) study on decentral-
ized machine learning and applications to mobile activity recognition.

2.1 Mobile Crowdsensing Systems

2.1.1 Introduction

With mobile sensing and mobile internet technology, a new sensing paradigm called Mobile
Crowd Sensing [46] has been studying many works [52,85]. This paradigm leverages many
individuals with mobile devices capable of sensing and computing (such as smartphones,
tablet computers, wearables) for large-scale sensing. In short, mobile crowdsensing can be
considered as crowdsourcing where the data provided by the crowd workers is their sens-
ing capabilities. Using this paradigm, individuals can collect multi-modal data streams
from the surrounding environment using their mobile devices and share the data with
existing communication support (e.g., wireless network protocols). They can then extract
information to measure, map, analyze, or estimate any processes of common interest. Con-
sequently, taking advantage of the ubiquitous crowdsourcing and robust mobile computing
devices (particularly smartphones) in recent years, it has become an appealing method to
businesses that want to obtain data without making large-scale investments.

Current mobile crowdsensing applications can be broadly classified into personal sensing
and community sensing based on the type of phenomena being observed [120, 161]. Re-
garding personal sensing applications, the phenomena concern an individual, for instance,
observing physical activity patterns (e.g., running, walking, exercising) of an individual
for personal activity recoding or healthcare purposes or recognizing an individual’s fa-
cial expressions to determine his or her emotions. Contrarily, community sensing involves
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observing large-scale phenomena that cannot easily measure by each individual. For exam-
ple, intelligent transportation system applications [157] may require road traffic congestion
monitoring and measurement. This phenomenon can be measured accurately only when
massive numbers of people provide speed information from their daily commutes, which
are then aggregated to monitor road traffic congestion or provide real-time navigation in
urban areas. Based on the type of involvement from the users, community sensing can
also be classified into two types: participatory sensing [21] and opportunistic sensing [85].
While participatory crowdsensing requires the users to voluntarily and actively participate
in contributing information (e.g., reporting an issue with roadworks), opportunistic crowd-
sensing involves automated systems with less user involvement (e.g., continuous location
sampling without the user’s explicit knowledge). However, there are many challenges for
mobile crowdsensing applications in practice, which should be further examine.

In the rest of this section, we present a brief overview of the existing mobile crowdsensing
applications, describe their various challenges, and discuss possible solutions. Lastly, we
introduce new challenges to be explored in future research.

2.1.2 Mobile Crowdsensing Applications

This section briefly discusses existing mobile crowdsensing applications, which provide a
reason for drawing various research challenges. Mobile crowdsensing applications can be
classified into several types based on the type of phenomena being measured. Here, we
provide an example of common mobile crowdsensing applications: healthcare, environmen-
tal, infrastructure, and social. However, there have been many other applications such as
smart cities, tourism, sports, public safety, and the military.

Smartphones can connect patients with medical services through mobile communica-
tions networks for sensing and diagnostic capabilities in healthcare applications. Health-
care monitoring employs sensors embedded within these devices to monitor patient vital
signs both locally and remotely. Since it provided improved patient care through the early
detection of adverse events of high-risk medications or health conditions, it can influence
patients’ behavior to improve their health [153]. The use of crowdsensing in health-
care applications has been the subject of study of many works. For example, Poh et
al. [123] proposed sensor earphones and mobile application for non-obtrusive health mon-
itoring. Hanson et al. [57] introduced wireless body area sensor network technology for
motion-based health assessment. Abualsaud et al. [2] proposed an efficient framework for
evaluating the power-accuracy trade-off for EEG-based compressive sensing and classifica-
tion techniques in the context of epileptic seizure detection in wireless tele-monitoring, and
they also presented [3] an ensemble classifier for epileptic seizure detection for imperfect
EEG data.

Environmental mobile crowdsensing applications adopt mobile phones as environmen-
tal sensing platforms that support community action to drive positive societal change.
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A combination of mobile smartphone sensors and fixed localized sensors can efficiently
monitor context from personal and local perspectives. As such, extensive research and
applications in environmental sensors have been in demand in recent years. Examples of
environmental applications include mobile monitoring of air pollution in cities [156], mon-
itoring the water level of the river [142], and monitoring wildlife and their habitats [118].
For example, Wallace et al. [156] used mobile monitoring to improve spatial coverage of
pollution concentrations over the city of Hamilton, Ontario, and enhance knowledge of the
short-term bursts of pollution to which the population is exposed. Sulistyowati et al. [142]
proposed long-term monitoring systems for wildlife and their habitats in the Southern
Ocean and around Indian Research Stations in Antarctica.

Infrastructure comprises the basic physical and organizational structures and facilities
needed for the operation of a society or enterprise, such as buildings, roads, and power
supplies [87]. Infrastructure applications can be defined as the fundamental components
of related systems to improve people’s daily lives. For instance, evaluating civil infras-
tructures and critical facilities (e.g., schools, nursing homes, and hospitals) after natural
disasters is very important in our lives. One of the most well-known infrastructure applica-
tions is traffic monitoring [14,148]. Traffic monitoring exploits Global Positioning System
(GPS) and smartphones to allow critical information about traffic conditions. This mon-
itoring can sense a driver’s behavior, unexpected traffic events, risky vehicle activities, or
aggressive driving. For example, Basudan et al. [14] propose a privacy-preserving protocol
to enhance security in vehicular crowdsensing-based road surface condition monitoring
system using fog computing. Thiagarajan et al. [148] presented a system for travel time
estimation using sensor data to address energy consumption and sensor unreliability is-
sues. These studies exhibited promising future research directions regarding employing
crowdsensing to allow reliable transportation services.

Social applications can be classified as social networking and social sensing information.
In social networking applications, the users can share their information by using social
networks (e.g., Facebook, Twitter, LinkedIn) and media sharing sites (e.g., Instagram,
YouTube, Snapchat) [95]. Contrarily, social sensing applications gather data on personal
activity (e.g., personal health, location, pictures and videos) and transfer it to the remote
server for further processing. Accordingly, users in such a system can share their sensitive
information only among specific groups of friends or community for privacy purposes [51].
For example, Guo et al. [51] integrated mobile computing and social networks to build a
group-aware system that delivers assistance during several group activity organizational
stages. Bulut et al. [20] presented a mobile crowdsensing system for coffee shop wait-
time monitoring. The system utilized continuous streams of accelerometer data given by
hundreds of users at a coffee shop to monitor and estimate the waiting time to enter a
coffee shop.
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2.1.3 Mobile Crowdsensing Challenges

Although mobile crowdsensing has excellent potential and offers many opportunities and
applications, it also has several challenges that need to be considered before deploying
such systems on a large scale. We discuss three major research challenges faced by mobile
crowdsensing applications: (1) user perception, (2) privacy and security, (3) data accu-
racy, and (4) data size. However, researchers are still faced with other obstacles to widely
perform experiments despite the considerable demand for mobile crowdsensing applica-
tions for smartphones, such as localized analytics, resource limitations (e.g., energy and
bandwidth computation), aggregate analytics, and a unifying architectur

User perception

The important implication for human involvement is incentives. Thus, one of the signifi-
cant research challenges in mobile crowdsensing applications is exploring an appropriate
incentive mechanism that encourages users to participate in such a system. Mobile crowd-
sensing applications commonly face the availability of a sufficient number of participants
for the required application. In response to this requirement, researchers commonly em-
ployed incentive strategies, such as monetary rewards, to increase the number of partici-
pants [170]. Reducing the effect of operating these applications on smartphones’ perfor-
mance (e.g., optimizing energy consumption, processing needs, and network requirements)
also helps maintain users’ interest in participation in mobile crowdsensing applications.
When it comes to active participation, user participation in this situation requires more
user involvement, which is more challenging. Xiao et al. [162] revealed the barriers ham-
pering mobile crowdsensing applications’ scale-up. They offered their initial thoughts that
people can help lower the barriers when a minimum effort is required without extra cost.

Privacy and security

Another major research challenge in mobile crowdsensing is the authenticity and integrity
of the data obtained from diverse user populations participated in the system. Privacy
and security are essential in applications that collect sensitive information related to par-
ticipants (e.g., by tracking a user’s current location). While authentication and integrity
verification of the information provided is critical since it leads to decision making and
may impact the whole sensing performance, this sensitive information is also critical as it
may affect the user’s privacy. Many researchers have touched on these challenges [29,72].
For example, Khan et al. [72] and Christin et al. [29] studied how to protect the partic-
ipant’s privacy without sharing his/her sensitive information while still enabling mobile
crowdsensing applications. Furthermore, when malicious participants act dishonestly or
unfairly to maximize profit and minimize effort, i.e., cheating behavior (e.g., contribute
with inaccurate sensor data), this could affect the integrity of the data collected from the
system. This situation produces a severe problem that could lead to a lack of trust in the
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mobile crowdsensing application. Some researchers have studied finding new approaches
to solve this problem [107, 143]. For example, Manshae et al. [107] presented a list of
works highlighting the application of game theory in addressing different forms of security
and privacy problems in computer networks and mobile applications. Sun et al. [107] pre-
sented a secure and privacy-preserving object-finding system via mobile crowdsourcing to
ensure strong object security that only the object owner can discover his/her lost object’s
location and offer location privacy to mobile users involved.

Data accuracy

Although increasing the quantity of collected data improves monitored event accuracy,
gathering sensor data from crowd users might overwhelm the communication network and
remote servers. Hence, many researchers carefully marked the tradeoff between the data
accuracy and the overloading of the communication network and servers, such as the work
in [14, 138]. Shin et al. [138] and Basudan et al. [138] identified devices that are likely to
produce accurate sensing data, aggregate global centralized data, and analyze these de-
vices’ spatiotemporal mobility patterns. The crowd data is often collected from different
smartphone models from different vendors, making sensitivity and noise immunity. Thus,
their study provided useful information that can improve data accuracy in mobile crowd-
sensing applications. Although data accuracy challenge is common to mobile crowdsensing
and more traditional IoT networks, mobile crowdsensing faces further specific issues. For
example, there is more limited control on a wide variety of devices, as mentioned previous
paragraph, or data accuracy in mobile crowdsensing can be involved in creating an inac-
curate dataset intentionally by malicious users, as discussed in the previous "Privacy and
security" section.

Data size

The large scale of mobile crowdsensing results in a large amount of data traffic that
may damage the network. Contrary to traditional networking in the Internet of things
(IoT) with completely automated sensor transmissions, mobile crowdsensing can some-
times generate unforeseen traffic owing to unexpected human participation. Consequently,
remarkable methods need to be considered to minimize the amount of traffic. For instance,
advanced big data techniques and data analytics algorithms can be employed to effectively
manage the enormous amount and variety of sensed data [114]. Additionally, researchers
have also explored other techniques to achieve data size challenges, for example, propor-
tional fair traffic splitting and aggregation in heterogeneous wireless networks [140] or local
data aggregation and processing on personal mobile devices [171].

2.2 Challenges of Crowdsourced Labeling for Activity Recognition
Crowdsourcing with ubiquitous technologies is increasingly considered by researchers, par-
ticularly for mobile devices [155]. With crowdsourcing, it is possible to solve a problem
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using a mobile device and its sensors to collect data. Studies on crowdsourced labeling
for activity recognition technology with smartphone sensors are becoming increasingly
popular [6, 23, 139, 168]. Using crowdsourcing to gather activity and contextual data in
natural settings has a considerable advantage over a controlled data collection method
in laboratory settings. Specifically, the collected data are more diverse, naturalistic, and
representative of users’ real-life behaviors. Moreover, crowdsourcing potentially allows the
production of a larger number of activity labels in a timely manner. Despite the vari-
ous benefits of crowdsourced labeling for activity recognition with smartphones, there are
some serious drawbacks.

First, researchers question the accuracy of the collected labels and the reliability of
crowdsourced data [4, 13, 62]. Basiri et al. [13] regard that crowdsourced data is con-
tributed by the public. Some workers with little experience and data expertise might have
contributed to the perception of the unreliability of this data source. Additionally, Hossain
et al. [62] recently explored how different social and educational backgrounds may lead to
unreliable and noise-prone labels. Particularly, understanding the data collected from the
sensors of an inertial measurement unit (IMU) in the activity recognition domain, such
as smartphone sensors, is difficult for human labelers who are typically not experts in the
field [168]. Hence, crowdsourced data generate an unacceptably high rate of labeling er-
rors. Low trust in the accuracy of the crowdsourced data is also produced by the inability
to inspect the users’ input [4]. This aspect contributes to a lack of complete control over
the participants and leads to inaccurate information when compared to lab settings. Such
issues have impeded the adoption of crowdsourced data in several projects.

A second drawback is the lack of sustained engagement of crowd workers. Crowdsourced
labeling relies on the number of participants who are willing to devote and contribute their
time and efforts. However, ordinary individuals are not willing to perform the tasks un-
less there are sufficient incentives. Typically, the crowd consists of two worker types: the
triers and the cheaters. The triers, who perform faithfully, may not always deliver the
best work. Many researchers studied how crowdsourcing projects have failed because they
were unable to gain sufficient attention from the public [108], or because workers gradually
lose interest and drop out of the tasks over time [4,68,132,166]. When it comes to online
scenarios, collecting personal contextual and activity data is much more challenging. La-
bels describing the current activity need to be assessed while the activity is on-going or
recent to ensure that the dataset is labeled correctly. Human labelers must also start and
stop the data capture process manually to avoid inaccurate timestamps, which requires
high effort. Consequently, it is inevitable to rely on users and keep them motivated to
constantly provide labels. Contrarily, cheaters are workers who act dishonestly to maxi-
mize profit and minimize effort. Researchers have explored [38, 88] the lack of sustained
engagement and motivation as a reason for cheating behavior (i.e., act dishonestly or un-
fairly to gain an advantage.) in crowdsourcing scenarios, which affects the task output.
For example, the worker shakes the smartphone but annotates a "cleaning" class instead.
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However, detecting cheating behavior in activity recognition is challenging. For instance,
with smartphones, changing the pattern of cheating behavior is effortless, and it is difficult
to determine whether a sensor pattern is likely to be cheating or not.

Although prior works [1, 86, 162] have used crowdsourced data to improve classifier ac-
curacy, differences to our approach exist in terms of the end goals, proposed method, and
implementation. Xiao et al. [162] proposed an activity classification framework that keeps
the user burden low by leveraging crowdsourced data labels, where natural language pro-
cessing combined with multi-instance learning is used to handle labeling errors. Abdullah
et al. [1] exploited community-scale behavioral patterns to leverage the increasing capacity
to gather data at a population-scale towards improving models of human behavior. Lane
et al. [86] exploited crowdsourced data to personalize classifiers with data contributed by
other similar users to cope with the diverse user populations routinely found in large-scale
popular mobile applications. In this study, our challenge is to create strategies to obtain
high-quality labels, keep the crowd workers engaged with the labeling task, and prevent
inaccuracies.

2.3 Active Learning and Activity Recognition
The key idea behind active learning is that if a machine learning algorithm can select the
data to be learned, it can potentially achieve the same or higher accuracy than that of stan-
dard supervised techniques with fewer training labels. Hence, active learning is a method
in which a model only queries data that can add knowledge and improve performance.
This concept is well-motivated in many modern machine learning applications because it
helps in minimizing manual labeling efforts and cost, as well as reducing model training
computation time. There are several scenarios in which active learners may be able to
ask queries, and there are also several different proposed ways of formulating such query
strategies to decide which instances are most informative. The three principal sampling
strategies that have been considered in the literature are (1) membership query synthe-
sis, (2) stream-based selective sampling, and (3) pool-based sampling. Membership query
synthesis [7] is reasonable for many problems, where the learning model generates a data
instance from a certain distribution. However, labeling such arbitrary instances can be
awkward if the oracle is a human labeler. To resolve these limitations, the stream-based
and pool-based scenarios have been proposed for an alternative strategy [8, 91]. A key
theory for these scenarios is that labeling an unlabeled instance is effortless. Instead of
synthesizing queries, instances can be selectively sampled from a real data distribution.
While pool-based sampling has access to all the unlabeled data from which it selects the
best, stream-based selective sampling examines unlabeled data sequentially and decides
based on some querying strategy whether to request a query its label or not. Both sce-
narios have been studied in several real-world tasks in machine learning. In most cases,
uncertainty sampling is commonly used to evaluate the informativeness of unlabeled data
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for both pool-based and stream-based settings. However, there have been many proposed
ways of formulating such query strategies in the literature such as query-by-committee, ex-
pected model change, expected error reduction, variance reduction, and density-weighted
methods. For a detailed review of active learning, we refer an interested reader to [135].

The use of active learning in activity recognition has been the subject of study of many
works [5, 9, 60, 62, 96, 141], where sensor (unlabeled) data are readily available or easily
obtained, but labeling is challenging. For example, Hossain et al. [62] investigated and
analyzed different active learning strategies to scale activity recognition and proposed a
dynamic k-means clustering-based active learning approach. Ho et al. [60] addressed the
problem of learning and recognizing human daily activities in a dynamic environment
using active learning. They showed that utilizing active-learning assistance minimized
human effort in relabeling training data. Stikic et al. [141] systematically analyzed several
different techniques to significantly reduce the required amount of labeled training data in
activity recognition. With the active learning technique, the required amount of training
data was considerably reduced while obtaining similar and sometimes better performance
than that of standard supervised methods. Longstaff et al. [96] investigated methods
of automatically augmenting activity classifiers to improve the performance of an initial
classifier. By comparing active learning and several semi-supervised learning methods,
they proved that active learning achieved the greatest improvement. Other studies, such as
[5,9], described several active learning methods on datasets collected in home settings that
they designed for their applicability to the activity recognition task. Both Alemdar et al. [5]
and Bagaveyevet al. [9] allowed activity recognition on a large scale and showed a reduction
in the number of labeled data required. In this study, we explore two commonly used
mechanisms: the pool-based active learning setting and an uncertainty sampling strategy.
Unlike the abovementioned literature that used active learning to alleviate the labeling
effort and ground-truth data collection in activity recognition pipelines by relabeling the
data instances, our research aims to exploit such a strategy to evaluate the activity data
collection performance for gamification points.

2.4 Incentivizing Participation and Gamification
Incentives are a commonly used mechanism to entice participation and ensure sufficient
data quality in crowdsourcing [4, 30, 112]. Existing work has identified intrinsic (e.g.,
reputation) and extrinsic (e.g., rewards) as motivations frequently used for incentivizing
participation [59]. One of the most popular incentive designs in recent years has commonly
been titled as "gamification". Deterding et al. [36] defined gamification as“the use of game
design elements in non-game contexts” to improve user experience and engagement. The
use of points (i.e., score) as gamification elements proved to be the most effective method
in motivating participants [53]. Gamification points are the simplest way to reward users
for completing an action or a series of actions. It can create a sense of progression that mo-



Chapter 2 Related work 22

tivates continued effort. Gamification in the context of ubiquitous crowdsourcing has been
explored [42, 116, 160], while the investigation of gamification aimed at data quality and
quantity has been increasing in popularity over the years. [17,103,151]. However, the un-
derlying gamification for label collection in activity recognition remains scarce, particularly
regarding the role of crowdsourcing. Van et al. [151] showed the potential for gamification
in an experience sampling study, describing both its effect on response quantity and qual-
ity. Palacin et al. [116] compared two versions (gamified and non-gamified) of a mobile
application designed to capture lake ice coverage data to understand the effects of gamifi-
cation on citizen engagement. The gamified version included gamification elements, such
as points and a feedback module. This related work has proved the overall involvement
was significantly higher with the gamified application than with the traditional applica-
tion. The work of Palacin et al. [116] implies there is a statistically significant effect of
gamification on participant engagement levels in crowdsourcing as well as data collection
and quality. Thus, we set out to exploit a gamification concept for high-quality data in
activity recognition. Although a previous study [103] uses gamification points as rewards,
they are several key differences from our approach, such as the objective, experimental
setup, algorithm behind gamification, and systems development. The major difference be-
tween the two studies is that the prior work employed gamification in laboratory settings
with the students who knew the purpose and cooperated with the experiment. Contrarily,
we implemented gamification as a powerful motivator in crowdsourcing settings. However,
Mairittha et al. [98] suggested that specific crowdsourcing challenges such as the difficulty
and complexity of tasks, diversity, and digital literacy arise, which of those challenges are
addressed in this paper. The proposed CrowdAct approach, which is laid out in Chapter 3,
has not been introduced in previous works.

2.5 On-Device Deep Learning
To make capital out of the cloud, we occasionally offload data on small devices such as
smartphones and smartwatches to the cloud for storage and processing. For example,
physical activity information derived from the accelerometers of wearables is often trans-
ferred to and stored in the cloud. The ability to offload complicated tasks from devices
with limited computation capabilities to virtual process capacity in the cloud is interest-
ing; however, there are many limitations, for instance, advances in hardware capabilities
and privacy threats. With the fast development of the Internet of Things (IoT), combined
with improvements in machine learning such as deep learning, technology-based solutions
to recognize and model human behaviors automatically are becoming possible. There-
fore, mobile computing has been a move to reduce communication latency and network
communication while preserving privacy [32,79,127].

Deep learning with ubiquitous technologies is increasingly considered by researchers,
particularly for mobile devices [63, 83]. With the powerful mobile devices’ hardware, it is
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possible to exploit deep learning to solve a problem using a mobile device and its sensors
to collect data without cloud support. Consequently, the use of deep learning on mobile
devices has been researched in many works [12,84,101,159,163]. The use of Convolutional
neural networks (CNNs) and Recurrent neural networks (RNNs) have been the subject of
study of many activity recognition applications [113]. Both kinds impose challenges when
applied to practical applications owing to the complexity of their architecture. In this
study, we deeply explore both CNNs and RNNs due to the suitability for temporal data
for building the proposed system blocks.

While the literature mentioned above focused on analyzing deployed different deep
learning models on devices to improve its performance, no one has studied the use of
on-device deep learning to optimize activity data collection by providing estimated ac-
tivities as feedback. We present this innovative approach in Chapter 4. Furthermore,
while the use of knowledge transfer for on-device deep learning has been the subject of
study of some works [70], there are some critical drawbacks concerning deep learning
practical on resource-constrained devices [147]. Some present works have been proposed
to build deep learning effective on resource-constrained devices, such as model compres-
sion [34, 54, 82, 84, 163] and customized hardware design assistance [26, 27, 55] for deep
learning. Some of these works are utilized in our work (e.g., layer compression), but
mostly they target only the inference phase of deep learning algorithms. Contrarily, we
introduce a technique to minimize the complexity of optimizing on-device deep learning
inference.

2.6 Decentralized Machine Learning
Machine learning over distributed data collected by many users has essential applications
where data privacy is a crucial concern, or central data storage is not a choice. Recently,
decentralized machine learning was proposed to solve this problem [76,110,152,167]. The
key idea behind this paradigm is that machine learning models are trained on decentralized
data. Instead of gathering data on a single server, this paradigm leaves the raw data on
the device and manage it using distributed aggregation. The trained models are then
transferred to a central component and combined.

Google presented federated learning to overcome this challenge [75,109]. This approach
corresponds to distributed learning. The parameter server controls the current model and
commonly distributes it to the users to perform a parameter update and send it back to the
server. Then, the server applies all the updates to the central model. The process is then
iterated until the model converges. This approach enables multiple researchers to build a
standard, robust machine learning model without sharing data, allowing them to address
various practical challenges such as data privacy, data access rights, and heterogeneous
data access. For this reason, its applications are spread over many industries, including
data security, IoT, and telecommunications. For instance, Konevcny et al. [76] explored
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federated learning in which users do not send the data they generate to a data center at
all, but rather provide part of their computational power to solve optimization problems.

While the field has advanced in recent years, our study remains a relevant and accessi-
ble introduction. In Chapter 5, we exploit fine-tuning training where the locally trained
models or parameter updates will not be uploaded to the cloud as we already trained and
generalized the global model. This solution improves upon the traditional approaches by
working better in bandwidth and power-constrained environments and provides a straight-
forward and effective mechanism for personalization at scale.
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Chapter 3

Achieving High-Quality Crowdsourced

Datasets in Mobile Activity Recognition

3.1 Abstract
In this study, we propose novel gamified active learning and inaccuracy detection for crowd-
sourced data labeling for an activity recognition system using mobile sensing (CrowdAct).
First, we exploit active learning to address the lack of accurate information. Second, we
present the integration of gamification into active learning to overcome the lack of motiva-
tion and sustained engagement. Finally, we introduce an inaccuracy detection algorithm
to minimize inaccurate data. To demonstrate the capability and feasibility of the pro-
posed model in realistic settings, we developed and deployed the CrowdAct system to a
crowdsourcing platform. For our experimental setup, we recruited 120 diverse workers.
Additionally, we gathered 6,549 activity labels from 19 activity classes by using smart-
phone sensors and user engagement information. We empirically evaluated the quality
of CrowdAct by comparing it with a baseline using techniques such as machine learning
and descriptive and inferential statistics. Our results indicate that CrowdAct was effective
in improving activity accuracy recognition, increasing worker engagement, and reducing
inaccurate data in crowdsourced data labeling. Based on our findings, we highlight criti-
cal and promising future research directions regarding the design of efficient activity data
collection with crowdsourcing.

3.2 Introduction
Ubiquitous crowdsourcing, or the crowdsourcing of jobs in settings beyond the desktop,
has drawn attention owing to the increasing maturity of ubiquitous technology and mobile
devices, such as public displays and smartphones [155]. This model has become a popular
means of acquiring labeled data with any device, in any format, and in any location.
Further, it can be applied to a wide variety of tasks where humans are not limited to
a stationary use and are more accurate than computers (e.g., labeling activity data).
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While crowdsourcing work is efficient, cost-effective, and highly scalable for collecting
data, relying solely on the crowd is highly impractical and challenging for most real-world
situations. Fundamental approaches to crowdsourcing suffer from two major problems.
First, the collected labels lack in accuracy as workers are typically not experts in the field
and may not be specifically trained for labeling. For instance, inertial sensor data, which
is commonly used in activity recognition applications, is hard to interpret and annotate.
Additionally, it is impossible to examine the users’input (i.e., the actual action performed
by users). Consequently, the collected labels may be noisy by nature. Second, workers
often lack motivation and sustained engagement. Although they exhibit early enthusiasm,
workers may lose interest and drop out over time or might not be highly invested in
producing high-quality labels. This situation leads to low-quality data collection and
biased data (e.g., generating uneven, subjective, and unreliable label). We assume this as
inaccurate data and propose a method to detect these situations.

In response to these challenges, we introduce the CrowdAct system, which allows crowd-
sourcing applications for smartphone sensor systems to achieve highly accurate training
datasets in activity recognition based on three features. First, we employ Active Learn-
ing [135] to solve the lack of accurate labels. Active learning is especially well suited for
activity recognition because of the abundance of sensor data. Still, ground truth labels are
expensive to obtain. Contrary to the intuition of active learning to select the samples that
require labeling, we implement aggregate confidence scores of the predicted label samples
and utilize those scores as information feedback. Second, we exploit Gamification: the
idea of using game design elements in non-game contexts to improve user experience [35].
We use gamification to motivate and sustain worker engagement by packaging the labeling
task in the form of a game. For the game point system, we use the confidence scores of the
predicted labels gained from the aforementioned active learning method as gamification
points. Finally, we propose an inaccuracy detection algorithm using supervised classifica-
tion techniques to reduce inaccurate data in crowdsourcing applications. With these three
features, we overcome the low-quality labeling problem of ubiquitous crowdsourcing.

The proposed CrowdAct system does not focus on gathering a large amount of data
from the crowd. Contrarily, this study focuses on the accuracy of human contributions
in achieving high-quality and consistent ground-truth labeling and, particularly, on the
impact of the "gamified active learning system" and feedback under different conditions.
An overview of CrowdAct is shown in Figure 3.1. In short, the main contributions of this
work to the field are the following:

1. We developed a novel system, called CrowdAct, to achieve high-quality crowd-
sourced datasets in activity recognition by overcoming three main issues in crowd-
sourced labeling: lack of accurate information, loss of motivation and engagement,
and inaccurate data.

2. We deployed the CrowdAct system to a realistic crowdsourcing platform demon-
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strating its capability and feasibility.
3. We recruited 120 diverse workers and gathered 6,549 activity labels with smartphone

sensors. We also collected user engagement information, such as survey data and
log events, from smartphones. We reviewed, analyzed, and used the obtained data
for evaluations.

4. We empirically evaluated the quality of CrowdAct by proposing two conditions (AL
and AL+CD) and comparing them with a baseline condition (BL) using techniques
such as machine learning and descriptive and inferential statistics. The results
indicate that the proposed method can achieve accurate, and consistent labeling in
crowdsourced datasets.

We discuss the results, challenges, limitations, as well as implications of this research
on the design of efficient activity data collection methods with crowdsourcing.

Inaccuracy detection
model is trained from 
crowd-labeled data.

The system evaluates and
provides a confidence score

for each label that is
"Gamification points".

The system detects 
inaccurate labels from
crowd-labeled data.

Active learning model 
is trained from crowd-

labeled data.

Workers get a notification that the system
has detected inaccurate data from their data
labeling task. Then, they can avoid making

inaccurate data for data labeling.

(a) Gamified active learning

(b) Inaccuracy detection
An accurate

training data set
is ready for use.

Workers can easily understand how
well they completed the labeling task by

looking at the scores. Then, they can
optimize data for data labeling.

Workers perform the data
labeling task using 

the provided Android
smartphone application.

Figure3.1 High-level overview of the proposed CrowdAct system for robust activity

data collection with crowdsourcing. We propose two novel independent ideas directed

to the same goal: (a) Gamified active learning to improve recognition accuracy and

user engagement; (b) Inaccuracy detection to enhance the quality of crowdsourced

datasets.

3.3 Method
We specifically aim to address the challenges and barriers of crowdsourced data collection
for activity recognition identified in Chapter 2.2. Therefore, we introduce CrowdAct, novel
gamified active learning and inaccuracy detection for crowdsourced data labeling for an
activity recognition system. The CrowdAct learning procedure is reflected in Figure 3.1.

In summary, the goal of the CrowdAct system is three-fold:

• G1: Employing an active learning algorithm to address the lack of accuracy in
crowdsourced data labeling.
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• G2: Applying the gamification concept to overcome the lack of motivation and
sustained engagement in crowdsourced data labeling.

• G3: Building an inaccuracy detection algorithm to minimize inaccurate data in
crowdsourced data labeling.

To achieve G1 and G2, we designed the Gamified Active Learning algorithm (Sec-
tion 3.3.1). To accomplish G3, we developed the Inaccuracy Detection algorithm (Sec-
tion 3.3.2). In the following subsections, we describe these algorithms in more detail.

3.3.1 Proposed Gamified Active Learning

In this section, we introduce the idea of integrating active learning and gamification. We
applied two standard approaches in the pool-based active learning setting (in which queries
are selected from a large pool of unlabeled instances U) using an uncertainty sampling
query strategy (which selects the instance in the pool with the highest label uncertainty), as
described in [135]. Because our crowdsourced labeling system relies on real-world learning
problems, large collections of unlabeled data can be gathered from sensors data simultane-
ously. This motivates pool-based sampling, while the most straightforward and commonly
used query framework is uncertainty sampling. The main difference between the original
pool-based active learning pipeline and the proposed pipeline is that the former calculates
the uncertainty of the current model in predicting each label, detects the most informa-
tive unlabeled samples, and queries the user for a label. Contrarily, the proposed pipeline
evaluates the entire collection of unlabeled data from past data before discarding the most
uncertain samples and utilizing the remaining predictions as gamification points (i.e., in-
formation feedback). The gamification points are then returned as feedback to the user
to motivate user contribution and improve the quality of data labeling. The proposed
pipeline is typically suitable for mobile activity recognition using online crowdsourcing
settings in which a label does not require the timestamps to be precise. In other words,
straightforward querying of the user’s event at an accurate timestamp for a label is hardly
possible, impeding the user from labeling it. Additionally, the prior study (Section 2.4)
disregards the most uncertain sample in its prediction by assigning it gamification points.
Contrarily, we discard this sample.

In short, we did not create a new active learning algorithm nor did we optimize our
code for fast real-time operation. Instead, we applied, adapted, and integrated the idea of
active learning with gamification for achieving high-quality crowdsourced datasets in mo-
bile activity recognition. Algorithm 1 illustrates the pseudo-code of the proposed gamified
active learning algorithm. The key component of the algorithm concerning the design of a
gamified active learning system is found in line 12. The algorithm consists of eight steps:

1. Let X be the input space of instances. Each x ∈ X is presented in a p-dimensional
space as a feature vector x def= (xf1 , xf2 , . . . , xfp) of sensor data, where xfi ∈ R and
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fi is the ith element in x. Each y ∈ Y represents an activity class from the set of
possible activities C, where Y ⊂ C

2. Let U be the set of unlabeled instances {(x0, x1,...,xi)}
3. L be the set of initial labeled instances {(x0, y0),(x1, y1),...,(xj , yj)}, where j < i

4. Use L to train a model θ (i.e., the subject to optimization) by using eXtreme
Gradient Boosting (Xgboost) [25].

5. Compute a probability △θ
x of each x in U by using an uncertainty sampling strategy

with entropy [136]:

△θ
x =

(
−
∑
y

Pθ(y|x)logP (x|y)

)
, (3.1)

where yi ranges over all possible labelings of x.
6. Map the predicted label of x, y, with a probability △θ

x.
7. Select x∗, the most uncertain instance according to Equation 3.2. Then, discard x∗.

x∗ = argmax
x

△θ
(3.2)

8. Calculate the entropy of each class c, by averaging △θ
x of all instances predicted as

c.

Algorithm 1 Gamified Active Learning Algorithm
INPUT:
U = pool of unlabeled instances {(x)(u)}Uu=1

L = set of initial labeled instances {(x, y)(l)}Ll=1

OUTPUT: A = The △θ
x on average of each class {(n)(c)}Cc=1, where n ∈ N

1: function GamifiedActiveLearningAlgorithm(L)
2: D = {}
3: θ = train (L)
4: for each x in the pool U do
5: △θ

x = compute △θ
x of x ∈ U using model θ and Equation 3.1

6: d = (y, △θ
x) : map the predicted label y with a probability △θ

x

7: D ← D ∪ d

8: end for
9: select x∗, the most uncertain instance according to Equation 3.2.

10: discard x∗ from U and D
11: for each c in C do
12: A[c] = average scores D for class c and assign into A

13: end for
14: return A
15: end function
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3.3.2 Inaccuracy Detection

In this section, we address the problem of inaccuracy detection by using supervised learn-
ing. Here, we followed the classical steps of a data science project: data preparation,
model training, evaluation, and finally, deployment. To perform supervised learning, we
need both "accurate" and "inaccurate" labeled samples to train a model. However, train-
ing a supervised machine learning model to detect inaccurate data is very difficult owing
to the low number of actual confirmed examples of inaccurate data (imbalance classifica-
tion problems) [93]. Therefore, we first created a synthetically generated dataset to train
our model. One of the challenges of creating inaccurate samples is the extreme variability
and flexibility of the inaccurate data patterns, i.e., a situation where labels are uneven or
unreliable. Consequently, to ensure diversity among the inaccurate samples in our training
data, we created inaccurate samples that contain both an intentional inaccurate dataset
and a fake inaccurate dataset by random permutation. One risk of the experiment was
that the nature of actual cheating behavior is fundamentally different from randomly or-
dered and instructed inaccurate data where no purposeful cheating pattern existed. Please
note that given this inaccurate dataset, these results cannot be claimed human’s cheating
is detected, but certainly, carry a significant indication that a machine can efficiently de-
tect inaccuracies by attempting to simulate cheating as best as possible. To build these
detection patterns, we implemented four steps:

1. We employed our common crowdsourced dataset (accurate data) collected in the
field [98] to create a fake inaccurate dataset by random permutation by (1) randomly
changing the label to the signal and (2) taking signals from two different classes and
randomly permutating parts of them.

2. We used the reference study [97] as a model for the protocol of inaccurate sample
collection. We crowdsourced workers to intentionally create an inaccurate dataset
using a similar protocol of [98] for a completely different purpose.

3. We combined the random fake and intentional inaccurate datasets; subsequently,
we obtained inaccurate samples containing possibly several inaccurate patterns (in-
tentional or unintentional).

4. We merged our common crowdsourced and inaccurate datasets to a synthetic
dataset, which assists in creating a set of synthetic labels and an initial set of
features for training.

For the training algorithm, we divided the dataset into training and test sets. The datasets
contain different users to evaluate the robustness of the classifier to new users. We used
the training dataset to build and validate the model and treated the test dataset as the
unseen new data. With the training data created, we handled imbalanced classes with
upsampling using the SMOTE algorithm [24]. By oversampling only on the training data,
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none of the information in the validation data is used to create synthetic observations.
Therefore, these results should be generalizable. The models were trained using Xgboost
and evaluated with three repeats of 10-fold cross-validation. Because accuracy is not a
helpful metric for this task *1, we used area under the curve (AUC) of a receiver operating
characteristic (ROC) curve [41] as a metric of accuracy. This is ideal for maximizing the
true positive rate while minimizing the false positive rate. Consequently, our training
algorithm can achieve both a high AUC and recall of 98% because it can capture many
true positives but also many false positives. Hence, the model is almost always able
to correctly identify inaccurate data. The visual insight of the results is presented in
Figure 3.2. Because the model performance is acceptable by our standards, we used it on
real-world data. If the detection is classified as "inaccurate", a notification is sent to the
user to caution the inaccurate data. In the following, we present the inaccuracy training
and detection algorithms.

Algorithm 2 Inaccuracy Training Algorithm
INPUT: L = sensor dataset X of size N , and the same size of labels C =
{"inaccurate", "accurate"}N

OUTPUT: f = inaccuracy estimation function f

1: function InaccuracyTrainingAlgorithm(L)
2: remove samples with no activity labels from X and C

3: calculate feature vectors V from X

4: using supervised machine learning, train a model f with X and C to estimate the
inaccurate or accurate

5: return function f

6: end function

(b)(a) (c)

Figure3.2 (a) ROC curve and AUC value for the inaccuracy detection algorithm;

(b) Zoom-in view of the upper left corner of panel (a); (c) Confusion matrix for the

inaccuracy detection algorithm without normalization.

*1 A 99.8%+ accuracy can be achieved on this task by predicting False all the time
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Algorithm 3 Inaccuracy Detection Algorithm
INPUT: X = sensor dataset X, f = function f from Algorithm 2
OUTPUT: O = "inaccurate" or "accurate"

1: function InaccuracyDetectionAlgorithm(X, f)
2: remove samples with no activity labels from X

3: calculate feature vectors V from X

4: using f , estimate inaccurate or not by f(vi) for ∀vi ∈ V and assign to a predicted
label set Ŷ

5: count number of occurrences of an "inaccurate" label in the given the set Ŷ

6: pct = Ninaccurate / length of the set Ŷ

7: δ = 0.5 # the final decision is made using a threshold value δ

8: return output the result by

O =

“inaccurate”, if pct > δ

“accurate”, if pct ≤ δ

9: end function

3.4 End-to-End System
In this section, we describe the system implementation and study design in Figure 3.3 to
evaluate the differences between the three conditions in Table 3.1. Motivated and informed
by preliminary studies [98,103] and the related works presented in Chapter 2, we designed
a large-scale activity data gathering system. This enables us to collect activity labels and
sensor data from the crowd and to evaluate our CrowdAct in a realistic crowdsourcing
platform. Essentially, in designing the system, we considered three major components:

1. a Task Creation interface: enables us to recruit massive numbers of workers on a
crowdsourcing platform to perform our labeling task.

2. a smartphone Task App: enables us to efficiently collect labels and sensor data
from the smartphones of individuals and allow each individual worker to receive
information from us.

3. a crowdsourcing Task Manager: enables us to store and manage massive crowd-
sourced data, evaluate the data by implementing Algorithm 1 and Algorithm 3
presented in Section 3.3, return the information to each worker, and review the
results programmatically.

In the following subsections, we detail the design rationale of each component.
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Task App Task ManagerTask Creation

Crowdsourced 
labeling task creation

Crowdsourcing deployment

Activity labels and smartphone
sensors data collcetion

Uploading data to the server Method execution

Push notification systemReceiving notifications and 
updating information 

Data storage and management

Requirement

Post-questionnaire and payment Labeling task review

Figure3.3 End-To-End system design.

Table3.1 Experimental design summary.

Baseline condition (BL) Proposed CrowdAct conditions

Providing random text
messages without any
algorithms (e.g., "Are you
walking?", "Are you
eating?", "What are you
doing?").

Gamified Active Learn-
ing (AL)

Gamified Active Learn-
ing and Inaccuracy De-
tection (AL+CD)

Providing gamification
points using active learn-
ing (Section 3.3.1).

Providing gamification
points using active learn-
ing (Section 3.3.1), and
inaccurate-detected mes-
sages (Section 3.3.2).

3.4.1 A Task Creation Interface

To allow us to recruit a large crowd of human workers on a crowdsourcing platform, we
created a web-based interface for task creation and submitted it to Amazon Mechani-
cal Turk (MTurk) [119] for workers to perform (a so-called Human Intelligence Task, or
HIT*2). We aimed to solve barriers founded in the instruction state [98] because an ac-
curate response depends on careful reading of the instructions; e.g., workers might have
been unable to follow the instructions that we provided due to a low technical literacy. To
alleviate these issues, we described every step and included screenshots. While the initial
page provides a brief instruction (Figure 3.4-1) of our labeling task, the second page offers
more detailed instructions, including the labeling interface of the smartphone application
(Figure 3.4-2). To evaluate user experience, we created a post-study questionnaire, focus-
ing on demographic information and worker engagement (Figure 3.4-3), as detailed in the
next subsection. We also asked workers to sign a consent form agreeing to participate in

*2 https://www.mturk.com/worker/help
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the study, enabling us to collect their data. To be sure that the post-study questionnaire
was filled in after completion of the labeling task, the worker needed to provide a Task
Token acquired from the smartphone application after the task had been completed. The
entire Task Creation component is written in HTML5 and JavaScript as the front-end, as
well as Ruby and Python as the back-end.

A Post-Study Questionnaire

The post-study questionnaire (Figure 3.4-3) is organized in two tasks: a demographic
survey and the user engagement scale short form (UES-SF) [115]. All of the questions are
required input fields. The demographic survey contained 5 general questions; the outcome
variables included the gender, age, digital literacy, smartphone usage, and smartphone
gaming. The UES-SF is the most tested questionnaire that measures user engagement
and has been validated in a variety of HCI contexts thus far [124,175]. It consists of four
subscales (focused attention, perceived usability, aesthetic appeal, and reward factor) with
12 items in total, containing a tool that is widely used for measuring user engagement in
various digital domains. Each item is presented as a statement using a 5-point Likert scale
from "1: strongly disagree" to "5: strongly agree". The higher the UES scores, the greater
the engagement was. The UES-SF perfectly fits our context of labeling crowdsourcing tasks
with a total of only 12 items; it is easy to drive workers to respond and empowers us to
measure their engagement.

3.4.2 A Smartphone Task App

To collect data from the crowd, we relied on the FahLog*3 smartphone application, written
in Java, which is inspired by the work in [101]. This app can simultaneously acquire
both the labels and sensor data, generating streams that are temporarily stored on the
smartphone and periodically synchronized to the server on the cloud when the smartphone
is connected via WiFi or mobile data. There are numerous features to support labeling
for activity recognition with smartphones, such as acquisition of smartphone sensor data,
download of activity classes and users, activity label input function, upload of data to
the cloud server, offline functionality, and collection of logs events in the application with
Firebase Log Events*4. The application can run on any recent Android device (5.0+).

User Interface

The FahLog application consists of three major screens, as shown in Figure 3.5.

• Sign-in screen: The welcome screen of the FahLog application prompts workers
to sign in for user authentication (Figure 3.5-1) to verify the identity of the worker
and the data collection process. Users must enter the username and password given

*3 https://play.google.com/store/apps/details?id=jp.sozolab.fahlog&hl=en
*4 https://firebase.google.com/docs/analytics/events
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32

Figure3.4 Example of the labeling task in crowdsourcing: (1) brief instructions, (2)

detailed instructions, (3) post-study questionnaire.

in the HIT to be able to perform the labeling task. A username and password are
designed to be unique for each user and HIT.

• Data labeling screen: To recognize activities using supervised learning, we need
to collect supervised information (i.e., activity labels) of activities along with sensor
data. Activities are temporal information with specific duration; hence, it is impor-
tant to record both the start and end times. For this reason, we provided the data
labeling screen that has this function. After the worker have successfully signed
in, the screen displays a labeling screen (Figure 3.5-2), which enables the user to
perform the labeling task. (Figure 3.5-2a) presents the list of predefined activities
(Figure 3.10), which can be used for the activity recognition classes. After selecting
the activity label from the left column, the activity label is created as a box in the
right column. Each time the worker taps an activity label box, it transitions to
before start (▶) (Figure 3.5-2b) → doing activity (⊙) (Figure 3.5-2c) → finish (✓)
(Figure 3.5-2d), so one can record the start and end of the activity. The left and
right columns provide the functionality of the scroll view to see more content.

• Dialog interface screen: To allow workers to efficiently perform the data labeling
task, we provided the dialog interface screen that includes the required information,
namely, the starting time, working time, number of activity labels, and list of label-
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ing scores. The dialog interface presents the necessary information (Figure 3.5-3a)
and gamification points (Figure 3.5-3b) of each user and is displayed when the user
presses the ( � ) button (Figure 3.5-2e). The ( À ) symbol represents the starting
time, i.e., the time that the user starts using the application. The (£ ) symbol
represents the working time, i.e., the time that the user spends using the applica-
tion. The (´ ) symbol represents the number of activity labels that the user has
annotated and successfully uploaded to the server. The (( ) symbol represents the
list of labeling scores for each activity class that was measured and suggested to
improve, i.e., gamification points.

To evaluate the differences between the three conditions shown in Table 3.1, we created
interfaces for each condition consisting of a dialog interface and a notification interface.
These were designed to provide necessary user information, including the starting and
working time, the number of uploaded labels, and gamification points calculated by Al-
gorithm 1. We designed variations of the same dialog and notification interfaces for each
condition: Baseline, Gamified Active Learning, and Gamified Active Learning and Inac-
curacy Detection.

The three conditions were designed as follows:

• Gamified Active Learning (AL): This condition consists of a notification inter-
face with gamification points calculated by Algorithm 1 (Figure 3.6-1) and a dialog
interface showing the user’s information and list of gamification points (Figure 3.5-
3), which enable users to get feedback on their labeling tasks.

• Gamified Active Learning and Inaccuracy Detection (AL+CD): This con-
dition closely resembles the AL interface, with a notification and a dialog interface
presented to the user. However, there is a significant difference from the AL con-
dition; a notification with inaccurate-detected messages provided by Algorithm 3 is
implemented (Figure 3.6-2).

• Baseline (BL): This condition consists of a notification interface with random text
messages (Figure 3.6-3) and a dialog interface showing only the user’s information
(Figure 3.5-3a). No gamification points information is provided in this condition as
(Figure 3.5-3b) is removed from the interface.

The user can press the button to open the dialog interface or look at a notification to
review their data. Both gamified (Figure 3.6-1) and baseline (Figure 3.6-3) notifications
were designed to alert every 15 minutes after the user first signs in on the smartphone.
Contrarily, an inaccuracy notification (Figure 3.6-2) was designed to alert every time the
inaccuracy detection system is activated, as defined by Algorithm 3. The dialog interface
(Figure 3.5-3) for all conditions was designed to display every time the user presses a
button. In addition, to prevent multiple clicks on a dialog notification. When users click
the "SEE MORE..." button inside a dialog notification (e.g., Figure 3.5-1), the CTR is
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Figure3.5 The Fahlog Android application for data collection: (1) Sign-in screen,

(2) data labeling screen, (3) dialog interface screen.

1 2 23

Figure3.6 Notifications on the smartphone app: (1) Gamified notification displaying

the gamification points, (2) inaccuracy notification displaying inaccurate-detected

messages, (3) baseline notification displaying random text messages.

recorded, the dialog disappears, and the MainActivity of FahLog application launches
instead.

Smartphone Sensors

We collected 3-axis acceleration sensor data available in the application. We set a 20-Hz
sampling rate for the smartphone application, which is the standard and lowest setting.
Since we used 1-minute time windows, the sampling rate was sufficient for the data col-
lection. Since the crowd workers were using their smartphones, we could not drain their
battery. This configuration allowed us to optimize the sensing process to balance the
amount of data generated and battery consumption, even if this meant having less fre-
quent sensor readings.
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3.4.3 A Crowdsourcing Task Manager

The Task Manager is a cloud server*5, which is inspired by the work in [67,98]. It enables
us to obtain and maintain large-scale data from the crowd. The server receives sensor
and label files in the JSON format, which are sent between smartphone applications for
each user by the POST method in the HTTPs protocol. By using past activity labels and
sensor data stored as training data, the machine learning method presented in Section 3.3
is performed once every 15 minutes. After evaluation, the system updates and notifies
users of user information, gamification points, inaccurate-detected messages, or random
text messages, according to their condition assigned through smartphone notifications.
Besides, there is a labeling task review function, which enables us to review submitted
tasks and decide whether to approve or reject the HIT of each user. If the task has been
successfully finished, a Task Token is given to the user through smartphone notifications,
enabling the users to complete the post-study questionnaire described in Section 3.4.1.
The server management was written using the Ruby on Rails framework*6. The data
is managed by a relational database with Amazon relational database service (RDS) for
MySQL*7. The machine learning methods were written in R and Python. The notification
system was implemented by Firebase Cloud Messaging*8. All systems and data were run
on the Amazon web services (AWS) elastic beanstalk*9 environment equipped with the
Amazon simple storage service*10 and an elastic load balancer*11.

3.5 Preliminary Evaluation
This section builds an initial investigation phase for crowdsourcing experiments. We de-
ployed a similar gamified active learning system to a lab environment and asked students
to perform the preliminary experiments proving the system’s capability and feasibility.
There are a few differences in the experimental design and evaluation method, which are
described below. The preliminary evaluation provided us technical information that can
highlight important areas for consideration and provide valuable insight into requirements
and standards before real deployments.

*5 https://fahact.sozolab.jp/
*6 https://rubyonrails.org/
*7 https://aws.amazon.com/rds/mysql
*8 https://firebase.google.com/docs/cloud-messaging
*9 https://aws.amazon.com/elasticbeanstalk

*10 https://aws.amazon.com/s3/
*11 https://aws.amazon.com/elasticloadbalancing



Chapter 3 Achieving High-Quality Crowdsourced Datasets in Mobile Activity Recognition39

3.5.1 Experimental setup

An overview of our experimental design is explained in detail in Table 3.2. A total of
11 students who have mobile activity data collection experience participated in two-day
experiments. The participants were required to carry Android phones in their pants pock-
ets, install the app on the phones that we extend from [101] by including notifications, to
select and record their daily life activities from the list of predefined labels (depicted in
Figure 3.5), get notifications of gamification points, and submit data to our server. Each
participant performs the experiments for 6 days (12 hours from 8 AM to 8 PM). We do
and repeat our processes as we described in the method section every 50 minutes.

To compare our proposed method with others, we created notifications on smartphones
that displays 3 different versions. Each notifications version only differs in the user in-
terface and algorithm for calculating gamification points. Each participant will receive
all three conditions of the notifications, each of which will show 2 days. We randomly
display the conditions for participants to ensure that they are not affected by the day of
experiments for each term. We also request the users click the push notifications sent to
assure that the users have seen the notifications. Then, we collected log events when the
user clicks on notifications; these log events are such valuable to get insight into message
delivery and user engagement.

Table3.2 Experimental design

Method Conditional detail

Proposed Receive proposed gamified active learning (Algorithm 1)
Traditional Receive traditional gamification points (Equation 3.3)
Without Receive messages "What are you doing?".

Equation 3.3 presents traditional gamification points using the accuracy. Accuracy [41]
is one traditional metric for evaluating classification models, it can measure the perfor-
mance of activity data collection. Consequently, we used the accuracy as gamification
points for a baseline method to compare with our proposed method. To use the accuracy
as gamification points, we trained a machine-learning algorithm with each user’s collected
smartphone sensor data and activity labels. We then evaluated the accuracy of a classifier
for gamification points. However, such a strategy is often not feasible in reality due to a
problem of accuracy paradox [150] (i.e., when a model may have a high level of accuracy
but be too crude to be useful). For example, if the incidence of ‘Walking’ is dominant,
being found in 99% of cases, then predicting that every case is ‘Walking’ will have an
accuracy of 99%. Thereby, we computed gamification points reasonably for users to avoid
the accuracy paradox problem: where a dataset is unbalanced, the overall accuracy is not
representative of the actual performance of a classifier. The following formula is used to
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calculate the accuracy as traditional gamification points:

gamification points = accuracy1/c (3.3)

by bending the curve using accuracy to the power of one over classes, the traditional
gamification points will be weighted by the inverse of classes, where c is the number of
activity classes by the user.

3.5.2 Activity Recognition

Data description

The dataset was collected between May 2019, from 11 subjects within an age bracket of 21-
26 years, performing one of 12 regular activities (as shown in the left column of Table 3.3)
while carrying an Android smartphone (Wiko Tommy3 Plus) in the pants pockets that
recorded the movement data (accelerometers in smartphones). The total number of labels
is 1,236.

Table3.3 Number of activities for each activity class

Activity class # labels Activity class # labels

Walking 410 Running 3
Sitting 370 Standing 213
Downstairs 61 Upstairs 50
Lying 40 In vehicle 32
Cycling 25 On train 15
Phone 6 Carrying 11

Total = 1,236 labels

Data preprocessing

We put together the dataset by including 3-axis accelerometer sensor data and the activity
labels on the smartphones without clock and time synchronization because the sensor and
the labeling system are both in the same device. We used sliding windows of one minute
with no overlapping. For each axis, average, standard deviation, maximum value and
minimum value were extracted as features. Before data proceeding, we excluded missing
values. As a result, we obtained multivariate data of 21,132 samples with 12 variables for
feature vectors. Figure 3.8 shows the activity labels distribution of the data samples in
our dataset. It is worth noting that the distribution is highly skewed, where some classes
appear more frequently than others. Since imbalanced dataset can negatively influence
the generalization and reliability of supervised learning algorithms [77], we employed the
SMOTE algorithm: Synthetic Minority Over-sampling Technique as presented in [24] (an
oversampling technique that creates new synthetic data samples in the minority classes,
varying the features values of the existing data points based on their k nearest neighbors
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in the feature space) in order to balance our dataset.

Evaluation method

To evaluate the proposed method, we use a technique of supervised machine learning
algorithm for multiclass classification. We trained each participant separately (one model
for each participant) using Random Forest classifier: an ensemble learning method for
classification by constructing a multitude of decision trees at training time and outputting
the class that is the mode of the classes of the individual trees. To test the model’s ability
we used stratified k-fold cross-validation. The folds are made by preserving the percentage
of samples for each class to ensure each fold is a good representative of the whole. To
account for label imbalance, the model performance was presented using the weighted
average of precision, recall, F1-score of each class for the multiclass task. (i.e., averaging
the support-weighted mean per label) So the average is weighted by the support, which is
the number of samples with a given label.

3.5.3 User engagement

In this section, we propose Click-through rate (CTR) [89] to assess users’ depth of engage-
ment with each notifications version displayed. To measure CTR, we use the click logs
collected; the CTR formula is defined as follows:

CTR = (
Total measured clicks

Total measured notification impressions
)× 100 (3.4)

where ‘Total measured clicks’ are the total amount of clicks on notifications and ‘Total
measured notification impressions’ are number of times notification was sent on smart-
phones (which were counted by Google Analytics for Firebase*12).

3.5.4 Results

Following the evaluation approach discussed above, we report our results of the validation
together with a discussion of such results. The classification performance results are shown
in Figure 3.7. The collected activity label results are shown in Figure 3.8 and Table 3.4.
And the user engagement results are presented in Figure 3.9.

Quality of collected activity data

As we can see from Figure 3.7, all of the classification performance metrics improve with
our proposed method. F1-score was improved from 0.71 to 0.83 (+0.12) compared to tra-
ditional method. F1-score was improved from 0.70 to 0.83 (+0.13) compared to without
method. Recall was improved from 0.71 to 0.84 (+0.13) compared to traditional method.

*12 https://firebase.google.com/docs/analytics
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Recall was improved from 0.71 to 0.84 (+0.13) compared to without method. Precision
was improved from 0.72 to 0.83 (+0.11) compared to traditional method. Precision was
improved from 0.70 to 0.83 (+0.13) compared to without method. Although some partic-
ipants did not improve the classification performance in the proposed method, the overall
proposed method generally significantly outperform than the other methods.
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Figure3.7 The performance results for each method

Quantity of collected activity data

As we can see from Figure 3.8, the number of collected activity labels was increased with
our proposed method. The number of activity labels was increased from 409 to 498 (+89)
compared to traditional method. The number of activity labels was increased from 329 to
498 (+169) compared to without method.

User engagement

As we can see from Figure 3.9, the percentage of CTR was increased with our proposed
method. The percentage of CTR was increased from 78.3% to 80.4% (+2.1%) compared
to traditional method. The number of activity labels was increased from 14.3% to 80.4%
(+66.1%) compared to without method.

3.6 Crowdsourcing Deployments
To verify the proper function of the protocol and data collection process and to assess
the effect of the proposed CrowdAct on labeling, we performed a verification experiment
on MTurk with 120 workers across the three conditions of the system: AL, AL+CD, and
BL, as described in Table 3.1. Following prior work [98], we smoothly proceeded with
the HIT since the procedure of labeling tasks for activity recognition with smartphones in
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Figure3.8 The number of activity labels for each method

Table3.4 The number of activity labels of each activity class for each method

Activity class Proposed Traditional Without

Walking 166 140 104
Sitting 150 118 102
Standing 81 77 55
Downstairs 27 18 16
Upstairs 21 18 11
Lying 18 14 8
Cycling 11 7 7
In vehicle 9 10 13
On train 8 2 5
Phone 2 3 1
Carrying 4 1 6
Running 1 1 1

Total 498 409 329

crowdsourcing presented several challenges. In this work, we followed the prior pipeline
and modified some requirements, as detailed in the following section.

3.6.1 Procedure

The objective of our HIT directed workers to perform an activity labeling task using
the provided Android smartphone application and subsequently complete the post-study
questionnaire. The data was collected using different smartphone models from different
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vendors to support the generality of our approach and its usability in real-world conditions.
We posted 120 HITs (one HIT per worker) on MTurk for workers globally. The HIT was a
between-subject design with 3x40 participants who were randomly assigned to one of three
experimental conditions: BL, AL, and AL+CD (Table 3.1). The design choices and related
user interface are detailed in Section 3.4.2 A smartphone Task App. HITs were deployed in
small batches to avoid latency issues resulting from concurrent usage. Participants were
asked to engage only in one HIT; all honored this request. We also ensured that each
participant submitted at most one HIT across all experimental conditions by tracking
worker-ids to avoid learning biases owing to repeated participation.

Participants were asked to carry Android phones with at least 5.0, or more API levels
in their pants pocket and perform activities from the classes predefined in Figure 3.10.
They had to assign 50 labels and spend 3 hours on the smartphone application at least.
We did not specify the length of the recording; however, we suggested they record at least
2 to 3 minutes per activity. Participants required roughly 4 hours on average and were
given up to 1 day. However, the HIT typically takes less than 10 minutes for reading the
instructions, 5 minutes for the application preparation, 3 hours or more for the data label-
ing, and approximately 10 minutes for the questionnaire. Thus, participants did not need
to rush. Participants were paid $5 per HIT, resulting in an average hourly rate of $1.25.
The standard rate depended on several factors, such as the difficulty and complexity of
tasks. Low-paying jobs remained attractive to workers as they could smoothly perform
the labeling task using the provided Android smartphone application without decreasing
their efficiency. However, a low-pay rate marks the trade-off between low-paid and speed
recruitment (e.g., high-paying tasks can accelerate the recruitment process). While the
workers earned very low hourly wages in this study, future research should attempt to
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set minimum wages based on common requirements for higher quality crowdsourced re-
search [58]*13. All data were collected in accordance with Mturk’s acceptable use policies
for research with human subjects and data retention*14.

3.6.2 Participants

The study was conducted in January and February 2020 on MTurk. 120 people (52 female,
68 male) between the ages of 22 and 57 years old (37.64±9.37) participated in the study. Of
the participants 11 were extremely digitally literate, 44 were moderately digitally literate,
42 were quite digitally literate, 12 were slightly digitally literate, and 11 were digitally
illiterate. Regarding smartphone usage, 50 participants spend more than 6 hours on their
smartphones per day, 40 participants spend 4 to 5 hours, 24 participants spend 2 to
3 hours, and 6 participants spend 1 to 2 hours. Regarding smartphone gaming, it was
reported that 49 participants regularly played games on their smartphones, 64 participants
sometimes played games on their smartphones, and 7 participants never played games on
their smartphones. The demographic data of workers who participated in this study are
summarized in Table 3.5 and were used for data analysis.

Table3.5 Demographic data for the user study (see Section 3.6.2). The 120 partici-

pants are categorized according to the experimental design conditions.

Outcome Variable AL AL+CD BL

Age (m±std) 36.35±9.27 40.03±9.77 35.40±9.28
Gender (female, male) 20,20 13,27 15,25
Digital Literacy (extreme, moderate, quite, slight, never) 3,9,9,16,3 2,7,13,17,1 8,11,14,5,2
Smartphone usage (>6 hrs, 4-5 hrs, 2-3 hrs, 1-2 hrs) 19,12,8,1 13,15,9,3 23,9,5,3
Smartphone gaming (regularly, sometimes, never) 22,16,2 17,22,1 12,26,2
Working hours (m±std) 4.45±0.68 4.81±0.87 4.69±0.73

3.7 Evaluation and Results
In this section, we review the data obtained and evaluate the proposed CrowdAct system
in depth to verify whether it can achieve the goals we set out in Section 3.3. Hence, the
following evaluation procedures were adopted:

• Evaluation 1 to assess G1. To address the lack of accuracy, we applied machine
learning algorithms using the labels and sensor data collected for activity recognition
and compared the recognition accuracy results using the AUC value and F-measure
for all conditions described in Section 3.7.2.

• Evaluation 2 to assess G2. To overcome the lack of motivation and sustained
engagement, we measured the user engagement by using two popular approaches;

*13 https://cacm.acm.org/magazines/2018/3/225476-responsible-research-with-crowds/fulltext

*14 https://www.mturk.com/acceptable-use-policy
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1) the short form of the UES, and 2) the user events (e.g., button press on the
smartphone, the click-through rates of push notifications). We then compared the
results for all conditions described in Section 3.7.3.

• Evaluation 3 to assess G3. To minimize the inaccurate data, we compared the col-
lected data of inaccurate-detected data for all conditions described in Section 3.7.4

3.7.1 Data Overview

As a result of the crowdsourced labeling experiments described in Section 3.6, we gathered
data from 120 workers for three conditions. In total, we collected 6,549 activity labels
from 19 activity classes. The Shapiro–Wilk test [137] was significant (p < 0.05), so the
assumption of normality could not be met. As such, we employed non-parametric tests,
using the Kruskal–Wallis test [78] in all analyses. Where there was a significant main effect,
we performed post-hoc tests to compute multiple pairwise comparisons using Dunn’s test
with Bonferroni correction [39] to account for multiple testing and identify which groups
differed. In this section, we assess the data obtained and present our results.

Participants

Owing to the between-subjects experimental design, each participant received only one
condition, which potentially directly affected the final results. We observed whether there
was a significant difference between the participants in the three experimental condi-
tions. We included variables such as age, gender, digital literacy, smartphone usage, and
smartphone gaming because these variables may impact the data labeling performance of
workers. For example, we assumed that workers with a high digital-literacy level could
perform the data labeling tasks using the provided Android smartphone more efficiently
than workers with a low digital-literacy level. We compared participants’ demographics
across conditions to find statistical differences in Table 3.1.

A Kruskal-Wallis test revealed that there was a statistically significant difference in dig-
ital literacy score between the different experimental conditions (H(2) = 9.584, p = 0.008)
with a mean rank digital literacy score of 2.83, 2.80, and 3.45 for the AL, AL+CD, and BL
conditions, respectively (larger number was best). No statistically significant difference
was observed in the remaining dependent variables. The Dunn’s test with Bonferroni
correction on the different digital literacy scores between conditions showed that both of
the BL versus AL and BL versus AL+CD conditions were statistically significant (Dunn’
s test, p = 0.026 and p = 0.019, respectively).

Activity Classes

Figure 3.10 shows the number of activity labels submitted for each of the 19 classes and
conditions in our study. In total, the participants in the AL condition submitted 2,191
labels, in the AL+CD submitted 2,187 labels, and in the BL submitted 2,171 labels. We
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notice that some classes have more labels than others depending on the complexity of
the activity recording; the activity records are also dependent on the different participant
input.

We found that participants in the AL and AL+CD conditions submitted more labels
on average (+18 labels across all classes) compared to the number of submitted labels in
the BL condition. Specifically, they submitted more labels in 15 out of 19 classes, which
corresponds to 79% of the classes (a minimum of +3 and maximum of +70 labels and an
average of +17.3 labels per class). Nevertheless, we could collect one more activity class
from our two proposed CrowdAct conditions since participants in the AL and AL+CD
conditions recorded cleaning activities. Contrarily, participants in the BL conditions did
not record the activities.
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Figure3.10 Number of labels per activity class recorded by the participants under

each condition.

3.7.2 Activity Recognition

We followed a standard activity recognition chain using a supervised learning approach
― data preprocessing, segmentation, feature extraction, training, and testing. We then
evaluated the accuracy of a classifier trained on crowdsourced data by (1) assessing the
feasibility of applying the classifier in each experimental condition using the crowd gath-
ered data and (2) comparing it to a classifier trained on an existing curated dataset.
Additionally, we demonstrated the impact of varying crowd size on performance.

Preprocessing

We collected three-dimensional periodic data that include acceleration sensors on the
smartphone recording data every 1/20 seconds. The norm of the axes for each row falling
in the time slot was computed so as to aggregate the data. Hence, discrepancies deriving
from different smartphone positions/orientations at the time of the reading were dimin-
ished. We then combined the periodic sensor data and activity labels without clock and
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time synchronization since both are located on the same device.
Because standard classification algorithms require features with some specific charac-

teristic to work properly, we first transformed the raw time-series data into examples.
We divided the data into 1-minute segments and then generated features. For each axis,
the average and standard deviation, and maximum and minimum value were extracted as
features. We also included the participants’ IDs for user-dependent training, as described
in the next section. In total, we used 13 features per sample.

Evaluation Method

For the evaluation, we used the one-versus-the-rest (OvR) multiclass strategy. For each
classifier, the class was fitted against all other classes, so each class was represented by a
single classifier. Therefore, it is possible to gain knowledge about the class by inspecting
its corresponding classifier. With the data prepared, we created a training and a test
dataset. We used the training dataset to build and validate the model and treated the
test dataset as the unseen new data, as if the model was in production.

Rather than applying the model to new users by comparing it with other labels from
the crowd, we focused on the accuracy of human contributions in each condition (e.g.,
personal context and activities to be used by the user him/herself) by comparing it with
the machine’s knowledge. Therefore, we performed the following different evaluations: (1)
we applied user-dependent training to show accuracy improvements for each participant
in each condition without considering side effects such as different sensor positions; (2) we
applied user-independent training to show overall accuracy improvements in each condition
that can be applied to new users. The models were trained using Xgboost. The real data
are highly imbalanced, as shown in Figure 3.10. A popular metrics of precision, such as
the F-measure, can be affected by class imbalances. To address this issue, we used the
output of the model in a probability form and calculated the ROC curve. We then utilized
the AUC for the multiclass problem using the OvR scheme as a metric of accuracy because
it is not affected by class imbalances. Further, we used the F-measure after resampling
to avoid the negative effects of class imbalances, which reside in natural datasets. We
sampled 10,000 feature samples per activity (including other activity classes and features
with no labels) to obtain a balanced dataset of each activity class. We then utilized the
F-measure after applying thresholds to focus on true positive samples. Three rounds of the
10-fold cross-validation process were carried out at each iteration of the boosting process,
and the hyper-parameters of the thresholds of ROC curves were determined. While there
are several tuning parameters associated with a model, we performed the grid search
tuning the parameters with the highest impact on the model outcome owing to the heavy-
duty grid searched. We included the maximum depth of a tree, the minimum sum of the
instance weight needed in a child, the minimum loss reduction required, the subsample
ratio of the training instances, and the subsample ratio of columns when constructing each
tree. We also applied regularization to reduce overfitting. Then, we tested the achieved
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accuracy with the prepared test dataset.

Results

Figure 3.11 shows the activity recognition accuracy by AUC and F-measure of user-
dependent training and user-independent training for the validation and test data, respec-
tively. Overall, the data indicate that the recognition accuracy of the AL and AL+CD
conditions were higher than that of the BL. Figure 3.12 summarizes the performance of
each classifier on a set of test data using a confusion matrix with normalization by class
to support the size of user-dependent and -independent training for each condition. The
fact that the BL matrix was quite sparse explains the low accuracy score of the overall
results, while the AL and AL+CD matrices demonstrated better overall performance. Re-
garding the activity recognition accuracy of the test data with user-dependent training,
we observed that the AL+CD condition had the highest recognition accuracy improve-
ment of +24% of the AUC in the "sitting" class; the AL condition followed with +22%.
The AL+CD condition had the highest recognition accuracy improvement of +40% in
F-measure in the "lying down" class. The AL condition had the next-highest recognition
accuracy improvement of +33% in F-measure in the "computer work" class. By contrast,
regarding the activity recognition accuracy of the test data with user-independent train-
ing, the AL+CD condition had the highest recognition accuracy improvement of +26% of
the AUC in the "lying down" class. The AL condition had the next-highest recognition
accuracy improvement of +25% of the AUC in the "standing in place" class. The AL+CD
condition had the highest recognition accuracy improvement of +60% in F-measure in the
"lying down" class; the AL condition followed with +51%. For all conditions, the AUC
and F-measure performance evaluated on the user-dependent training was higher than
that of user-independent training. Recognition accuracy also slightly decreased for the
test data after hyperparameter tuning. Note that the AUC and F-measure are undefined
for attributes with zero entries as they have constant values for all test classes of the split
chosen.

The Validity of Crowdsourced Data

We assessed the validity of the crowdsourced data to determine whether the accuracy
levels are sufficiently high for application to real-world data. We conducted an experiment
to quantify the performance of a classifier trained on crowdsourced data on a new user and
compare it to that of a classifier trained on an existing curated dataset assuming the same
activities. Additionally, we demonstrated the impact of varying crowd sizes on performance
and compared to that of a curated dataset of equal size. However, in practice, collecting
all same-label activities is challenging, and the crowdsourced dataset is more diverse than
the datasets collected in a more controlled setting (e.g., curated data). Consequently, we
carefully chose the test set that closely resembles our crowdsourced dataset in terms of
the protocol and data collection process, segmentation, and labeled set of activities. To
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Figure3.11 Average AUC and F-measure for each condition. The bold text shows

the percentage of AUC or F-measure improvements for each class compared to that

of the baseline condition. (a) AUC and F-measure / test data with user-dependent

training. (b) AUC and F-measure / validation data with user-dependent training.

(c) AUC and F-measure / test data with user-independent training. (d) AUC and

F-measure / validation data with user-independent training.

that end, we evaluated the classifier on physical activities (PAMAP2 [129]), which is a
commonly used activity recognition dataset. The PAMAP2 dataset contains 18 different
physical activities captured using 3 inertial measurement units and heart rate monitor
data from 9 subjects. Our implementation modeled 6 activity classes as defined in the
dataset, including modes of locomotion (e.g., lying down, cycling, walking, standing, and
sitting) and high-level activities (e.g., cleaning). As for the evaluation process, we used the
same approach employed in the evaluation of crowdsourced data. We divided the dataset
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(a) (b) (c)

(d) (e) (f)

Figure3.12 Normalized confusion matrices for all conditions. (a) AL condition with

user-dependent training. (b) AL+CD condition with user-dependent training. (c)

BL condition with user-dependent training. (d) AL condition with user-independent

training. (e) AL+CD condition with user-independent training. (f) BL condition

with user-independent training. In each matrix, the activity IDs represent the class

labels; each ID corresponds to the activities in Figure 3.10.

into a training and test set, applied one-class classification for each class, evaluated the
classifier with balanced samples, and used the F-measure as a metric of accuracy.

Overall, a pre-existing dataset slightly outperformed active learning for deployed ac-
tivities since crowdsourced data labeling was more noisy and error-prone than curated
conventionally collected training data. However, we found that the accuracy levels are
acceptable for a real application, and the crowdsourced dataset is sufficient to generalize
to the diversity of users and conditions these devices were deployed into, as shown in
Figure 3.13. Figure 3.13a presents the learning curves of the average F-measure over
all classes of crowdsourced and PAMAP2 datasets for varying sizes. Intuitively, training
on more data increases the model’s performance for both datasets. We observed that
using only 70% of the training data, which corresponds to approximately 7,000 data sam-
ples, the crowd model achieved the closest performance to the PAMAP2 model with a
difference of approximately 3.66% in the F-measure (an F-measure of 84.58% and 88.24%
for the crowdsourced model and PAMAP2, respectively). Figure 3.13a indicates that the
performance is approximately equal to the PAMAP2 model with a maximum difference of
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5.5% in the average F-measure when training on 40% of the training data. Figure 3.13b
depicts the F-measure evaluation results of the classifier trained on crowdsourced data
compared to those of the PAMAP2 dataset using 100% of the training data. Training
with 100% of the data, which corresponds to approximately 10,000 data samples, results
in a comparable performance to that of the PAMAP2 model with a difference of only 1% in
F-measure for the "sitting" class. Training the crowdsourced model on the entire dataset
achieved a performance with an average F-measure of 85% (SD = 0.03) for all activities;
90% for the "walking" class and 80% or higher for the other 5 activities.
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Figure3.13 (a) Learning curves of average F-measure over all classes of crowdsourced

and PAMAP2 data for varying sizes. (b) F-measure of the classifier trained on crowd-

sourced data compared to PAMAP2 data using 100% of the training data.

3.7.3 Worker Engagement

In this section, we verify the engagement of participants on their labeling tasks by imple-
menting the USE short form. We recorded how often participants pressed the ( � ) button
to view their information, as detailed in Section 3.4.2. We also measured the percentage
of notifications that were followed within 120 seconds via a button press. By proposing
the CTR as a metric, which is simply the ratio of clicks on a smartphone notification
to the number of impressions, we found that a higher CTR reflects higher engagement.
By comparing the results to these values across three conditions, we can estimate how
effective our conditions are. Lastly, we further investigated the relationships between the
button press, CTR, and activity recognition accuracy. In the following subsections, we
report the results presenting a statistical significance across conditions.

User Engagement Scale

Figure 3.14 displays the distribution of data from the UES-SF questionnaire results, and
Table 3.6 lists the UES-SF scores on average across the three experimental conditions. The
Kruskal–Wallis test (expected α = 0.0125) shows that the overall scores of UES-SF present
no significant difference across three conditions. However, considering the mean scores
for each category, a Kruskal-Wallis test revealed that focused attention could significantly
affect the UES-SF score (H(2) = 3.4e+01, p = 5e-08) (Figure 3.14b). Contrarily, perceived
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Figure3.14 Results of the UES-SF questionnaire, grouped by category; (a) overall,

(b) focused attention, (c) perceived usability, (d) aesthetic appeal, and (e) reward

factor.

usability, aesthetic appeal, and reward factor were found to have no significant impact. The
Dunn’s test with Bonferroni correction on the different focused attention scores between
conditions showed that both the BL versus AL and BL versus AL+CD conditions were
statistically significant (Dunn’s test, p = 7.897e-07 and p = 2.856e-06, respectively). p-
values between-task pairwise independent t-tests revealed that the mean focused attention
of the AL and AL+CD conditions were significantly higher than that of the BL condition.
The mean rank focused attention score was 3.24, 3.18, and 2.45 for the AL, AL+CD, and
BL conditions (higher score was best).

Table3.6 The UES-SF score (m±std : mean and standard deviation) of all labeling

tasks under the three conditions.

Category AL AL+CD BL

Focused attention 3.24±0.66 3.18±0.52 2.45±0.61
Perceived usability 3.06±0.47 3.14±0.49 3.18±0.53
Aesthetic appeal 3.14±0.54 3.14±0.48 3.13±0.61
Reward factor 3.15±0.55 3.18±0.55 3.21±0.52

Overall 3.15±0.29 3.15±0.3 3±0.28

Button Press and CTR on the Smartphone

In this section, a button press refers to the ( � ) button. In total, we recorded 3,442
button presses and 83.4% of CTR for push notifications over the three conditions of the
experiments. Figure 3.15a-b displays the distribution of data from button presses and
CTR for push notifications for each condition. Table 3.6 lists both the average number of
button presses and CTR across three experimental conditions.

We found that the condition significantly impacts the number of button presses, with less
presses in the BL condition as compared to the AL or AL+CD conditions (Figure 3.15a).
On average, participants checked their information 24 times per labeling task in the BL
condition, 32 times in the AL condition, and 30 times in the AL+CD condition (H(2) = 20,
p = 5e-05). We measured the percentage of button presses occurring within 120 seconds
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of a push notification. However, we did not find a significant dependence on condition
(H(2) 0.42, p = 0.81) for these estimates. In all three conditions, participants checked
their information over 80%. Overall, the CTR for push notifications was higher in the AL
condition compared to that of the other conditions.
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Figure3.15 figure

(a) Number of button presses. (b) Notification CTR.

Table3.7 Average number of button presses (m±std corresponds to the mean and

standard deviation) push notification CTR.

Category AL AL+CD BL

Button press 32.2±9.90 30.4±6.20 23.5±7.61
CTR (%) 83.65±14.3 83.19±12.84 82.02±13.72

Regression Analysis

We hypothesized that if users recognize the gamification points as feedback, their perfor-
mance on labeling tasks may improve. Thus, we further explored the relationships between
the number of button presses, CTR, and activity recognition accuracy, in addition to the
analyses discussed above.

We began by running linear regression to understand whether there is a relationship
between the number of button presses or CTR and recognition accuracy, and how strong
is that relationship (i.e., if it is possible to accurately predict the activity recognition
accuracy given a certain number of button presses or a CTR value). We intuitively set
out to reject the null hypothesis (H0: there is no relationship between X and Y ) and
considered the alternative hypothesis (Ha: there is a relationship between X and Y ) if the
95% confidence interval does not include zero. By performing the regression, the p-value
for the number of button presses and CTR were far less than 0.05, allowing us to conclude
that the number of button press and CTR versus were related to the recognition accuracy.
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Note that we generally ignored the p-value for the interception.
Once we have rejected the null hypothesis in favor of the alternative, we quantified the

extent to which the model fits the data. We computed R-squared (R2) to measure the
proportion of variability in recognition accuracy that can be explained using the number
of button presses or CTR value. Figure 3.16a and 3.16b display the linear regression of
activity recognition accuracy on the number of button presses and CTR for push notifi-
cations along with the R2 statistic for each condition, respectively. We noticed that the
R2 values in all conditions for both the number of button presses and CTR were over 0.7
(close to 1 was best), indicating that a large proportion of the variability in the response
could be explained by the regression.

While the approach of fitting a separate simple linear regression model for each predictor
is probably not entirely satisfactory, we performed multiple regression using simultaneously
the number of button presses and CTR for predictions. Consequently, the number of
button presses and CTR had significant p-values (p < 0.05). Therefore, we rejected the
null hypothesis for the number of button presses and CTR, since we observed an association
between those features and the activity recognition accuracy. Because R2 is susceptible to
overfitting for the multiple regression analysis, we also interpreted the adjusted R2 that
penalizes model complexity. Interesting results were obtained as both the R2 and adjusted
R2 reached over 70% (R2= 0.743 and adjusted R2 = 0.738).

We considered the network plot using multidimensional clustering for the two predictor
variables (number of button presses and CTR) and the response variable (recognition
accuracy), as displayed in Figure 3.16c. Notice that the correlation between the number of
button presses and recognition accuracy tends to be higher than the CTR and recognition
accuracy.
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Figure3.16 (a) Linear regression of activity recognition accuracy on the number of

button presses. (b) Linear regression of activity recognition accuracy on the CTR for

push notifications. (c) A network plot of a correlation data frame in which variables

that are more highly correlated appear closer together and are joined by stronger

paths. Paths are also colored by their sign (blue for positive and red for negative).
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3.7.4 Inaccurate Data

In this section, we evaluate and compare the inaccurate data in the collected data under
all conditions. In online crowdsourcing experiments, we only applied inaccuracy detection
(Algorithm 3) to the AL+CD condition; therefore, we performed an offline analysis for
other conditions. We applied the trained inaccuracy model of Section 3.3.2 that had
assessed the performance and obtained ground truth (accurate and inaccurate) data for
this analysis because of the model’s high performance on the training, test, and validation
datasets (the model had an AUC score of 0.98, indicating its potential to detect the false
negatives and false positives). Given the trained inaccuracy model, we could evaluate the
inaccurate data in the collected data as follows:

• We used the experimental results from all users in each condition (i.e., post-data
collection) as raw data for the analysis.

• We predicted the class (accurate or inaccurate) of these data instances using the
inaccuracy detection model.

• We counted the number of occurrences of an "inaccurate" label in each dataset and
calculated the percentage of true and false samples.

• We averaged the results and obtained the inaccurate rate percentage for each con-
dition based on occurrence frequency.

Figure 3.17 reports the results of inaccurate data in the collected data on average for each
condition. As expected, the AL+CD condition had the lowest inaccurate rate compared to
that of the AL and BL conditions. In the AL+CD condition, 20.9% of participants were
detected as "inaccurate" and 79.1% as "inaccurate" (SD = 13.79). The corresponding
percentages in BL were 37.01% and 62.99% (SD = 27.26), respectively, and in AL 33.79%
and 66.21% (SD = 23.45), respectively. These results showed that with the AL+CD con-
dition we could decrease the percentage of inaccuracies to 16.11% and 12.89%, compared
to the BL and AL conditions, respectively.
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Figure3.17 Average percentage of inaccuracies in the collected data. The AL+CD

condition shows significantly less inaccurate data compared to the other conditions.

+/-(%) indicates an increase/decrease in the percentage of accurate/inaccurate for

each condition.
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3.8 Discussion and Conclusion
In this study, we proposed CrowdAct, a system for robust activity data collection with
crowdsourcing. The results showed that G1 and G3 were fully supported, and G2 was
partially supported. Interestingly, we found significant and positive correlations between
G1 and G2 in the corresponding directions. In addition, we conducted an experiment to
quantify the performance of a classifier trained on crowdsourced data and compare it to
that of a classifier trained on an existing curated dataset. We also investigated the impact
of varying crowd sizes on performance to demonstrate the effectiveness of increasing the
amount of labeled data. While this study enabled us to effectively collect crowdsourced
activity data, there are limitations to be addressed for future research.

3.8.1 Addressing Research Goals

G1: Improving Accuracy in Crowdsourced Data Labeling with an Active Learning Algorithm

The results presented in Figure 3.11 indicate that the use of the proposed approach using
active learning increased the accuracy of the AUC and F-measure by 5% to 22% and by
2% to 33% (8% to 51%), respectively, for user-dependent training. The corresponding
accuracy for the AUC and F-measure for user-independent training increased by 1% to
25% and by 8% to 51%, respectively. Further, when combined with an inaccuracy detection
algorithm, the accuracy of the AUC and F-measure increased by 5% to 24% and by 1%
to 40%, respectively, for user-dependent training. The corresponding accuracy for the
AUC and F-measure for user-independent training increased by 7% to 26% and by 3% to
60%, respectively. The use of active learning to calculate gamification points, one of the
main concepts of this study, is the key enabler for this improvement. Although the use
of active learning to calculate the gamification points could address the lack of accuracy
in crowdsourced data labeling, we found that it has further potential. In the proposed
pointing system, classes with low uncertainty received a high score, while classes with high
uncertainty received a low score. To achieve a high score in most classes, a user had to
collect enough samples for each class. As illustrated in Figure 3.10, for 15 out of a total of
19 classes, data quantity increase, and an additional complex activity (e.g., "cleaning") was
collected. While the data labeling performance of workers seems to significantly improve
with our active learning algorithm, workers can be either encouraged or discouraged by the
complexity of the activity performed. For example, complex activities, such as cleaning
and cooking, may discourage workers from labeling. However, because the scores of every
class correspond to gamification points, workers were motivated to label data from several
classes, i.e., both simple and complex activities. This further quantifies existing research;
for example, the use of active learning with gamification can increase classes or enable the
collection of complex activities in activity recognition. Simultaneously, the samples for
each class should differ from those of other activities. In a way, this pointing system can
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also reduce inaccuracies. Performing user labeling on the same activities using different
labels achieves a low score in most classes. Another compelling outcome was the observed
difference in the level of digital literacy. By employing 120 different workers (see Table 3.5),
we found that, although the BL condition had the highest average digital literacy score
of participants among all conditions, it did not impact data labeling. Conversely, using
our gamified active learning approach affected recognition accuracy improvements. These
results provide some interesting insight into the algorithm performance.

The study findings suggest that the use of gamified active learning can improve the
quantity and quality of data in data collection. Gamification points in active learning
increase the “value” of uncertain class tasks and encourage workers to provide labeled
sensor data for them. Although previous studies had suggested gamification as an effective
technique in experience sampling [151], the present study suggests it is also effective in
ubiquitous crowdsourcing data collection tasks.

G2: Increasing in Motivation and Sustained Engagement in Crowdsourced Data Labeling with

Gamification

Using the UES, we measured four dimensions of user engagement, i.e., focused attention,
perceived usability, aesthetic appeal, and reward factor. We found a significant increase
in the "focused attention" for the two proposed conditions (AL and AL+CD) compared
to BL, as presented in the Section 3.7.3. However, even in the absence of significant
differences in other dimensions, we argue that this research was fundamentally focused
on the challenge of the focus attention dimension rather than other dimensions. This
assumption roots from the fact that the use of gamification points is directed to focused
attention (feeling absorbed in the interaction and losing track of time). Contrarily, other
dimensions, such as aesthetic appeal, are related to the attractiveness and visual appeal
of the interface. Therefore, it is possible to observe no significant difference between
conditions, since our user interface design is similar (e.g., color, button symbols). Similarly,
perceived usability is related to a negative effect, experienced as a result of the interaction,
while reward factors are related to long-term user engagement. Neither is highlighted in
the proposed conditions. However, we found that overall, all four dimensions received
high scores, as shown in Figure 3.14. These results indicate that the crowd workers
engaged with their labeling tasks. Moreover, using the user events as an engagement
measure, we found a significant effect on the number of button presses for the different
conditions. However, we did not observe any significant differences in CTR, as discussed
in the Section 3.7.3. We found that the number of button presses was more prominent
in the proposed conditions (AL and AL+CD) since the user may press the button ( � )
several times to inspect the gamification points. However, in all conditions, delivering
information through notifications was not significantly different. Despite the similarities
in CTR provided in all conditions, the crowd workers were aware of push notifications up
to 83%. Additionally, the results implied that the crowd workers received the notifications
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and feedback. This goal was therefore partially supported by this research.
Further, the two engagement measurements (button press and CTR) were strongly

correlated with activity recognition accuracy. It can be observed from Figure 3.7.3 that
the workers proactively launched the smartphone application to check their scores and
engaged in participatory sensing as a response to notifications. Our findings support
these results; gamification points could be used as a motivator for efficient activity data
collection.

G3: Reducing Inaccurate Data in Crowdsourced Data Labeling

The use of gamification may increase the quantity and quality of labels, but the quality of
the raw data can be compromised if the workers construct inaccurate data. To eliminate
this issue, we introduced the inaccuracy detection algorithm. The goal was supported
as we found that inaccurate data in crowdsourced data labeling could be reduced in our
proposed AL+CD condition, as measured by the diversity of labels and their quantity, as
discussed in Section 3.7.4. The inaccurate data was decreased up to 79%, 62%, and 66%
in the AL+CD, AL, and BL conditions, respectively. The inaccurate data in the AL+CD
condition decreased by 16% of that of the BL condition and by 13% of that of the AL
condition. Another interesting finding is that the percentage of inaccurate data in both
the AL+CD and AL conditions was lower than that of the BL condition, as reflected in
Figure 3.17.

We, therefore, hypothesize that data labeling with an active learning algorithm (G1)
and gamification (G2) can lead to more faithful workers. In other words, when improving
the lack of accuracy with active learning and increasing motivation and sustained engage-
ment with gamification, inaccurate data may also be reduced. We claim that these results
provide strong indicators that future research should further examine these relationships.
While we are satisfied with the achieved reduction in the inaccurate data, several limita-
tions remain in this data collection study.

3.8.2 Limitations and Future Directions

Based on the discussion outlined above, certain recommendations and considerations can
be extracted for designing gamified active learning and inaccuracy detection for crowd-
sourced activity data collection.

First, as seen in Figure 3.11, overall, the activities with user-dependent training achieved
higher accuracy than user-independent training. We reasoned that this may occur de-
pending on smartphone positions and orientations, which differed for each participant.
We sincerely acknowledge that the scale of our data and the size of our user group is lim-
ited. However, we expect there will be no significant impact for large-scale data collection
because our results imply that large-scale high-quality activity datasets can be produced
with crowdsourcing. We intend to investigate this in future work.

Second, while we explored the use of "points" as a gamification element, other elements
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were not explored. It would be preferable to scrutinize several elements, such as timers,
badges, staging, quests, and leaderboards since the use of other gamification elements
proved to be effective in motivating participants [36]. Consequently, we can employ the
mechanism’s knowledge and apply it to the further mechanism discussed above. Simi-
larly, there are relevant models of user engagement that were not tracked, such as time in
application. It would be of interest to track and measure the time spent on tasks as this
will help us understand the level of worker engagement. While we handled the number
of participants who accept the notifications, we were unable to ascertain the number of
participants who explicitly dismissed the notifications. We believe that capturing this
event will be valuable to gaining insight into message delivery and user engagement. Fu-
ture work should attempt to explore other gamification elements and collect more user
engagement metrics. Additionally, we did not explore task interruptions in smartphone
notification systems (i.e., the duration of the gamification points sent to the user was
designed without considering interruptability and task performance when interrupted).
According to existing work, high interruptability from notifications causes users to disable
(or not enable) notifications for particular applications [122]. Hence, the labeling task can
be interrupted by a poorly timed smartphone notification as well. In future work, it is
important to focus on the proper timing for interruption by notifications when notifying
users of their gamification points. Examining opportune moments for interruptions might
produce better results.

Third, we dealt with the problem of inaccuracy detection by using classic machine learn-
ing techniques. However, there are many challenges for inaccuracy detection in practice
with this technique, and we intend to move forward to address them. While manually
labeled inaccurate data requires tremendous human effort, the continuous and rapid evo-
lution of cheaters makes it difficult to detect new inaccurate patterns based on existing
detection rules. There are several techniques to be considered in the future. For exam-
ple, to overcome manually labeled data, we can treat inaccurate data as an outlier or as
an anomaly and use a consistent approach, such as implementation of an isolation forest
algorithm for outlier detection [37] or a neural autoencoder for anomaly detection [169].
Similarly, to defeat unseen inaccurate patterns, we can utilize unsupervised learning, since
there is no prior knowledge [22]. Although we could not verify that the participants cor-
rectly performed the required inaccurate data (i.e., participants were also instructed to
cheat), the existing study [97] that deployed a similar protocol of inaccurate sample col-
lection to ours (where they asked users to intentionally generate inaccurate data) provided
evidence of the reliability of inaccurate samples by machine learning with an accuracy of
over 70%. While they collected inaccurate samples from students who complied with the
experimental settings, we collected inaccurate samples from crowdsourcing workers, which
is more challenging. Future research should attempt to explore a verification of inaccurate
samples and their challenges. While the inaccurate data of workers seems to drastically
decrease with inaccuracy detection, workers can be discouraged by repeated inaccuracy
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messaging. Therefore, randomly generating inaccurate-detected messages without an op-
erating algorithm is not advisable. Further, the proposed inaccuracy detection algorithm
is expected to collect enough false-positive samples to make accurate predictions. Conse-
quently, we can avoid redundant and unclear information that might discourage workers.
However, we recognize that it would be interesting to deeply analyze the workers’ re-
actions upon receiving the ‘inaccurate’ message. This investigation can be explored in
future work. Despite these limitations, we believe that our inaccuracy detection algorithm
is representative of one of the solutions of inaccurate data in crowdsourced data labeling
and is an essential first step towards understanding inaccurate data patterns in activity
recognition.

Finally, as mentioned in Section 3.4.3, we completely retrained the model for active
learning and made the prediction for inaccuracy detection every 15 minutes. While this
was manageable, practical, and feasible to handle the load of millions of sensor data and
massive crowd workers, there was a gap in receiving real-time feedback, which potentially
impacted worker engagement. To address this gap, several techniques can be explored
in future work. For example, incremental learning techniques [146] can be used instead
to reduce the computational load of the server. Similarly, sending raw data to the server
increases the network and storage load in both the device and the server. Instead, features
can be calculated in the device rather than on the server to reduce overloading, e.g.,
on-device machine learning [102, 163]. However, the trade-off is an increase in battery
consumption, which should be carefully evaluated. We are confident that further study
will introduce new challenges to be explored in future research.
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Chapter 4

On-Device Deep Learning Inference for

Activity Data Collection

4.1 Abstract
Labeling activity data is a central part of the design and evaluation of human activity
recognition systems. The performance of the systems greatly depends on the quantity
and“quality”of annotations; therefore, it is inevitable to rely on users and to keep them
motivated to provide activity labels. While mobile and embedded devices are increasingly
using deep learning models to infer user context, we propose to exploit on-device deep
learning inference using a long short-term memory (LSTM)-based method to alleviate
the labeling effort and ground truth data collection in activity recognition systems using
smartphone sensors. The novel idea behind this is that estimated activities are used as
feedback for motivating users to collect accurate activity labels. To enable us to perform
evaluations, we conduct the experiments with two conditional methods. We compare the
proposed method showing estimated activities using on-device deep learning inference with
the traditional method showing sentences without estimated activities through smartphone
notifications. By evaluating with the dataset gathered, the results show our proposed
method has improvements in both data quality (i.e., the performance of a classification
model) and data quantity (i.e., the number of data collected) that reflect our method could
improve activity data collection, which can enhance human activity recognition systems.
We discuss the results, limitations, challenges, and implications for on-device deep learning
inference that support activity data collection. Also, we publish the preliminary dataset
collected to the research community for activity recognition.

4.2 Introduction
A central challenge in smartphone-based activity recognition is data annotation studies
in order to assess the labels describing the current activity while this activity is still on-
going or recent to ensure that the dataset is labeled correctly. The quality and quantity of
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annotations can have a significant impact on the performance of the activity recognition
systems. Hence, it is unavoidable to rely on the users and to keep them motivated to
provide labels. To overcome the challenge of self-labeling [97], we introduce the idea of
utilizing on-device deep learning inference for optimizing activity data collection. The
rapid performance increase of low-power processors and the huge demand of internet of
things (IoT) applications brought new ways for deploying machine/deep learning mod-
els on edge devices. On-device machine learning by fusing the inertial sensors such as
smartphones have been explored [44,50,126]. These findings allow the activity recognition
system to be feasibly identify frequent behavioral patterns on edge devices; meanwhile,
deep learning revolution in the field of machine learning tends to result in higher accu-
racy and performs exceptionally well on machine perception tasks on smaller devices with
limited resources [90, 92, 134]. TensorFlow Lite*1 was designed to enable easy to perform
machine/deep learning inference on mobile, embedded, and IoT devices with low latency
and a small binary size, “at the edge” of the network, instead of sending data back and
forth from a server. Thus, we will exploit the power of on-device deep learning to provide
estimated activities on a smartphone in order to optimize activity data collection.

In this study, we want to show that if we give estimated activities using on-device deep
learning inference through notifications as feedback to users while they are requested for
labeling, we can improve data annotation tasks for activity recognition systems. The novel
idea works by the user getting estimated activities through notifications on a smartphone
as feedback that motivates for efficient activity data collection. Estimated activities are
automatically inferred by periodically reading short bursts of smartphone sensor data and
processing them using on-device deep learning with a long short-term memory (LSTM)
model [113] without the model retrained. To evaluate this contribution, we trained the
model for on-device deep learning with the open dataset [80], conducted the experiments
with proposed and traditional methods (see Table 4.1) to collect the evaluated dataset, val-
idated the dataset collected using several machine/deep learning algorithms, and showed
that our proposed method outperformed the traditional method. In summary, the contri-
bution of this study are listed as the following:

• We introduce a system design of integrating on-device deep learning inference and
activity recognition. We describe on-device deep learning inference using an LSTM-
based method which can be used for efficient activity data collection, where esti-
mated activities are used as feedback through notifications on a smartphone.

• We present the proposed method where we provide estimated activities using on-
device inference through notifications and the traditional method where we provide
simple sentences without estimated activities through notifications. Our proposed
method can be applied not only to LSTM but also other models for on-device
inference. To evaluate in a realistic setting, we train the model used for on-device

*1 https://www.tensorflow.org/lite
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deep learning with the open dataset, implement a system and deploy the system
to a laboratory, conduct the experiments, review and use the dataset obtained for
evaluations.

• We evaluate the quality of the proposed method using a standard activity recog-
nition chain by comparing the performance results of several machine learning al-
gorithms as well as a deep learning algorithm with the traditional method. We
show that when estimated activities using on-device inference are provided to users
as feedback, we can improve the quality of data collection (e.g., the accuracy of
several machine learning algorithms has improvements with the proposed method).
We also compare the quantity of data collected between the proposed method and
the traditional method by showing that the amount of data collected has increased
with the proposed method.

• We discuss the results, limitations, challenges, and implications for on-device deep
learning inference that support activity data collection and spark future studies.

• We also publish the preliminary dataset openly as Supplementary Information in
this study, which might be useful for activity recognition and the research commu-
nity.

Table4.1 Experimental design.

Method Conditional Detail

Proposed Receive estimated activities using on-device deep learning inference
Traditional Receive with messages “What are you doing?” without estimated activities.

4.3 Method
In this section, we provide a descriptive view of the proposed on-device deep learning
inference for efficient activity data collection system. The architecture of this system
is depicted in Figure 4.1. The system is composed of several technical building blocks
including the following: (1) to build an LSTM-based deep learning model used for on-
device inference; (2) to collect accelerometer sensor data and activity labels efficiently;
and (3) to provide estimated activities as feedback through smartphone notifications for
efficient data collection.

4.3.1 Build an LSTM Model for On-Device Inference

In this section, we propose how to build an LSTM model used for on-device inference.
We employ the open dataset provided by the wireless sensor data mining (WISDM)
Lab [80] to build an activity recognition model for on-device deep learning inference.
A schematic diagram of the proposed LSTM-based deep learning model for activity recog-
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Figure4.1 The system architecture of the proposed on-device deep learning inference

for efficient activity data collection works.

nition system is depicted in Figure 4.2.
Firstly, let us describe the core idea behind LSTMs. The RNN dynamics can be de-

scribed using deterministic transitions from previous to current hidden states. The deter-
ministic state transition is a function

RNN : hl−1
t , hl

t−1 → hl
t

For classical RNNs, this function is given by

hl
t = f(Tn,nh

l−1
t + Tn,nh

l
t−1), where f ∈ {sigm, tanh}

The LSTM has complicated dynamics that allow it to simply“memorize” information
for an extended number of timesteps. The “long term” memory is stored in a vector of
memory cells clt ∈ Rn. Although many LSTM architectures that differ in their connectivity
structure and activation functions, all LSTM architectures have explicit memory cells for
storing information for long periods of time. The LSTM can decide to overwrite the
memory cell, retrieve it, or keep it for the next time step. The LSTM architecture used
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Figure4.2 A schematic diagram of the proposed LSTM-based deep learning model for

activity recognition system works as following (a) the inputs are raw signals obtained
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based deep learning model, (d) and finally, the model outputs class prediction for

each time step.

in this peper is given by the following equations [48]:
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)

clt = f ⊙ clt−1 + i⊙ g

hl
t = o⊙ tanh(clt)

In these equations, sigm and tanh are applied elementwise. We use the WISDM dataset
mentioned to build an activity recognition model. The reason why we first build the
model by employing an existing dataset, and we then utilize it for our proposed on-
device inference method because we concern the issue that our system cannot draw any
inferences for users since it has not yet gathered sufficient information. This problem
usually occurs in computer-based information systems which involve a degree of automated
data modeling. It is a well-known and well-researched problem, so-called the cold start
problem [133]. The human activity recognition dataset built from the recordings of 29
subjects performing regular activities while carrying a waist-mounted smartphone with
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embedded inertial sensors. This dataset contains 1,098,207 examples and six attributes,
including, user, activity, timestamp, x-acceleration, y-acceleration, z-acceleration without
missing attribute, collected through controlled, laboratory conditions. There are 6 activity
types of movement that we try to classify: walking (38.6%), jogging (31.2%), upstairs
(11.2%), downstairs (9.1%), sitting (5.5%), standing (4.4%). The dataset’s description is
detailed in [80].

An LSTM takes many input vectors to process them and output other vectors. In our
case, the “many to one” architecture is used: we accept time series of feature vectors
(one vector per time step) to convert them to a probability vector at the output for
classification, as shown in Figure 4.3. As we can see from Figure 4.2, the inputs are raw

LSTM cell
hidden = 64 ...

Xt = 1
input = 3

Xt = 2 Xt = n...

Output
activity classes = 6

2.5 sec window

Figure4.3 Many-to-one long short-term memory (LSTM) network architecture used

for activity classification with six classes. n stands for the number of samples included

in a 2.56 s window.

signals obtained from multimodal-sensors, which is a discrete sequence of equally spaced
samples (x1, x2, ..., xT ), where each data point xt is a vector of individual samples observed
by the sensors at time t. These samples are segmented into windows of a maximum time
index T and fed into LSTM-based deep learning model. Each generated sequence contains
200 training with 3 input parameters (3-axis accelerometer) per time steps. The model
is trained for a maximum of 50 epochs by two fully-connected and two LSTM layers
(stacked on each other) with 64 units each. We use rectified linear units (ReLUs) for
the hidden layers to increase the robustness of the model as well as remove any simple
dependencies between the neurons preventing over fitting, and use the dropout technique
to avoid overfitting in our model (Equation (4.1)), where a rectified linear unit has output
0 if the input is less than 0, and raw output otherwise.

ReLU(x) = max(0, x). (4.1)

Finally, the model outputs class prediction scores for each time step (yL1 , y
L
2 , ..., y

L
T ),

where yLt ∈ RC is a vector of scores representing the prediction for a given input sample
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xt and C is the number of activity classe, which are fed into the softmax layer to determine
class membership probability.

Also, we use an optimization algorithm called Adam [47] to minimize the cost function by
backpropagating its gradient and updating model parameter. The core hyper-parameters
explored in this model are listed in Table 4.2.

Table4.2 Some core parameter definitions for the training.

Parameter Value

LSTM layer 2 fully-connected
epochs 50
hidden layer units 64
output classes 6
input features per timestep 3 (accx, accy, accz)
timesteps per series 200
learning rate 0.0025
batch size 1024

For validating the trained model against test data, we apportion the data into training
and test sets, with an 80–20 split. After each epoch of training, we evaluate the per-
formance of the model on the validation set. We select the epoch that showed the best
validation-set performance and apply the corresponding model to the test-set. As a result,
we opt the final epoch that the accuracy and weighted F1-score both are reached over 97%
(0.975 and 0.972, respectively) and loss is hovered at around 0.2. Note that the class dis-
tribution of the WISDM dataset has the sample imbalances among activity classes which
can affect machine learning [77]. We could not collect more data that could balance our
classes; however, we show the weighted F1-score for additional performance metric that
is preferable if there is a class imbalance problem, not just only accuracy [121]. Since
the smartphone is attached on the waist and each series to classify has just a 200 sample
window, those predictions are extremely accurate. If we have a look at the confusion ma-
trix of the model’s predictions in Figure 4.4, we can see that our model performs really
well. Although we can see some notable exceptions that there are difficulties in making
the difference between walking, upstairs and downstairs, the model is almost always able
to identify the movement type on a smartphone correctly. The visual insight of the results
are presented in Figures 4.4 and 4.5.

4.3.2 Collect Sensor Data and Activity Labels

We requested participants to carry a waist-mounted Android smartphone (Wiko Tommy3
Plus (Android 8.1)) with embedded inertial sensors, install the mobile app on smartphones
to select and record their daily life activities from the list of predefined labels. Information
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Figure4.4 Training session’s progress over iterations.

Figure4.5 The results for a classifier of the LSTM model.

about the demography of participants and the duration of the experiment are reported in
Section 4.4. The mobile app is extended from our work [101] called“FahLog”, as shown
in Figure 4.6, when a user selects the activity in Figure 4.6 a, the labels for each activity
class will be put into the right column as shown in Figure 4.6 d. Then the user has
to record it by pushing the button to start and stop recording while they are carrying
out the activity by following the steps as shown in Figure 4.6 b–d. Each time the user
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taps an activity label box, it will transition to before start (▶) → doing activity (⊙) →
finish (✓) so a user can record the start and end of the activity. Since another activity
may be performed while performing one activity, multiple activity labels can be started
and ended in parallel. The activity labels can then be uploaded to the server when it is
connected to the network. Otherwise, data will be stored on the smartphone until there
is internet access. Moreover, we capture sensors and activity labels through smartphones
to recognize activities using smartphone sensors continuously. Hence, we set the sampling
rate of the app for the ‘standard’ settings of Android programming API, which is the
slowest setting, where they are sampled 200 milliseconds when they are not busy, then we
take one minute time windows for calculating time windows, it is enough of a sampling
rate for such data collection. Note that the FahLog annotation tool will be unexpired and
can be applied for other activity data collection experiments such as crowdsourcing [98] or
nursing cares [66]. Also, it provides on Google Play openly*2. It can alter multiple activity
types from our server configuration connected to the app that has already been set up*3

as well as it can modify the user interface of the tool for each specific purpose (e.g., in this
study, adding notifications for showing estimated activities as feedback). More features
have been published in [101].

a) Activity label

b) Recorded

c) Recording

d) Idle

Figure4.6 FahLog: a mobile app for collecting sensor data and activity labels.

4.3.3 Provide Estimated Activities as Feedback

We interpret the results that retrieve from model inference. We use a list of probabilities
that the model returned. We then meaningfully map them to relevant categories (activity
classes) and present it on mobile notification to the user. Figure 4.7 presents an example
of the results that are displayed on a notification. Note that to prevent excessive inter-

*2 https://play.google.com/store/apps/details?id=jp.sozolab.fahlog&hl=en

*3 https://fahact.sozolab.jp
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ruptibility and to optimize resources, we stop activity reporting if the device has been
still for a while, and use low power sensors to resume reporting when it detects changes
in the user’s activity (e.g., changing from walking to running) with mean inference time
of 2846.0 ms. Also, when we put the deep learning model on the device and use a battery
monitor application for Android smartphones to monitor the battery level, it increases
energy consumption on its smartphone by 5% on average compared with the traditional
manner without the on-device model. Therefore, showing that it works fast and does not
waste a lot of energy.

[
      {-0.82054216834367446, -0.54677679876, 0.82054216867466},
      {-0.82546434565663476, -0.45656567645, 0.46867465656567},

    ....................,
]

On-Device Inference

Notify

Figure4.7 Steps to show an estimated activity as feedback to a user.

4.4 Experimental Evaluation
In this section, we evaluate the proposed method using a standard activity recognition
chain [10] by comparing its performance with the traditional method, as shown in Ta-
ble 4.1. We describe the designed and conducted the experiments, described the dataset
collected, pre-process the data collected, build the recognition model, and evaluate it.
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4.4.1 Experimental Setup

The participants were required to carry a waist-mounted Android smartphone, install the
FahLog app on the phones, to select and record their activities from the list of predefined
labels (depicted in Figure 4.6), get notifications, and submit data to our server. Each par-
ticipant performs the experiments for 6 days. Table 4.1 shows the detail of the proposed
method and traditional. We propose that if we give estimated activities using on-device
deep learning inference as feedback to users through smartphone notifications, they can
improve activity data collection. Therefore, to compare our proposed method with the
traditional method, we created notifications on smartphones that displayed two different
versions. Each version only differed in the user interface where the proposed method
showed estimated activities using on-device deep learning inference when the device de-
tects changes in the user’s activity. On the other hand, the traditional method showed
messages “What are you doing?”, without estimated activities once every 15 min. We
also request the users click the push notifications sent to assure that the users have seen
the notifications. Each participant received both conditions, each of which showed three
days. We randomly displayed the conditions for each participant to ensure that they were
not affected by the day of experiments for each term. The participants were instructed
with detailed instructions on how to do all process step by step using the same protocol
provided. During data collection, the dataset was collected in the “wild” because the
subjects provided data from their daily lives.

4.4.2 Data Description

The dataset was collected between June 2019, from six subjects within an age bracket of
25–30 years, performing one of six regular activities (as shown in the left column of Ta-
ble 4.3) while carrying a waist-mounted Android smartphone that recorded the movement
data (accelerometers in smartphones). Note that we requested them to carry a smart-
phone in the same position as the WISDM dataset used to train the on-device recognition
model. As a result, we gathered 713 activity labels from all participants.

4.4.3 Activity Recognition Using Smartphone Sensors

Since we propose a standard activity recognition chain and a supervised learning approach
for evaluations, we first preprocess the dataset collected and then evaluate it.

Data Preprocessing

We put together the dataset by including three-axis accelerometer sensor data and the
activity labels on the smartphones without clock and time synchronization because the
sensor and the labeling system are both in the same device.

We used sliding windows of one minute with no overlapping. For each axis, aver-
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Table4.3 The number of activity labels collected.

Activity Class # labels

Walking 247
Jogging 1
Sitting 249
Standing 153
Downstairs 36
Upstairs 27

Total 713

age, standard deviation, maximum value and minimum value were extracted as features.
An example of feature extraction is shown in Table 4.4. Before data proceeding, we ex-
cluded missing values. As a result, we obtained multivariate data of 9,129 samples with
12 variables for feature vectors.

Table4.4 An example of feature extraction.

Feature Value

meanx num −0.82054216867469876 ...
maxx num −0.622 ...
minx num −1.207 ...
sdx num 0.085123482931909022 ...
meany num 1.3659708029197057 ...
maxy num 5.468 ...
miny num −4.118 ...
sdy num 1.1740472194146572 ...
meanz num 9.819719626168224 ...
maxz num 9.909 ...
minz num 9.742 ...
sdz num 0.894526836753883 ...

Figure 4.8 shows the activity labels distribution of the data samples in our dataset.
It is worth noting that the distribution was highly skewed, where some classes appeared
more frequently than others. Since the imbalanced dataset can negatively influence the
generalization and reliability of supervised learning algorithms, we employed the SMOTE
algorithm: synthetic minority over-sampling technique as presented in [24] (an oversam-
pling technique that creates new synthetic data samples in the minority classes, varying
the features values of the existing data points based on their k nearest neighbors in the
feature space) in order to balance our dataset. By upsampling the size of training and
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testing datasets separately.
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Figure4.8 The number of activity labels for each method.

Evaluation Method

In this section, we present the effectiveness of the proposed method when we give es-
timated activities using on-device deep learning through smartphone notifications. The
experiment was designed to test the performance of our classifier for a user-dependent sce-
nario. In this case, the classifiers were trained and tested for each individual with her/his
own data, and average accuracy and was computed. We show that the performance of
several machine algorithms and LSTM have improvements with our method. We also show
that the proposed method has improvements in the amount of data collected. To evaluate
the proposed method using a technique of supervised learning algorithm for multiclass
classification. We trained each participant separately using one deep learning classifier
and several standard machine learning classifiers, including LSTM in the same way of
the on-device model trained, logistic regression (LR) [61], linear discriminant analysis
(LDA) [81], k-nearest neighbors (KNN) [71], decision tree (CART) [131], naive Bayes
(NB) [130], support-vector machine (SVM) [145], and random forest (RF) [18].

To test the model’s ability we used stratified k-fold cross-validation. The folds are
made by preserving the percentage of samples for each class to ensure each fold is a good
representative of the whole. To account for label imbalance, the model performance was
presented using the weighted average of precision, recall, F1-score of each class for the
multiclass task. (i.e., averaging the support-weighted mean per label) So the average
was weighted by the support, which was the number of samples with a given label. The
“weighted” precision or recall score is defined in Equation (4.2). The same weighting is
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applied to F1-score.
1∑

l∈L |ŷl|
∑
l∈L

|ŷl|ϕ(yl, ŷl) (4.2)

• L is the set of labels
• ŷ is the true label
• y is the predicted label
• ŷl is all the true labels that have the label l
• |ŷl| is the number of true labels that have the label l
• ϕ(yl, ŷl) computes the precision or recall for the true and predicted labels that have

the label l. To compute precision, let ϕ(A,B) = |A∩B|
|A| . To compute recall, let

ϕ(A,B) = |A∩B|
|B| .

Note that weighted metrics is the performance of infrequent classes are given less weight
since |ŷl| will be small for infrequent classes. Therefore, weighted metrics may hide the
performance of infrequent classes, which may be undesirable.

4.5 Results
Following the evaluation approach discussed above, we report our results of the vali-
dation together with a discussion of such results. We show the proposed method had
improvements in data quality (the classification performance) compared to the traditional
method. The average classification performance of all models results are shown in Fig-
ure 4.9. The F1-score performance results for each model are shown in Figure 4.10. The
precision performance results for each model are shown in Figure 4.11. The recall per-
formance results for each model are shown in Figure 4.12. The average classification
performance results of all models for each user are shown in Table 4.5.

We also show that the proposed method has improvements in data quantity (the number
of data collected) compared to the traditional method. Figure 4.8 shows the number of
collected activity labels for both methods.

4.5.1 Quality of Collected Activity Data

Figure 4.9 shows F1-score, precision, and recall performance results of all machine learning
models were improved with our proposed method compared to the traditional method.
The F1-score was improved from 0.6240 to 0.7620 (+0.138) The precision was improved
from 0.6440 to 0.7802 (+0.136) The recall of improved from 0.6366 to 0.7677 (+0.131).

Figure 4.10 shows F1-score performance results of all machine learning models were
improved with our proposed method compared to the traditional method. The F1-score
of CART was improved from 0.657 to 0.770 (+0.113) The F1-score of KNN was im-
proved from 0.667 to 0.801 (+0.134). The F1-score of LDA was improved from 0.604
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Figure4.9 The average classification performance of all models for each method.

to 0.766 (+0.162). The F1-score of LR was improved from 0.623 to 0.778 (+0.155).
The F1-score of LSTM was improved from 0.657 to 0.783 (+0.126). The F1-score of NB
was improved from 0.472 to 0.606 (+0.134). The F1-score of RF was improved from 0.694
to 0.815 (+0.121). The F1-score of SVM was improved from 0.623 to 0.775 (+0.152).
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Figure4.10 The F1-score performance results of several machine learning models.

Figure 4.11 shows precision performance results of all machine learning models were



Chapter 4 On-Device Deep Learning Inference for Activity Data Collection 77

improved with our proposed method compared to the traditional method. The precision
of CART was improved from 0.679 to 0.805 (+0.126). The precision of KNN was im-
proved from 0.665 to 0.793 (+0.128). The precision of LDA was improved from 0.611 to
0.762 (+0.151). The precision of LR was improved from 0.616 to 0.759 (+0.143). The
precision of LSTM was improved from 0.675 to 0.803 (+0.128). The precision of NB was
improved from 0.593 to 0.757 (+0.164). The precision of RF was improved from 0.698
to 0.813 (+0.114). The precision of SVM was improved from 0.619 to 0.738 (+0.119).
Figure 4.12 shows recall performance results of all machine learning models were improved
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Figure4.11 The precision performance results of several machine learning models.

with our proposed method compared to the traditional method. The recall of CART was
improved from 0.648 to 0.746 improve(+0.098). The recall of KNN was improved from
0.681 to 0.814 improve(+0.133). The recall of LDA was improved from 0.626 to 0.780 im-
prove(+0.154). The recall of LR was improved from 0.657 to 0.806 improve(+0.149).
The recall of LSTM was improved from 0.657 to 0.779 improve(+0.121). The recall of
NB was improved from 0.459 to 0.556 improve(+0.097). The recall of RF was improved
from 0.696 to 0.821 improve(+0.137). The recall of SVM was improved from 0.677 to
0.833 improve(+0.156).

Table 4.5 shows all users improve average F1-score, average precision, and average recall
performances of all machine learning models with our proposed method compared to the
traditional method.
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Figure4.12 The recall performance results of several machine learning models.

4.5.2 Quantity of Collected Activity Data

Figure 4.8 shows the number of collected activity labels was increased with our proposed
method. The number of activity labels increased from 311 to 402 (+91) compared to the
traditional method.

Table 4.6 shows the number of labels of each activity class by comparing the proposed
and traditional. While some activity classes have more labels with the proposed method,
only one class has fewer labels with the proposed method.

The number of walking labels was increased from 112 to 135 (+23). The number of
upstairs labels was increased from 13 to 14 (+1). The number of standing labels was
increased from 68 to 85 (+17). The number of sitting labels was increased from 101 to
148 (+47). The number of downstairs labels was increased from 16 to 20 (+4). The
number of jogging labels was decreased from 1 to 0 (−1).

4.6 Discussion and Future Directions
By evaluating the dataset and comparing with the traditional method, the results reflect
that our proposed method has improvements in data quality (the performance of a classi-
fication model) for all machine learning models evaluated and data quantity (the number
of labels collected) that indicate improvements in activity data collection. What we have
found most interesting is that all users improve quality of activity data collection with
the proposed method, as shown in Table 4.5. While RF achieves the highest F1-score
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Table4.5 The average

classification performance of all models for each user.

User Method F1-Score Recall Precision

98 proposed 0.7778 0.7756 0.7973
98 traditional 0.7127 0.7139 0.7391
98 Improvement +0.0651 +0.0616 +0.0582

99 proposed 0.7009 0.7119 0.7156
99 traditional 0.4442 0.4830 0.4605
99 Improvement +0.2567 +0.2289 +0.2551

101 proposed 0.8700 0.8774 0.8727
101 traditional 0.6449 0.6619 0.6701
101 Improvement +0.225 +0.215 +0.203

103 proposed 0.7693 0.7663 0.7950
103 traditional 0.6490 0.6685 0.6584
103 Improvement +0.120 +0.098 +0.137

104 proposed 0.7881 0.7954 0.8120
104 traditional 0.6333 0.6223 0.6705
104 Improvement +0.155 +0.173 +0.142

105 proposed 0.6658 0.6794 0.6888
105 traditional 0.6600 0.6702 0.6654
105 Improvement +0.006 +0.01 +0.023

at 81.5%, LDA has the most improvements by 16.2%. RF achieves highest the precision
at 81.3%, NB has the most improvements by 16.4%. SVM achieves highest the recall at
83.3% and also has the most improvements by 15.6%. While this study enabled us to
improve activity data collection effectively, there are some limitations that we would like
to point out and reference in the future.

First, while we notified information about estimated activity when the user is currently
doing the activity, it might be necessary to design both our mobile app and our recognition
model to identify when a user starts or stops a particular activity, such as walking, biking,
or driving (e.g., detect when users start and end an activity). For activity recognition
systems, it is crucial to collect correct segments data. In other words, we need a labeled
sequence of activities (i.e., the start and finish times of the events). Hence, if the app can
be used to detect changes in the user’s activity, we can also deliver this information as
feedback to the user for better activity data collection. Researchers may consider this idea
for other purposes, for example, an app subscribes to a transition in activities of interest
and notifies the user only when needed (e.g., the app notifies driving when a user starts
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Table4.6 The number of

activity labels of each activity class for each method.

Activity Class Proposed Traditional Improvement

Walking 135 112 +23
Upstairs 14 13 +1
Standing 85 68 +17
Sitting 148 101 +47
Downstairs 20 16 +4
Jogging 0 1 −1

Total 402 311 +91

driving and mute all conversations until the user stops driving).
Second, we used the WISDM dataset to train our deep learning model. Hence, the smart-

phone’s position is limited for activity data collection in our experiment as we have to put
the smartphone in the same position. If the smartphone’s position and/or orientation is
discrepant from theirs, the on-device inference will not be correct. Consequently, consid-
ering to collect training dataset by ourselves will be vital. Also, we can collect more data
to make the samples balance among activity classes. Furthermore, while we applied a
three-axis accelerometer for training the recognition model and inferring on a smartphone
device, other smartphone sensors would be useful for more accurate recognition. For ex-
ample, adding gyroscope can help indicate orientation. We will leave this for future work.

Third, we run the trained model on a device without retraining. When designing activity
recognition (machine learning) systems, it is crucial to understand how our data is going
to change over time. A well-architected system should take this into account, and a plan
should be put in place for keeping our models updated. There are several ways to retain
the model, for example, manual retraining by training and deploying your models with
fresh data using the same process you used to build your models in the first place or
continuous learning by using an automated system to evaluate and retrain your models
continuously (e.g., hosting a model on the cloud [33]). However, retraining the model to
maintain machine learning systems would be challenging for research questions in future
work, for example, how do we ensure our predictions continue to be accurate? Similarly,
how do we keep our models up-to-date with new training data?

Fourth, as our proposed method can be applied for several algorithms, but the main
on-device inference model that drove our work—that LSTM-based deep learning model.
If a training model were evaluating using other deep learning methods, such as CNN, CNN
+ LSTM, then there would be value in expanding—why LSTM? What are the challenges
that are different from other methods? Which method is best?

Finally, we plan to evaluate the method with long-term data collection and more diverse
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samples, find data insights as well as find out the correlations between accuracy, the num-
ber of activity labels and classes to show whether and how strongly pairs of variables are
related. For example, do notifications affect the number of activity labels or do notifi-
cations affect the number of activity classes? Answering these questions, it would also
be helpful to understand user motivations and support activity data collection further.
Likewise, we have seen that although the number of activity labels is increased with our
method, not all activity classes (see in Table 4.6). Therefore, analyzing the data collected
more deeply will be useful to understand correlation and causation.
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Chapter 5

On-Device Deep Personalization for

Activity Data Collection

5.1 Abstract
One of the biggest challenges of activity data collection is the need to rely on users and keep
them engaged to continually provide labels. Recent breakthroughs in mobile platforms
have proven effective in bringing deep neural networks powered intelligence into mobile
devices. This study proposes a novel on-device personalization for data labeling for an
activity recognition system using mobile sensing. The key idea behind this system is that
estimated activities personalized for a specific individual user can be used as feedback to
motivate user contribution and improve data labeling quality. First, we exploited fine-
tuning using a Deep Recurrent Neural Network to address the lack of sufficient training
data and minimize the need for training deep learning on mobile devices from scratch.
Second, we utilized a model pruning technique to reduce the computation cost of on-
device personalization without affecting the accuracy. Finally, we built a robust activity
data labeling system by integrating the two techniques outlined above, allowing the mobile
application to create a personalized experience for the user. To demonstrate the proposed
model’s capability and feasibility, we developed and deployed the proposed system to
realistic settings. For our experimental setup, we gathered more than 16,800 activity
windows from 12 activity classes using smartphone sensors. We empirically evaluated the
proposed quality by comparing it with a baseline using machine learning. Our results
indicate that the proposed system effectively improved activity accuracy recognition for
individual users and reduced cost and latency for inference for mobile devices. Based on
our findings, we highlight critical and promising future research directions regarding the
design of efficient activity data collection with on-device personalization.
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5.2 Introduction
In this study, we challenge the online and self-labeling scenarios using inertial sensors,
such as accelerometers. Data labeling is labeled when the individual is performing the
activity of concern. human labelers must start and stop the data capture process manually
to label describing the on-going activity that needs to be assessed to avoid inaccurate
timestamps, which requires high effort. Although participants show initial enthusiasm,
they may lose interest and drop out over time. This situation leads to low-quality data
collection and biased data. Indeed, it is hard to overcome the lack of motivation and
sustained engagement without any artifice [97, 98, 103, 104]. Thus, our motivation is to
create a strategy to keep the participants engaged with the labeling task to obtain high-
quality labels. This challenge is well-motivated in user feedback studies. [59,97,102]. Prior
work [102] utilized inference results as feedback to improve the quality and quantity of
participant contributions. however, the datasets’ models from different users lose accuracy
when applied to a new user due to the diversity of users’ behavior. This limitation can be
addressed either by training a personal model on a cloud or a device. On-cloud training has
the disadvantage of high computational cost and inability to scale when training the per-
user model for millions of users. Contrarily, on-device training might give model training’s
inefficiency because of resource-constrained devices and insufficient user data on-device.

This study bridges this gap by introducing the proposed system, allowing activity recog-
nition applications for smartphone sensor systems to achieve highly accurate training
datasets based on three features. First, we employ Fine-tuning deep neural networks [165]:
the technique widely used in transfer learning in the context of deep learning to overcome
the lack of sufficient training data. We implement fine-tuning instead of full-training,
called on-device personalization, helping models stay relevant to user behavior. Second,
we propose Magnitude-based weight pruning [173]: an optimization technique to mini-
mize the complexity of optimizing deep learning inference for on-device personalization.
Finally, we integrate the abovementioned two features to build an efficient on-device per-
sonalization system. We utilize the inference results obtained from the on-device model
as feedback to motivate user engagement and improve data labeling quality.

In short, the proposed system focuses on the accuracy of human contributions in achiev-
ing high-quality and consistent ground-truth labeling and, particularly, on the impact of
the “on-device personalization system” and feedback under different conditions (See Ta-
ble 5.1). To be entirely sure, the experimental setup was a within-subject design; the same
person tests all the conditions where each participant receives both with- and without feed-
back. An overview of the proposed system is shown in Figure 5.1. The contributions of
this work to the field are the following:

1. We introduce a system design of integrating on-device personalization and activity
recognition, which allows activity recognition applications for smartphone sensor
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systems to achieve highly accurate training datasets. We developed the proposed
system based on three essential features: on-device fine-tuning, model optimization,
and personalized feedback.

2. We deployed the proposed system to a realistic scenario demonstrating its capability
and feasibility. We gathered more than 16,800 activity windows, each labeled with
their corresponding activity class from 12 activity classes using smartphone sensors.
We reviewed, analyzed, and used the obtained data for evaluations.

3. We empirically evaluated the proposed system’s quality by comparing the proposed
condition with the baseline condition (see Table 5.1) using machine learning. The
results indicate that the proposed system can achieve accurate and consistent la-
beling in activity datasets.

We discuss the results, challenges, limitations, and implications of this research on the
design of efficient activity data collection methods with on-device personalization.

Table5.1 Experimental design summary.

Method Conditional detail

Proposed Receive estimated-feedback notifications using on-device personalization.
Baseline Receive estimated-feedback notifications using on-device inference [102].

5.3 Preliminaries
This section provides a brief overview of multiple learning paradigms, including mobile
activity recognition with deep learning, transfer learning and fine-tuning, and, importantly,
on-device personalization.

5.3.1 Mobile Activity Recognition with Deep Learning

This study relies on state-of-the-art mobile activity recognition using supervised learning,
the input x is sensor data (regularly represented as a set of sensor input values around
time t). We typically describe an example as a vector x ∈ Rn, where each xi of the vectors
is a different feature. The output y is a numeric value classifying the activity class k in the
given sensor data. The learning algorithm must produce a function f : Rn → {1, . . . , k}.
When y = f(x), the model assigns an input defined by vector x to a category k defined
by numeric value y, where f can output a probability distribution over classes. Recent
activity recognition is well-developed with deep learning [158] to overcome traditional
algorithms’ failure on such recognition tasks. The deep learning strategy is to learn ϕ,
where ϕ can be used as a provided set of features characterizing x or a new representation
for x. In this strategy, we have a model y = f(x; θ, ω) = ϕ(x; θ)Tω. We have parameters
θ that we apply to learn ϕ from a broad class of functions, and parameters ω that map
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from ϕω to the desired output. This is an instance of a common deep learning, where
ϕ defining a hidden layer. We parametrize the representation as ϕ(x; θ) and utilize the
optimization algorithm to find the value of the parameters θ that result in the most useful
function approximation.

The use of Convolutional neural networks (CNNs) and Recurrent neural networks
(RNNs) have been the subject of study of many activity recognition applications [113].
Both kinds impose challenges when applied to practical applications owing to the com-
plexity of their architecture. In this study, we deeply explore RNNs due to the suitability
of temporal data for building the proposed system blocks. We describe a detailed RNN
of the proposed system in Section 5.4.3.

5.3.2 Transfer Learning and Fine-Tuning

Transfer learning intends to apply earlier acquired knowledge to accelerate the learning
of new tasks [111]. In this study, let D0 and D1 be domains with learning tasks T0 and
T1, respectively. The fundamental concept is to help enhance the learning of a predictive
function f(·) in T1 applying the learned knowledge extracted from D0 and T0, where D0

≠ D0, and/or T0 ̸= T1, suggesting that domains or tasks can be different. A pre-trained
model is an accumulated network earlier trained on a massive dataset. We either adopt
the pre-trained model or apply transfer learning to customize this model to a given task
T1. In this paradigm, we classify the actions of humans employing transfer learning from
a pre-trained network. There have been many proposed ways of customizing a pre-trained
model, such as feature extraction and fine-tuning. The major variation between feature
extraction and fine-tuning is that the former is done by instantiating the pre-trained
model and supplementing a fully-connected classifier on top. In contrast, fine-tuning has
a significant step to incrementally increase performance by repurposing the pre-trained
models’ top-level layers to the new dataset. In turn, it could also possibly lead to prompt
overfitting. This study employs fine-tuning to build the proposed system. We refer an
interested reader to [117] for a detailed review of transfer learning.

5.3.3 On-Device Personalization

In this learning setting, we employed a fine-tuning with deep learning technique to retrain
an already trained model on the cloud (that carefully trained on high-quality datasets to
be as generic and unbiased as possible) to adapt to a similar mobile activity recognition
problem. We only focused on two disjoint datasets that are given and the task changed,
i.e., D0 ∩ D1 = ∅ and Y0 ∩ Y1 = ∅. The target model (on-device fine-tuned model)
replicates all model designs and their parameters on the source model (on-cloud pre-
trained model), except the output layer, and fine-tunes these parameters based on D1.
Contrarily, the output layer of the target model needs to be trained from scratch. In some
exceptional cases, when fine-tuning is performed for D1, it can cover a part of the original
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one D0. However, to simplify notations, we ignore that parts of D1 can already be included
in D0. Using this technique, we can create a personalized experience for the user on the
device while overcoming limited training data and computational resources. For example,
returning personalize estimation activities as feedback to individual devices.

5.4 Method
This section introduces the proposed system and its learning procedure. First, we in-
troduce an overview of the methodology. Next, we describe the dataset used to train
our pre-trained model. We then provide a detailed description of the network architecture
and its implementation and classification performance. Finally, we discuss an optimization
process for the model.

5.4.1 Overview

The objective of our work is to apply fine-tuning using RNNs to migrate the knowledge
learned from the source dataset Dsrc on the cloud to the target dataset Dtar on the
device for mobile activity recognition to deliver better personalized feedback to the user,
as reflected in Figure 5.1.
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Figure5.1 High-level overview of the proposed system. We train RNNs for activ-

ity recognition on an extensive labeled dataset Step (a). The learned features are

transferred to the below activity recognition model on a device Step (b) to person-

alize individual devices’ prediction with a small labeled dataset. Next, the predicted

activities are continuously returned as feedback for data labeling.

Although the activities in Dsrc are mostly unrelated to “walking”, models trained on
this dataset can extract more general sensor features that can help identify acceleration
and the rate of rotation of the device along the three sensor axes. These similar features
may be equally effective for recognizing a “walking” class. Moreover, it takes less time
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and requires less data than training a model from scratch. We simply selected a single
fully-connected layer with softmax activation as Mtar in this experiment based on our
preliminary study’s promising results [104]. However, we recommend researchers perform
several experiments to see the effect of the number of layers to freeze and the number
of layers to fine-tune before adopting. To build the proposed system, we implemented
six steps:

1. Let Msrc be the source model pretrained on the cloud; Let Dsrc be a source dataset
(i.e., large-generic activity datasets); Let Mtar be the target model trained on indi-
vidual devices; Let Dtar be the target dataset (i.e, small-personal activity datasets);

2. Build an input pipeline for Msrc using RNNs. Then, pretrain Msrc on Dsrc.
3. Create Mtar. This model replicates all model designs and their parameters on

Mscr, except the output layer. Assume that these Mscr’s parameters hold the
knowledge learned from Dscr; this knowledge will be equally applicable to Dtar.
Additionally, suppose that Mscr’s output layer closely resembles the labels of Dscr

and is consequently not used in Mtar.
4. Add an output layer with a specific output size (which is equal to the number of

Dtar categories) to Mtar. Then, randomly initialize Mtar’s parameters of this layer.
5. Train the output layer of Mtar on Dtar from scratch. The parameters of all remain-

ing layers are fine-tuned based on Mscr’s parameters.
6. Execute Mtar to make predictions based on user’s input data (i.e., smartphone

sensors and user-labeled data) to recognize activities and return estimated activities
as feedback to the user.

5.4.2 Dataset

Large-scale datasets are prerequisites for the successful application of fine-tuning deep
neural networks in a supervised learning manner. This study employed the dataset
gathered from the real-world deployment on Amazon Mechanical Turk (MTurk) (https:
//www.mturk.com/) as Dsrc to build Msrc. The procedure of labeling tasks of the dataset
was similar to prior work [98]. The dataset has assessed the crowdsourced data’s va-
lidity to verify that the accuracy level is sufficiently high for application to real-world
data. The experiments were carried out in January and February 2020 with 120 subjects
(52 female, 68 male) between the ages of 22 and 57 years old (37.64 ± 9.37). Each person
performed 19 activity classes carrying an application developed for an Android smartphone
in their pockets. The dataset contains the readings of two embedded sensors commonly
found in smartphones: accelerometer and gyroscope, sampled at a constant frequency
rate of 20 Hz. We selected 12 activity classes from the entire categories: lying down,
sitting, walking, standing, handwashing, cycling, eating, using a toilet, cleaning, in a ve-
hicle, computer work, and cooking. Given this data, it is possible to create general-model
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representations based on RNNs used as an initial model in the application.

5.4.3 Network Architecture and Implementation

Following our prior works [102,104], we optimally decided on the network architecture. Our
preliminary findings found that RNN is incredibly well suited for sequential data because of
handling arbitrary input/output lengths and the advantage of being less feature compatible
when compared to other architectures such as CNN. Therefore, we employ RNNs to build
the proposed system. This study explores two sequential feature models: a simple LSTM
and CNN-LSTM model for performance reference.

Simple LSTM Model

We built RNNs as the source model Msrc and prepared the sequence of vectors using a
Long Short-Term Memory (LSTM) [144] layer to perform activity recognition using 3-
axis acceleration sensor data available in the smartphone application as the direct input.
An LSTM network is a developed RNN to solve input/output weight conflicts and avoid the
vanishing gradient problem [64]. The key design of an LSTM network is to produce ways
where the gradient can flow for long durations so that the time scale of combination can be
modified dynamically based on the input sequence. Hence, this network has been observed
remarkably successful in various activity recognition applications. Figure 5.2 shows our
LSTM model architecture. We created RNNs. The 3-axis acceleration and gyroscope data
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Figure5.2 LSTM model for activity classification, where l is the input for each layer.

of each time corresponded to the dimensional input layer’s size. The number of activity
classes corresponded to the dimensional output layer’s size. Each unit of each internal
layer was an LSTM unit. We preprocessed the input signals since deep neural networks
can learn to represent data directly from time-series data. We performed segmentation on
the signals into fixed-size windows with 512 samples with a 1-second overlap. Instead of
reading raw data immediately, we manually extracted valuable data from the raw sensor
data. For each axis, the average and maximum and minimum values were selected as
features. In sum, one representation of data had 512 time-steps × 18 features, or 9216
elements. A Rectified Linear Unit (ReLU) defined the activation function of whole layers,
excluding the last fully-connected layer. A softmax function and a cross-entropy function
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defined the output layer’s activation function and the error function. We set Msrc holding
a stacked-LSTM network that consists of two LSTM layers. This method potentially
provides the hidden state at each level to perform at different timescales. They were
followed by a dropout layer dedicated to reducing the model’s overfitting to the training
data. The hidden layer dimension was assigned to 100. The neural network’s weight was
learned using Adam [73] by setting cross-entropy as the loss function. The network was
optimized by a batch size of 64 for a maximum of 15 epochs and a learning rate of 0.0001.
Lastly, a fully-connected layer was adopted to describe the LSTM hidden layer’s features
before a terminal output layer was employed to make predictions. The model’s output
was a twelve-element vector including the probability of a given window belonging to each
of the twelve activity classes.

CNN-LSTM Model

Convolutional layers can extract valuable knowledge and discover time-series data’s inter-
nal representation, while LSTM networks efficiently recognize short-term and long-term
dependencies. Our proposed CNN-LSTM model’s approach is to consolidate the benefits
of these deep learning techniques efficiently to achieve a remarkably accurate classification.
To this end, we designed the CNN–LSTM architecture, consisting of two main components:
the CNN architecture for feature extraction and the LSTM architecture for reading the
features across time steps. Figure 5.3 shows our CNN-LSTM model architecture. We set
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Figure5.3 CNN-LSTM model. The input is first convolved, and fed to LSTM part.

the number of output, features, and window size using a similar parameter of the simple-
LSTM model. We created the LSTM-CNN model that reads subsequences of the main
sequence as blocks and selected features from an individual block, enabling the LSTM to
understand the features extracted from each block. We divided each window of 512-time
steps into four subsequences for the CNN model. As a result, the CNN model was defined
to read in sequences with a length of 32-time steps and 18 features. We designed Msrc

as having two consecutive CNN layers followed by dropout and a max-pooling layer. The
whole CNN model was wrapped in a Time Distributed (TimeDistributed layer class of
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Keras API; this wrapper allows us to apply a layer to every temporal slice of an input)
layer to enable the same CNN model to read in each of the four subsequences in the
window. The extracted features were then flattened and provided to the LSTM model to
read, removing its features before a final mapping to activity was constructed. The num-
ber of filters was set to 32, and kernel size was set to 3. Similar to the simple-LSTM
model, the ReLU was used as an activation function for the CNN layer. The fully con-
nected layer beside the softmax activation function was employed to classify the activity.
The network was optimized with a learning rate of 0.0001 and a batch size of 64 for a
maximum of 25 epochs. The weight of the neural network was learned using Adam by
setting cross-entropy as the loss function.

The simple-LSTM and CNN-LSTM model were implemented in Python us-
ing Keras v2.4.0 (https://keras.io/) with TensorFlow Core v2.0.0-rc0 (https:
//www.tensorflow.org/versions/r2.0/api_docs/python/tf). Then, it was converted
to work with TensorFlow Lite (https://www.tensorflow.org/lite) and was ready to
use in our application. Model training was run with Tesla K80 GPU in Google Colab
(https://colab.research.google.com/notebooks/gpu.ipynb).

5.4.4 Classification Performance

We carried out an analysis to quantify the performance of Msrc to measure its generality
before giving it to on-device. With the data prepared, we built a training and test dataset.
The datasets contained different users to evaluate the robustness of the classifier to new
users. We adopted the training dataset to build and validate the model and treated the
test dataset as the unseen new data as if the model was in production. We used 80% for
training and the remaining 20% of the data for validation. We used F-measure as a metric
of accuracy.

Figure 5.4a presents the learning curves of recognition accuracy and loss by F-measure
of the training and validation datasets over training epochs for the simple-LSTM model.
The final epoch results show that the validation accuracy reached over 0.975 at the ex-
pense of only 0.075 validation loss. The test accuracy achieved an F-measure of 98.27%.
Contrarily, Figure 5.4b presents the learning curves of recognition accuracy and loss by
F-measure of the training and validation datasets over training epochs for the CNN-LSTM
model. The final epoch results show the validation accuracy reached over 0.988 at a vali-
dation loss of only 0.046. The test accuracy achieved an F-measure of 98.78%. As a result,
we can see that both models consistently perform well on the problem of accuracy, achiev-
ing an accuracy of about 98%. Overall, the results indicate that the recognition accuracy
of the CNN-LSTM model was slightly higher than the simple-LSTM, with a difference
of only 0.51% in F-measure for test accuracy. Additionally, Figure 5.4c summarizes each
classifier’s performance on a set of test data using a confusion matrix with normalization
by class to support the size of training for the simple-LSTM and CNN-LSTM model. Both
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matrices demonstrated better overall performance and could identify the movement type
on a smartphone correctly. Note that we show one confusion matrix since the matrix
results for the simple-LSTM are similar to that of the CNN-LSTM model.

(c)

(a) (b)

Figure5.4 (a) A plot of accuracy and loss of the simple-LSTM model; (b) A plot of

accuracy and loss of the CNN-LSTM model; (c) Normalized confusion matrix for the

simple-LSTM and CNN-LSTM model.

5.4.5 Performance on a Smartphone

In real-world use, the training and inference time must be fast because our application
requires immediate feedback to present to users who perform data labeling. The turned
feedback should be personalized and given immediately after the task is completed. In this
process, data labeling is more efficient because users’ mistakes can be corrected more
quickly. Thus, we estimated the inference and training time on the smartphone. Ad-
ditionally, we assume the smartphone’s resource usage such as battery damage, CPU,
and memory usage is high. In that situation, it cannot be satisfactory for commercial ser-
vice if its inference and training time is quick. Consequently, we examined the resources
managed as inference and training performance on the smartphone.

We used Huawei P10 (Android 9.0, EMUI 9.1) for reference. The smartphone usage log
was stored in the Android database. Each inference was performed at an interval of 5 min,
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and the total number of executions was 10 if there is no detected change in user activity.
Contrarily, if there is a detected change in user activity, the inference was performed
immediately. Each training was performed at an interval of 15 min, and the total number
of executions was 10. Note that the standard training time depended on several factors,
such as the difficulty and complexity of models, the number of samples and parameters,
and the task’s design. However, typically, the model can be trained from a few seconds
to a few minutes. Our analysis trained the model until the validation loss decreased well,
as expected. We estimated the time for preprocessing (feature generation), training time,
and inference time using a machine learning model. The average preprocessing time was
0.054 s. Table 5.2 presents the mean inference and training time for each model. Because
the simple-LSTM model is more simple than the CNN-LSTM model, the inference and
training time of the simple-LSTM model was shorter than for the CNN-LSTM model.
The training time was around 54 s and 126 s for the simple-LSTM model and the CNN-
LSTM model respectively. The inference time was around 0.0106 s and 0.3941 s for
the simple-LSTM model and the CNN-LSTM model. Consequently, the simple-LSTM
model is acceptable in real-world applications, compared to the CNN-LSTM model. We

Table5.2 Measurement results of inference and training time.

Model
Inference Time

(second)
Training Time (second)

Simple-LSTM 0.0106 54
CNN-LSTM 0.3941 126

estimated the resource usage concerning battery consumption, CPU, and memory usage of
the simple-LSTM for reference. Table 5.3 presents the estimation results. The full battery
of the Huawei P10 is 3200 milliampere-hour (mAh). The average battery consumption for
each inference was 0.02300 mAh. If our application uses 10% of the total battery, the total
execution number is 3200 × 0.1/0.02300 = 13,913.04. Hence, if the inference is executed
every 60 s, we can use the smartphone for 13,913.04 × 60 = 834,782.4 s = 231.884 h. The
average battery consumption for each training was 0.05100 mAh. If our application uses
10% of the total battery, the total execution number is 3200 × 0.1/ 0.05100 = 6274.50.
Hence, if the training is performed every 60 s, we can use the smartphone for 6274.50
× 60 = 6189.3 s = 104.575 h. The average CPU usage was 5.53%, and the average
memory usage was 1.03 megabytes (MB) for model inference. The average CPU usage
was 22.20%, and the average memory usage was 1752.45 MB for model training. Note that
we estimated the performance when only our application was performed. Consequently,
a variation of the corresponding performance in real-world practice is reasonable. Still, our
results indicate that resource usage is inexpensive. In summary, the simple-LSTM model
was much faster than the CNN-LSTM model, regarding the inference and training time.
Moreover, the smartphone’s resource usage of the simple-LSTM model, such as battery
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Table5.3 Measurement results of inference and training time.

Condition
Battery Consumption

(%/times)
CPU Usage
Rate (%)

Memory Usage
(MB)

Inference 0.7 5.53 1.03
Training 1.6 22.20 1752.45

consumption, CPU, and memory usage, is inexpensive and acceptable in real-world use.
Consequently, we mainly considered the simple-LSTM model for model optimization and
evaluation, as described in the following subsections.

5.4.6 Performance Optimization with Model Pruning

Deep learning model inference can be considerably computation-intensive for mobile de-
vices, even for small input data. This section describes a model pruning technique to
reduce such computation overhead, delivering the proposed system feasibly on mobile
devices. Model compression is an advised approach to decrease the model size and in-
ference computations [28]. The proposed system attempts to apply the conventional
compression algorithm to minimize the complexity of optimizing on-device deep learning
inference. Various optimizations have been proposed to reduce complex layers, such as
pruning [173], quantization [69], and clustering [56]. We selected the magnitude-based
weight pruning that performs well on mobile devices based on a collection of exper-
iments. Figure 5.5 overviews the compression pipeline of a weight pruning technique.
Magnitude-based weight pruning works by extracting parameters within a model that
have only an insignificant impact on its predictions. Pruning gradually diminishes the
number of nonzero-valued parameters in the model throughout the training process to
obtain model sparsity in a deep neural network’s different connection matrices. Thereby,
sparse models are sufficient at compressing, and we can ignore the zeroes during inference
for latency enhancements.

Train Connectivity Prune Connections Train Weights

Figure5.5 An overview of weight pruning. The compression processes the original

network by pruning synapses and neurons and sharing weights back to prune connec-

tions to eliminate redundant connections to make fewer weights in its model, resulting

in a minimal loss in accuracy with a 10× reduction in model size.

This study extends the TensorFlow framework to prune the network’s connections
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throughout training for the simple-LSTM. We followed a gradual pruning algorithm uti-
lized in [173] in which sparsity is grown from an initial sparsity state si to a final sparsity
state sf during n pruning steps, beginning at training step t0 and with pruning frequency
∆t:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

for t ∈ {t0, t0 +∆t, . . . , t0 + n∆t} (5.1)

The paired weight masks are updated each ∆t steps as the network is trained to contin-
uously enhance the network’s sparsity while allowing the network training steps to retrieve
from any loss in accuracy after pruning. In our experiment, we started the model with
50% si (50% zeros in weights) and end with 80% sf . Once the model reaches the target
sparsity sf , the weight masks are no longer updated. We computed the end step to finish
pruning after 15 epochs. The network was optimized with a learning rate of 0.0001 and a
batch size of 64. We split 10% of the training set for the validation set. We applied pruning
to the whole model and see this in the model summary. Additionally, we created a helper
function to compress the models via a standard compression algorithm using gzip (gzip is
a file format and a software application used for file compression and decompression) and
measured the zipped size after pruning.

As a result, there was a minimal loss in test accuracy after pruning compared to the
baseline. Table 5.4 shows the baseline test accuracy and pruned test accuracy of our simple-
LSTM model. We observed that by fully pruning a model with 80% sparsity, the pruned
accuracy achieved the closest performance to the baseline accuracy with a difference of
approximately 0.18% in test accuracy (an accuracy of 98.27% and 98.09% for the baseline
accuracy and the pruned accuracy, respectively). On the other hand, the model size
was significantly decreased up to 327,212.00 bytes from pruning. The model size was
520,224.00 bytes and 193,012.00 bytes for the gzipped baseline and gzipped pruned model,
respectively.

Table5.4 Loss in test accuracy and a smaller model after pruning, compared to the baseline.

Condition Test Accuracy (%) Model Size (byte)

Baseline test accuracy 98 520,224
Pruned test accuracy 98 193,012

5.5 Systems Implementation
In this section, we describe the system implementation and study design to evaluate the
differences between the two conditions in Table 5.1. The simplified input–process–output
model, including data labeling, model training, and model inference for our proposed sys-
tem, is summarized in Figure 5.6. The algorithm’s key component concerning the design of
returning personalized feedback using on-device personalization is found in line 27. Note
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that each process is independent and can run simultaneously. In the following subsections,
we detail the design rationale of each process.

Figure5.6 The simplified input–process–output model for the proposed system.
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To recognize activities on the device with fine-tuning, we need to collect supervised in-
formation on sensor data activities. We implemented the FahLog (https://play.google.
com/store/apps/details?id=jp.sozolab.fahlog): an Android application, written in
Java with AndroidX (AndroidX is a major improvement to the original Android Support
Library), which is an improvement of [101]. This application can be used for the gener-
ated models in the previous section for data collection, fine-tune training, and inference.
Furthermore, we implemented a cloud server (https://fahact.sozolab.jp/), which is
an improvement of [98]. It enables us to manage large-scale data from the participants
and use them for evaluations. In this work, we focus on implementing the application
with the required functionality for performing the proposed system. For a detailed review
of the cloud-server implementation, we refer an interested reader to the abovementioned
paper. Software requirement analysis of the application includes the following:

• To efficiently collect smartphone sensor data and activity labels from user’s input
for activity recognition.

• To automatically fine-tune the pre-trained model with small data on individual
devices.

• To deliver estimated activities gained from on-device personalization as real-time
feedback through notifications.

• To support offline-first to ensure that the application functionality is unaffected by
intermittent lack of a network connection.

We itemize the requirement analysis resolution and software design as follows:

• Data labeling and smartphone sensors: Activities are temporal data with a specific
duration; it is crucial to record both the start time and the end time. For this reason, we
provided the labeling screen (Figure 5.7), which enables a user to perform activity data
labeling tasks. We detailed a written guide and associated images of the application in a
user manual (https://github.com/nattafahhm/supporting-materials-sensors20/
blob/master/user-manual-fahlog.pdf). The application can automatically collect
smartphone sensors available on the mobile device. The sampling frequency is set at a
20-Hz, which is the standard and lowest setting. Since the participants in this study
are using their smartphones, we cannot drain their battery. This configuration helped
us optimize the sensing process to coordinate data generated and battery consumption,
even if it had less frequent sensor readings.

• Model fine-tuning: Data instances keep adding their corresponding class IDs to the
model cache if the data labeling is performed. Once training data is ready for use, it
can be loaded into mini-batches, and the training can be initiated. In this state, data
will not be immediately used for training. Instead, it will be buffered and used when the
input samples’ size reaches a pre-defined batch size of the on-device model. Fine-tuning
is automatically executed only every 15 min to avoid heavy computational workloads.



Chapter 5 On-Device Deep Personalization for Activity Data Collection 97

Figure5.7 Data labeling screen.

Since the training is a simple indicator of model quality, it does not catch overfitting
problems. We divided the dataset into development and test datasets and split 10% of
the development set for the validation set. We then computed the loss over the validation
set to ensure the model is learning what we want it to learn. Training is stopped when
the validation accuracy no longer improves; the updated model overwrites the previous
model. Only in this case, does it reach an accuracy percentage of over 70%. During the
training process, the model is trained for a few minutes or seconds until loss decreases.
The updated model is then used for inference before the next training is activated. We
added functionality to show the training execution, as shown in Figure 5.7e. The ⃝
symbol is green if training is running; otherwise, it is gray. The loss values in the panel
can be observed fluctuating as the network is trained.

• Model inference: We reused the saved model stored in the internal device for the
inference process by considering the estimates’ confidence bands. We observed the
output probability of each class in a real-time manner. However, to prevent excessive
interruptibility, the application stops notifying if the current activity is notified once.
It resumes after 5 min or reports immediately if it detects changes in the user’s action
(e.g., users in the transition from “activity a” to “activity b”). By default, all sounds
and vibrations are turned on and set as a high-priority notification to ensure that the
application’s notifications are notified to the user’s smartphone. Figure 5.8 shows an
example of estimated activities on a smartphone notification.

• Offline first: With an offline-first approach, data are written locally on the end user’s
device in the JSON format for model training and periodically uploaded to the cloud
when the smartphone is connected via WiFi or mobile data for evaluations. Sensor
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data and activity labels are uploaded to the server by the HTTPS protocol immediately
if the on-device training is successfully executed to free up space on the device due
to resource constraints. Additionally, data will be deleted from the phone’s internal
memory when the transmission is complete. This approach ensures that the application’s
core functionality will still work in the absence of a reliable network connection.

Figure5.8 Notification displaying estimated activities.

5.6 Experiments
To verify the proper function of the protocol and data collection process and to assess the
effect of the proposed method on data labeling, we performed a verification experiment.
We recruited 8 volunteers who are students or alumni of a university in Thailand via social
recruiting. Our post’s objective directed participants to perform an activity labeling task
for four days using the provided smartphone application. Participants were required to own
an Android-based smartphone with at least 5.0 or more API levels. The device was placed
in a trouser’s pocket freely selected by the subject in any random orientation to simulate
every phone usage. We employed a within-subject design in which all participants were
exposed to every condition to help reduce errors associated with individual differences.
Half of the participants were assigned to the proposed condition before they were assigned
to the baseline condition. In contrast, the other half were assigned to the baseline condition
before they were assigned to the proposed condition. They were asked to assign activities
from the classes predefined in Figure 5.9 and spend 8 h per day at least (2 days per
condition) on the application. The design choices and related user interface are detailed
in Table 5.1.

Additionally, we requested participants to complete a pre-study questionnaire, focusing
on demographic information and smartphone usage. We controlled for this variable by
balancing participants across the two experimental conditions based on their response to
minimize the learning effects across conditions. The study was conducted in early July
2020. Eight people (4 female, 4 male) between the ages of 24 and 27 years old participated
in the study. A Welch’s unequal variances t-test indicated no significant difference between
conditions (t = 0.65465, df = 5.069, p = 0.5412).
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5.7 Activity Recognition: Evaluation and Results
This section evaluates the proposed system in depth to verify whether it can improve
data labeling. We applied the simple-LSTM algorithm using the labels and sensor data
collected in Section 5.6 for activity recognition and compared the recognition accuracy
results between two conditions using the F-measure. We followed a standard activity
recognition chain using a supervised learning approach―data preprocessing, segmentation,
feature extraction, training, and testing. The following research questions have been
defined for this study:

• RQ1: Can the proposed system improve data labeling in each user?
• RQ2: Can the proposed system improve data labeling in each activity class?

5.7.1 Data Preprocessing

We accumulated three-dimensional periodic data that incorporate acceleration and gyro-
scope sensors on the smartphone, recording data every 1/20 s. The axes’ norm for each
row dropping in the time slot was computed to aggregate the data. Therefore, discrepan-
cies originating from various smartphone positions/orientations at the time of the reading
decreased. We later combined the periodic sensor data and activity labels without time
synchronization because both are positioned on the same device. Because deep neural
networks are excellent at learning representations of data directly from time-series data,
we only had to perform minimal preprocessing of the input signals for the system to work
properly. The data kept only the activities that correspond to each subject to avoid any
unexpected or invalid activity data from affecting results. The data were then linearly
interpolated to account for missing data in some of the rows. We also discarded the first
and last 10 s of each activity instance for each user to account for possible transient data
that were incorrectly labeled as found in practice.

Next, we transformed the raw time-series data into examples. The resulting dataset
after cleanup is quite unwieldy, and it is challenging to perform a feasible analysis directly.
Consequently, we segmented the data using a sliding window of 5.12 s, which has been
found to be an approrpiate window of time to capture movement sequences. We then
applied a 1 s displacement between consecutive windows and manually useful features
from the raw sensor data to create a predictive model. For the accelerometer and gyro-
scope data, the average, maximum, and minimum values were extracted as features for
each device’s axis. We also included the participants’ IDs for user-dependent training,
as described in the next section. In total, one sample of data has (512 time-steps × 19
features), or 9728 elements. The whole dataset is composed of 16,819 activity windows,
each labeled with their corresponding activity id. Figure 5.9 shows the distributions of
collected data.
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Figure5.9 The distributions of collected data.

5.7.2 Evaluation Method

We developed and evaluated neural network models for multi-class classification problems.
For the training algorithm, we divided the dataset into training and test sets. We used the
training dataset to build and validate the model and treated the test dataset as the unseen
new data. We used 20–30% of each user’s data from the beginning of the time-series
and applied it for testing, and the next parts for training and validation. The training
set users’ data was split into 80% for training the model and 20% for validation and
hyper-parameter tuning.

Rather than applying the model to new users by comparing it with other users’ labels, we
focused on the accuracy of human contributions in each condition (e.g., personal context
and activities to be used by the user themself) by comparing it with the machine’s
knowledge. Hence, we applied user-dependent training to show accuracy improvements for
each participant in each condition without considering side effects such as different sensor
positions. We utilized the F-measure as a metric of accuracy. However, the real data are
highly imbalanced, as shown in Figure 5.9. To address this issue, we handled imbalanced
classes with upsampling using the SMOTE algorithm [24] by oversampling only on the
training data; none of the information in the validation data was used to create synthetic
observations to make them generalizable. We then utilized the F-measure after resampling
to avoid the adverse effects of class imbalances to focus on true positive samples.

The models were trained using our simple-LSTM algorithm, as described in
Section 5.4.3. Here, we utilized the same model configuration and window size
based on an earlier investigation to keep experimental evaluation unbiased due to this
hyper-parameters effect. Since neural networks are stochastic, while it gives the model its
adaptive ability, it is impossible to assess the model’s skill from a single evaluation. To do
so, we did a slightly more detailed assessment of the model. We repeated the model’s
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evaluation a total of 10 times, then summarized the model’s performance across each of
those runs. Additionally, we applied early-stopping during training to avoid over-fitting
if the network fully converged on the training set.

5.7.3 Results

From the abovementioned research questions, we present the activity recognition accuracy
results by F-measure of test data with user-independent training for two conditions from
the viewpoints of (RQ1) activity recognition accuracy improvements in each user; (RQ2)
activity recognition accuracy improvements in each activity class.

RQ1: Recognition Accuracy Improvements in Each User

Figure 5.10 shows the activity recognition accuracy by F-measure of user-dependent train-
ing for the test data. Overall, the data indicate that all participants’ recognition accuracy
in the proposed condition was improved—the average recognition accuracy increased from
82% to 90% (+16%). When looking at the performance of individual users, we observed
the use of the proposed method increased the average recognition accuracy of F-measure
by +3% (from 84% to 87%) to +24% (from 80% to 56%). All participants in the
proposed condition had improved recognition accuracy, sorting by descending order as
follows: The participant ID (PID) 103 had recognition accuracy improvement of +24%
in the F-measure.

Figures 5.11 and 5.12 summarizes the performance of each participant’s classifier on a set
of test data using a confusion matrix with non-normalization of user-dependent training
for the proposed and baseline condition, respectively. As a result, the proposed matrices
were quite thick and demonstrated the overall results’ high accuracy score. In contrast,
the baseline matrices were relatively sparse and explained the overall results’ low accu-
racy score.

RQ2: Recognition Accuracy Improvements in Each Activity Class

Figure 5.13 shows the activity recognition accuracy by F-measure of each activity for
the test data. Overall, the data indicate that all activities’ recognition accuracy in the
proposed condition was higher than the baseline. Regarding the test data’s activity recog-
nition accuracy with user-dependent training, we observed that the proposed condition had
the highest recognition accuracy improvement of +28% of the F-measure in the “walking”
class. The proposed condition had the next-highest recognition accuracy improvement of
+23% in the F-measure in the “handwashing” class, followed with the improvement of
+19% in F-measure in the “in a vehicle” and “standing” class. The remaining activities
had reasonable improvement of recognition accuracy in the proposed condition as follows:
the “cooking” and “eating” class had a recognition accuracy improvement of +18% in
the F-measure; the “cleaning” class had a recognition accuracy improvement of +15%
in the F-measure; the “computer work” class had a recognition accuracy improvement of
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+13% in the F-measure; the “use a toilet” class had a recognition accuracy improvement of
+12% in the F-measure; the “lying down” class had a recognition accuracy improvement
of +7% in the F-measure; the “cycling” class had a recognition accuracy improvement
of +6% in the F-measure; the “sitting” class had a recognition accuracy improvement of
+4% in the F-measure.
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Figure5.10 Recognition accuracy improvements in F-measure in each user.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure5.11 Non-normalized confusion matrices of each user for the proposed condition.
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Figure5.12 Non-normalized confusion matrices of each user for the baseline condition.
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Figure5.13 Recognition accuracy improvements in F-measure in each activity class.

5.8 Discussion and Future Directions
In this study, we introduced a method for activity data collection utilizing on-device per-
sonalization. Although our user research is carried out on a moderate scale and for a
short-term duration, the trial results have already given promising evidence that RQ1 and
RQ2 were fully supported. According to the current investigation of on-device machine
learning inference [63] and the official web page of TensorFlow Lite, the current utiliza-
tion mainly concentrates on imaging classification, object detection, speed recognition,
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and natural language processing such as text classification, question answering, and smart
reply. Contrarily, this research presents the application of activity recognition. We are
confident that our study opens the door to an innovative application domain for on-device
machine learning. Although the results are promising, there are still some weaknesses in
our system. We outline remarkable limitations and discuss them below.

We assumed that the application is static or resource available for a given algorithm.
However, budget resources for a specific application at runtime are not adjusted based on
a predetermined estimate and can be dynamic on mobile operating systems, i.e., software
platforms [40]. Thus, there is a need for research on algorithms incorporating resource-
accuracy trade-off under a dynamic resource budget to choose the optimal algorithm that
fits resource constraints. For instance, applying a greedy heuristic algorithm [16] to make
the locally optimal choice at each stage with the intent of finding the best models or hy-
perparameters for multiple applications at runtime to maximize their performance jointly.
This investigation can be explored in future work.

We predefined activity classes containing a fixed number of <activity, id> pairs. If the
action that a user wants to input is out of the predefined list, it cannot be correctly
predicted. Following prior work [65], the customizable activity class function developed
is designed to be performed on the cloud and dynamically customized depending on the
site server (e.g., an experimental group/facility) rather than individual users. The weak
support of personalization can have a significant impact on model performance. Conse-
quently, a customizable activity class function via the smartphone application remains
to be carefully developed. However, the trade-off is the difficulty and complexity of the
model design, which should be carefully considered. For example, suppose if the number
of classes can change at runtime, we already need to thoroughly consider when we design
the neural net’s architecture and make its classification layer large enough.

The use of transfer learning may reduce the need for massive labeled data. However,
the model’s quality can be compromised if the device’s acquired data is still insufficient,
such as overfitting. Several preprocessing techniques can be considered to overcome when
data are sparse, such as data augmentation [125]. Data augmentation is commonly used
in deep learning, where the sample size is critical for model generalization. This process
stimulates new data instances that maintain the correct labels to increase the sample size
when limited labeled data are available. Data augmentation usually relies on linear trans-
formations in the spatial domain and has mainly been implemented for image recognition.
However, label-preserving augmentation for time-series is much more challenging since any
transformation is complicated to determine without profound domain knowledge. We are
confident that the impact of data augmentation on the performance deep neuron network
will introduce new challenges to be explored in future research.

Additionally, we utilized on-device fine-tuning for personalization. However, this con-
cept can be generalized to support many other activity recognition applications. Future
work should attempt to explore the impact of generalization and the tradeoffs therein.
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Similarly, while we employed a specific network for the two networks and achieved good
training results, we may lose the optimal information if the parameter and meta parameter
values are not appropriately selected. We believe that capturing several different network
sizes and drawing conclusions will help achieve the greatest improvement. We intend to
investigate this in future work. Further, while the accuracy level of the deployed model
is sufficiently high for application to real-world data, the participants might still assign
the wrong label if the model has made a few mistakes. Therefore, future research should
further examine user errors that occur in such a scenario. For example, providing an ac-
curacy percentage for participants to reduce user errors, but we need to avoid redundant
information that may discourage participants. The other remaining limitations and chal-
lenges stimulate our future research; for example, we intend to attempt large-scale data
collection, explore other types of optimization techniques, and further assess the usability
of the proposed method with user studies.

Despite these limitations, we believe that our study is representative of a solution for the
lack of accurate labels in data labeling and is an essential first step towards understanding
on-device personalization in activity recognition.
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Chapter 6

Discussion

This chapter reflects on the research contributions given in Article 1–6 and highlights how
these contributions answer the research questions outlined at the start of this thesis. In
the preceding chapters’ studies, we focus on both the quality and quantity of participant
contributions in adopting smartphones as a research instrument. As researchers rely on
these contributions for their study inferences, the collected data must be reliable and high-
quality, and participant responses must be collected across various contexts adequately.
In addition to considering the quality and quantity of participant responses, the included
articles further examine aspects concerning participant motivation. Since mobile activity
recognition studies require high effort, participant contributions must be highly motivated
and sustained. We provide a summary of our contributions in Table 6.1.

This chapter starts with a discussion on the quality and quantity of participant data.
First, we discuss how the quality and quantity of participant contributions can be im-
proved. Following, we look at how methodological designs affect participants’ motivation.
Subsequently, we reflect on smartphones’ usage as a research instrument, particularly for
data collection in mobile activity recognition studies. Finally, we conclude this chapter
with the limitations of the studies included in this thesis and present a road for future
work in this domain.

6.1 Response Quality and Quantity
The considered studies’ empirical results show that participant responses’ quality and
quantity in mobile activity data collection studies can be improved.

We argue that researchers should aim to improve data collection accuracy if they rely
on participant contributions as a source for information to make reliable inferences. Re-
searchers should also propose practical approaches to increase participant responses to
gather sufficient data without high-cost and time-consuming for their strong inferences,
particularly for a real application. Here, we discuss various methods for improving data
quality and quantity in mobile activity recognition studies to answer the first research
question:
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Table6.1 Summary of research objectives, experimental setup, and main contribu-

tions for Chapter 3-5.

Chapter Research objectives Experimental setup Contributions

Chapter 3 Propose novel gam-
ified active learning
and anomaly detection
for crowdsourced data
labeling.

A total of 120 partici-
pants submitted 6,549
labels from 19 activ-
ities and engagement
data to assess their
participation.

Achieve high-quality
crowdsourced datasets
by overcoming three
main issues: 1) lack
of accuracy, (2) loss
of motivation, and (3)
inaccurate data.

Chapter 4 Propose novel on-
device deep learning
inference instead of
cloud-based deep
learning inference
to alleviate the self-
labeling effort .

A total of 6 partic-
ipants participated in
a six-day in-the-wild
study. Participants
submitted 734 labels
from 6 activities.

Establish the pos-
sibilities of using
on-device inference for
efficient activity data
collection and iden-
tify recommendations
for optimizing data
collection in future
on-device studies.

Chapter 5 Propose a novel
on-device personaliza-
tion using resource-
constrained devices
and mobile optimiza-
tion.

A total of 8 partic-
ipants participated in
a four-day in-the-wild
study. Participants
submitted 16,800 ac-
tivity windows from 12
activities

Demonstrate the pos-
sibilities of on-device
personalization in
order to deliver rel-
evant information to
increase participant
accuracy and identify
recommendations for
mobile optimization.

• RQ1: How can researchers improve the quality and number of participant contri-
butions in data collection for mobile activity recognition studies?

In Chapter 3, we proposed a system for robust activity data collection with crowdsourcing.
Crowdsourcing can be considered an efficient method or tool that human computation
systems can use to distribute tasks through an open call. With crowdsourcing, the prior
works evidence that it is efficient, cost-effective, and highly scalable for collecting human-
labeled data. However, there are various challenges of crowdsourcing applications that
exist today. One of the most critical challenges that we considered in this thesis is the
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lack of accurate information. We set out the relevant questions as follows: (1) what task
can be performed adequately by machine, consequently decreasing the need for human
involvement?; (2) can we take advantage of the complementary abilities of machines to
make computation more accurate and efficient?. There are many opportunities to apply
machine intelligence to help improve the accuracy of human computation algorithms. To
find solutions for those questions, we optimally selected intelligent techniques.

In Chapter 3, we employed “active learning” to reduce the cost of data labeling by human
users. The results presented in this chapter indicate that the use of the proposed approach
using active learning increased the accuracy of collected data. Similarly, In Chapter 4, we
utilized on-device deep learning to make real-time activity recognition on smartphones.
The proposed algorithm behind this chapter showed that the data obtained had improve-
ments in both quality and quantity. Furthermore, In Chapter 5, we enhanced the proposed
algorithm of Chapter 4 by utilizing on-device personalization to make better inferences,
particularly for individuals. The results of this study indicated that the proposed system
could as well improve activity accuracy recognition significantly.

Obviously, overall results reflect our systems that leverage machine intelligence as an
optimizer tool can achieve better mobile activity data collection results. Crowdsourced
data labeling can also be leveraged to benefit the researcher by providing information or
solutions faster than traditional means. A summary of discussions in relation to RQ1
presented in 6.1.

Machine intelligence as optimizers 
to increase accuracies.

Ch3. Apply active learning 
and inaccuracy detection.

Address lack of accuracy 
of crowdsourced users.

Ch4. Apply on-device 
deep learning inference.

Enable real-time response 
to improve data labeling.

Ch5. Apply on-device 
deep learning 

personalization.

Advance and customize 
turned feedback to 

optimize data labeling. 

Figure6.1 A summary of discussions in relation to RQ1.

6.2 Participant Motivation
Given the nature of data labeling for mobile activity recognition studies, participant mo-
tivation is possible to decrease as time progresses and the response burden increases, as
evidenced in empirical results. As a result, researchers might have to face a rise in partic-
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ipant errors, the challenge of preventing and detecting inaccurate input, and the potential
for participant dropout. As human computing systems are built to manage increasingly
complex tasks done by increasingly larger crowds (e.g., to generate labeled activity data),
we must use machine intelligence to coordinate people, make sense of, and display infor-
mation to participants. Hence, we present applying machine intelligence pertains to the
second question of design:

• RQ2: How can researchers motivate participants to participate and carry out data
labeling tasks to their best abilities?.

We set out the relevant questions as follows: (1) how do we drive participants to have
a long-term interaction with the systems by building an environment that satisfies their
specific needs (e.g., to be relaxed and to have a sense of attainment)?; (2) how do we
design game mechanisms [154] that encourage participants to report the truth (i.e., to
generate accurate output)? In response to the challenges, in Chapter 3, we demonstrated
the integration of gamification into active learning to overcome the lack of motivation and
sustained engagement. We measured several dimensions of user engagement and received
high scores on average. These scores indicate that the participants engaged with their la-
beling tasks. Moreover, we discovered that other engagement measurements were strongly
correlated with activity recognition accuracy. These findings support our research goal;
gamification could be used as a motivator to generate accurate output. In Chapter 4 and
Chapter 5, we introduced the application of on-device inference to provide feedback to par-
ticipants to help participants sense labeling performance faster. The mechanisms behind
real-time updates provide data that allows participants to make more appropriate and
informed decisions and then to take action based on that information. The study results
indicate that our systems drive participants to interact with the system and encourage
them to refrain from dropping out of a study as the quantity and quality of collected
labels were significantly improved. While gamification enhances the quantity and quality
of labels, the raw data quality can be compromised if the workers engage in dishonest
behavior. To reduce this issue, we presented the inaccuracy detection algorithm. The
result analysis indicates that data labeling with gamification can lead to more reliable
participants. In other words, when enhancing motivation and sustained engagement with
gamification, inaccurate data may also be reduced. A summary of discussions in relation
to RQ2 presented in 6.2.

6.3 Smartphones as a Research Instrument
The widespread availability of smartphones has taken exciting possibilities for researchers
interested in studying humans in-the-wild. This technology has resulted in the increased
use of smartphones as data collection tools for human activity recognition studies. Simul-
taneously, researchers have mentioned several concerns and challenges in the adoption of
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Machine intelligence as motivators 
to increase participant motivation.

Ch3. Provide recognition 
accuracies as 

gamification points.

Address lack of motivation 
and sustained 
engagement 

of crowdsourced workers.

Ch4. Provide real-time 
estimated-activity 

feedback.

Keep participants in 
a consistent loop of

performance and 
quality monitoring.

Ch5. Provide personalized 
estimated-activity 

feedback.

Deliver information to 
participants about 

their performance in a 
motivationally optimal 

manner.

Figure6.2 A summary of discussions in relation to RQ2.

smartphones as a research instrument, as presented in Chapter 2. Therefore, answering
the third research question:

• RQ3: How can researchers employ smartphones as an effective research instrument
in data collection for mobile activity recognition studies?

is a crucial step towards increasing smartphone-based data collection efficiency.
In Chapter 3, we employed crowdsourced workers to perform data labeling tasks. We

recruited 120 diverse workers and gathered valuable 6,549 activity labels in a shorter time.
This collection indicates that the use of participants’ smartphones as research tools had
unlocked the potential for us for enriched data collection. Although the data was col-
lected using different smartphone models from different vendors contribute to diversity
challenges, it supports the generality of our approach and its usability in real-world con-
ditions, which is impossible with paper-based methods. Moreover, using participants’
smartphones increases the ecological validity of data contributions as participants carry a
familiar device. On the other hand, we could not monitor their battery-powered. There-
fore, we optimally set the most appropriate sampling rate of sensor data collection for the
smartphone application. Our configuration allowed us to optimize the sensing process to
balance data generated and battery consumption, even if this meant having less frequent
sensor readings.

In Chapter 4, we exploited the advances in deep learning to detect and model human
behaviors automatically on smartphones. However, these algorithms typically require mas-
sive amounts of computation for training and inference, making them inappropriate for
deploying resource-constrained mobile devices. To keep our application resource-efficient,
in Chapter 5, we introduced a list of practices and strategies to improve our model perfor-
mance. First, we did performance evaluations of implicit smartphones and made a trade-off
between model complexity and size. This result analysis provided us to optimally chose
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the best model for the task. Second, we optimize our models using the proper technique to
build smaller models that are generally faster and more energy-efficient for mobile devices.
Out experimental results provided us to reduce the computation cost of on-device learning
without affecting the accuracy. Finally, we applied transfer learning from a pre-trained
network to address the lack of sufficient training data and minimize the need for training
deep learning on mobile devices from scratch. The results implied that our algorithm be-
hind Chapter 5 ushered in deep learning efficiently on resource-constrained mobile devices,
making applications seamlessly run across diverse platforms.

In summary, smartphones are valuable scientific instruments for researchers to promptly
collect a larger number of high-quality activity labels. However, the trade-off is an increase
in challenges of resource-constrained mobile devices should be carefully designed and eval-
uated. A summary of discussions in relation to RQ3 presented in 6.3.

Keep the application 
resource-efficient.

Ch3. Make the provided 
application to be 
generalizable.

Support the generality of 
crowdsourcing and its 
usability in real-world 

conditions.

Ch4. Enable machine 
intelligent features to run on 

users’ personal devices.

Reduce latency with edge 
computing and network 

optimization.

Ch5. Apply an optimization 
to models and analyze 
resource consumption 

patterns in smartphones.

Keep the application 
resource efficient.

Figure6.3 A summary of discussions in relation to RQ3.

6.4 Future Directions
Following the discussion of our study concerning the research questions, we outline po-
tential roads for future research in relation to this thesis topic. As the limitations of
individual studies are already discussed in the respective articles, this section pays specific
attention to additional certain recommendations and considerations that are the essence
of this research and usually span across various studies.

The work introduced in this thesis is a preliminary step in quantifying the effect of
methodological configurations on response quality and quantity and participant motiva-
tion in mobile activity data collection studies. Given the sheer number of methodological
factors to consider in a mobile activity data collection study and the potential impact of
these factors, future work is an opportunity to investigate different methodological config-
urations further. We consider two different directions directed to fulfilling this goal. First,
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the most generally used strategy towards quantifying the effect of methodological designs
is to analyze a standard study parameter as the subject of a study (e.g., the number of
daily data labeling) [30]. This analysis allows deeply investigating an individual parameter
to minimize the effect of any confounding factors as best as possible. Second, the indi-
vidual studies reporting measurements that are expected to have some mistakes. Indeed,
researchers cannot observe all error factors affecting response quality and quantity, and
participant motivation (e.g., the differences among participants in digital literacy, smart-
phone usage, and inherent interest in a study). As such, we suggest employing a statistical
analysis that combines the results of multiple mobile activity data collection studies. For
example, researchers should consider adopting meta-analysis when multiple scientific stud-
ies are addressing the same question [94]. In addition to supplying an estimate closest to
the common unknown truth, this results analysis can contrast results from various studies,
recognize patterns among study results, provide references of disagreement, and identify
multiple studies’ relationships. Second, the maintenance of academic software tools for
researchers remains lacking. One of the reasons that cause this issue is the rapid evolution
of mobile technology. The technology speed and update rate requires both researchers
and developers to maintain their software tools actively. However, there are factors in
terms of software maintenance costs for academic research, such as the complexity of
the software development, rapidly changing research interests, availability of funding, and
most importantly, typically developing an academic software tool based on each study.
Consequently, researchers often lack incentives to maintain it. In this thesis, we actively
maintained our mobile application and applied it to multiple data collection studies. This
continued software tool substantially reduces software development costs as our multiple
scientific studies directed to the same proposal. Therefore, we advocate for researchers to
actively maintain software tools [49] and support such essential software available and ac-
cessible to researchers worldwide [43]. As such, we recommend researchers releasing code
as open source. We believe that open-source software is a necessity and in the interest
of the broader research community. This enables reproducibility and collaboration, but
maintainers need support to scale and build community.

Lastly, a new paradigm for the future of data labeling exists. In addition to active
learning and transfer learning presented in Chapter 3–5, other machine learning areas
exist [11, 172, 174] that are motivated by the demand for enhanced quantity and quality
of labeled training data employing several high-level techniques to approach this need
(e.g., weak supervision and semi-supervised learning). Based on our findings showing that
alternatives to pure crowd-labeling are very cost-effective to acquire labeled data. We have
demonstrated how these technological possibilities can be utilized to improve the quality,
quantity, and motivation of participant contributions for mobile activity data collection
studies. Accordingly, we are delighted to see the new research questions and methods that
researchers incorporate those paradigms into their labeling workforces and solutions in the
future of mobile activity recognition studies or other relevant areas. While these advanced
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technological approaches will be increasingly able to help researchers collect data on study
participants automatically and effectively, we argue that human input, observations, and
reflections will play a crucial role in data labeling studies.
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Chapter 7

Conclusion

This thesis investigates the quality, quantity, and motivation of participant contributions
for mobile activity data collection studies. Furthermore, this thesis discusses actionable
future steps to improve data collection and present recommendations to employ smart-
phones as a research instrument efficiently. Below is a summary of each research goal.

First, Chapter 3, we addressed the prevalent issues in crowdsourced data labeling, in-
cluding lack of accuracy, lack of motivation and sustained engagement, and inaccurate
input. The primary purpose of the study was the production of high-quality datasets for
activity recognition using ubiquitous crowdsourcing. We evaluated the proposed system
and accomplished the three study goals by collecting usage data from 120 diverse workers
in a crowdsourcing platform. First, accuracy was substantially improved by using active
learning. Second, motivation and sustained engagement were increased with gamification.
Finally, inaccurate input was reduced by inaccuracy detection. Furthermore, the positive
correlation between activity recognition accuracy and application of gamification provides
evidence supporting our research approach. Second, Chapter 4, we introduced a recent
breakthrough that enables machine-intelligent features to run on users’ devices. We could
optimize data collection for mobile activity recognition studies by exploiting on-device
deep learning inference as real-time feedback. The experimental results showed that our
proposed method had improvements in both data quality and data quantity. Third, Chap-
ter 5, we addressed activity recognition using constrained mobile devices. We introduced
a system design of integrating on-device personalization and activity recognition, which
allows activity recognition applications for smartphone sensor systems to achieve highly
accurate training datasets. We developed the proposed system based on three essential
features: on-device fine-tuning, model optimization, and personalized feedback. The re-
sults indicated that the proposed system could achieve accurate and consistent labeling in
activity datasets. Lastly, I confirmed that I achieved all of my research goals to construct a
useful and intelligent data collection of human-labeled data in mobile activity recognition
studies. Additionally, my thesis’s new findings are also applicable to other research and
systems, as described in future work.
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