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Abstract. Convolutional neural networks (CNNs) offer great potential for 

business applications because they enable real-time object recognition. However, 

their training requires structured data. Crowdsourcing constitutes a popular 

approach to obtain large databases of manually-labeled images. Yet, the process 

of labeling objects is a time-consuming and cost-intensive task. In this context, 

augmented reality provides promising solutions by allowing an end-to-end 

process of capturing objects, directly labeling them and immediately embedding 

the data in training processes. Consequently, this paper deals with the 

development of an object labeling application for crowdsourcing communities 

following the design science research paradigm. Based on seven issues and 

twelve corresponding meta-requirements, we developed an AR-based prototype 

and evaluated it in two evaluation cycles. The evaluation results reveal that the 

prototype facilitates the process of object detection, labeling and training of 

CNNs even for inexperienced participants. Thus, our prototype can help 

crowdsourcing communities to render labeling tasks more efficient. 

Keywords: Crowdsourcing, Labeling, Object Recognition, Augmented Reality 

1 Introduction 

Data constitute the gasoline fueling artificial intelligence (AI) abilities [1, 2]. With 

cloud computing, the internet of things (IoT) and social media, data are increasingly 

abundant and accessible [3]. Yet, the availability of high-quality and structured training 

data is essential to leverage data for several supervised AI classifiers [4]. Given that up 

to 80% of corporate data are stored in an unstructured form [5], labeling data can be a 

costly and time-consuming endeavor [6]. As labeling is still mainly conducted by 

humans [7], many organizations rely on crowdsourcing platforms to render their 

labeling tasks more efficient [3]. Therefore, labeling represents a human-in-the-loop 
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approach, in which human skills are needed to gather training data for machine learning 

[8, 9]. 

Crowdsourcing platforms such as Amazon's MTurk enable organizations to 

outsource labeling as so-called “Human Intelligence Tasks” [10]. In this respect, the 

data type determines the complexity of the labeling job [6]. While high-level 

classification tasks (e.g. “cat” vs. “no cat” [11]) for images constitute straightforward 

and speedy annotation jobs, the complexity and duration increase with the requirements 

for visual perception within a video or image [12]. Consequently, labeling an object 

within an image is a challenging task that requires the capturing of additional position 

information within the observed frame [13]. In such cases, even in outsourcing 

scenarios the efficiency benefits are rather marginal [11]. Given these challenges, there 

is currently a lack of available solutions for labeling training data for use cases that 

enable efficient AI-based object recognition [14–16]. 

To remedy this shortcoming, researchers are increasingly focusing on providing 

tools that allow direct recognition and labeling of objects within a real-time 

environment leveraging augmented reality (AR) and convolutional neural networks 

(CNNs) [17]. AR involves the display of additional information in the user's field of 

vision and thus enables labeling tasks while capturing images [17, 18]. CNNs, 

meanwhile, are particularly performant for processing video or image data related to 

object recognition by utilizing three types of layers: the convolution layer, which 

generates the activation map enabling the identification of specific properties and 

defined spatial positions in a frame; the pooling layer, which reduces the dimensionality 

of the data; and the fully connected layer, which is responsible for linking the neurons 

from the previous layers [19]. Thus, the synergy of these technologies enables an end-

to-end process of capturing objects, direct labeling and immediate embedding of 

captured information in CNNs’ training process [17]. Despite existing solutions for 

easing the labeling process of objects in images, to the best of our knowledge, there is 

no solution that is widely scalable to serve the crowdsourcing community. Previous 

solutions require either stationary hardware [12] or high processing power [17]. 

Considering this research gap, we derive the following research question (RQ):  

 

RQ: How can the process of capturing and labeling objects be designed and 

implemented as an AR application for the crowdsourcing community? 

 

Therefore, the aim of this paper is to develop a mobile AR prototype for capturing, 

labeling and detecting objects based on training CNNs. Our solution is aimed at the 

crowdsourcing community as it provides the opportunity to capture labeled objects 

rather than to recruit thousands of workers to manually identify and label objects in 

images after they are captured.  

In accordance with Gregor and Hevner [20], we organize our study as follows: 

Section 2 summarizes related work. Section 3 describes the incremental steps of the 

artifact development in line with the design science research (DSR) paradigm. This is 

followed by an explication of the artifact in Section 4 and a description of the evaluation 

in Section 5. Subsequently, we discuss our findings in Section 6. Finally, the paper 

concludes by summarizing the main findings. 



2 Related Work  

With advances in the fields of computer vision and neuroinformatics, artificial neural 

networks (ANNs) are expected to be increasingly used in business operations [21]. 

Thereby, CNNs constitute the most commonly used type of ANN architectures applied 

for image classification [19]. A very promising application area for CNNs is real-time 

object detection [22]. While the training for this application constitutes a time-

consuming task, the subsequent object detection enabled by the trained model is carried 

out within milliseconds [23]. In view of these capabilities, CNNs are frequently 

associated with various application scenarios of the IoT age [24]. For example, robots 

can immediately detect quality deviations in production by using CNNs [25].  

However, a basic prerequisite for the effective recognition is the availability of 

labeled and structured data as well as pre-trained CNNs [4, 10]. To meet this need, 

several crowdsourcing tools have already been designed to label data for CNN training. 

For instance, Lionbridge.ai employs thousands of crowdworkers to label and annotate 

images, videos and audio recordings [26]. Moreover, various solutions for structuring 

image data in the fields of medicine, traffic and machinery have been developed in 

research [16]. However, these solutions require pre-defined sets of images that first 

must be provided to enable crowdworkers to perform the labeling [6, 10]. 

The use of AR applications for training neural networks in terms of gathering labeled 

training data and object detection has been a rarity so far, although AR user interfaces 

offer unique potential by guiding the user through visual and auditory stimuli [18, 27]. 

Combined with AR, CNNs have so far mainly been used for the recognition of markers 

(e.g. barcodes) that facilitate the recognition process [28, 29]. For instance, Dash et al. 

[30] developed an AR learning environment that identifies markers in the user's field 

of view, computes the geometric data and seamlessly displays the 3D content in the 

video stream. To date, however, multiple CNN architectures, like AlexNet and 

GoogLeNet, have been deployed to allow object recognition without markers [31, 32].  

To the best of our knowledge, only one study has combined object labeling, real-

time object detection and AR: Hoppenstedt et al. [17] implemented a prototype for 

labeling objects for the Microsoft HoloLens. The application allows to use voice 

commands for storing the metadata (e.g. label). Data input generated from the AR 

labeling is stored in a folding neural network. This network is then trained to classify 

the images along with the corresponding objects. However, the results of their 

evaluation indicate that the architecture is more suitable for small classification 

problems. Furthermore, the application does not provide feedback to the user, which 

could cause problems for novices. Finally, the use of AR headsets is still not prevalent. 

In conclusion, companies, crowdsourcing communities and previous solutions suffer 

from several shortcomings, which we categorize as belonging to seven central issues 

(I): The shortage of structured data (I1) leads to high efforts for labeling images (I2), 

which in turn are often outsourced to crowdworkers. However, crowdworkers often 

lack the necessary domain knowledge (I3) [5, 16]. Even though a number of solutions 

have already been developed, they lack scalability (I4) [17]. Moreover, the missing 

domain knowledge of crowdworkers leads to poor data quality of labeled images and 

objects (I5), resulting in low accuracy of CNNs (I7) [16]. However, recent 



technological developments relating to mobile devices have created significant 

potential for the combination of data collection and labeling [33]. Furthermore, 

advancements in the field of CNNs are creating opportunities to accelerate training 

processes (I6) while achieving a comparatively high level of accuracy [16, 17, 34]. In 

spite of these potentials, research has so far failed to identify a solution that combines 

the advantages of CNNs, mobile devices and scalable architectures. 

3 Research Approach 

Given the problem statement outlined in the previous section, we initiated the artifact 

development and followed the DSR methodology proposed by Peffers et al. [35]. Figure 

1 illustrates the research approach in six main stages.  
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Figure 1. Design science research approach based on Peffers et al. [35] 

First, we examined the current state of practice and research by means of a market 

analysis and a literature review [36]. The former was conducted in the Apple App Store 

and the Google Play Store using search terms such as object labeling and augmented 

reality labeling [37, 38]. To identify relevant literature, we queried the scientific 

databases ScienceDirect, IEEE Explore, SpringerLink, ResearchGate and Google 

Scholar by applying the search string (artificial neural networks OR connectionist 

models OR parallel distributed processing models OR convolutional neural networks) 

AND (augmented reality OR mixed reality) AND (label* OR training). This query 

yielded 43 research papers and two applications of particular importance for our 

project. To improve objectivity and validity, the screening process was conducted 

independently by two different researchers in line with the interrater agreement [39].  

Second, we used a concept matrix according to Webster and Watson [40] for 

structuring the literature analysis. Thereby, we identified and categorized issues for the 

training of neural networks by means of a mobile application in the context of 

crowdsourcing. To subsequently deduce the meta-requirements (MRs) and design 

principles (DPs), we conducted a workshop with four researchers from the field of 

information systems (IS) and applied the anatomy proposed by Gregor et al. [41]. 

Third, we continued with the development of our artifact. Overall, we carried out 

two development cycles, each ending with an evaluation step to provide enhancements 

for the subsequent cycle. We employed two formative and naturalistic ex-post 



evaluations to examine the artifact's problem-solving ability in a real-world setting [42]. 

After the first design phase, we conducted a train-test split with 15 objects to validate 

the functionality of our artifact [43]. The second evaluation involved an experimental 

study and focused on the user experience. For this step, we applied the User Experience 

Questionnaire (UEQ) [44]. The two evaluation cycles are presented in Section 5. 

4 Artifact Description 

To address the observed real-world problem under consideration, we start by specifying 

the MRs, which describe the goals of our solution. These serve as a starting point for 

the derivation of DPs, which in turn guide the implementation of our artifact [20]. 

4.1 Meta-Requirements and Design Principles  

Applying the research approach outlined in Section 3, we identified 12 MRs concerning 

data labeling, system infrastructure and model development (cf. Table 1).  

Table 1. Meta-requirements 

ID Meta-requirements 

Data labeling 

MR1 
Identification of unknown objects. The system must help crowdworkers to identify previously 

unlabeled objects [45, 46]. 

MR2 
Highlighting the position of objects. The application needs to enable crowdworkers to highlight 

the position of objects in the video stream in order to allow labelling [47]. 

MR3 
Recording multiple labeled data. The system needs to be capable of recording multiple labeled 

training data within a short time [17]. 

MR4 
Intuitiveness. Users without background knowledge need to be able to carry out the labeling 

process. Hence, the application needs to be intuitive to use [48]. 

System infrastructure 

MR5 
Scalability. Given the need to train several models simultaneously, it is important to be able to train 
them in a parallel manner and thus enable scalable training [49, 50]. 

MR6 
Ubiquity of interaction device. To enable crowdworkers to perform their tasks independent of 

location, a mobile device is required which functions as the user interface [51]. 

MR7 

Automation. As outlined in Section 1, the training process requires an understanding of neural 

networks and does not constitute a trivial task [52]. Therefore, the training process is supposed to be 
automated to relieve the crowdworkers. 

Model development 

MR8 

Processing of labeled training data. To enable training, processing of camera data is required. 

Simultaneously, the recorded camera image needs to be visible to the user to be able to adjust the 

orientation of the camera [53]. 

MR9 
Diversified image data for an object. To ensure the accuracy of the CNN, heterogeneous data need 
to be collected by recording the object from different perspectives [45].  

MR10 
Time efficiency of training. The training process needs to achieve useful results within the shortest 

possible time [34]. 

MR11 Classification accuracy. The CNN is intended to provide as few false positives as possible [54]. 

MR12 

Recognition and validation of previously trained objects. To avoid redundant recordings by the 

user and verify the success of the trainings process, the application needs to notify the user of objects 
that have been recognized and highlight them [17]. 



Based on these MRs, we derived three initial DPs that guided us through the design 

process. In formulating each DP, we followed the anatomy proposed by Gregor et al. 

[41] to incorporate important elements like aim, context and mechanism. 

Table 2. Design principles 

ID Design Principle Specification 

Data labeling 

DP1 

To allow crowdworkers to identify unlabeled objects in the environment and label them, provide a 

mobile application with capabilities for detecting and highlighting the objects to be labeled, because 
this intuitiveness facilitates the capture of objects for users without background knowledge in the 

domains of labeling and CNN. 

System infrastructure 

DP2 

To enable multiple crowdworkers to capture and label datasets, independently from their location, 

provide a mobile app that sends the captured data to a central server. This server, in turn, needs to be 

capable of automatically and simultaneously conducting the trainings process, because the 

centralization of training tasks enables the use of available resources as effectively as possible and 

crowdworkers lack the required background knowledge [55]. 

Model development 

DP3 

To allow the system to train CNN algorithms with labeled input in a time-efficient and accurate 

manner, provide the CNN with heterogeneous, sufficient data and validate them against previously 
trained objects, because the storage capacity of mobile phones is limited, while neural networks require 

sufficient training data to maintain high accuracy.  

 

Figure 1 visualizes the interrelation between the Is, MRs and DPs. Thus, for example, 

we address the issue of missing structured image data (I1) by enabling to identify 

objects that so far have not been labeled (MR1) [14, 15], thereby allowing users without 

background knowledge to identify and capture them in a structured manner (DP1). 
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Figure 2. Issues, meta-requirements and design principles  

To sum up, we identified seven Is that were translated into 12 MRs. Based on these, we 

derived three central DPs concerning data labeling (DP1), infrastructure (DP2) and 

model development (DP3).  



4.2 Application  

The design principles DP1, DP2 and DP3 governed the development of the application 

in the realms of data labeling, infrastructure and model development. The resulting 

system architecture is depicted in Figure 3.  
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Figure 3. System architecture 

To instantiate DP1, we developed an application (app) for mobile Android devices 

serving as the data collection component of the overall system to capture, label and 

detect objects within images. Since mobile devices usually do not have sufficient 

computing power for processing neural networks, we relied on the MobileNetV2 

architecture integrated in Google’s TensorFlow with regard to DP2 [56]. This resource-

efficient architecture enables us to run CNNs on mobile devices [57] by incorporating 

the high-performance Single Shot MultiBox Detector (SSD), which handles the task of 

object detection, recognizing the object position in the image and its classification [58].  

Once the user has completed the data collection process, the app transfers the 

information via file transfer protocol (FTP) to the data storage component and stores 

the data in a specific directory on a Linux server. Simultaneously, the training server 

monitors whether there are unprocessed data records on the file server. An implemented 

script downloads the identified unprocessed records and starts the training of a CNN 

model for a particular object class to incorporate DP3. Upon completion of the training, 

the resulting model is transferred back to the file server via FTP. 

We developed an app for mobile Android devices on the client side in light of the 

operating system’s corresponding smartphone market share [59]. The integrated 

camera enables users to capture and store images and the respective required spatial 

object information. When the user opens the app, the camera is activated, and the user 

is prompted to actively define a screen area by means of a bounding box in which the 

observed object is located in case the app does not recognize the object. The app 

automatically scans the object to check if it can be detected and recognized by previous 

capturing, labeling and training activities. If the object (e.g. the box of salt) can be 

detected, a rectangle appears around the object that is augmented on the camera screen 



with the presumed label and the accuracy in percent (cf. Figure 4, picture on the right). 

Otherwise, the user creates a new entry by clicking the button "create new object" and 

assigns a corresponding label (this would be necessary for the stapler in the right picture 

of Figure 3). 

 

 

Figure 4. Capture, label and detect object 

Once the object area is marked and the label set (e.g. the box of salt, cf. Figure 4, picture 

on the left), the image capturing can be initialized. We enabled this procedure by 

deploying the CSR-DCF tracking method (CSRT) [60]. The first image is used as 

reference for the marked object area. The follow-up recordings are always validated by 

the CRST method by determining where the marked area is located on a new image. 

The CRST method corrects the marker and uses the corresponding input for the object 

detection. The image capturing is processed in black and white. The user receives meta-

information at the top edge of the screen about the current capture and label process by 

the display of the selected label and the number of already captured images. The number 

is colored in green as a feedback function when the number of images reaches >2000 

and in red when it is lower than this threshold (cf. Figure 4, picture on the left). The 

green color indicates that the amount of collected data is sufficient for a CNN training 

and that the user can proceed with the training process. The threshold for the image 

count was set at 2,000 because the first beta tests indicated satisfying results with this 

amount of data. The captured images are temporarily stored locally on the mobile 

device. To save the label and the information (width, height, xmin, ymin, xmax, ymax), 

the app also stores a CSV file for each image within the image folder. The coordinates 

of the object on the image are indicated by xmin and ymin for the lower left corner and 

xmax and ymax for the upper right corner of the bounding box; width and height refer 

to the overall image size. By clicking the button "send to training," the captured data is 

converted into a ZIP archive and transferred to the file server (cf. Figure 3, picture in 

the middle). After a record has been successfully sent to the file server, the associated 



data are deleted from the mobile device to free up local storage space. We further 

implemented several app functions to manage the end-to-end process (e.g. for 

monitoring the training status of a particular object class). 

For the data processing component, we first installed the Python environment 

Anaconda 3.5 on the training server. This allows us to create independent Python 

environments without causing conflicts between them. We utilized several open source 

libraries and frameworks for building the training environment. 

The training process starts by unpacking the downloaded ZIP archive and moving 

the images and labels to the designated locations in the environment. Subsequently, a 

script is executed that starts the training process. The training process ends when a 

predefined number of steps has been reached. Upon completion of the training, an 

implemented function converts the model into a format compatible with mobile devices 

(tflite) and sends the model via FTP to the file server. At this stage, the model can be 

used for object detection by displaying the label and accuracy of a detected object 

within the application. 

5 Evaluation  

The prototype results from two build-evaluate cycles that enabled us to validate and 

improve our application through constant feedback. Given our objective was to develop 

a socio-technical artifact with user-oriented design risks, the FEDS framework by 

Venable et al. [61] inspired us to pursue a human-risk and effectiveness strategy.  

The first evaluation cycle involved an assessment of the classification accuracy 

within a train-test split, whereas in the second evaluation cycle, we conducted an 

experiment with real end users to assess usability. Accordingly, in cycle 2, the 

application was first given to the volunteers to perform three tasks with the artifact: 

First, the environment had to be scanned for an unknown object. Second, the object had 

to be captured and labeled. Third, the captured object from the previous step needed to 

be validated using the application. 

5.1 Cycle 1: Classification Accuracy 

The first evaluation cycle involved examining the classification accuracy of the 

machine learning component by means of a train-test split [43]. To this end, 15 

individual objects were captured and labeled using the mobile application. Each dataset 

comprised 2,000 images, with 80% of randomly selected images being used in training. 

To determine the accuracy, we subsequently analyzed these images by using the trained 

models and documenting the number of errors. We distinguished between two types of 

errors: undetected objects (1) and false positives (2). The former refer to errors that 

occur in cases where the object is in the camera image but is not recognized (type 1 

errors), whereas the latter occur once the system indicates having recognized an object 

even though it is not in the camera frame (type 2 errors). We chose 50% as the baseline 

for a correctly detected object. Thus, an object is considered as detected if the model 



estimates the likelihood of being the targeted object to be 50% or higher. Figure 5 

summarizes the frequency of the errors that occured during classification. 

 

 

Figure 5. Error occurrence within classification per object 

The average percentage of images with type 1 errors was 1.01%, whereas the 

corresponding average percentage for type 2 errors amounted to 1.34%. Hence, the 

share of incorrectly analyzed images can be considered low [17]. As shown in Figure 

5, only the data set for object 5 constitutes an explicit outlier with a share of 7% for the 

type 1 errors, and we thus examined it in greater depth. Upon inspecting the dataset, we 

noticed that a number of images were taken by mistake. As the training process cannot 

independently separate such defective images from high-quality images, those images 

were also used for training the CNN.  

In summary, the CNNs can detect objects at a low error rate. Upon completion of 

the train-split evaluation, we tested all models with regard to their operability on a 

mobile device for ensuring the functionality of the object detection functions before 

proceeding with the experimental evaluation in cycle 2. 

5.2 Cycle 2: Usability 

To assess the usability of our artifact and derive future research avenues, we adopted 

the User Experience Questionnaire (UEQ) developed by Laugwitz et al. [44] and 

supplemented it with an open question section. The participants received 26 word 

couples (e.g., unpleasant vs. pleasant, inefficient vs. efficient) and applied a 7-point 

Likert scale to rate the interaction with the technology in a range from -3 to +3. Apart 

from the UEQ questions, 15 participants were asked to submit feedback on the overall 

quality of the system and potential areas for improvement. Most of them were male 

(80%) while all of them were between 17 and 50 years old (with an average age of 

32.4). One out of three (33.3%) were familiar with the concept of neural networks, and 

the remaining two thirds had no domain knowledge (66.7%). Nevertheless, all 

participants succeeded in completing the tasks, with an average duration of 30.42 

minutes. Upon completion, the participants were asked to rate the interaction with the 

mobile application using the UEQ. Figure 6 illustrates the results of the UEQ survey in 

accordance with Laugwitz et al. [44]. 



 

Figure 6. User Experience Questionnaire results  

Overall, the average rating of all 26 items was positive by exceeding the critical mark 

of 0.8 (mean: 1.5). As proposed by Laugwitz et al. [44], the pre-defined items were 

aggregated into the six categories of attractiveness, perspicuity, efficiency, 

dependability, stimulation and novelty. These six categories achieved a mean value 

between 0.95 and 2.25 and in all cases a standard deviation below 1 for all six 

categories, which confirms a homogeneous positive impression of the system. We 

obtained the highest score for efficiency (2.25), a finding that reveals that users can 

accomplish labeling tasks within a short time. Furthermore, with high means in the 

categories of perspicuity (2.03) and novelty (1.70), the interaction with the prototype 

was on average perceived as “understandable” (2.10), “easy to learn” (2.30) and “clear” 

(1.80) while being regarded as a rather “creative” (1.40) and “innovative” (2.00) 

solution. The lowest values were given in the categories stimulation (0.95) and 

attractiveness (0.97), resulting from the negative ratings of the requested word couples 

“attractive” vs. “unattractive” (0.10) and “motivating” vs. “demotivating” (0.10).  

Apart from small visual adjustments to the user interface design (e.g., integration of 

icons and a more user-friendly arrangement of buttons), the participants proposed to 

integrate a tutorial to guide users through the initial labeling process and thus avoid 

preventable errors. Another suggested major improvement concerned the highlighting 

of objects; according to the volunteers, the rectangular shape of the bounding box limits 

the quality and flexibility of the capturing process. An integration of a customizable 

shape to adjust the object position within the camera frame would be an enhancement 

to capture the object from different distances (e.g. by scaling). Moreover, the shape 

itself needs an indication by means of a striking color (e.g. green instead of black) to 

increase its visibility during the capturing process (e.g. within dark environments). 

Further improvement suggestions relate to the image capturing process: first, the user 

should be instructed on how to change the camera angle to improve the quality of the 

training data by providing different visual contexts for more heterogeneous images. 

This instruction can be achieved by displaying arrows that indicate the direction to 

rotate the camera. To adjust for poor-quality inputs, a function for deleting the last 50 

images during the process must be provided.  

We used the provided feedback from the second evaluation cycle for further 

improvement of the artifact. For example, we revised the arrangement of the user 

interface to provide the user with a more intuitive interaction. In addition, we improved 

the performance of the application by intensively modifying the source code. 
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6 Discussion, Limitations and Future Research 

The process of labeling objects is a time-consuming and cost-intensive task [12] that is 

still mainly conducted by humans [7]. Many organizations rely on crowdsourcing 

platforms to outsource their labeling tasks [3]. As an alternative to manual labeling 

methods, tools are needed for the direct detection and labeling of objects within a real-

environment. Responding to this need, we developed a mobile AR-based prototype for 

the object recognition, labeling and training of CNNs in three steps. First, we identified 

and derived the main issues, MRs and DPs based on a thorough literature review and a 

workshop. Interestingly, most MRs are concerned with model development (MR8-

MR12), which underlines the major role of data processing and object recognition 

within the entire process. Second, we developed a mobile AR-based prototype that 

consists of three subsystems. Third, the prototype was evaluated in two iterations 

through an accuracy assessment and a UEQ-based survey conducted among 15 

participants. The evaluation results reveal that the artifact facilitates the described 

process of object detection, labeling and training of CNNs even for inexperienced 

participants with no prior knowledge in this field. Against this background, we 

conclude that AR-based labeling constitutes a promising alternative or complement to 

the manual labeling of pre-defined data sets.  

 Given these findings, our research is of interest for practitioners for several reasons. 

First, crowdsourcing platforms and crowdworkers can be informed through our 

findings about the capabilities of AR-based systems for enhancing object labeling 

processes. In a similar manner, the proposed system architecture consisting of three 

interacting subsystems (cf. Section 4.2) is expected to be a more practical alternative 

compared to conventional system architectures with respect to system resources, 

system performance and scalability. Thus, we provide a scalable approach to the 

manual labeling methods of images (of videos) in the crowdsourcing context. For 

crowdworkers responsible for the tasks, the system can help to avoid cognitive overload 

and mental stress by facilitating the labeling process. Moreover, for developers, the 

proposed MRs and DPs can serve as a starting point when attempting to develop similar 

prototypes for object detection, labeling and training of neural networks. In addition, 

the mobile-based AR prototype and the corresponding infrastructure can be valuable 

for companies that are planning to implement AI-based image recognition systems as 

it facilitates the data entry step required for CNN training. By implementing the system, 

companies can thus collect structured data and train neural networks in a facilitated 

manner, thereby enabling real-time object recognition. One promising application area 

is the domain of logistics, where high-level object recognition can be employed for 

quality control of picking processes [62]. 

Apart from the practical relevance, the scientific contributions of this paper are 

manifold. First, the DPs contribute to the IS discipline by providing high-level guidance 

for researchers and developers in designing similar prototypes for object detection, 

labeling and training [35]. In doing so, our study aligns with prior IS research efforts 

on the interplay between humans and AI-based machines in the context of human-in-

the-loop approaches (cf. [4, 9]). We encourage researchers from the IS discipline to 

critically examine our DPs with regards to modifications and extensions. Second, our 



findings expand the growing research stream on crowdsourcing human intelligence 

tasks by providing a mobile AR-based prototype as a substitute for the manual labeling 

of images [10]. However, the results of the second evaluation round based on the survey 

of 15 participants indicate major areas for improvement. For example, we found that 

the factors of attractiveness and stimulation displayed the lowest ratings in the UEQ 

survey, the latter being a consequence of the workers’ lower cognitive loads due to the 

increase in repetitive tasks. Hence, the design of the user interface is subject to further 

improvements, along with considerations for how to redesign the user interface such 

that a well-balanced task-technology fit can be achieved. Therefore, researchers must 

find a trade-off between an attractive and stimulating design and a level of complexity 

for workers that is suited to their cognitive abilities [63]. For instance, recent research 

revealed that the integration of gamification elements represents a suitable instrument 

to enhance the user experience in terms of enjoyment with regard to labeling tasks [64].  

Despite the promising results, our solution is subject to several limitations that 

highlight worthwhile avenues for future research. First, the MRs and DPs are based on 

a limited literature sample. Since we searched for literature in a limited number of 

databases by applying a limited set of search phrases, studies may have been overlooked 

that could be relevant for our research. Furthermore, the MRs and DPs are mainly 

literature-based. A possible extension of the requirements engineering step is to 

triangulate and complement the requirements with insights from experts to form a more 

practice-oriented view. Another limitation relates to the evaluation conducted to test 

the practicability and functionality of the prototype. Although we have evaluated the 

developed artifact, it has not been implemented and tested in a real business setting to 

date. A deployment of the prototype in a real case study, for example in cooperation 

with a crowdsourcing provider, constitutes the next step to further examine the impact 

of such a system on the contractors’ and customers’ work processes and organization 

as well as the associated social and economic implications. An important aspect to be 

considered is the impact of the system’s use on the crowdworkers’ skills requirements 

and cognitive performance, since AI-based systems facilitate the entire process of 

detecting and labeling objects and thereby render the workflows monotonous. Thus, the 

use of AI-based systems does not necessarily only lead to positive effects such as 

increased efficiency, but may also have negative consequences for humans in the loop 

(i.e. crowdworkers). At the same time, the human as an integral part of our socio-

technical system constitutes an inherent source of vulnerability since capturing faulty 

data sets may lead to a decrease in the accuracy of the trained models, as shown in the 

first evaluation. Since our solution does not yet integrate any quality control 

mechanisms, the fully automated training could thus result in incorrectly trained 

models, thereby eliminating the advantage in terms of efficiency compared to existing 

solutions like Liongbridge.ai [26]. Future research could focus on answering the 

question of how these negative consequences can be avoided. Finally, our 

implementation does only concern Android devices. Thus, the use of other mobile 

devices (i.e. iOS) or devices such as AR glasses is not within the scope of this research 

and should be considered as a worthwhile avenue for future research. Likewise, 

conversational agents could be integrated into the system to facilitate the data entry 

step, especially when using AR glasses to enable hands-free working. 



7 Conclusion  

This paper presents a mobile AR-based prototype for capturing, labeling and detecting 

objects based on training CNNs following the design science research paradigm. Based 

on seven issues, we derived initial meta-requirements and design considerations from 

the scientific literature, that were translated into three design principles. We 

subsequently instantiated these design principles to develop a mobile AR-based 

prototype that consists of three subsystems. We evaluated and re-designed the artifact 

in two iterations though a train-test split and a usability assessment with 15 test users. 

The findings of the evaluations reveal that the proposed mobile-based AR prototype 

enables novices to detect objects and label them. A central server allows CNNs to be 

trained using the labeled data, generating models with a high degree of classification 

accuracy. Against this background, our research provides researchers and practitioners 

with a mobile application as a scalable alternative to the manual labeling methods of 

images in the context of crowdsourced labeling. The derived design principles serve as 

a higher-level guidance for system designers and IS researchers in the realm of AI-

based assistance systems with regards to object labeling and recognition. Future studies 

should investigate the influence of AR-based labeling on crowdworkers' skill 

requirements and the integration of control mechanisms to ensure data quality. 
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