420 research outputs found

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version

    High capacity photonic integrated switching circuits

    Get PDF
    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks appear at the physical layer of these switched interconnects due to its energy consumption and footprint. The energy consumption of the highly sophisticated but increasingly unwieldy electronic switching systems is growing rapidly with line rate, and their designs are already being constrained by heat and power management issues. The routing of multi-Terabit/second data using optical techniques has been targeted by leading international industrial and academic research labs. So far the work has relied largely on discrete components which are bulky and incurconsiderable networking complexity. The integration of the most promising architectures is required in a way which fully leverages the advantages of photonic technologies. Photonic integration technologies offer the promise of low power consumption and reduced footprint. In particular, photonic integrated semiconductor optical amplifier (SOA) gate-based circuits have received much attention as a potential solution. SOA gates exhibit multi-terahertz bandwidths and can be switched from a high-gain state to a high-loss state within a nanosecond using low-voltage electronics. In addition, in contrast to the electronic switching systems, their energy consumption does not rise with line rate. This dissertation will discuss, through the use of different kind of materials and integration technologies, that photonic integrated SOA-based optoelectronic switches can be scalable in either connectivity or data capacity and are poised to become a key technology for very high-speed applications. In Chapter 2, the optical switching background with the drawbacks of optical switches using electronic cores is discussed. The current optical technologies for switching are reviewed with special attention given to the SOA-based switches. Chapter 3 discusses the first demonstrations using quantum dot (QD) material to develop scalable and compact switching matrices operating in the 1.55Âľm telecommunication window. In Chapter 4, the capacity limitations of scalable quantum well (QW) SOA-based multistage switches is assessed through experimental studies for the first time. In Chapter 5 theoretical analysis on the dependence of data integrity as ultrahigh line-rate and number of monolithically integrated SOA-stages increases is discussed. Chapter 6 presents some designs for the next generation of large scale photonic integrated interconnects. A 16x16 switch architecture is described from its blocking properties to the new miniaturized elements proposed. Finally, Chapter 7 presents several recommendations for future work, along with some concluding remark

    Bibliometric Review of NoC Router Optimization

    Get PDF
    Network on chip (NoC) has been proposed as an emerging solution for scalability and performance demands of next generation System on Chip (SoC). NoC provides a solution for the bus based interconnection issue of SoC, where large numbers of Intellectual Property modules (IP) are integrated on a single chip for better performance. The NoC has several advantages such as scalability, low latency and low power consumption, high bandwidth over dedicated wires and buses. Interconnections between multiple chip cores have a significant impact on the communication and performance of the chip design in terms of region, latency, throughput and power. In the NoC architecture, the router is a dominant component that significantly affects the performance of the NoC. NoC router architectures evolved since the year 2002 and progress in the domain pertaining to the optimization in the NoC router architectures has been discussed. The key objective of this bibliometric review is to understand the extent of the existing literature in the domain of performance efficient NoC router architectures. The bibliometric analysis is primarily based on data extracted from Scopus. It reveals that major contributions are done by researchers from USA, China followed by India in the form of conference, journals and articles publications. The major contribution is by the subject areas of Computer Science and Engineering followed by Mathematics and Material Science. The geographical analysis is done by using the GPS visualize tool. The clusters were created using Gephi

    Reliability-aware multi-segmented bus architecture for photonic networks-on-chip

    Get PDF
    Network-on-chip (NoC) has emerged as an enabling platform for connecting hundreds of cores on a single chip, allowing for a structured, scalable system when compared to traditional on-chip buses. However, the multi-hop wireline paths in traditional NoCs result in high latency and energy dissipation causing an overall degradation in performance, especially for increasing system size. To alleviate this problem a few radically different interconnect technologies are envisioned. One such method of interconnecting different cores in NoCs is photonic interconnects. Photonic NoCs are on-chip communications networks in which information is transmitted in the form of optical signals. Photonic interconnection is one of the leading examples of emerging technology for on-chip interconnects. Existing innovative photonic NoC architectures have improved performance and reduced energy dissipation. Most architectures use Wavelength Division Multiplexing (WDM) on the photonic waveguides to increase the data bandwidth. However they have issues relating to reliability, such as waveguide losses and adjacent channel crosstalk. These phenomena could have a crippling effect on a system, and most current architectures do not address these effects. A newly proposed topology, known as the Multiple-Segmented Bus topology, or MSB, has shown promise for solving, or at least reducing, many of the problems plaguing the design of photonic networks using a modification of a folded torus to transmit different wavelength signals simultaneously. The MSB segments the waveguides into smaller parts to limit the waveguide losses. The formal performance evaluation of this proposed architecture has not been completed. This thesis will analyze the performance of such a network when implemented as a NoC in terms of data bandwidth, energy dissipation, latency, and reliability. By analyzing and comparing performance, energy dissipations, and reliability, the MSB-based photonic NoC (MSB-PNoC) can be compared to other state-of-the-art photonic NoCs to determine the feasibility of this topology for future network-on-chip designs

    A Multi-Stage Packet-Switch Based on NoC Fabrics for Data Center Networks

    Get PDF
    Bandwidth-hungry applications such as Cloud computing, video sharing and social networking drive the creation of more powerful Data Centers (DCs) to manage the large amount of packetized traffic. Data center network (DCN) topologies rely on thousands of servers that exchange data via the switching backbone. Cluster switches and routers are employed to provide interconnectivity between elements of the same DC and inter DCs and must be able to handle the continuously variable loads. Hence, robust and scalable switching modules are needed. Conventional DCN switches adopt crossbars or/and blocks of memories in multistage interconnection architectures (commonly 2-Tiers or 3-Tiers). However, current multistage packet switch architectures, with their space-memory variants, are either too complex to implement, have poor performance, or not cost effective. In this paper, we propose a novel and highly scalable multistage packet-switch design based on Networks-on-Chip (NoC) fabrics for DCNs. In particular, we describe a novel three-stage packet-switch fabric with a Round-Robin packets dispatching scheme where each central stage module is based on a Unidirectional NoC (UDN), instead of a conventional single hop crossbar fabric. The proposed design, referred to as Clos- UDN, overcomes all the shortcomings of conventional multistage architectures. In particular, as we shall demonstrate, the proposed Clos-UDN architecture: (i) Obviates the need for a complex and costly input modules, by means of few, yet simple, input FIFO queues. (ii) Avoids the need for a complex and synchronized scheduling process over a high number of input-output modules and/or port pairs. (iii) Provides speedup, load balancing and path-diversity thanks to a dynamic dispatching scheme as well as the NoC based fabric nature. Extensive simulation studies are conducted to compare the proposed Clos-UDN switch to conventional multistage switches. Simulation results show that the Clos-UDN outperforms conventional design under a wide range of input traffic scenarios, making it highly appealing for ultra-high capacity DC networks

    Floorplan-Aware High Performance NoC Design

    Full text link
    Las actuales arquitecturas de m�ltiples n�cleos como los chip multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) han adoptado a las redes dentro del chip (NoC) como elemento -ptimo para la inter-conexi-n de los diversos elementos de dichos sistemas. En este sentido, fabricantes de CMPs y MPSoCs han adoptado NoCs sencillas, generalmente con una topolog'a en malla o anillo, ya que son suficientes para satisfacer las necesidades de los sistemas actuales. Sin embargo a medida que los requerimientos del sistema -- baja latencia y alto rendimiento -- se hacen m�s exigentes, estas redes tan simples dejan de ser una soluci-n real. As', la comunidad investigadora ha propuesto y analizado NoCs m�s complejas. No obstante, estas soluciones son m�s dif'ciles de implementar -- especialmente los enlaces largos -- haciendo que este tipo de topolog'as complejas sean demasiado costosas o incluso inviables. En esta tesis, presentamos una metodolog'a de dise-o que minimiza la p�rdida de prestaciones de la red debido a su implementaci-n real. Los principales problemas que se encuentran al implementar una NoC son los conmutadores y los enlaces largos. En esta tesis, el conmutador se ha hecho modular, es decir, formado como uni-n de m-dulos m�s peque-os. En nuestro caso, los m-dulos son id�nticos, donde cada m-dulo es capaz de arbitrar, conmutar, y almacenar los mensajes que le llegan. Posteriormente, flexibilizamos la colocaci-n de estos m-dulos en el chip, permitiendo que m-dulos de un mismo conmutador est�n distribuidos por el chip. Esta metodolog'a de dise-o la hemos aplicado a diferentes escenarios. Primeramente, hemos introducido nuestro conmutador modular en NoCs con topolog'as conocidas como la malla 2D. Los resultados muestran como la modularidad y la distribuci-n del conmutador reducen la latencia y el consumo de potencia de la red. En segundo lugar, hemos utilizado nuestra metodolog'a de dise-o para implementar un crossbar distribuidRoca PÊrez, A. (2012). Floorplan-Aware High Performance NoC Design [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17844Palanci
    • …
    corecore