904 research outputs found

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017

    Analysis of the effect of mobile terminal speed on WLAN/3G vertical handovers

    Get PDF
    Proceedings of IEEE Global Telecommunications Conference, GLOBECOM '06, San Francisco, California, 27 november - 1 december, 2006.WLAN hot-spots are becoming widely spread. This, combined with the availability of new multi-mode terminals integrating heterogeneous technologies, opens new business opportunities for mobile operators. Scenarios in which 3G coverage is complemented by WLAN deployments are becoming available. Thus, true all-IP based networks are ready to offer a new variety of services across heterogeneous access. However, to achieve this, some aspects still need to be analyzed. In particular, the effect of the terminal speed on the detection and selection process of the preferred access network is not yet well understood. In fact, efficiency of vertical handovers depends on the appropriate configuration of mobile devices. In this paper we present a simulation study of handover performance between 3G and WLAN access networks showing the impact of mobile users’ speed. The mobile devices are based on the IEEE 802.21 cross layer architecture and use WLAN signal level thresholds as handover criteria. A novel algorithm to dynamically adjust terminals’ configuration is presented.Publicad

    Consumo de energía y calidad de servicio en redes WBAN : Una evaluación de desempeño entre capa cruzada e IEEE802.15.4

    Get PDF
    RESUMEN: Dentro de los esquemas de comunicación de redes inalámbricas de área corporal (WBAN), se encuentran los protocolos de capa cruzada, constituidos en una novedosa opción para alcanzar un balance efectivo entre consumo eficiente de energía y métricas de desempeño. En el presente trabajo, evaluamos el desempeño de una estrategia de capa cruzada al compararla contra los protocolos del estándar IEEE802.15.4 en una WBAN. Se evaluó el desempeño de ambas estrategias empleando una simulación de redes WBAN. Luego se ejecutó una comparación estadística y se encontró que la estrategia de capa cruzada ofrece un mejor desempeño con respecto a la compensación entre consumo eficiente de energía y algunas métricas de desempeño en nuestra WBAN. Observamos que en general, la estrategia de capa cruzada supera a ambos modos del estándar IEEE802.15.4 (ranurado y no-ranurado) con respecto a consumo eficiente de energía, retraso extremo a extremo, tasa de pérdida de paquetes y goodput.ABSTARCT: Different communication schemes for Wireless Body Area Networks (WBAN) pretend to achieve a fair tradeoff between efficient energy consumption and the accomplishment of performance metrics. Among those schemes are the Cross-layer protocols that constitute a good choice to achieve the aforementioned tradeoff by introducing novel protocol techniques which are away from the traditional communications model. In this work we assessed the performance of a WBAN cross-layer protocol stack by comparing it against the performance of the protocols of the IEEE802.15.4 standard, which is commonly used for WBAN deployment nowadays. We evaluated the performance of both, cross-layer and IEEE802.15.4 approaches, by means of a simulation, by using a popular network simulator and its frameworks for wireless networks. And then performed a statistical comparison and ascertained that the cross-layer protocol stack offers better performance regarding a tradeoff between efficient energy consumption and performance metrics in our particular test scenario. We observed that, in general, the cross-layer approach outperformed both modes of IEEE802.15.4 standard (slotted and unslotted) regarding energy consumption, end to end delay, packet loss rate and goodput. The results of our experiments reported that the cross-layer strategy saves up to 80% more energy than IEEE802.15.4 unslotted and it is only a 5% below the slotted mode. Regarding the quality of service metrics the performance was always better when using the cross-layer scheme
    corecore