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Abstract—Wireless sensor networks (WSNs) is a promising
solution for disaster management because of its scalability and
low cost operations. However, testing the effectiveness of WSNs in
real-world disasters is time consuming, costly and in some cases
even infeasible. In this paper, we propose a Disaster in Network
Simulations (DiNS) framework based on OMNeT++ to replicate
a WSN deployed in a disaster in a simulated environment. DiNS
allows researchers to observe how the disaster influences the
sensor network and how the network can respond in return.
A generic coupling interface is developed to support different
disaster types. Moreover, we develop a verification tool for
functional debugging and verification during new functions de-
veloping of sensor nodes, and an optimization tool to support the
mathematical optimization of the network operations in response
to the disaster. The functionality of DiNS is demonstrated with
a case study using wildfire disaster. It provides an easy way for
validating and optimizing the disaster management with WSNs.

Index Terms—OMNeT++, sensor networks, disaster manage-
ment, wildfire simulation

I. INTRODUCTION
Unpredictability is one dominant characteristic inherent in

natural disasters that intensifies the caused damage. Disaster
management has been gaining great attention in the past
decades. Managing a disaster includes mainly four stages,
namely mitigation, preparation, response and recovery [1]
for preventing the potential threat to lives, property and the
environment. The same stages can be perceived with respect to
the timeline of the disaster occurrence, e.g., overseeing events
in the pre-disaster (such as considering preventive measures
and monitoring), the post-disaster (such as the analysis after
the incident), and the disaster window (such as handling
and responding for the situation during the period of active
occurrence of the disaster) [2]. Over the years, technology
has emerged to aid disaster management, especially in early
detection and acting within the window of the disaster. The
basic principle followed by these technologies is primarily to
monitor the environmental condition and communicate them
for further processing and decision-making.

Wireless Sensor Network (WSN) is a promising technology
because of the low-power and low-cost operations, scalability,
and being able to formulate intelligent solutions. It has been
applied widely in many studies for disaster management, e.g.,
in [3]–[5]. However, testing and verification of these proposed
works under real-world disaster scenarios are rarely done
mainly due to the potential danger, cost and unavailability of
resources and expertise. An alternative solution is to couple
WSN simulators with disaster simulators using empirical,
semi-empirical or physical models to evaluate the efficiency
and effectiveness of the monitoring network.

Towards this direction, on the one hand, a proportion of
work emphasizes developing accurate disaster models while

simplifying the functionality of sensor networks. For example,
Terzis et.al in [6] simulate hill movements during landslides
using the sophisticated Finite Element Model, HOPDYNE [7],
but the sensor network model is assumed to be free of errors
and node failures. On the other hand, a number of studies
focus on the accurate functionalities of the networks while
using simplified disaster models. For instance, Wenning et.al.
[8] proposes a routing scheme for monitoring virtual wildfire
spreading. The network simulator OPNET [9] has been used
to study the functionality of the sensor network, under the
assumption that the fire spreads in an elliptical form at a
constant speed of 1 m/s on the minor axis and 2 m/s on the
major axis to preserve the simplicity of the disaster model.
Similarly, AL-Dhief et. al [10] assume that the fire front is an
enlarging circle whose radius increases at a constant speed as
time elapses to evaluate their proposed routing protocols. As
argued by FDS [11], Flammap [12], the shape of the fire spread
and its rate of propagation depend on numerous factors and do
not remain as constants. Simplifying either the network models
or the disaster models reduces the evaluation complexity, but
brings bias to the effectiveness in reality.

Although sophisticated coupling between realistic network
and disaster models has been carried out recently, the existing
coupling interface between the network simulator and the
disaster simulator is fixed, which allows no flexibility when
the disaster simulator changes. For instance, Aslan et. al in
[13] present a custom simulator for monitoring wildfires using
WSNs. The simulator is developed using the C# programming
language. The wildfire simulation library FireLib [14] is
interfaced into the simulator to model the wildfire and to
feed its output to the simulator. However, its compatibility of
interfacing with simulators other than FireLib is not clarified.
Similarly, Garcia et. al in [15] propose EIDOS (Equipment
Destined for Orientation and Safety), where TOSSIM [16]
is adopted to simulate the wireless sensor network with an
interface fixed to FARSITE [17] wildfire simulator. Besides
the flexibility limitation, the above-mentioned studies provide
no open access source codes and are difficult to be re-used.

To address the above-mentioned limitations, this work pro-
poses a simulation framework, “Nature Disaster in Network
Simulations (DiNS)”, to couple the realistic disaster and
network models with a generic interface for researchers to
efficiently and accurately test, validate and analyze the WSN-
based disaster management approaches with open-source
code 1 2. The main contributions of this work are as follows:

1https://gitlab.com/nisalhem/DiNS-nature-disaster-in-network-simulations
2https://gitlab.com/nisalhem/DiNS-verification-optimization-tools
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• It develops a simulation framework, DiNS, based on
OMNeT++ discrete event simulator integrated with a
generic interface to couple any disaster simulators with
existing accurate models or historical data of disasters
that occurred in the real world. It allows the disasters
to directly impose their influences on the network while
also allowing the network to adapt its functionalities in
response to the disasters. With the generic interface, DiNS
is independent of the disaster simulators/types (different
from existing dedicated solutions).

• It further develops two extensions integrated in DiNS
namely, the “verification tool” and the “optimization
tool”, using Python programming language. The veri-
fication tool performs as a generic solution to address
the functional verification and debugging issues during
developing new functions in sensor nodes. The optimiza-
tion tool enables users to optimize the network operations
by choosing the Python mathematical functions off-the-
shelf, without having to program them from the scratch
in OMNeT++, e.g., calling the existing learning function
to optimize the routing protocol.

• It demonstrates the functionality of DiNS using a case
study of a wildfire disaster scenario to show the 2-ways
interaction, the use of verification and optimization tools.

The remaining sections of the paper are organized as
follows. A brief introduction of OMNeT++, which is the base
of DiNS, is provided in section II. In section III, it presents
the details of the developed DiNS framework including the
integration of the verification and optimization tools. In section
IV, it demonstrates the usability of DiNS via a case study using
a wildfire disaster based on Fire Dynamic Simulator (FDS).
Finally, section V concludes this work.

II. BACKGROUND: OMNET++ SIMULATOR

As OMNeT++ is the core of the proposed DiNS simulation
framework, this section briefly overviews its main functional-
ities and the associated INET framework.

OMNeT++ [18] is a discrete event network simulator, which
has frequently been used for network simulations among the
scientific and academic communities. OMNeT++ provides
the base for network simulation models and frameworks in
research areas such as wireless communication networks,
communication protocols at different levels of the network
stack, etc. It could be directly used or integrated as plug and
play components into novel models or frameworks. Moreover,
it also features application-specific simulation frameworks,
e.g., vehicular networks [19]. The network models associated
with OMNeT++ are structured in modular architectures. These
modules are programmed mainly using C++ programming
language. In addition, NEtwork Description (NED) is used as
the topology description language to define the abstract level
specifications of a module such as its interfaces, parameters
passed, interconnections between other modules and sub-
modules, etc. The communication between modules is carried
out using message passing. omnetpp.ini file is used to
provide network and model parameters, and configurations to
the simulation externally. OMNeT++ editor offers a graphical
runtime environment, which is based on the Eclipse Integrated
Development Environment (IDE) [20]. It also provides the
users with the same debugging features that Eclipse platform

provides and users can refer to the log files created after the
simulation. Although OMNeT++ is a discrete event simulator,
it replicates a network whose nodes run in parallel and inde-
pendent of each other. Moreover, together with the factors of
the wide range of simulation models and frameworks, compre-
hensive documentation, cost-free availability, etc., OMNeT++
has become the foundation for a broad set of open-source
projects and is constantly growing.

INET [21] is the standard framework for developing net-
work models in OMNeT++. It is an open-source model library
consisting of a variety of protocols and support modules corre-
sponding to different layers of the network stack. These could
be used as building blocks directly as plug and play modules to
put together simulation networks. The users could also develop
novel modules and integrate them into the existing frameworks
or deploy in new frameworks, in addition to native modules
that INET already offers. INET is mainly community-driven
and hence new model contributions are welcome. As a result,
it is also possible to utilize INET as the foundation to create
new frameworks or to extend the existing ones.

The groundwork of DiNS has been laid on top of the INET
4.0.0 and OMNeT++ 5.4.1, which was the latest versions when
this work is initiated. Despite of the merits mentioned above,
OMNeT++ lacks the visual debugging interface when adding
new functional blocks and the mathematical library to enable
the sensor network optimally reacting to the disaster environ-
ment. These limitations are addressed in DiNS framework.

III. THE PROPOSED DESIGN OF DINS

This section introduces the DiNS framework that couples
the OMNeT++ network simulator with the virtual disaster
scenario using a generic interface to replicate a WSN de-
ployed in a disaster in a simulated environment. The whole
design of DiNS is demonstrated as a four-layered architecture
framework as shown in Fig. 1. Layers 1-3 involve the tightly
coupling of the disaster and network environments while Layer

Fig. 1. The proposed four-layered architecture of DiNS: Layer 1 creates
the disaster environment; Layer 2 provides the generic interface between
the disaster and network environments; Layer 3 mainly includes the network
simulation; and Layer 4 contains the verification and optimization tools for
visually debugging and network optimization.
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4 mainly focuses on the functionality verification and network
optimization. Specifically, Layer 1 is the disaster environment,
e.g., historical data, disaster models or simulators; Layer 2 is
the generic coupling interface between the disaster and net-
work (i.e., OMNeT++) environments; Layer 3 represents the
network architecture and simulations in OMNeT++; The last
one, Layer 4, includes the new verification and optimization
tools for visually debugging and network optimization.

A. Layer 1: Disaster Environment

Layer 1 creates the virtual disaster environment using either
a simulator software or the historical data of a real-world
disaster for reconstructing the complete incident. In the case of
simulator software, the simulations are executed and a bunch
of output data is collected and forwarded to the network
simulator (Layer 3) through the generic interface (Layer 2).
Therefore, the representation and the accuracy of the timely
output data of the disaster incident are the main focuses for
creating the simulated disaster environment. For example, in
a wildfire simulation, this could be temperature and humidity
measurements and their respective time stamps of the occur-
rences. It also includes information on the geographical area
in which the disaster is taking place. In this sense, DiNS can
support any type of disasters and is independent of disaster
simulators and models because of the generic interface.

B. Layer 2: Interface Between Disaster and Sensor Network

Layer 2 in the DiNS framework provides a generic interface
to couple the disaster and the network simulations, which
is independent of the disaster types different from existing
dedicated solutions in [13]–[15]. It consists of a buffer to
store the generated disaster data in an OMNeT++ readable
file, a database to convert the data format and feed the data
to the network simulator, a mobility module to synchronize
the data in space (map the disaster position with the sensor
node location) and a sensor module for data synchronization
in the time domain (map the data generation frequency of the
disaster simulator with the sampling rate of sensor nodes).
More specifically, the disaster data file (e.g. a CSV file) is
generated to buffer the timely output data of the disaster
simulator, including the disaster parameters (e.g., humidity,
temperature, etc.) and the corresponding locations at each time
stamp. A “Database” module as shown in Fig. 1, which is
programmed inside of OMNeT++ network simulator, reads the
data from the disaster data file, converts the data format and
feeds the disaster data into the simulated network environment
in Layer 3. The (x, y, z) coordinates of the disaster data
are read into network simulation by the “Mobility” module.
For a static network, this would be constant values. DiNS
however could be extended to support mobility networks,
simply either by reading coordinates or changes in coordinates
with respect to time. This enables importing mobility traces
into the network simulation. Static network coordinates are
further interpolated/sub-sampled to produce sensor readings
at the specified locations of sensor nodes in Layer 3. The
“Sensor” module estimates the readings of a node at any
given moment by interpolating/sub-sampling the data using its
past samples. This mitigates the mismatch of data generation
frequency at Layer 1 and the sampling rate of sensor nodes
at Layer 3. Besides, as the disaster may destroy the sensor

node (e.g. due to high temperature), all the functions in
Layer 3, including receiving, transmission, channel checking,
etc, should be thereby disabled when the node is dead. The
“Sensor” module also estimates the the node’s death time
by comparing the interpolated readings with a threshold, and
sends a flag to Layer 3 to disable all related network functions.

The generic interface of DiNS has an extensible architec-
ture. In addition to CSV, extending the framework to read
disaster data files in many other machine-readable formats
such as JSON, XML, etc., is therefore convenient.

C. Layer 3: Network Architecture and Simulation
The Spatio-temporal output data of the simulated disaster

buffered in Layer 2 will be read and fed into the network
simulations of OMNeT++, i.e., Layer 3, to help create the
simulated network. By sharing the timeline, the integration
of the disaster and network simulations is able to mimic the
scenario of a WSN deployed and operated in a live disaster
environment. The disaster will directly interact and influence
the network, because the sensor nodes read the data from the
output data of the disaster environment. The measured disaster
data of the WSN will be stored by the “Record” module and
fed into Layer 4 of DiNS for further operations. Based on
the user-defined objectives, the output of Layer 4 can directly
guide the network to respond to the disaster environment.

The main task in Layer 3 is to create the simulated WSN
network using OMNeT++, which consists of multiple sensor
nodes. Thus the key point is the modular architecture of the
sensor node, which defines the network stack of the sensor
nodes and how the disaster data is merged into the network
simulation. Typically, the sensor node architecture involves the
designs of the network layer, data link layer and physical layer.

• Network layer: It is responsible for the data packet trans-
mission including routing operations within the network
or through different networks. The INET framework in
OMNeT++ features a range of routing protocols. Besides
the standard IPv4 and IPv6 network layer protocols, a
wide range of alternative network layer protocols can be
configured, e.g., Flooding, WiseRoute, AdaptiveProbabil-
itsticBroadcast, AODV, OSPFV, etc.

• Data Link layer: It provides the services such as framing
and link access, reliable delivery, flow control, error
detection and correction, half-duplex and full-duplex.
In addition to the available data link layer protocols
integrated into OMNeT++, many open-source protocols
can also be used according to different objectives.

• Physical layer: A radio model component is responsible
for modelling the physical layer and relies on the antenna
model, transmitter model, receiver model, error model
and energy consumption model. The INET framework in
OMNeT++ provides several physical layer standards such
as IEEE 802.11 and IEEE 802.15.4.

Note that, the users can either select their preferred modules
from the INET libraries or develop their own modules for the
specific applications. In addition to the sensor node architec-
ture modules, a “Record” module is also included in Layer
3 of DiNS as shown in Fig. 1. It is used to generate a log
file to store the network output and feed that into Layer 4 for
further operations. The output data includes the information
of the data packets received and transmitted by each node
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throughout the simulation, the physical measurements (e.g.,
temperature, humidity, etc.) and the death time of the sensor
nodes, etc. These data can be analyzed and used according to
the user’s preferences for different applications.

D. Layer 4: Verification Tool and Optimization Tool

When developing new modules in OMNeT++, developers
often encounter functionality problems and bugs. Among
the currently available debugging methods and practiced in
OMNeT++, a key part that is missing is the unavailability of
a visual interface, to distinctly cross-refer activities of nodes
[18], [22]. Moreover, in response to the disaster impacts,
the network protocols and/or node parameters need to be
optimized. Iterative data generation, processing and training
are required to find the optimal solution for a certain disaster
scenario. However, OMNeT++ lacks the corresponding math-
ematical library and developing the mathematical functions
from scratch is inconvenient and time consuming.

To address these problems, we build two reusable tools
based on Python in Layer 4 of DiNS: a) the verification
tool for debugging and verifying the functionality when de-
veloping new modules in OMNeT++: b) the optimization
tool for automating the simulation process and optimizing the
network operations under certain disaster environments using
the optimization functions/algorithms in the Python library.
The details of these tools will be presented in this section.

1) Verification tool: Debugging and verification of soft-
ware products is essential in building error-free, perfectly
functioning software applications. OMNeT++ IDE has the
same debugging features that the Eclipse platform provides,
which requires ample time and effort to observe, monitor,
and cross-check the activities of the nodes over time. This
is inconvenient and time-consuming when developing new
modules from scratch. Motivated by such inefficiencies, we
develop a reusable module to monitor the network function-
ality. This is inspired by digital design verification tools with
graphical user interfaces, such as ISim, ModelSim, QuestaSim,
etc. Hence, a resemblance of the graphical user interface of
the presented verification tool, to the above-mentioned digital
design verification tools could be seen. The “verification tool”
in OMNeT++ discloses and displays the operations of the
radio and the changes in states of the data link layer. The
data from the network simulation is fed to the verification
tool via a log file created by the record module in Layer 3 of
DiNS. Fig. 2 depicts how the data is being transferred from the
OMNeT++ environment to the verification tool. As mentioned
in the “Record” module in Layer 3 of DiNS, the starting and
ending time stamps of the log file writing about the network
output data will be recorded. By giving the MAC address
of a node and the verification starting and ending time, the
verification tool is able to extract the node activities within the
exact time duration of concern without having to wait until the
entire network simulation is complete. During the simulation,
the log file is updated with the nodes’ activities in the data
link layer (sleep, CCA, send, acknowledgement). Once the log
file has been completely updated, the verification tool reads it
and displays the activities graphically by interpreting the data
as stepped line graphs for each node. The x-axis represents
the time while the y-axis represents the nodes’ activities with

OMNET++ 

Simulation

(C++)

           User Inputs

- verification start time
- verification end time
- MAC addresses of the nodes 

Simulation
Verification

Tool
(Python)

Log file

         User Inputs

- log file record start time
- log file record end time

write 
events

read
events 

Fig. 2. Verification tool flowchart: A separate log file of the network output
data is created by Layer 3 of DiNS, which is then read by the verification
tool. The starting and ending time stamps of the log file writing are used to
prevent the storage overhead problem caused by logging redundant data. The
verification tool is executed independently of the sensor network simulation
in OMNeT++ to provide a graphical representation of the network activities.

different colours. The detailed demonstration is illustrated in
section IV-B.

2) Optimization tool: As OMNeT++ by default does not in-
herit supporting libraries for mathematical optimization, users
have to program functions from scratch when they want to ex-
ecute network optimizations, e.g., network-related operations,
node parameter fine-tuning, etc. However, modelling complex
mathematical theories into algorithms from scratch takes time
and effort, especially C++ programming language is the main
option. Moreover, such functions have to be integrated to the
core network design, without disrupting the internal modular
structure or the network architecture.

To tackle the above issues, this work develops an optimiza-
tion tool for users to do the network optimizations based on
Python, since Python provides extensive open-source libraries
and functions for mathematical optimization and demands less
implementation overhead and intensive programming skills.
The developed optimization tool will not interfere with the
core network operations of OMNeT++ and release from any
undesired alterations of the design that the internal network
framework has to undergo. As depicted in Fig. 3, it reads the
network output through the log file generated by the “Record”
module in Layer 3 of DiNS, inputs the data into the data
processing interface and executes the optimization algorithms.
After that, the optimized network operations are forwarded to
the network to response the corresponding disaster scenarios.

The typical implementation of an optimization algorithm
can be briefly summarized as follows. The first step is to
initialize the variables, which will be then fed into the ob-
jective function. The objective value will be generated and the
variables are accordingly adjusted and fed into the objective
again. This process iterates until the optimal objective value
(minimum/maximum) is reached. For the optimization tool
of DiNS, it initiates the variables, i.e., the parameters of the
network output, then executes the selected optimization algo-
rithms from the Python library. The obtained network param-
eters will be updated in omnetpp.ini and the OMNeT++
application will be executed externally via the command-
line interface, i.e., Cmdenv, which is given in the OMNeT++
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Fig. 3. Optimization tool flowchart: The Python application initiates input
parameters of the selected optimization algorithm or function. The network
parameters in the omnetpp.ini are modified using such selected input
parameters. After modification of parameters, the OMNeT++ application is
executed externally by the Python application. At the end of the simulation,
the results are read, processed and is fed back into the optimization function.

simulation manual [22]. The optimization tool waits for the
new input variables from the “Record” module after the
network responds to the disaster for further optimizations.
The optimization tool uses the buffer update time stamps
to detect the newly written data in the buffer and converts
the data for the Python development environment. The data
hence could be processed and eventually be transformed into
a numerical value using a defined objective function. A simple
use case of the optimization tool could be optimizing the
routing path of sensor nodes to maximize the reception of
the most important data during a disaster. For more details,
please refer to Sec. IV-C.

The optimization tool could be not only used to optimize
network parameters but also to automate the execution of
OMNeT++ multiple times without any human intervention be-
cause its overall architecture resembles a master (optimization
tool) - slave (OMNeT++) model as shown in Fig. 3. This could
be strongly useful for emerging applications such as machine
learning model training, dynamic network optimization, etc.
Besides, the optimization tool further provides support in
diverse data analysis functionalities since the output data is
read into the Python development environment.

IV. TESTING THE FRAMEWORK: A CASE STUDY

In this section, we demonstrate how to use the proposed
DiNS framework to simulate a WSN under a wildfire disas-
ter and the performance of the verification tool through an
example of detecting and identifying the anomalies in the
communication among the sensor nodes. Moreover, multivari-
ate optimization using the optimization tool is illustrated to
optimize the network operations in response to the disaster.

DiNS could be used not only with wildfires, but also for
other disaster incidents in which applications of WSN needs
to be simulated such as volcano monitoring [23], earthquakes
[24], landslides [25], mining catastrophes [26], etc.

A. Applying DiNS in Wildfire Scenario

This work presents a case study of DiNS using a wildfire
disaster scenario. The monitoring area is a 1024m × 1024m
woodland with geographical variations and various vegetation.
This work exploits the Fire Dynamic Simulator (FDS) [11] in

Stage 1

Stage 2

Stage 3

sensor[id]

hops

sensor[id]

Dead

sensor[id]

unreachable
Normal
node

Dead
node

Isolated
node

Fig. 4. Step-wise propagation of a fire in a virtual forest in Fire Dynamic
Simulator (FDS) and the effect on the WSN network in OMNeT++.

Layer 1 of DiNS framework to model and simulate the wildfire
disaster. A fire starts at a random place in this woodland, and
the spreading profile of the fire is affected by various factors,
e.g., the topography of the terrain, vegetation, ignition/flash
point of fire, wind, etc. This complete virtual woodland is
made up of aggregating individual cells to form a simulation
computational mesh for the fire. Fig. 4 demonstrates the
stepwise propagation of a wildfire scenario. The duration
of fire disaster lasts for 1400 seconds. In this work, the
resolution of the computational cells of the woodland is set to
32m×32m due to the limited computing resources. However,
this resolution could be made even more granular to meet the
level of precision and detail expected from the simulation.
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TABLE I
ONE EXAMPLE OF 63 DUPLICATED DATA CHUNKS IN THE DATA RECORD AT THE GATEWAY FROM 28.5554 TO 28.9858 SECONDS (THE 1ST ROW IS THE

RECEIVING TIME AT THE GATEWAY; THE 2ND ROW STANDS FOR THE TIME OF THE DATA CHUNK GENERATED BY THE SOURCE NODE; THE 3RD ROW

REPRESENTS THE SOURCE NODE ID; THE 4TH ROW IS THE TYPE OF DATA, E.G., 0 REPRESENTS THE TEMPERATURE AND 1 REPRESENTS THE HUMIDITY;
THE LAST ROW GIVES THE CORRESPONDING VALUES OF THE MEASURED DATA, E.G., 21.511°C.).

...

28.4716 28.5554 28.5554 28.5554 28.5554 28.5718 28.5718

...

28.9858 28.9858 28.9858 28.9858 28.9910

...
15.2828 20.9023 20.9023 15.9023 15.9023 20.9023 20.9023 20.9023 20.9023 15.9023 15.9023 20.618
50 27 27 27 27 27 27 27 27 27 27 86
1 0 1 0 1 0 1 0 1 0 1 0
39.0254 21.5110 39.8852 18.6616 39.1556 21.5510 39.8852 21.5110 39.8852 18.6616 39.1556 18.6626

After the fire simulation, three files (disaster data files) in
”.csv” (comma separated value) format are created for Layer
2 of DiNS including: the coordinates of the sensing points
(cells) of the woodland; the temperature readings at each
second of all sensing points; and the humidity readings. These
disaster data files are read by the “Database” module as the
input of the WSN network simulated in OMNeT++. The WSN
network consists of 100 sensor nodes randomly deployed in
the woodland. The “mobility” module matches the locations of
the sensor nodes and the cell coordinates of the woodland, and
the “sensor” module samples the corresponding temperature
and humidity at a given rate of 0.2 Hz, i.e., the sensor node
measures the data every 5 seconds. Those measurements will
be the input of the simulated sensor network and can be
configured in OMNeT++ via the omnetpp.ini file.

Once the simulation is initiated, the complete execution
replicates a well-functioning WSN deployed in a woodland
under the potential threat of wildfire. From this point onward,
the users have complete control over the network and the
corresponding design, e.g., select or build their own preferred
network stack, set their own objectives for the WSN, program
their own routing algorithms or even add their own novel
modules and test them in the wildfire conditions. In this
case study, towards the objective of low-power and efficient
computation and communication, we exploit specific protocols
for the sensor node architecture in Layer 3 of DiNS as follows.

• Physical Layer: The IEEE 802.15.4 Standard is applied in
the physical layer for low-cost ubiquitous communication
between wireless sensor nodes.

• Data Link Layer: This case study selects the BoX-MAC-
2 protocol for the data link layer, because of the ultra-low
power utilization and comparatively high throughput

• Network Layer: RPL (Routing Protocol for Low-Power
and Lossy Networks) routing protocol is used in the
network layer, since it is a proactive protocol optimized
for wireless networks with low power consumption and
generally susceptible to packet loss.

When the simulation starts, the “Record” module in Layer
3 of DiNS generates three network output files in ”.csv”
format, i.e., nodeParameters<file_number>.csv,
sensorData<file_number>.csv and
liveState<file_number>.csv, to record the events
that occurred in each node and its neighbors, the measured
temperature and humidity data chunks and the corresponding
time stamps of data producing and receiving, and the live and
death time, respectively. Those results are the input to feed
the verification and optimization tools in Layer 4 of DiNS
for further operations.

When the network starts to work, each sensor node senses
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second

0

10

20

30

40

50

%

relative humidity
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Fig. 5. The sensor readings of the temperature and relative humidity values of
node 1 and node 5 as fire propagates. After the node died (temperature>70◦C
and relative humidity<40%), the functionality in Layer 3 is deactivated.

the temperature and humidity every 5 seconds corresponding
to its own location, compiles the measurements into packets
and forwards the data along with the network to the gateway.
To create the desynchronization among the nodes, each node
is made to start operating at a random point of time between
0th and 1st second at the very beginning of the simulation. The
sensor node stops this periodical operation at the end of the
simulation (i.e., after 1400 second) or when it dies due to the
harsh disaster environment. In this work, we define a sensor
node to be dead if the temperature it measured is larger than or
equal to 70◦C and the relative humidity is below 40%. Fig.5
illustrates the sensor readings of the temperature and relative
humidity values of node 1 and node 5. They died at different
time. ”Sensor” module estimates the exact death time and
deactivates all functions of these nodes in Layer 3. The effect
of the wildfire on the network is illustrated in Fig. 4. In the
initial stage of the fire, 6 sensor nodes die because of the high
temperature. With the propagation of the fire, more area of
the woodland is affected and 42 sensor nodes are dead. When
the fire is finally ended, in total 68 sensor nodes died because
of the harsh environment. Although there are 38 sensor nodes
still alive, 7 out of them lost the connections to the gateway
and become isolated.

B. Abnormality analyzing using the verification tool
According to the data records in the gateway, we observe

that more than 80% of the data is repeatedly received in the
gateway. It is hard or even impossible to investigate why it
happens. Tab. I illustrates one example of the duplicated data
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in the data record: the 1st row is the receiving time at the
gateway; the 2nd row stands for the time of the data chunk
generated by the source node; the 3rd row represents the
source node ID; the 4th row is the data type (0 represents
the temperature and 1 represents the humidity); the last row
gives the corresponding values of the measured data. In the
table, there are 63 repetitions of the data generated by the node
27 when the simulation runs from 28.56 to 28.99 seconds.

In order to figure out the reason, the developed verification
tool is applied to visualize the behaviour of this abnormality.
Fig. 6 depicts one example of the abnormal scenario of
duplicated receiving data chunks. Specifically, node 2 turns on
the radio in transmission (TX) mode, and transmits data to the
neighbouring node. After a while, node 1 starts to transmit data
to the gateway, and the gateway turns on the radio in receiving
(RX) mode, to receive the data. After the successful reception,
the gateway sends the acknowledge (ACK) back to node 1,
which is interfered by the transmission of node 2. As a result,
node 1 repeats the transmission because of the absence of ACK
while the gateway receives all the re-transmitted data, which
is clearly shown in Fig. 7 (a magnified view of Fig. 6). When
node 2 stops its transmission and turns off the radio, node 1
successfully receives the ACK and ends its own transmission
as shown in Fig. 8. It becomes much easier to find the reason
for the duplicated data using the verification tool, which is
caused by the hidden terminal problem: node 1 is located
within the radio range of both node 2 and the gateway while
the gateway cannot directly reach node 2. Further strategies
can be developed in the MAC layer to cope with this problem.

Node
1

a

Node
2

Gate
way

b

Fig. 6. The visualization of the duplicated data abnormality using the
verification tool: The gateway (bottom most) listens (in red), receives the data
successfully, and consequently sends an ACK (in yellow) to node 1’s (in the
middle) transmission (in green); node 2’s (top most) transmission interferes
with the ACK reception of node 1, which drives node 1 to re-transmit.

C. Multivariate optimization using the optimization tool
Generally, the optimization tool optimizes the network pa-

rameters in the OMNeT++ simulator according to the objective
functions. Taking the SciPy library in Python [27] for example,
a typical optimization has the following format:

r e s u l t = min imize ( o b j e c t i v e f u n c t i o n , x0 ,
method , c o n s t r a i n t s , o p t i o n s , bounds )

where x0 is the initial estimation of variables to be optimized,
and method refers to the mathematical method of optimiza-
tion e.g., SLSQP, Newton-CG, etc. The objective function

Node
1

Gate
way

Fig. 7. The magnified view of the box (a) in Fig. 6: The gateway repeatedly
sends the ACKs in response to the successful reception of data from node 1.

Node
1

Node
2

Gate
way

Fig. 8. The magnified view of the box (b) in Fig. 6: Node 1 finally receives
the acknowledgement from the gateway, when the interference from node 2
is gone, i.e., node 2 stops its transmission.

is structured in a way such that several additional support
functions are led before the mathematical objective function,
as shown in the following Python function.

def o b j e c t i v e f u n c t i o n ( x )
upda t e omne t pp i n i ( x )
run omnet app ( )
r aw da t a = r e a d d a t a ( )
p r o c d a t a = p r o c e s s d a t a ( r aw da t a )
re turn ma t h o b j e c t i v e f n ( p r o c d a t a )

where each of the supporting functions are:

• update omnetpp ini(x): This function takes as a pa-
rameter, the input variables (x) of the network. These
variables will be written to omnetpp.ini file for the
OMNeT++ network simulator to read.

• run omnet app(): This function executes OMNeT++
application via the command-line interface (Cmdenv).
Python offers interfaces to the operating system [28]
for executing the commands within a Python program.
For detailed command guidances please refer to the
OMNeT++ simulation manual [22].

• read data() This function holds the program waiting
until the network simulation is complete and the log
files are updated. Subsequently, it reads the log files and
returns the raw data.
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• process data(raw data) This function takes in the raw
data, pre-processes it, and returns processed data.

• math objective fn(proc data) This function takes in
the processed data, applies it in the mathematical models
and returns value to the optimization function from SciPy.

We have designed a Reinforcement Learning (RL)-based
routing algorithm for the sensor node to decide the appro-
priate actions in response to the disaster using the developed
optimization tool. The algorithm detail is out of this paper’s
scope. Here we only aim to show how the optimization tool
supports the optimization of network operations.

In short, the objective is to deliver the maximum volume
of useful data with minimum latency in the dynamic, time-
critical disaster environment. This is essential when a disaster
occurs to retrieve the current status so that efficient rescue
operations can be implemented. The input of RL, i.e., the
state of the environment, is the network output from Layer 3 of
DiNS including the remaining battery capacity, riskiness class,
number of hopes to the gateway, transmission penalties to the
neighbouring nodes and remaining memory storage of each
sensor node. The actions refer to the activities of the sensor
node including sensing, transmitting, receiving, and storing
data, while the corresponding reward of each action is related
to the transmission of the data with high riskiness. A reward
is positive if the transmission succeeds, otherwise, it will be
a negative value. We generate various fire disasters in DiNS
to train the policy of mapping the network output at a given
time instant to the best actions of the sensor nodes, thereby
learning the rules to respond to the disasters. The simulation
results show that using the RL-based routing algorithm, 19.4%
more useful unique data chunks are delivered to the gateway
than using the minimum hop routing algorithm. The optimiza-
tion tool facilitates this protocol development of the sensor
networks easily and conveniently.

V. CONCLUSION

Practical experiments for testing the WSN-based disaster
management strategies are often impossible due to the high
risk and cost. This work proposes DiNS, a framework to
simulate sensor network operations in disasters. DiNS is de-
veloped by extending OMNeT++ discrete event simulator with
a generic interface to disaster simulators, models or historical
data. It allows expandability and applicability to generic sorts
of disaster types and simulators. This paves the way that the
behaviour of the disaster can directly influence the network.
Using the developed verification and optimization tools, the
network can be debugged and optimized to respond to the
disaster according to the user-defined objectives. A case study
has been used to demonstrate the functionality of DiNS by
coupling the Fire Dynamic Simulator (FDS) with OMNeT++.
The verification tool is applied to graphically visualize and
analyse a packet duplication occurrence arising as a conse-
quence of the hidden terminal problem. A generic optimization
library function in Python-SciPy is used to show one way of
applicability of the optimization tool with OMNeT++.
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