1,464 research outputs found

    Cooperative communication in wireless local area networks

    Get PDF
    The concept of cooperative communication has been proposed to improve link capacity, transmission reliability and network coverage in multiuser wireless communication networks. Different from conventional point-to-point and point-to-multipoint communications, cooperative communication allows multiple users or stations in a wireless network to coordinate their packet transmissions and share each other’s resources, thus achieving high performance gain and better service coverage. According to the IEEE 802.11 standards, Wireless Local Area Networks (WLANs) can support multiple transmission data rates, depending on the instantaneous channel condition between a source station and an Access Point (AP). In such a multi-rate WLAN, those low data-rate stations will occupy the shared communication channel for a longer period for transmitting a fixed-size packet to the AP, thus reducing the channel efficiency and overall system performance. This thesis addresses this challenging problem in multi-rate WLANs by proposing two cooperative Medium Access Control (MAC) protocols, namely Busy Tone based Cooperative MAC (BTAC) protocol and Cooperative Access with Relay’s Data (CARD) protocol. Under BTAC, a low data-rate sending station tries to identify and use a close-by intermediate station as its relay to forward its data packets at higher data-rate to the AP through a two-hop path. In this way, BTAC can achieve cooperative diversity gain in multi-rate WLANs. Furthermore, the proposed CARD protocol enables a relay station to transmit its own data packets to the AP immediately after forwarding its neighbour’s packets, thus minimising the handshake procedure and overheads for sensing and reserving the common channel. In doing so, CARD can achieve both cooperative diversity gain and cooperative multiplexing gain. Both BTAC and CARD protocols are backward compatible with the existing IEEE 802.11 standards. New cross-layer mathematical models have been developed in this thesis to study the performance of BTAC and CARD under different channel conditions and for saturated and unsaturated traffic loads. Detailed simulation platforms were developed and are discussed in this thesis. Extensive simulation results validate the mathematical models developed and show that BTAC and CARD protocols can significantly improve system throughput, service delay, and energy efficiency for WLANs operating under realistic communication scenarios

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Link Scheduling Algorithms For In-Band Full-Duplex Wireless Networks

    Get PDF
    In the last two decades, wireless networks and their corresponding data traffic have grown significantly. This is because wireless networks have become an indispens- able and critical communication infrastructure in a modern society. An on-going challenge in communication systems is meeting the continuous increase in traffic de- mands. This is driven by the proliferation of electronic devices such as smartphones with a WiFi interface along with their bandwidth intensive applications. Moreover, in the near future, sensor devices that form the Internet of Things (IoTs) ecosystem will also add to future traffic growth. One promising approach to meet growing traffic demands is to equip nodes with an In-band-Full-Duplex (IBFD) radio. This radio thus allows nodes to transmit and receive data concurrently over the same frequency band. Another approach to in- crease network or link capacity is to exploit the benefits of Multiple-Input-Multiple- Output (MIMO) technologies; namely, (i) spatial diversity gain, which improves Signal-to-Noise Ratio (SNR) and thus has a direct impact on the data rate used by nodes, and (ii) spatial multiplexing gain, whereby nodes are able to form concurrent links to neighbors

    Cooperation in wireless communication networks

    Full text link

    Protocoles coopératifs pour réseaux sans fil

    Get PDF
    La technique MIMO (Multiple-Input Multiple-Output) est l’une des techniques de base qui offre une diversité spatiale. Elle associe plusieurs antennes à l’émission et à la réception. En plus de la diversité spatiale, le système MIMO permet d’augmenter le gain de multiplexage sans avoir besoin de plus de bande passante ou de puissance d’émission. Cependant, la technique MIMO a des limites liées au coût d’installation de plusieurs antennes sur un terminal, et a l’écart minimal exigé entre les antennes. La communication coopérative a été proposée comme une technologie alternative, dans laquelle la diversité spatiale peut être réalisée en coordonnant plusieurs nœuds qui sont proches géographiquement pour former des réseaux d’antennes virtuelles. La coopération permet de lutter contre l’instabilité du canal radio et de faire face aux phénomènes qui le perturbent comme les évanouissements, les bruits, ou les interférences. Elle permet aussi d’améliorer les performances du système en termes de débit global, d’énergie consommée et d’interférences, etc. Dans le cadre des communications coopératives, nous avons proposé deux protocoles MAC coopératifs dans le contexte des réseaux ad hoc. La première proposition est le protocole RACT (Rate Adaptation with Cooperative Transmission). Ce protocole combine la coopération avec un mécanisme d’adaptation de débit. Lorsqu’un lien entre une source et une destination subit de mauvaises conditions de canal, une station relais est sélectionnée dans le voisinage des deux nœuds de sorte que la liaison directe à faible débit de transmission soit remplacée par un lien à deux sauts avec un débit de données plus élevé. La sélection du meilleur relais est fondée sur un processus de contention distribué. La procédure ne nécessite aucune connaissance de la topologie et aucune communication entre les relais potentiels. Lorsque la qualité de la liaison directe est bonne et que la transmission coopérative n’est pas nécessaire, le protocole fonctionne comme un mécanisme d’adaptation de débit. L’adaptation de débit de données est également réalisée sans aucune signalisation supplémentaire. La sélection du meilleur relais et l’adaptation de débit sont fondés sur des mesures instantanées du canal pour s’adapter aux conditions dynamiques du canal radio. Dans le but d’améliorer davantage les performances du système, nous avons proposé notre deuxième protocole MAC coopératif PRACT (Power and Rate Adaptation with Cooperative Transmission). Ce protocole combine un mécanisme d’adaptation de puissance et de débit (TPRC : Transmit Power and Rate Control) avec un mécanisme de coopération. C’est en cela que cette contribution se distingue des solutions proposées dans la littérature. Notre objectif avec cette contribution est d’atteindre une efficacité d’énergie pour la transmission des données tout en augmentant le débit global du réseau. PRACT propose d’ajuster dynamiquement la puissance et le débit de transmission en s’adaptant aux variations de la qualité du canal radio. Cela permet de gagner davantage dans l’énergie économisée. En outre, le contrôle de puissance, réduit les interférences et augmente la réutilisation spatiale entre cellules ad hoc adjacentes en utilisant la même fréquence de transmission. L’idée de base du protocole est de permettre à chaque nœud dans le réseau ad hoc de créer une table avec les combinaisons puissance-débit optimales, en se fondant seulement sur les spécifications de la carte réseau, à savoir, les débits de transmission possible et la consommation en énergie de la carte. Avec la connaissance des qualités des liens obtenue grâce à l’échange des trames de contrôle et en recherchant dans la table puissance-débit, les nœuds choisissent la stratégie de transmission la plus adaptée pour chaque transmission de trames de données, ainsi que le mode de transmission (direct ou coopératif). ABSTRACT : MIMO (Multiple-Input Multiple-Output) technology is one of the basic techniques that offer a spatial diversity. It combines multiple antennas for transmission and reception. In addition to spatial diversity, MIMO can increase the multiplexing gain without requiring more bandwidth or transmit power. However, the MIMO technology has limitations related to the cost of installing multiple antennas on a terminal, and to the minimum distance required between antennas. The cooperative communication has been proposed as an alternative technology, in which the spatial diversity can be achieved by coordinating multiple nodes that are geographically close to form virtual antenna arrays. Cooperation helps to fight against the instability of the radio channel and deal with phenomena that disturb this channel like fading, noise or interference. It also improves system performance in terms of overall throughput, energy consumption and interference, etc. In the context of cooperative communications, we proposed two MAC protocols in the context of cooperative ad-hoc networks. The first proposal is the RACT (Rate Adaptation with Cooperative Transmission) protocol. This protocol combines cooperation with a rate adaptation mechanism. When a link between a source and a destination suffers from poor channel conditions, a relay station is selected in the neighborhood of the two nodes so that the direct low data-rate link is replaced by a two-hop link with a higher data-rate. Selecting the best relay is based on a distributed contention process. The procedure requires no knowledge of the topology and no communication between the potential relay. When the quality of the direct link is good enough and the cooperative transmission is not necessary, the protocol operates as a rate adaptation mechanism. The data rate adaptation is also performed without any additional signaling. Both the best relay selection and the rate adaptation is based only on the instantaneous channel measurements to adapt to the dynamic conditions of the radio channel. In order to further improve the system performance, we proposed our second cooperative MAC protocol PRACT (Power and Rate Adaptation with Cooperative Transmission). This protocol combines a power and rate control mechanism (TPRC: Transmit Power and Rate Control) with a mechanism for cooperation, this feature distinguishes this contribution from the solutions proposed in the literature. Our objective with this contribution is to achieve energy efficiency for data transmission while increasing the overall throughput of the network. PRACT proposes to dynamically adjust dynamically the power and the transmission rate to adapt to the radio channel quality variations. This way more energy can be saved. In addition, the power control reduces interference and increases the spatial reuse between adjacent ad-hoc cells using the same channel transmission frequency. The basic idea of the protocol is to allow each node in the network to create a table with the best power-rate combinations, based only on the specifications of the network card, namely the possible transmission rates, transmit power levels and the power consumption of the card. With the knowledge of the qualities of links obtained through the exchange of the control frames and looking up in the power-rate table, the nodes choose the most suitable transmission strategy, for each data frame transmission, and the transmission mode (direct or cooperative)

    A Markov Chain Approach to IEEE 802.11WLAN Performance Analysis

    Get PDF
    Wireless communication always attracts extensive research interest, as it is a core part of modern communication technology. During my PhD study, I have focused on two research areas of wireless communication: IEEE 802.11 network performance analysis, and wireless cooperative retransmission. The first part of this thesis focuses on IEEE 802.11 network performance analysis. Since IEEE 802.11 technology is the most popular wireless access technology, IEEE 802.11 network performance analysis is always an important research area. In this area, my work includes the development of three analytical models for various aspects of IEEE 802.11 network performance analysis. First, a two-dimensional Markov chain model is proposed for analysing the performance of IEEE 802.11e EDCA (Enhanced Distributed Channel Access). With this analytical model, the saturated throughput is obtained. Compared with the existing analytical models of EDCA, the proposed model includes more correct details of EDCA, and accordingly its results are more accurate. This better accuracy is also proved by the simulation study. Second, another two-dimensional Markov chain model is proposed for analysing the coexistence performance of IEEE 802.11 DCF (Distributed Coordination Function) and IEEE 802.11e EDCA wireless devices. The saturated throughput is obtained with the proposed analytical model. The simulation study verifies the proposed analytical model, and it shows that the channel access priority of DCF is similar to that of the best effort access category in EDCA in the coexistence environment. The final work in this area is a hierarchical Markov chain model for investigating the impact of data-rate switching on the performance of IEEE 802.11 DCF. With this analytical model,the saturated throughput can be obtained. The simulation study verifies the accuracy of the model and shows the impact of the data-rate switching under different network conditions. A series of threshold values for the channel condition as well as the number of stations are obtained to decide whether the data-rate switching should be active or not. The second part of this thesis focuses on wireless cooperative retransmission. In this thesis, two uncoordinated distributed wireless cooperative retransmission strategies for single-hop connection are presented. In the proposed strategies, each uncoordinated cooperative neighbour randomly decide whether it should transmit to help the frame delivery depending on some pre-calculated optimal transmission probabilities. In Strategy 1, the source only transmits once in the first slot, and only the neighbours are involved in the retransmission attempts in the subsequent slots. In Strategy 2, both the source and the neighbours participate in the retransmission attempts. Both strategies are first analysed with a simple memoryless channel model, and the results show the superior performance of Strategy 2. With the elementary results for the memoryless channel model, a more realistic two-state Markov fading channel model is used to investigate the performance of Strategy 2. The simulation study verifies the accuracy of our analysis and indicates the superior performance of Strategy 2 compared with the simple retransmission strategy and the traditional two-hop strategy

    Cooperative Relaying In Power Line Environment: A Survey and Tutorial

    Get PDF
    Exchange of information is essential in any society and the demand for faster, cheaper, and secure communications is increasing every day. With other hi-tech initiatives like IPv6 and Internet-of-Things (IOT) already in the horizon, demand for broadband is set to escalate beyond its current level. Inherently laden in the challenges posed by this technology are fresh opportunities in terms of penetration of data services into rural communities and development of innovative strategies for more efficient use of the grid. Though still in its developmental phase/stage, Power Line Communication (PLC) has grown beyond theoretical fantasy to become a reality. The proofs are the readily available PLC systems that can be purchased off the shelfto achieve in-house networking and the much talked about, smart metering technology; generally regarded as the “new bride” in utilities industry. One of the biggest gains of PLC is its use of existing electrical cables, thereby eliminating cost of installation and maintenance of data cables. However, given that the power infrastructure was traditionally built to deliver electricity, data signals do suffer various forms of distortions and impairments as they transit it. This paper presents a tutorial on the deployed wireless system technique which is to be adapted to PLC scenario for the purpose of managing the available source energy for achieving reliable communication system. One of these techniques is the cooperative diversity. Its application and deployment in power line environment is explored. The improvement achieved through cooperative diversity in some PLC systems were presented along with the associated limitations. Finally, future areas of research which will further improve the reliability of PLC systems and reduce its power consumption during transmission is shown

    Conceção e desempenho de retransmissões sem fios cooperativas

    Get PDF
    Doutoramento em Engenharia Eletrotécnica/TelecomunicaçõesIn recent years, a new paradigm for communication called cooperative communications has been proposed for which initial information theoretic studies have shown the potential for improvements in capacity over traditional multi-hop wireless networks. Extensive research has been done to mitigate the impact of fading in wireless networks, being mostly focused on Multiple-Input Multiple-Output (MIMO) systems. Recently, cooperative relaying techniques have been investigated to increase the performance of wireless systems by using diversity created by different single antenna devices, aiming to reach the same level of performance of MIMO systems with low cost devices. Cooperative communication is a promising method to achieve high spectrum efficiency and improve transmission capacity for wireless networks. Cooperative communications is the general idea of pooling the resources of distributed nodes to improve the overall performance of a wireless network. In cooperative networks the nodes cooperate to help each other. A cooperative node offering help is acting like a middle man or proxy and can convey messages from source to destination. Cooperative communication involves exploiting the broadcast nature of the wireless medium to form virtual antenna arrays out of independent singleantenna network nodes for transmission. This research aims at contributing to the field of cooperative wireless networks. The focus of this research is on the relay-based Medium Access Control (MAC) protocol. Specifically, I provide a framework for cooperative relaying called RelaySpot which comprises on opportunistic relay selection, cooperative relay scheduling and relay switching. RelaySpot-based solutions are expected to minimize signaling exchange, remove estimation of channel conditions, and improve the utilization of spatial diversity, minimizing outage and increasing reliability.Nos últimos anos foi proposto um novo paradigma de comunicação, chamado de comunicação cooperativa, para o qual estudos iniciais de teoria da informação demonstraram ter potencial para melhorias na capacidade em redes sem fios tradicionais multi-hop. Uma extensa pesquisa tem sido realizada para mitigar o impacto da atenuação em redes sem fios, tendo-se debruçado principalmente em sistemas Multiple-Input Multiple-Output (MIMO). Recentemente têm sido investigadas técnicas de retransmissão cooperativas para aumentar o desempenho de sistemas sem fios, usando a diversidade criada por diferentes antenas individuais com o objetivo de atingir o mesmo nível de desempenho dos sistemas MIMO com dispositivos de baixo custo. A comunicação cooperativa é um método promissor para atingir uma elevada eficiência na ocupação espectral e melhorar a capacidade de transmissão em redes sem fios. A comunicação cooperativa tem por ideia base a junção de recursos de nós distribuídos para melhorar o desempenho global de uma rede sem fios. Em redes cooperativas os nós cooperam para ajudarem-se mutuamente. Um nó cooperativo que ofereça ajuda estará agindo como um intermediário ou mediador, podendo transmitir mensagens da origem para o destino. A comunicação cooperativa explora a natureza da transmissão em difusão das comunicações sem fios para formar antenas múltiplas virtuais com vários nós de rede independentes e com antenas únicas. Esta investigação visou contribuir para a área científica das redes sem fios cooperativas. O foco da pesquisa foi nos protocolos de controlo de acesso ao meio (MAC) com retransmissão cooperativa. Especificamente, proponho uma arquitetura para enquadrar a retransmissão cooperativa, chamada RelaySpot (ponto de retransmissão), que explora a seleção oportunista de retransmissores, o escalonamento de retransmissores cooperativos e a comutação entre retransmissores. As comunicações baseadas na RelaySpot deverão ter uma troca de sinalização reduzida, não usam estimativas das condições do canal e melhoram o aproveitamento da diversidade espacial, minimizando a interrupção e aumentando a fiabilidade
    corecore