745 research outputs found

    ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL CROPLAND PRODUCTS

    Get PDF
    ABSTRACT ACCURACIES, ERRORS, AND UNCERTAINTIES OF GLOBAL CROPLAND PRODUCTS By Kamini Yadav University of New Hampshire, May 2019 Global cropland products are continuously being produced at different spatial resolutions using remotely sensed satellite imagery. Recently, with our increased accessibility to higher computing processing, three different cropland extent maps have been developed as a part of Global Food Security-Support Analysis Data (GFSAD) project at three spatial resolutions (i.e., GFSAD1km, GFSAD250m, and GFSAD30m). All cropland maps should be assessed for their accuracy, errors, and uncertainty for various agriculture monitoring applications. However, in previous assessment efforts appropriate assessment strategies have not always been applied and many have reported only a single accuracy measure for the entire world. This research was divided into four components to provide more attention and focus on the accuracy assessment of large area cropland products. First, a valid assessment of cropland extent maps was performed addressing different strategies, issues, and constraints depending upon various conditions related to the cropland distribution, proportion, and pattern present in each continent. This research focused on dealing with some specific issues encountered when assessing the cropland extent of North America (confined to the United States), Africa and Australia. Continent-specific sampling strategies and accuracy assessments were performed within homogenous regions (i.e., strata) of different continents to ensure that an appropriate reference data set was collected to generate rigorous and valid accuracy results indicative of the actual cropland proportion. Second, all the three different GFSAD cropland extent maps were assessed using appropriate sampling and collection of a cropland reference data based on the cropland distribution and proportion for different regions in the entire world. In addition to the accuracy assessment, the cropland extent maps developed at the three spatial resolutions were compared to investigate the differences among them and provide guidance for users to select the appropriate resolution given different agriculture field sizes. The comparison of three different GFSAD cropland extent maps was performed based on the similarity of the cropland area proportion (CAP) and landscape clumping at different spatial resolutions to provide specific recommendations for when to apply these maps in different agriculture field sizes. Third, an issue was discovered with the accuracy assessment of 30m global cropland extent map (i.e., GFSAD30m) in that insufficient samples were collected resulting in an ineffective assessment when the cropland map class was rare as occurred in some regions around the world. This research evaluated the sampling designs for different cropland regions to achieve sufficient samples and effective accuracy of rare cropland map class by comparing the distribution, allocation of samples and accuracy measures. The evaluation of sampling designs demonstrated that the cropland regions of \u3c15% CAP must be sampled with an appropriate stratified sampling combined with a predetermined minimum sample size for each map class. Finally, the accuracy assessment of all thematic maps (e.g., crop type maps) needs sufficient reference data to conduct a valid assessment. The availability of reference data is a severely limiting factor over large geographic region because of the time, effort, cost, and accessibility in different parts of the world. The objectives of this research were to augment and extend the limited availability of crop type reference data using non-ground-based sources of crop type information for creating and assessing large area crop type maps. There is the potential to either interpret the photographs available from Google Street View (GSV) or classify High Resolution Imagery (HRI) using a phenology-based classification approach to generate additional reference data within similar agriculture ecological zones (AEZs) based on the crop characteristics, their types, and growing season. These two methods of augmenting and extending crop type reference data were developed for the United States (US) where high-quality crop type reference data already exist so that the methods could be effectively and efficiently tested. This research described a tale of three continents providing recommendations to adapt accuracy assessment strategies and methodologies for assessing global cropland extent maps. Based on these results, the assessment and comparison of different resolution GFSAD cropland extent maps were performed to provide specific recommendations for when to apply each of the maps for agriculture monitoring based on the agriculture field sizes. When assessing the cropland extent maps, different sampling strategies perform differently in the various cropland proportion regions and therefore, must be selected according to the cropland extent maps to be assessed. Finally, this research concluded that the limited crop type reference data can be effectively extended using a phenology-based classification approach and is more efficient than the interpretation of photographs collected from GSV

    How reliable is the MODIS land cover product for crop mapping Sub-Saharan agricultural landscapes?

    Full text link
    Accurate cropland maps at the global and local scales are crucial for scientists, government and nongovernment agencies, farmers and other stakeholders, particularly in food-insecure regions, such as Sub-Saharan Africa. In this study, we aim to qualify the crop classes of the MODIS Land Cover Product (LCP) in Sub-Saharan Africa using FAO (Food and Agricultural Organisation) and AGRHYMET (AGRiculture, Hydrology and METeorology) statistical data of agriculture and a sample of 55 very-high-resolution images. In terms of cropland acreage and dynamics, we found that the correlation between the statistical data and MODIS LCP decreases when we localize the spatial scale (from R2 = 0.86 *** at the national scale to R2 = 0.26 *** at two levels below the national scale). In terms of the cropland spatial distribution, our findings indicate a strong relationship between the user accuracy and the fragmentation of the agricultural landscape, as measured by the MODIS LCP; the accuracy decreases as the crop fraction increases. In addition, thanks to the Pareto boundary method, we were able to isolate and quantify the part of the MODIS classification error that could be directly linked to the performance of the adopted classification algorithm. Finally, based on these results, (i) a regional map of the MODIS LCP user accuracy estimates for cropland classes was produced for the entire Sub-Saharan region; this map presents a better accuracy in the western part of the region (43%-70%) compared to the eastern part (17%-43%); (ii) Theoretical user and producer accuracies for a given set of spatial resolutions were provided; the simulated future Sentinel-2 system would provide theoretical 99% user and producer accuracies given the landscape pattern of the region. (Résumé d'auteur

    Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

    Get PDF
    Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Instituto de Clima y AguaFil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaFil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados UnidosFil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; BrasilFil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; FranciaFil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; CanadáFil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgic

    A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US

    Get PDF
    We present a dryland irrigation mapping methodology that relies on remotely sensed inputs from the MODerate Resolution Imaging Spectroradiometer (MODIS) instrument, globally extensive ancillary sources of gridded climate and agricultural data and on an advanced image classification algorithm. The methodology involves four steps. First, we use climate-based indices of surface moisture status and a map of cultivated areas to generate a potential irrigation index. Next, we identify remotely-sensed temporal and spectral signatures that are associated with presence of irrigation defined as full or partial artificial application of water to agricultural areas under dryland conditions excluding irrigated pastures, paddy rice fields, and other semi-aquatic crops. Here, the temporal indices are based on the difference in annual evolution of greenness between irrigated and non-irrigated crops, while spectral indices are based on the reflectance in the green and are sensitive to vegetation chlorophyll content associated with moisture stress. Third, we combine the climate-based potential irrigation index, remotely sensed indices, and learning samples within a decision tree supervised classification tool to make a binary irrigated/non-irrigated map. Finally, we apply a tree-based regression algorithm to derive the fraction of irrigated area within each pixel that has been identified as irrigated. Application of the proposed procedure over the continental US in the year 2001 produces an objective and comprehensive map that exhibits expected patterns: there is a strong east-west divide where the majority of irrigated areas is concentrated in the arid west along dry lowland valleys. Qualitative assessment of the map across different climatic and agricultural zones reveals a high quality product with sufficient detail when compared to existing large area irrigation databases. Accuracy assessment indicates that the map is highly accurate in the western US but less accurate in the east. Comparison of area estimates made with the new procedure to those reported at the state and county levels shows a strong correlation with a small bias and an estimated RMSE of 2500 km2, or little over 2% of the total irrigated area in the US. As a result, the future application of the new procedure at a global scale is promising but may require a better potential irrigation index, as well as the use of remotely sensed skin temperature measurements

    Use and Improvement of Remote Sensing and Geospatial Technologies in Support of Crop Area and Yield Estimations in the West African Sahel

    Get PDF
    In arid and semi-arid West Africa, agricultural production and regional food security depend largely on small-scale subsistence farming and rainfed crops, both of which are vulnerable to climate variability and drought. Efforts made to improve crop monitoring and our ability to estimate crop production (areas planted and yield estimations by crop type) in the major agricultural zones of the region are critical paths for minimizing climate risks and to support food security planning. The main objective of this dissertation research was to contribute to these efforts using remote sensing technologies. In this regard, the first analysis documented the low reliability of existing land cover products for cropland area estimation (Chapter 2). Then two satellite remote sensing-based datasets were developed that 1) accurately map cropland areas in the five countries of Sahelian West Africa (Senegal, Mauritania, Mali, Burkina Faso and Niger; Chapter 3), and 2) focus on the country of Mali to identify the location and prevalence of the major subsistence crops (millet, sorghum, maize and non-irrigated rice; Chapter 4). The regional cropland area product is distributed as the West African Sahel Cropland area at 30 m (WASC30). The development of the new dataset involved high density training data (380,000 samples) developed by USGS in collaboration with CILSS for training about 200 locally optimized random forest (RF) classifiers using Landsat 8 surface reflectances and vegetation indices and the Google Earth Engine platform. WASC30 greatly improves earlier estimates through inclusion of cropland information for both rainfed and irrigated areas mapped with a class-specific accuracy of 79% across the West Africa Sahel. Used as a mask in crop monitoring systems, the new cropland area data could bring critical insights by reducing uncertainties in xv identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security. Keywords: Agricultural identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security

    From Anopheles to Spatial Surveillance: A Roadmap Through a Multidisciplinary Challenge

    Get PDF
    When working on vector borne diseases, decision makers and researchers often face a lack of specific high quality data. However the results/decisions can be critical as they can impact on the lives of many people. This chapter reviews the challenges posed by spatial surveillance of anopheles-borne diseases with particular attention for malaria surveillance. These challenges will mainly reside in the difficulty of getting the appropriate raw data and the large spectrum of multidisciplinary expertise. Raw data include anopheles attributes. Design of sampling strategies is a compromise between the best sampling size for analysis, optimal sampling in space or time and cost-related factors. On the other hand, raw environmental factors from remote sensing products are increasingly available and used but ready to use information on temperature mainly available in Africa and resolution too coarse for detection of water bodies. Moreover the quality and interpretation of final product is dependent of image pre-processing which should be understood by the final user. Those include production of the pixels which do not totally represent environmental value at location, compositing which summarize several images into one to eliminate clouds contamination and production of land cover which represent environmental value at the time of original images capture, develop mosaic classes to gather pixel difficult to discriminate and propose land cover classes not always adapted to the anopheles species habitat. Remote sensing however provides a unique source of information which would not be available otherwise. Modelling techniques are then discussed as well as initiatives to help transfer results and expertise to health professionals in countries.JRC.H.4-Monitoring Agricultural Resource

    Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series

    Get PDF
    Cropland abandonment is globally widespread and has strong repercussions for regional food security and the environment. Statistics suggest that one of the hotspots of abandoned cropland is located in the drylands of the Aral Sea Basin (ASB), which covers parts of post-Soviet Central Asia, Afghanistan and Iran. To date, the exact spatial and temporal extents of abandoned cropland remain unclear, which hampers land-use planning. Abandoned land is a potentially valuable resource for alternative land uses. Here, we mapped the abandoned cropland in the drylands of the ASB with a time series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2003–2016. To overcome the restricted ability of a single classifier to accurately map land-use classes across large areas and agro-environmental gradients, “stratum-specific” classifiers were calibrated and classification results were fused based on a locally weighted decision fusion approach. Next, the agro-ecological suitability of abandoned cropland areas was evaluated. The stratum-specific classification approach yielded an overall accuracy of 0.879, which was significantly more accurate ( p < 0.05) than a “global” classification without stratification, which had an accuracy of 0.811. In 2016, the classification results showed that 13% (1.15 Mha) of the observed irrigated cropland in the ASB was idle (abandoned). Cropland abandonment occurred mostly in the Amudarya and Syrdarya downstream regions and was associated with degraded land and areas prone to water stress. Despite the almost twofold population growth and increasing food demand in the ASB area from 1990 to 2016, abandoned cropland was also located in areas with high suitability for farming. The map of abandoned cropland areas provides a novel basis for assessing the causes leading to abandoned cropland in the ASB. This contributes to assessing the suitability of abandoned cropland for food or bioenergy production, carbon storage, or assessing the environmental trade-offs and social constraints of recultivation
    • …
    corecore