65 research outputs found

    Author index volume 41 (1982)

    Get PDF

    Propriétés géométriques du nombre chromatique : polyèdres, structures et algorithmes

    Get PDF
    Computing the chromatic number and finding an optimal coloring of a perfect graph can be done efficiently, whereas it is an NP-hard problem in general. Furthermore, testing perfection can be carried- out in polynomial-time. Perfect graphs are characterized by a minimal structure of their sta- ble set polytope: the non-trivial facets are defined by clique-inequalities only. Conversely, does a similar facet-structure for the stable set polytope imply nice combinatorial and algorithmic properties of the graph ? A graph is h-perfect if its stable set polytope is completely de- scribed by non-negativity, clique and odd-circuit inequalities. Statements analogous to the results on perfection are far from being understood for h-perfection, and negative results are missing. For ex- ample, testing h-perfection and determining the chromatic number of an h-perfect graph are unsolved. Besides, no upper bound is known on the gap between the chromatic and clique numbers of an h-perfect graph. Our first main result states that the operations of t-minors keep h- perfection (this is a non-trivial extension of a result of Gerards and Shepherd on t-perfect graphs). We show that it also keeps the Integer Decomposition Property of the stable set polytope, and use this to answer a question of Shepherd on 3-colorable h-perfect graphs in the negative. The study of minimally h-imperfect graphs with respect to t-minors may yield a combinatorial co-NP characterization of h-perfection. We review the currently known examples of such graphs, study their stable set polytope and state several conjectures on their structure. On the other hand, we show that the (weighted) chromatic number of certain h-perfect graphs can be obtained efficiently by rounding-up its fractional relaxation. This is related to conjectures of Goldberg and Seymour on edge-colorings. Finally, we introduce a new parameter on the complexity of the matching polytope and use it to give an efficient and elementary al- gorithm for testing h-perfection in line-graphs.Le calcul du nombre chromatique et la détermination d'une colo- ration optimale des sommets d'un graphe sont des problèmes NP- difficiles en général. Ils peuvent cependant être résolus en temps po- lynomial dans les graphes parfaits. Par ailleurs, la perfection d'un graphe peut être décidée efficacement. Les graphes parfaits sont caractérisés par la structure de leur poly- tope des stables : les facettes non-triviales sont définies exclusivement par des inégalités de cliques. Réciproquement, une structure similaire des facettes du polytope des stables détermine-t-elle des propriétés combinatoires et algorithmiques intéressantes? Un graphe est h-parfait si les facettes non-triviales de son polytope des stables sont définies par des inégalités de cliques et de circuits impairs. On ne connaît que peu de résultats analogues au cas des graphes parfaits pour la h-perfection, et on ne sait pas si les problèmes sont NP-difficiles. Par exemple, les complexités algorithmiques de la re- connaissance des graphes h-parfaits et du calcul de leur nombre chro- matique sont toujours ouvertes. Par ailleurs, on ne dispose pas de borne sur la différence entre le nombre chromatique et la taille maxi- mum d'une clique d'un graphe h-parfait. Dans cette thèse, nous montrons tout d'abord que les opérations de t-mineurs conservent la h-perfection (ce qui fournit une extension non triviale d'un résultat de Gerards et Shepherd pour la t-perfection). De plus, nous prouvons qu'elles préservent la propriété de décompo- sition entière du polytope des stables. Nous utilisons ce résultat pour répondre négativement à une question de Shepherd sur les graphes h-parfaits 3-colorables. L'étude des graphes minimalement h-imparfaits (relativement aux t-mineurs) est liée à la recherche d'une caractérisation co-NP com- binatoire de la h-perfection. Nous faisons l'inventaire des exemples connus de tels graphes, donnons une description de leur polytope des stables et énonçons plusieurs conjectures à leur propos. D'autre part, nous montrons que le nombre chromatique (pondéré) de certains graphes h-parfaits peut être obtenu efficacement en ar- rondissant sa relaxation fractionnaire à l'entier supérieur. Ce résultat implique notamment un nouveau cas d'une conjecture de Goldberg et Seymour sur la coloration d'arêtes. Enfin, nous présentons un nouveau paramètre de graphe associé aux facettes du polytope des couplages et l'utilisons pour donner un algorithme simple et efficace de reconnaissance des graphes h- parfaits dans la classe des graphes adjoints

    Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs

    Get PDF
    In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdos, Ko and Rado to graphs. Our main results are a proof of an Erdos-Ko-Rado type theorem for a class of trees, and a class of trees which form counterexamples to a conjecture of Hurlberg and Kamat, in such a way that extends the previous counterexamples given by Baber. Secondly, we investigate perfect graphs - specifically, edge modification aspects of perfect graphs and their subclasses. We give some alternative characterisations of perfect graphs in terms of edge modification, as well as considering the possible connection of the critically perfect graphs - previously studied by Wagler - to the Strong Perfect Graph Theorem. We prove that the situation where critically perfect graphs arise has no analogue in seven different subclasses of perfect graphs (e.g. chordal, comparability graphs), and consider the connectivity of a bipartite reconfiguration-type graph associated to each of these subclasses. Thirdly, we consider a graph theoretic structure called a bireflexive graph where every vertex is both adjacent and nonadjacent to itself, and use this to characterise modular decompositions as the surjective homomorphisms of these structures. We examine some analogues of some graph theoretic notions and define a “dual” version of the reconstruction conjecture

    Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

    Get PDF
    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems

    Self-Stabilizing Supervised Publish-Subscribe Systems

    Full text link
    In this paper we present two major results: First, we introduce the first self-stabilizing version of a supervised overlay network by presenting a self-stabilizing supervised skip ring. Secondly, we show how to use the self-stabilizing supervised skip ring to construct an efficient self-stabilizing publish-subscribe system. That is, in addition to stabilizing the overlay network, every subscriber of a topic will eventually know all of the publications that have been issued so far for that topic. The communication work needed to processes a subscribe or unsubscribe operation is just a constant in a legitimate state, and the communication work of checking whether the system is still in a legitimate state is just a constant on expectation for the supervisor as well as any process in the system

    A Realistic Mobility Model for Wireless Networks of Scale-Free Node Connectivity

    Get PDF
    Recent studies discovered that many of social, natural and biological networks are characterised by scale-free power-law connectivity distribution. We envision that wireless networks are directly deployed over such real-world networks to facilitate communication among participating entities. This paper proposes Clustered Mobility Model (CMM), in which nodes do not move randomly but are attracted more to more populated areas. Unlike most of prior mobility models, CMM is shown to exhibit scale-free connectivity distribution. Extensive simulation study has been conducted to highlight the difference between Random WayPoint (RWP) and CMM by measuring network capacities at the physical, link and network layers

    Maximizing Transmission Opportunities in Wireless Multihop Networks

    Get PDF
    Being readily available in most of 802.11 radios, multirate capability appears to be useful as WiFi networks are getting more prevalent and crowded. More specifically, it would be helpful in high-density scenarios because internode distance is short enough to employ high data rates. However, communication at high data rates mandates a large number of hops for a given node pair in a multihop network and thus, can easily be depreciated as per-hop overhead at several layers of network protocol is aggregated over the increased number of hops. This paper presents a novel multihop, multirate adaptation mechanism, called multihop transmission opportunity (MTOP), that allows a frame to be forwarded a number of hops consecutively to minimize the MAC-layer overhead between hops. This seemingly collision-prone nonstop forwarding is proved to be safe via analysis and USRP/GNU Radio-based experiment in this paper. The idea of MTOP is in clear contrast to the conventional opportunistic transmission mechanism, known as TXOP, where a node transmits multiple frames back-to-back when it gets an opportunity in a single-hop WLAN. We conducted an extensive simulation study via OPNET, demonstrating the performance advantage of MTOP under a wide range of network scenarios

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation
    corecore