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A B S T R A C T

Computing the chromatic number and finding an optimal coloring
of a perfect graph can be done efficiently, whereas it is an NP-hard
problem in general. Furthermore, testing perfection can be carried-
out in polynomial-time.

Perfect graphs are characterized by a minimal structure of their
stable set polytope: the non-trivial facets are defined by clique in-
equalities only.

Conversely, does a similar facet-structure for the stable set polytope
imply nice combinatorial and algorithmic properties of the graph ?

A graph is h-perfect if its stable set polytope is completely de-
scribed by non-negativity, clique and odd-circuit inequalities.

Statements analogous to the results on perfection are far from being
understood for h-perfection, and negative results are missing. For ex-
ample, testing h-perfection and determining the chromatic number of
an h-perfect graph are unsolved. Besides, no upper bound is known
on the gap between the chromatic and clique numbers of an h-perfect
graph.

Our first main result states that h-perfection is closed under the
operations of t-minors (this is a non-trivial extension of a result of
Gerards and Shepherd on t-perfect graphs). We also show that the
Integer Decomposition Property of the stable set polytope is closed
under these operations, and use this to answer a question of Shepherd
on 3-colorable h-perfect graphs in the negative.

The study of minimally h-imperfect graphs with respect to t-minors
may yield a combinatorial co-NP characterization of h-perfection. We
review the currently known examples of such graphs, study their
stable set polytope and state several conjectures on their structure.

On the other hand, we show that the (weighted) chromatic number
of certain h-perfect graphs can be obtained efficiently by rounding-
up its fractional relaxation. This is related to conjectures of Goldberg
and Seymour on edge-colorings.

Finally, we introduce a new parameter on the complexity of the
matching polytope and use it to give an efficient and elementary al-
gorithm for testing h-perfection in line-graphs.
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R É S U M É

Le calcul du nombre chromatique et la détermination d’une colo-
ration optimale des sommets d’un graphe sont des problèmes NP-
difficiles en général. Ils peuvent cependant être résolus en temps po-
lynomial dans les graphes parfaits. Par ailleurs, la perfection d’un
graphe peut être décidée efficacement.

Les graphes parfaits sont caractérisés par la structure de leur poly-
tope des stables : les facettes non-triviales sont définies exclusivement
par des inégalités de cliques. Réciproquement, une structure similaire
des facettes du polytope des stables détermine-t-elle des propriétés
combinatoires et algorithmiques intéressantes ?

Un graphe est h-parfait si les facettes non-triviales de son polytope
des stables sont définies par des inégalités de cliques et de circuits
impairs.

On ne connaît que peu de résultats analogues au cas des graphes
parfaits pour la h-perfection, et on ne sait pas si les problèmes sont
NP-difficiles. Par exemple, les complexités algorithmiques de la re-
connaissance des graphes h-parfaits et du calcul de leur nombre chro-
matique sont toujours ouvertes. Par ailleurs, on ne dispose pas de
borne sur la différence entre le nombre chromatique et la taille maxi-
mum d’une clique d’un graphe h-parfait.

Dans cette thèse, nous montrons tout d’abord que les opérations
de t-mineurs conservent la h-perfection (ce qui fournit une extension
non triviale d’un résultat de Gerards et Shepherd pour la t-perfection).
De plus, nous prouvons qu’elles préservent la propriété de décompo-
sition entière du polytope des stables. Nous utilisons ce résultat pour
répondre négativement à une question de Shepherd sur les graphes
h-parfaits 3-colorables.

L’étude des graphes minimalement h-imparfaits (relativement aux
t-mineurs) est liée à la recherche d’une caractérisation co-NP com-
binatoire de la h-perfection. Nous faisons l’inventaire des exemples
connus de tels graphes, donnons une description de leur polytope
des stables et énonçons plusieurs conjectures à leur propos.

D’autre part, nous montrons que le nombre chromatique (pondéré)
de certains graphes h-parfaits peut être obtenu efficacement en ar-
rondissant sa relaxation fractionnaire à l’entier supérieur. Ce résultat
implique notamment un nouveau cas d’une conjecture de Goldberg
et Seymour sur la coloration d’arêtes.

Enfin, nous présentons un nouveau paramètre de graphe associé
aux facettes du polytope des couplages et l’utilisons pour donner
un algorithme simple et efficace de reconnaissance des graphes h-
parfaits dans la classe des graphes adjoints.
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1
I N T R O D U C T I O N

1.1 context

1.1.1 Perfect graphs

The theory of Perfect Graphs is one of the most active topics in
the fields of Combinatorial Optimization and Graph Theory. It finds
its origins around 1950 in the work of Shannon on the zero-error
capacity of communication channels, in the seemingly unrelated field
of Information Theory.

Consider a communication channel in which some symbolic mes-
sages are transmitted with some risk of error (for example, the human
voice at some large enough distance). That is, the received message
may be altered and different from the one originally sent. Suppose
that the message is a single letter chosen from a set L, and that the set
F of pairs of letters which may be confused for one-another during
the transmission is known. Shannon asked for the maximum num-
ber of letters of L which can be used to communicate such that no
confusion can arise between the sent and received messages.

In fact, he reformulated the problem in terms of graphs. We write
this formulation in the terminology of modern graph theory. A stable
set of a graph G is a subset of pairwise non-adjacent vertices of G. The
stability number of G, denoted α(G), is the largest number of elements
of a stable set of G.

Consider the graph G := (L, F) (which is called the confusion graph).
The maximum number of letters which can be used such that no error
arises from transmitting a single letter of L is simply α(G).

A similar formulation holds for the problem of transmitting larger
chains. If the length of the chains is at most n, then the maximum
number of letters of L that can be used to communicate without am-
biguity is α(Gn), where Gn denotes the strong product of G by itself
n times (the definition of this product is not needed here, the reader
may just keep in mind that Gn is a graph). Then, the information-rate

per-letter for chains of length n is
α(Gn)

n
.

In this context, Shannon [106] defined the zero-capacity error of a
graph G, denoted Θ(G), as follows:

Θ(G) = sup
n≥1

n
√

α(Gn).

This quantity is also know as the Shannon capacity of G.

1



2 introduction

Figure 1.1 – the 5-circuit and a largest stable set (in black). It cannot be
covered by 2 cliques

Shannon was concerned with computing this parameter for the 5-
circuit C5 (see Figure 1.1).

He observed that Θ(G) = α(G) whenever the set of vertices of G can
be covered with at most α(G) cliques [106], where a clique of G is a set of
pairwise-adjacent vertices of G. However, this is not the case for C5,
nor for any circuit of odd length at least 5 (see Figure 1.1).

Almost 20 years later, Lovász [73] proved that Θ(C5) =
√

5 (Shan-
non gives this value as a lower bound in [106]). The problem of
finding the value of Θ(C7) received a lot of attention from the com-
binatorial community and is still open. Moreover, the computational
complexity of determining the Shannon capacity of a graph is not
known to this day.

The observation of Shannon (that Θ(G) = α(G) for each graph G
having a clique-cover of cardinality α(G)) led Berge to introduce the
notion of a perfect graph (see [9] for more details).

For every graph G, let χ(G) denote the smallest number of cliques
of G whose union is the vertex set of G. A graph G is perfect if every
induced subgraph H of G satisfies α(H) = χ(H). Several classical
results of Combinatorial Optimization can be formulated as the per-
fection of certain graphs (for example, König’s min-max theorems for
matchings and edge-colorings in bipartite graphs).

Two conjectures of Berge (around 1960) are mainly responsible for
the considerable attention that perfect graphs received. The first one
is often refered to as the Weak Perfect Graph Conjecture. It is now a
theorem and was proved by Lovász [71] in 1972, following a refor-
mulation by Fulkerson [48] in terms of replication of vertices (see
Section 3.5 for more details).

Theorem 1.1.1 (Lovász [71]) The complement of a perfect graph is per-
fect.

The chromatic number of a graph G, denoted χ(G), is the smallest
number of colors needed to color the vertices of G such that adjacent
vertices receive different colors; the clique number of G, denoted ω(G)

is the largest number of vertices of a clique of G.
While the inequality χ(G) ≥ ω(G) holds for every graph G, Myciel-

ski [84] built in 1955 a class of graphs with no clique of cardinality 3

and arbitrarily large chromatic number. The Weak Perfect Graph The-
orem states that a graph G is perfect if and only if every induced subgraph
H of G satisfies χ(H) = ω(H).
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Figure 1.2 – an odd hole of length 7 and its corresponding odd antihole

An odd hole of a graph G is an induced circuit of G with an odd
number of vertices which is at least 5. An odd antihole is the comple-
ment graph of an odd hole (see Figure 1.2). It is easy to check that
odd holes and odd antiholes are not perfect. Hence a perfect graph
cannot have odd holes or odd antiholes.

The second conjecture of Berge (the Strong Perfect Graph Conjecture)
asserts that this necessary condition is also sufficient. Chudnovsky,
Robertson, Seymour and Thomas announced in 2002 that they proved
(along almost 150 pages) the following result (known as the Strong
Perfect Graph Theorem):

Theorem 1.1.2 (Chudnovsky et al. [24]) A graph is perfect if and only
if it does not have an odd hole or odd antihole.

Furthermore Chudnovsky, Cornuéjols , Liu, Seymour, Vušković [29,
23] obtained a polynomial-time algorithm to decide perfection. Results of
Grötschel, Lovász and Schrijver [57] imply that α, χ, ω and χ can all
be found in polynomial-time in perfect graphs (as well as their weighted
versions) whereas each of these parameters is NP-hard to compute in
general.

A surprising aspect of perfect graphs is that they are closely related
to polyhedra even though their definition is purely combinatorial.

The incidence vector of a subset S of a set V is the 0-1 vector χS of
RV defined for every v ∈ V by: χS

v = 1 if and only if v ∈ S. The stable
set polytope of a graph G, denoted STAB(G), is the convex hull of the
incidence vectors of the stable sets of G. As a polyhedron, it can be
described as the set of solutions of a finite system of linear inequali-
ties. However, deciding whether a vector x belongs to STAB(G) is an
NP-complete problem [64]. Hence, it is unlikely to find a convenient
linear system describing STAB(G) in general, unless P = NP.

Let V be a set and S ⊆ V. For x ∈ RV(G), let x(S) := ∑s∈S xs.
It is easy to check that every description of STAB(G) contains (up

to a positive scalar factor) the non-negativity inequalities xv ≥ 0 for
every vertex v ∈ V(G). Furthermore, Padberg [87] showed that each
description of STAB(G) contains (up to a positive scalar factor) the
clique-inequality x(K) ≤ 1 for each inclusion-wise maximal clique K of
G. In other words, these inequalities define facets of STAB(G).
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Results of Fulkerson [48] and Lovász [71] imply, as stated by Chvá-
tal [26]:

Theorem 1.1.3 ([26]) For each graph G, the following statements are equiv-
alent:

i) G is perfect,
ii) STAB(G) =

{
x ∈ RV(G) : x ≥ 0, x(K) ≤ 1 for every clique K of G

}
.

1.1.2 Almost-perfect graphs

The nice structural and algorithmic properties of perfect graphs mo-
tivated the study of several variations. The different characterizations
of perfect graphs led to distinct notions and problems (for examples,
see [25, 58, 59]). In this thesis, we are interested in a notion of "almost
perfection" inspired from Theorem 1.1.3.

This result states that the perfection of a graph G induces a minimal
structure on the inequalities needed to describe STAB(G). Conversely,
this facet-structure for STAB(G) implies that the parameters χ, ω

(resp. α, χ) are equal on each induced subgraph of G and can be com-
puted in polynomial-time (as well as their weighted versions). Hence,
it is natural to ask for similar structural properties from classes of
graphs which bare an "almost minimal" facet-structure of the stable
set polytope.

An important result in studying relations between polyhedra and
graphs which are "almost perfect" is due to Padberg.

A graph G is minimally imperfect if G is not perfect and for every
v ∈ V(G), the graph G − v is perfect (G − v is the graph obtained
from deleting v and every edge incident to it). The Strong Perfect
Graph Theorem states that the minimally imperfect graphs are the odd
holes and odd antiholes. Padberg proved the following:

Theorem 1.1.4 (Padberg [89]) For every minimally imperfect graph G:

STAB(G) =

x ∈ RV(G) :
x ≥ 0,

x(K) ≤ 1 ∀K clique of G,

x(V(G)) ≤ α(G)

 .

(1.1)

In this context, Shepherd [107] called a graph G near-perfect if adding
the full rank-inequality x(V(G)) ≤ α(G) to the non-negativity and
clique-inequalities is enough to completely describe STAB(G). Hence,
perfect graphs and minimally imperfect graphs are near-perfect. Fig-
ure 1.3 shows an imperfect near-perfect graph which is not minimally
imperfect.

Shepherd [107] gave several conjectures and results on near-perfect
graphs. In particular, he proved that minimally imperfect graphs are
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Figure 1.3 – a near-perfect graph which is neither perfect nor minimally im-
perfect

the near-perfect graphs whose complement is also near-perfect, and showed
that their (weighted) chromatic number can be obtained in a way
similar to perfect graphs: their stable set polytope has the integer de-
composition property (see Section 3.3.3). Wagler [118] characterized
near-perfection in the classes of webs and antiwebs. Few other classes
of near-perfect graphs are known.

More generally Grötschel, Lovász and Schrijver [57] suggested that
other notions of almost perfection can be obtained by:

1. choosing a set of families of valid inequalities for the stable set
polytope of a graph (in general) including non-negativity and
clique-inequalities,

2. consider the class of graphs whose stable set polytope is com-
pletely described by these selected inequalities.

Near-perfect graphs are built as such (the full-rank inequality being
the only inequality chosen at step 1).

The topic of this thesis is the study of the structure and proper-
ties of the class of h-perfect graphs, which is another class of "almost
perfect" graphs defined in this way.

1.1.3 H-perfect graphs

An odd-circuit inequality of a graph G is an inequality over RV(G) of
the form:

x(V(C)) ≤ |V(C)| − 1
2

,

where C is an odd circuit of G. A graph G is h-perfect if its stable set
polytope can be completely described by non-negativity, clique and
odd-circuit inequalities. In other words, if:

STAB(G) =

x ∈ RV(G) :

x ≥ 0,

x(K) ≤ 1 ∀K clique of G,

x(V(C)) ≤ |V(C)| − 1
2

∀C odd circuit of G.

 .

(1.2)
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We mentioned above that perfect graphs cannot have odd holes.
Therefore, Theorem 1.1.3 shows that perfect graphs are h-perfect. Fur-
thermore, Theorem 1.1.4 implies that odd holes are h-perfect whereas
odd antiholes with at least 7 vertices are not h-perfect.

The effort to understand h-perfection has been mostly focused on
the subclass of h-perfect graphs which do not have cliques with 4

vertices. Such graphs are called t-perfect.
The computational complexity of deciding t-perfection is open. T-

perfection belongs to co-NP [102] but no combinatorial certificate
of t-imperfection is available. Neither an NP-characterization of t-
perfection nor a co-NP characterization of h-perfection are known.

For each graph G and non-negative integer weight c ∈ Z
V(G)
+ , a

maximum-weight stable set is a stable set S such that c(S) is maximum.
Grötschel, Lovász, Schrijver proved (through the Ellipsoid Method):

Theorem (Grötschel, Lovász, Schrijver [56]) A maximum-weight sta-
ble set can be found in polynomial-time in h-perfect graphs.

This is a significant feature of perfection which extends to h-perfection.
Eisenbrand et al. [38] gave an efficient combinatorial algorithm for the
cardinality-case in t-perfect graphs. These algorithms use only the knowl-
edge of the facets of the stable set polytope and do not rely on decom-
position results for h-perfect graphs.

Besides, Bruhn and Stein [16] showed that a maximum clique of an
h-perfect graph can be computed in polynomial-time.

Chvátal defined t-perfection in [26] and conjectured that series-
parallel graphs are t-perfect (a graph is series-parallel if it does not
have the complete graph K4 as a minor). This was proved by Boulala
and Uhry [12] (Mahjoub gave a simpler proof in [77]).

We end this introduction with a condensed overview of the current
state of the art on h-perfection.

recognition of h-perfect graphs Fonlupt and Uhry [44]
proved that almost-bipartite graphs are t-perfect (a graph is almost-bipartite
if it has a vertex belonging to every odd circuit).

Sbihi and Uhry [98] showed that under certain assumptions, bipar-
tite graphs could be substituted to edges of series-parallel graphs to
obtain t-perfect graphs.

Gerards [50] extended the results of Fonlupt, Boulala and Uhry
by proving that graphs which do not contain (as a subgraph) an odd-K4

are t-perfect (an odd-K4 is a subdivision of K4 in which every triangle
becomes an odd circuit).

The non-t-perfect subdivisions of K4 were characterized by Bara-
hona and Mahjoub [3]. Gerards and Shepherd [51] proved that graphs
which do not contain such subdivisions (as a subgraph) are t-perfect. In fact
these graphs, also known as hereditary t-perfect graphs, are exactly the
graphs which have only t-perfect subgraphs. They can be recognized
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in polynomial-time. Hence, the result of Gerards and Shepherd ex-
tends all previous results on excluding certain subdivisions of K4 and
is maximal with respect to obtaining t-perfection under subgraph-
exclusion assumptions.

Figure 1.4 – the claw

A graph is claw-free if it does not have an induced claw (see Fig-
ure 1.4). Bruhn and Stein [16] provided a characterization of t-perfect
claw-free graphs in terms of minimally t-imperfect graphs with respect
to vertex-deletion and t-contraction (the latter is an operation preserv-
ing t-perfection defined by Gerards and Shepherd in [51]). Using this
result, Bruhn and Schaudt [14] showed a polynomial-time algorithm
which decides t-perfection in the class of claw-free graphs. On the
other hand, Shepherd [108] characterized t-perfection in the class of
complements of line graphs.

H-perfection was defined by Sbihi and Uhry in [98]. Fonlupt and
Hadjar [43] gave conditions under which certain operations keep h-
perfection (identification of two vertices, addition of an edge,...). Cao and
Nemhauser [19] gave a forbidden-induced-subgraph characterization of
h-perfect line-graphs. Besides, Arbib and Mosca [2] gave such a char-
acterization (with a single forbidden graph) for the class of graphs
which do not contain an induced path of length 4 nor an induced subgraph
isomorphic to K4 minus an edge.

strong h-perfection It follows from results of Lovász [71] and
Fulkerson [48] that a graph is perfect if and only if the system of non-
negativity and clique-inequalities is totally dual-integral (see definition in
Section 3.3.1).

Similarly, is it true that a graph is h-perfect if and only if the sys-
tem of non-negativity, clique and odd-hole inequalities is totally dual
integral ?

A graph G is strongly h-perfect if the system of inequalities in Equa-
tion (1.2) is totally dual integral. It is strongly t-perfect if it furthermore
has no clique of cardinality 4. Results of Edmonds and Giles [35]
show that every strongly t-perfect graph is t-perfect. Schrijver conjectures
that the converse holds:

Conjecture (Schrijver [102]) Every t-perfect graph is strongly t-perfect.

In [101], Schrijver proved that hereditary t-perfect graphs are strongly t-
perfect. Furthermore, Bruhn and Stein [15] showed that every t-perfect
claw-free graph is strongly t-perfect.
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colorings The polyhedral characterization of perfect graphs stated
in Theorem 1.1.3 shows that the equality of the chromatic and clique
numbers for every induced subgraph implies that the stable set poly-
tope is completely described by non-negativity and clique inequali-
ties.

Since only odd-circuit inequalities are furthermore needed to de-
scribe the stable set polytope of an h-perfect graph, one may expect
that the chromatic number of an h-perfect graph remains close to its
clique number.

It is not known whether there exists a constant c such that every
h-perfect graph G satisfies χ(G) ≤ ω(G) + c. Sbihi and Uhry [98]
conjectured that every h-perfect graph G with ω(G) ≥ 3 is ω(G)-
colorable. This was infirmed by Laurent and Seymour, who found
a t-perfect graph with chromatic number 4 [102, pg. 1207]. This graph
also disproved a conjecture of Shepherd stating that the stable set
polytope of a t-perfect graph has the integer decomposition property
(see [63]).

Sebő showed that the (ω + 1)-colorability of h-perfect graphs would
follow from the case ω ≤ 2 (see [16]).

Results of Bruhn and Stein [16] imply that each h-perfect claw-free
graph G is (ω(G) + 1)-colorable (and an optimal coloring can be found
in polynomial-time). Gerards and Shepherd [51] showed that heredi-
tary t-perfect graphs are 3-colorable and gave a polynomial-time coloring
algorithm.

In this thesis, we investigate the problems of recognizing h-perfect
graphs, computing their chromatic number and the related notion of
the integer decomposition property of their stable set polytope.

1.2 general outline and contributions of the thesis

chapter 3 : preliminaries We give the notations, definitions
and results which are needed to understand the rest of the document.

chapter 4 : on operations preserving h-perfection In
this chapter, we study operations keeping h-perfection and relate
some of them to the integer decomposition property.

A t-contraction of a graph G is obtained by shrinking a vertex v and
its neighbors to a single vertex, when the neighbors of v form a stable
set of G. A t-minor of G is a graph obtained from G by a sequence
of vertex-deletions and t-contractions. Gerards and Shepherd [51]
proved that t-minors keep t-perfection.

We first extend this result by showing that t-minors keep h-perfection.
Furthermore, our proof shows that perfection is closed under t-minors.

A polyhedron P ⊆ Rn has the integer decomposition property if for
every positive integer k, each integral vector of kP is the sum of k
integral vectors of P.
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We prove that t-minors keep the integer decomposition property of the
stable set polytope.

We will use this in Chapter 7 to answer a question of Shepherd
on the equivalence of this property with 3-colorability for t-perfect
graphs.

Let G, H be graphs and v be a vertex of G. The substitution of v by H
in G is the graph obtained from the union of disjoint copies of G− v
and H by adding the edge uw for each neighbor u of v in G and each
vertex w of H. We characterize the graphs H which can be substituted to
a vertex of an h-perfect graph such that the resulting graph is also h-perfect.

A graph G is minimally h-imperfect (resp. minimally t-imperfect) if it
is h-imperfect (resp. t-imperfect) and every t-minor of G other than
itself is h-perfect (resp. t-perfect).

We use our result on substitutions to derive a related property
(on homogeneous sets) of minimally h-imperfect and minimally t-
imperfect graphs.

chapter 5 : minimal h-imperfection T-perfection is in co-
NP but no combinatorial certificate of t-imperfection is known.

Whether h-perfection belongs to NP or co-NP is open. The study of
minimally t-imperfect and minimally h-imperfect graphs may hope-
fully clarify the combinatorial nature of these properties.

We will first review the currently known examples of minimally t-
imperfect graphs. We do not provide new ones, but give a description
of their stable set polytope and formulate a related conjecture. Moreover,
we state known and new conjectures and ask further questions on
minimally t-imperfect graphs.

It is easy to check that K4 is the only minimally t-imperfect graph
which is not minimally h-imperfect. We determine the K4-free graphs
which are minimally h-imperfect but not minimally t-imperfect. They show
that some of the questions and conjectures on minimally t-imperfect
graphs must be reformulated in order to be extended to minimally
h-imperfect graphs.

We present a conjecture of Sebő which states that the minimally
h-imperfect graphs with cliques of cardinality at least 4 are odd anti-
holes and we show that it holds for planar graphs.

We characterize h-perfection and minimal h-imperfection in webs, and
these results hopefully simplify the still open task of proving Sebő’s
conjecture for the special case of claw-free graphs. If valid, this case
would imply (through a theorem of Bruhn and Stein [16]) a forbidden-
t-minor characterization of h-perfection in claw-free graphs. The
latter would provide a co-NP characterization of h-perfect claw-free
graphs.

Finally, we show that the minimally h-imperfect line-graphs can be
derived from a theorem of Cao and Nemhauser [19].
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chapter 6 : integer round-up property for the chromatic

number of certain h-perfect graphs The chromatic num-
ber of a perfect graph is equal to its fractional relaxation. This does
not hold further for h-perfect graphs and the gap between the two
quantities is unknown. This is related to complexity issues in comput-
ing the chromatic number of an h-perfect graph. Most of the content
of this chapter is in [7].

For every graph G and every c ∈ Z
V(G)
+ , the weighted chromatic

number of (G, c) is the minimum cardinality of a multiset F of stable
sets of G such that every v ∈ V(G) belongs to at least cv members of
F .

We prove that every h-perfect line-graph and every t-perfect claw-free
graph G has the integer round-up property for the chromatic number: for
every non-negative integer weight c on the vertices of G, the weighted
chromatic number of (G, c) can be obtained by rounding up its frac-
tional relaxation. This means that the stable set polytope of G has the
integer decomposition property.

Our results imply the existence of a polynomial-time algorithm which
computes the weighted chromatic number of t-perfect claw-free graphs and h-
perfect line-graphs. They also yield a new case of a conjecture of Goldberg
and Seymour [55, 104] on edge-colorings.

Sebő [103] proved that projections of polyhedra defined by totally
unimodular constraints have the integer decomposition property. We
end this chapter by showing that the converse is false, with an exam-
ple of a 0-1 polytope which has the integer decomposition property, but is
not the projection of a polyhedron defined by totally unimodular constraints.

chapter 7 : on colorings of h-perfect graphs Using that
t-minors keep the integer decomposition property of the stable set
polytope (this is proved in Chapter 3), we solve a problem raised by
Shepherd in [108] by showing a 3-colorable t-perfect graph which does
not have the integer round-up property for the chromatic number.

Using a theorem of [108], we prove a forbidden-induced-subgraph
characterization of h-perfect complements of line-graphs which have the
integer round-up property for the chromatic number for 0-1 weights. One
of the two excluded graphs is a new example of a non-3-colorable t-perfect
graph.

A graph is P6-free if it does not have an induced path with 6 ver-
tices. After reviewing results and a conjecture of Sebő on the chro-
matic number of h-perfect graphs, we show that results of Randerath,
Schiermeyer and Tewes [93, 94] imply that each h-perfect P6-free graph
G satisfies χ(G) ≤ ω(G) + 1 (the bound is tight). A corresponding
coloring can be found in polynomial-time.

chapter 8 : ear-decompositions and h-perfection in line–
graphs The complexity of testing h-perfection is not known. This
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chapter studies the case of line-graphs, in which the problem has a
simple combinatorial formulation. It shows connexions with binary
spaces, edge-colorings, subdivisions of K4 and ear-decompositions.
The results of this chapter are the subject of [8].

Let C+
3 denote the graph obtained from the triangle by adding a

single parallel edge. An odd-C+
3 is a graph obtained by replacing each

edge e of C+
3 with a path of odd length joining the ends of e, such that

paths corresponding to different edges do not share inner vertices. A
graph is odd-C+

3 -free if it does not have a subgraph isomorphic to an
odd-C+

3 .
Results of Kawarabayashi, Reed, Wollan [66] (see also Huynh [62])

imply that detecting an odd-C+
3 subgraph can be done in polynomial-

time. Bruhn and Schaudt [14] showed a simpler polynomial-time
algorithm for sub-cubic graphs.

We show a simple and elementary algorithm deciding whether a graph
(with arbitrary degrees) is odd-C+

3 -free. It yields an efficient algorithm
testing h-perfection in line-graphs.

For each graph G, let β(G) denote the largest integer k such that
G has a subgraph which has an open odd ear-decomposition with k
ears (see Section 3.2.2 for the definition of an ear-decomposition). For
example, β(G) ≤ 1 if and only if G is odd-C+

3 -free.
We show that determining β is fixed-parameter-tractable and state a

conjecture on a round-up property for the chromatic index of graphs
for which β is small.

On the other hand, we show a simpler algorithm for detecting totally
odd subdivisions of K4 in odd-C+

3 -free graphs. The relation of odd-C+
3 -free

graphs and totally odd subdivisions of K4 is suggested by Cao’s thesis
[18], which contains structural results and constructions for odd-C+

3 -
free simple graphs. We review the related results of the thesis and
observe that some of them are incorrect.

chapter 9 : conclusion We summarize the questions and con-
jectures from the preceding chapters and suggest further research di-
rections in the study of h-perfection and related problems.





2
I N T R O D U C T I O N ( E N F R A N Ç A I S )

2.1 contexte

2.1.1 Graphes parfaits

La théorie des graphes parfaits est l’un des sujets les plus actifs
de l’Optimisation Combinatoire et de la Théorie des Graphes. Elle a
débuté dans les années 1950 par le travail de Shannon [106] sur la
capacité à zéro-erreur d’un canal de communication, au sein de la
Théorie de l’Information.

Considérons un canal de communication dans lequel des messages
symboliques sont transmis avec un certain risque d’erreur (l’écoute
d’une voix humaine située à une distance assez grande par exemple) :
le message reçu peut différer de celui qui a été émis. Supposons qu’un
message soit réduit à une seule lettre d’un certain sous-ensemble L
de l’alphabet, et que l’ensemble F des paires de lettres pouvant être
confondues l’une pour l’autre soit connu. Shannon [106] s’est inté-
ressé au plus grand nombre de lettres de L qui peuvent être utilisées
de sorte qu’aucune erreur ne puisse se produire.

En particulier, il a reformulé le problème dans les termes de la
théorie des graphes. Nous reprenons ici cette formulation en utilisant
les termes actuels de la théorie. Un stable d’un graphe G est un sous-
ensemble de sommets de G deux-à-deux non-adjacents. La stabilité de
G, notée α(G), est le plus grand nombre d’éléments d’un stable de G.

Considérons le graphe G := (L, F) (appelé graphe de confusion). La
stabilité de G représente alors le plus grand nombre de lettres de
L utilisables dans la transmission de messages d’une seule lettre de
sorte qu’aucune erreur ne puisse se produire.

Le problème de la transmission de messages de plus d’une lettre
admet une formulation similaire. Si l’on transmet des chaînes d’au
plus n caractères de L, alors le nombre maximum de lettres de L utili-
sables pour communiquer sans erreur est α(Gn), où Gn est le produit
fort de G par lui-même n fois (on ne donnera pas la définition de ce
produit, il suffit de retenir que Gn est un graphe). Le taux d’informa-

tion par lettre pour des chaînes de n lettres est alors
α(Gn)

n
.

Ainsi, Shannon [106] a défini la capacité à zéro-erreur d’un graphe G,
notée Θ(G), de la façon suivante :

Θ(G) = sup
n≥1

n
√

α(Gn).

Cette quantité est aussi appelée capacité de Shannon de G [106].

13
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Figure 2.1 – le circuit de longueur 5 et un stable de cardinal maximum (en
noir). Ce graphe ne peut pas être couvert par 2 cliques

Dans ce contexte, l’un des principaux problèmes de Shannon était
le calcul de la capacité du circuit C5 (voir Figure 2.1).

Il a prouvé que Θ(G) = α(G) dès que l’ensemble des sommets du
graphe G peut être couvert avec au plus α(G) cliques [106] (une clique
de G est un sous-ensemble de sommets deux-à-deux adjacents de G).
Cependant, cette dernière propriété n’est pas satisfaite par C5 (voir
Figure 2.1) ni par aucun autre circuit impair de longueur au moins 5.

C’est finalement 20 ans plus tard que Lovász [73] a démontré que
Θ(C5) =

√
5 (Shannon avait donné cette valeur en tant que borne

inférieure [106]). Le calcul de la capacité du cycle de longueur 7 a
fait l’objet de nombreuses recherches et cette question est toujours
ouverte. De plus, la complexité algorithmique du calcul de la capacité
de Shannon d’un graphe n’est pas connue.

Le résultat de Shannon pour les graphes dont les sommets peuvent
être couverts par au plus α cliques a conduit Berge à introduire la
notion de graphe parfait (voir [9]).

Soit G un graphe. Notons χ(G) le plus petit nombre de cliques
de G dont l’union est l’ensemble des sommets de G. Un graphe est
parfait si tout sous-graphe induit H de G satisfait l’égalité α(H) =

χ(H). De nombreux résultats classiques de l’Optimisation Combi-
natoire peuvent être reformulés en termes de perfection de certains
graphes, par exemple les théorèmes min-max de König pour les cou-
plages et arête-colorations dans les graphes bipartis.

L’intérêt considérable pour les graphes parfaits provient essentiel-
lement de deux conjectures énoncées par Berge dans les années 1960.
En premier lieu, la conjecture faible des graphes parfaits énonce que la
classe des graphes parfaits est fermée par complémentaire. Elle a été
démontrée par Lovász en 1972 [71] suite à une reformulation par Ful-
kerson [48] en termes de réplication de sommets (voir aussi la Section
3.5) :

Théorème 2.1.1 (Lovász [71]) Le complémentaire d’un graphe parfait est
parfait.

Le nombre chromatique d’un graphe G, noté χ(G), est le plus petit
nombre de couleurs nécessaires pour colorer les sommets de G de
sorte qu’aucune arête n’a ses deux extrémités de la même couleur ; le
plus grand nombre d’éléments d’une clique de G est noté ω(G).

On a évidemment χ(G) ≥ ω(G) pour tout graphe G. Mycielski [84]
a construit une famille de graphes avec ω ≤ 2 et un nombre chroma-



2.1 contexte 15

tique arbitrairement grand. En comparaison, le théorème faible des
graphes parfaits affirme précisément qu’un graphe G est parfait si et
seulement si tout sous-graphe induit H de G satisfait χ(H) = ω(H).

Figure 2.2 – un trou impair de longueur 7 et l’anti-trou impair correspon-
dant

Un trou impair d’un graphe G est un circuit induit de G qui a un
nombre de sommets impair et supérieur ou égal à 5. Un anti-trou
impair est le complémentaire d’un trou impair (voir Figure 2.2). Il est
clair qu’un graphe parfait n’a ni trou impair ni anti-trou impair.

La seconde conjecture de Berge (la conjecture forte des graphes par-
faits) énonce que cette condition nécessaire est aussi suffisante. Elle a
été prouvée par Chudnovsky, Robertson, Seymour et Thomas en 2002

(en environ 150 pages) :

Théorème 2.1.2 (Chudnovsky et al. [24]) Un graphe est parfait si et
seulement s’il n’a pas de trou impair ou d’anti-trou impair.

De plus, Chudnovsky, Cornuéjols, Liu, Seymour, Vušković [29, 23]
ont donné un algorithme polynomial permettant de déterminer si un
graphe est parfait. Par ailleurs, des résultats de Grötschel, Lovász
et Schrijver [57] impliquent que α, χ, ω et χ (ainsi que leurs versions
pondérées) peuvent être déterminés en temps polynomial dans les graphes
parfaits, alors que leur calcul est NP-difficile en général.

Bien que leur définition soit de nature combinatoire, les graphes
parfaits présentent d’étonnantes connexions avec la géométrie de cer-
tains polyèdres.

Le vecteur d’incidence d’un sous-ensemble S d’un ensemble V est
le vecteur 0-1 de RV , noté χS, défini pour tout v ∈ V par : χS

v =

1 si et seulement si v ∈ S. Le polytope des stables d’un graphe G,
noté STAB(G), est l’enveloppe convexe des vecteurs d’incidence des
stables de G. En tant que polyèdre, il est l’ensemble des solutions
d’un système fini d’inégalités linéaires. Cependant, décider l’apparte-
nance d’un vecteur à STAB(G) est un problème NP-complet [64]. Dès
lors, l’obtention d’une description convenable de STAB(G) pour tout
graphe G à l’aide d’inégalités linéaires est improbable, à moins que
P = NP.

Pour un ensemble V, un sous-ensemble fini S de V et x ∈ RV , on
note x(S) := ∑s∈S xs.
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On vérifie aisément que chaque description de STAB(G) doit conte-
nir les inégalités de non-négativité xv ≥ 0 pour tout v ∈ V(G) (à un fac-
teur strictement positif près). D’autre part, Padberg [87] a montré que
chaque description contient aussi l’inégalité de clique x(K) ≤ 1 pour
toute clique K de G qui est maximale pour l’inclusion (à un facteur
strictement positif près). En d’autres termes, ces inégalités définissent
toutes des facettes de STAB(G).

Le théorème suivant, énoncé par Chvátal [26], est une conséquence
directe de résultats de Fulkerson [48] et Lovász [71] :

Théorème 2.1.3 ([26]) Pour tout graphe G, les assertions suivantes sont
équivalentes :

i) G est parfait,
ii) STAB(G) =

{
x ∈ RV(G) : x ≥ 0, x(K) ≤ 1 pour toute clique K de G

}
.

2.1.2 Graphes presque-parfaits

Les propriétés remarquables des graphes parfaits ont motivé l’étude
de nombreuses variations, et leurs différentes caractérisations ont
donné lieu à différents notions et problèmes (voir par exemple [25,
58, 59]). Dans cette thèse, on s’intéresse à une notion de "presque-
perfection" issue du Théorème 2.1.3.

Il énonce que la perfection d’un graphe G induit une structure mi-
nimale des facettes de STAB(G) : elles sont définies exclusivement
par la non-négativité et des cliques. Réciproquement, cette structure
géométrique implique que les paramètres combinatoires χ, ω, α, χ

peuvent être calculés en temps polynomial. Par conséquent, il convient
d’étudier les propriétés combinatoires des graphes dont le polytope
des stables a une structure semblable.

Un des premiers résultats dans cette direction est dû à Padberg.
Un graphe G est minimalement imparfait si G n’est pas parfait et si

pour tout sommet v de G, le graphe G − v est parfait (G − v est le
graphe obtenu de G en supprimant v ainsi que les arêtes incidentes
à v). Le Théorème Fort des Graphes Parfaits affirme que les graphes
minimalement imparfaits sont les trous impairs et les anti-trous impairs.
Padberg a démontré le théorème suivant :

Théorème 2.1.4 (Padberg [89]) Pour tout graphe minimalement impar-
fait G :

STAB(G) =

x ∈ RV(G) :
x ≥ 0,

x(K) ≤ 1 ∀K clique de G,

x(V(G)) ≤ α(G)

 .

(2.1)

Dans ce contexte, on dit qu’un graphe G est proche-parfait s’il suffit
d’ajouter l’inégalité de plein-rang x(V(G)) ≤ α(G) à celles de non-
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négativité et de cliques pour obtenir une description de STAB(G).
En particulier, les graphes parfaits ou minimalement imparfaits sont
proche-parfaits. La Figure 2.3 montre un graphe proche-parfait qui
n’est ni parfait, ni minimalement imparfait.

Figure 2.3 – un graphe proche-parfait qui n’est ni parfait ni minimalement
imparfait

Plusieurs conjectures et résultats sur les graphes proche-parfaits
ont été énoncés et obtenus par Shepherd [107]. En particulier, il a
montré que les graphes minimalement imparfaits sont les graphes proche-
parfaits dont le complémentaire est aussi proche-parfait, et que le nombre
chromatique (pondéré) d’un graphe proche-parfait s’obtient par une
méthode analogue au cas parfait : le polytope des stables d’un graphe
proche-parfait a la Propriété de Décomposition Entière (voir Section 3.3.3).
Wagler [118] a caractérisé la proche-perfection dans les classes des
graphes circulants et anti-circulants. On connaît peu d’autres classes
de graphes proche-parfaits.

Plus généralement, Grötschel, Lovász et Schrijver [57] ont suggéré
que d’autres notions de "presque-perfection" peuvent être obtenues
de la façon suivante :

1. on choisit d’abord un ensemble de familles d’inégalités valides
pour le polytope des stables qui contient les inégalités de non-
négativité et de cliques,

2. on considère la classe des graphes dont le polytope des stables
est entièrement décrit par les inégalités choisies.

Les graphes proche-parfaits sont en effet construits de la sorte (l’in-
égalité de plein-rang étant la seule choisie à l’étape 1 en dehors de la
non-négativité et des cliques).

Cette thèse s’attache à l’étude de la structure et des propriétés de
la classe des graphes h-parfaits, qui est un autre exemple de classe
obtenue par cette procédure.

2.1.3 Graphes h-parfaits

Une inégalité de circuit impair d’un graphe G est une inégalité sur
RV(G) de la forme :

x(V(C)) ≤ |V(C)| − 1
2

,

où C est un circuit impair de G. Un graphe G est h-parfait si son
polytope des stables est entièrement décrit par les inégalités de non-
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négativité, de cliques et de circuits impairs. En d’autres termes, si on
a :

STAB(G) =

x ∈ RV(G) :

x ≥ 0,

x(K) ≤ 1 ∀K clique de G,

x(V(C)) ≤ |V(C)| − 1
2

∀C circuit impair de G.

 .

(2.2)

On a déjà noté que les graphes parfaits ne peuvent avoir de trou
impair. Ainsi, le Théorème 2.1.3 montre que les graphes parfaits sont
h-parfaits. De plus, le Théorème 2.1.4 implique que les trous impairs
sont h-parfaits et que les anti-trous impairs à au moins 7 sommets ne
le sont pas.

L’essentiel des résultats sur la h-perfection porte sur le cas des
graphes qui n’ont pas de clique à 4 sommets. Un graphe est t-parfait
s’il est h-parfait et n’a pas de clique de taille 4.

The computational complexity of deciding t-perfection is open.
T-perfection belongs to co-NP [102] but no combinatorial certifi-

cate of t-imperfection is available. Neither an NP-characterization of
t-perfection nor a co-NP characterization of h-perfection are known.

La complexité algorithmique du problème de la reconnaissance
d’un graphe t-parfait est ouverte.

La t-perfection appartient à co-NP [102] mais on ne connaît pas de
certificat combinatoire de t-imperfection. Par ailleurs, on ne sait pas
si la t-perfection appartient à NP ni si la h-perfection est dans co-NP.

Pour tout graphe G et tout poids c ∈ Z
V(G)
+ , un stable de poids maxi-

mum de (G, c) est un stable S de G pour lequel c(S) est maximum.
Grötschel, Lovász, Schrijver ont démontré (par la Méthode des Ellip-
soïdes) :

Théorème 2.1.5 (Grötschel, Lovász, Schrijver [56]) Un stable de poids
maximum d’un graphe h-parfait peut être déterminé en temps polynomial.

Cet résultat donne un exemple d’une propriété majeure de la per-
fection qui s’étend à la h-perfection. Eisenbrand et al. [38] ont donné
un algorithme combinatoire efficace pour trouver un stable de cardinalité
maximum dans un graphe t-parfait. Par ailleurs, Bruhn et Stein [16] ont
montré qu’une clique de cardinalité maximum d’un graphe h-parfait peut
être déterminée efficacement.

Les graphes t-parfaits ont été introduits par Chvátal [26]. Il a conjec-
turé que les graphes série-parallèles sont t-parfaits (un graphe est
série-parallèle s’il n’a pas le graphe complet K4 pour mineur), ce qui
a été prouvé par Boulala et Uhry [12] (Mahjoub a donné une preuve
plus simple dans [77]). Nous terminons cette introduction en dressant
l’état des principales connaissances à propos des graphes h-parfaits.
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reconnaissance des graphes h-parfaits Fonlupt et Uhry
[44] ont démontré que les graphes presque-bipartis sont t-parfaits (un
graphe est presque-biparti s’il a un sommet qui appartient à tous ses
circuits impairs).

Sbihi et Uhry [98] ont prouvé que sous certaines conditions, la sub-
stitution de graphes bipartis aux arêtes de graphes série-parallèles
produit des graphes t-parfaits.

Gerards [50] a étendu les résultats de Fonlupt, Boulala et Uhry
en démontrant que les graphes qui n’ont pas de K4-impair (comme sous-
graphe) sont t-parfaits (un K4-impair est une subdivision de K4 dans
laquelle chaque triangle de K4 est transformé en un circuit impair).

Les subdivisions non-t-parfaites de K4 ont été caractérisées par Ba-
rahona et Mahjoub [3]. Gerards et Shepherd [51] ont montré que les
graphes qui ne contiennent pas de subdivision non-t-parfaite de K4 (comme
sous-graphe) sont t-parfaits. Ces graphes sont exactement ceux dont
tous les sous-graphes sont t-parfaits (ils sont dits t-parfaits héréditaires)
et peuvent être reconnus en temps polynomial. Ainsi, le résultat de
Gerards et Shepherd contient tous les précédents énoncés affirmant
la t-perfection de graphes ne contenant pas certaines subdivisions de
K4, et est maximal quant à l’obtention de t-perfection par exclusion
de sous-graphes.

Figure 2.4 – la griffe

Un graphe est sans griffe s’il n’a pas de griffe induite (voir Figure 2.4).
Bruhn et Stein [16] ont prouvé une caractérisation combinatoire co-
NP de la t-perfection dans les graphes sans griffe. Elle s’exprime en
termes de graphes minimalement t-imparfaits relativement à deux
opérations de graphes qui préservent la t-perfection : la suppression
d’un sommet et la t-contraction (celle-ci a été définie et étudiée par
Gerards et Shepherd [51]).

Bruhn et Schaudt [14] ont utilisé cette caractérisation pour don-
ner un algorithme efficace décidant la t-perfection dans la classe des
graphes sans griffe. D’autre part, Shepherd [108] a caractérisé les
graphes t-parfaits dans la classe des complémentaires de graphes ad-
joints.

Les graphes h-parfaits ont été définis par Sbihi et Uhry dans [98].
Fonlupt et Hadjar [43] ont montré que sous certaines conditions, les
opérations d’identification de deux sommets et d’ajout d’une arête
conservent la h-perfection. Cao et Nemhauser [19] ont caractérisé la
h-perfection dans la classes des graphes adjoints en termes de sous-
graphes induits interdits. Un résultat similaire a été obtenu par Arbib
et Mosca [2] pour la classe des graphes qui n’ont pas de sous-graphe
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induit isomorphe à un chemin à 5 sommets ou au graphe complet
auquel on a retiré une arête.

h-perfection forte Des résultats de Lovász [71] et Fulkerson
[48] impliquent qu’un graphe est parfait si et seulement si le système des
inégalités de non-négativité et de cliques est totalement dual-entier (voir la
définition dans la Section 3.3.1).

Les graphes h-parfaits admettent-ils une caractérisation analogue ?
Un graphe G est fortement h-parfait si le système des inégalités de

non-négativité, cliques et circuits impairs est totalement dual-entier.
Un graphe est fortement t-parfait s’il est fortement h-parfait et sans
K4. Des résultats d’Edmonds et Giles [35] impliquent que tout graphe
fortement t-parfait est t-parfait. Schrijver conjecture la réciproque :

Conjecture (Schrijver [102]) Tout graphe t-parfait est fortement t-parfait.

Il a démontré que les graphes t-parfaits héréditaires sont fortement t-
parfaits [101] (on rappelle qu’un graphe est t-parfait héréditaire si tous
ses sous-graphes sont t-parfaits). Bruhn et Stein [15] ont prouvé que
les graphes t-parfaits sans griffe sont fortement t-parfaits.

colorations La caractérisation polyédrale des graphes parfaits
(Théorème 1.1.3) montre qu’imposer l’égalité de χ et ω sur tout sous-
graphe induit implique que le polytope des stables est entièrement
décrit par les inégalités de non-négativité et de cliques.

Étant donné que les inégalités de circuits impairs sont les seules
intervenant en plus dans la description du polytope des stables d’un
graphe h-parfait, on peut s’attendre à ce que le nombre chromatique
d’un tel graphe reste proche de la taille de sa plus grande clique.

L’existence d’une constante c pour laquelle tout graphe h-parfait G
satisferait χ(G) ≤ ω(G)+ c n’est pas connue. Laurent et Seymour ont
donné un graphe t-parfait avec χ = 4 et ω = 3 [102, pg. 1207]. Ainsi, c
devrait être supérieure ou égale à 1. Par ailleurs, leur exemple montre
que le polytope des stables d’un graphe t-parfait n’a pas la propriété
de décomposition entière [63].

Sebő a prouvé que la (ω + 1)-colorabilité des graphes h-parfaits décou-
lerait du cas ω ≤ 2 (voir [16]).

Des résultats de Bruhn et Stein [16] impliquent que tout graphe h-
parfait sans griffe est (ω + 1)-colorable (et une coloration optimale peut
être trouvée en temps polynomial). Enfin, Gerards et Shepherd [51]
ont démontré que tout graphe t-parfait héréditaire est 3-colorable (et une
3-coloration peut être trouvée efficacement)

Cette thèse se concentre sur l’étude des problèmes de la reconnais-
sance des graphes h-parfaits, du calcul de leur nombre chromatique
et de la propriété de décomposition entière de leur polytope des
stables.
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2.2 plan de la thèse et contributions

chapitre 3 : préliminaires On donne les notations, défini-
tions et résultats nécessaires à la compréhension de la suite du do-
cument.

chapitre 4 : sur les opérations qui conservent la h-per-
fection Dans ce chapitre, on étudie des opérations de graphes
qui préservent la h-perfection et on montre que certaines conservent
de plus la propriété de décomposition entière du polytope des stables.

Une t-contraction d’un graphe G est obtenue en identifiant un som-
met v à tous ses voisins, lorsque ceux-ci forment un stable de G.
Un t-mineur de G est un graphe obtenu à partir de G par une suite
de suppressions de sommets et de t-contractions (dans n’importe
quel ordre). Gerards et Shepherd [51] ont prouvé que les t-mineurs
conservent la t-perfection.

Nous commençons par étendre ce résultat en démontrant que les
t-mineurs conservent aussi la h-perfection. La preuve montre de plus que
la perfection est préservée par les t-mineurs.

Un polyèdre P ⊆ Rn a la propriété de décomposition entière si pour
tout entier positif k, chaque vecteur entier de kP est la somme de k
vecteurs entiers de P.

On prouve aussi que la propriété de décomposition entière du polytope
des stables est conservée par les t-mineurs.

Nous utiliserons ce résultat au Chapitre 7 pour répondre néga-
tivement à une question de Shepherd sur les graphes t-parfaits 3-
colorables.

Soient G et H des graphes et v un sommet de G. La substitution
de v par H dans G est le graphe obtenu de l’union de deux copies
disjointes de G− v et H en ajoutant une arête uw pour chaque voisin
u de v dans G et chaque sommet w de H. Nous caractérisons les
graphes qui peuvent être substitués à un sommet d’un graphe h-parfait de
sorte que le graphe obtenu soit h-parfait lui aussi.

On dit qu’un graphe est minimalement h-imparfait (resp. minimale-
ment t-imparfait) s’il est h-imparfait (resp. t-imparfait) et si tout t-
mineur de G (sauf G lui-même) est h-parfait (resp. t-parfait).

Comme conséquence de notre résultat sur les substitutions, nous
obtenons une propriété des ensembles homogènes dans les graphes mi-
nimalement h-imparfaits et t-imparfaits.

chapitre 5 : sur les graphes minimalement h-imparfaits

La t-perfection est une propriété co-NP mais on ne connaît pas de
certificat combinatoire de t-imperfection.

L’appartenance de la h-perfection à NP ou co-NP est toujours ou-
verte. La caractérisation des graphes minimalement t-imparfaits et
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minimalement h-imparfaits conduirait à une compréhension combi-
natoire de ces propriétés.

Nous commencerons par faire l’inventaire des exemples connus de
graphes minimalement t-imparfaits. Nous ne donnons pas de nou-
vel exemple, mais décrivons leur polytope des stables et formulons
une conjecture à son sujet. De plus, nous énumérons les conjectures
énoncées dans la littérature et en suggérons de nouvelles.

Il est facile de vérifier que K4 est l’unique graphe minimalement t-
imparfait qui n’est pas minimalement h-imparfait. On se propose de
déterminer tous les graphes sans K4 qui sont minimalement h-imparfaits et
pas minimalement t-imparfaits. Ils montrent que certaines des questions
et conjectures formulées pour les graphes minimalement t-imparfaits
ne peuvent s’étendre aux minimalement h-imparfaits qu’en excluant
certains cas.

On présente une conjecture de Sebő qui énonce que les graphes
minimalement h-imparfaits qui ont des cliques d’au moins 4 sommets
sont des antitrous impairs, et nous montrons qu’elle est satisfaite par
les graphes planaires. Nous caractérisons aussi les graphes h-parfaits et
minimalement h-imparfaits dans la classes des graphes circulants.

Nous expliquons en quoi ces résultats pourraient être utiles dans
la recherche d’une preuve de la conjecture de Sebő pour le cas des
graphes sans griffe. Combinée aux résultats de Bruhn et Stein [16],
une telle preuve fournirait directement une caractérisation combina-
toire co-NP de la h-perfection sans griffe.

Nous observons enfin que les graphes adjoints minimalement h-impar-
faits peuvent être facilement obtenus en utilisant un théorème de Cao
et Nemhauser [19].

chapitre 6 : propriété d’arrondi entier pour le nombre

chromatique de certains graphes h-parfaits Le nombre
chromatique d’un graphe parfait est toujours égal à sa relaxation frac-
tionnaire. Ce n’est pas le cas pour les graphes h-parfaits, et on ne
connaît pas de borne sur l’écart maximum de ces deux quantités.
La détermination de cet écart est liée à la complexité du calcul du
nombre chromatique d’un graphe h-parfait. Les résultats principaux
de ce chapitre font l’objet de [7].

Pour tout graphe G et tout c ∈ Z
V(G)
+ , le nombre chromatique (pon-

déré) de (G, c) est le plus petit cardinal d’un multi-ensemble F de
stables de G tel que tout sommet v de G appartient à au moins cv

membres de F .
Nous démontrons que tout graphe h-parfait adjoint et tout graphe t-

parfait sans griffe G a la propriété d’arrondi entier pour le nombre chroma-
tique : pour tout poids entier positif c sur les sommets, le nombre
chromatique de (G, c) s’obtient en arrondissant sa relaxation fraction-
naire à l’entier supérieur. En d’autres termes, le polytope des stables de
G a la propriété de décomposition entière.
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Ces résultats impliquent l’existence d’un algorithme polynomial
pour le calcul du nombre chromatique pondéré d’un graphe t-parfait sans
griffe ou h-parfait adjoint. Par ailleurs, ils fournissent un nouveau cas
d’une conjecture de Goldberg et Seymour [55, 104] sur l’arête-coloration.

Sebő [103] a prouvé que toute projection d’un polyèdre défini par
des contraintes totalement unimodulaires à la propriété de décompo-
sition entière. Nous terminons ce chapitre en montrant que la réci-
proque est fausse, même pour les polytopes 0-1.

chapitre 7 : sur la coloration des graphes h-parfaits

En utilisant le fait que les t-mineurs conservent la propriété de dé-
composition entière du polytope des stables (prouvé au Chapitre 3),
nous résolvons un problème de Shepherd [108] sur les graphes t-parfaits
3-colorables.

D’autre part, nous prouvons une caractérisation (par exclusion de
sous-graphes induits) de la propriété d’arrondi entier du nombre chro-
matique pour les poids 0-1 dans les graphes h-parfaits complémentaires de
graphes adjoints. Un des deux sous-graphes interdits est un nouvel
exemple de graphe t-parfait qui n’est pas 3-colorable.

Un graphe est sans P6 s’il n’a pas de sous-graphe induit isomorphe
au chemin à 6 sommets. Après un inventaire des résultats et conjec-
tures sur le nombre chromatique des graphes h-parfaits, nous mon-
trons qu’un résultat de Randerath, Schiermeyer et Tewes [93, 94] im-
plique que tout graphe h-parfait sans P6 est (ω+ 1)-colorable. Cette borne
est serrée et une (ω + 1)-coloration peut être trouvée en temps poly-
nomial.

chapitre 8 : décomposition d’oreilles et h-perfection

dans les graphes adjoints La complexité de la reconnaissance
des graphes h-parfaits est ouverte. Dans ce chapitre nous étudions le
cas des graphes adjoints, pour lesquels le problème a une formulation
combinatoire simple. Notre solution met en évidence des liens entre
les espaces binaires, l’arête-coloration, certaines subdivisions de K4 et
les décomposition d’oreilles. Les résultats de ce chapitre font l’objet
de [8].

Notons C+
3 le graphe obtenu du triangle en ajoutant une seule arête

parallèle. Un C+
3 -impair est un graphe obtenu en remplaçant chaque

arête e de C+
3 par une chaîne ayant un nombre impair d’arêtes, de

sorte que les chaînes correspondant à des arêtes différentes ne par-
tagent pas de sommets internes deux-à-deux. Un graphe est dit sans
C+

3 -impair s’il n’a pas de sous-graphe isomorphe à un C+
3 -impair.

Des résultats de Kawarabayashi, Reed, Wollan [66] (et Huynh [62])
impliquent qu’il est possible de détecter un C+

3 -impair (comme sous-
graphe) en temps polynomial. De plus, Bruhn et Schaudt [14] ont
donné un algorithme efficace plus simple pour le cas des graphes de
degré maximum 3.
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Nous proposons un algorithme simple et élémentaire pour la reconnais-
sance des graphes sans C+

3 -impair (sans restriction sur les degrés). Il peut
être converti en un algorithme efficace qui décide la h-perfection dans les
graphes adjoints.

Soit G un graphe. On note β(G) le plus grand entier k tel que G a
un sous-graphe qui admet une décomposition d’oreilles ouverte avec
k oreilles (voir Section 3.2.2 pour la définition de ces termes). Par
exemple, β(G) ≤ 1 si et seulement si G est sans C+

3 -impair.
Nous prouvons que le calcul de β est résoluble en temps polynomial à

paramètre fixé et énonçons une conjecture sur la propriété d’arrondi
entier de l’indice chromatique des graphes pour lesquels β est petit.

D’autre part, nous donnons un algorithme efficace simple pour la dé-
tection de subdivisions totalement impaires de K4 dans les graphes sans C+

3 -
impair.

La relation des graphes sans C+
3 -impair aux subdivisions totale-

ment impaires de K4 a été mise en évidence dans la thèse de Cao [18].
Cette dernière contient des résultats structurels et des constructions
pour les graphes simples sans C+

3 -impair. Nous clôturons le chapitre
avec l’énumération des principaux résultats de [18] liés aux graphes
sans C+

3 -impair et observons que certains énoncés sont incorrects.

chapitre 10 : conclusion On résume les questions et conjec-
tures énoncées dans les chapitres précédents. On suggère enfin di-
verses perspectives de recherche pour la poursuite de l’étude de la
h-perfection et des problèmes liés.



3
P R E L I M I N A R I E S

This chapter contains the notations, definitions and results which are nec-
essary in understanding the rest of the document. No new result is given
and it is intended as a reference chapter only.

With a few exceptions, we do not provide proofs. Indeed, the content is
standard regarding the combinatorial optimization literature and they can
be found in the indicated references.

Ce chapitre contient l’ensemble des notations, définitions et résultats né-
cessaires à la compréhension de la suite de la thèse. Il ne propose pas de
nouveau résultat et est conçu en tant que référence pour les chapitres sui-
vants.

Les résultats énoncés sont pour la plupart standards en Optimisation
Combinatoire. À quelques exceptions près nous ne fournissons pas leurs
preuves et proposons des références qui les contiennent.

3.1 numbers , sets and families

The sets of integers, rational numbers and real numbers are respec-
tively denoted Z, Q, R. The set of non-negative integers is written
Z+ and the set of non-negative rational numbers is denoted Q+. We
write ∅ for the empty set. For every real number x, let bxc (resp. dxe)
denote the floor (resp. ceiling) of x.

We will use the usual convention: max∅ = +∞ and min∅ = −∞.
For each non-negative integer k, we put [k] := {1, . . . , k}. Finally, we
write F2 for the field with 2 elements. The all-1 vector of a finite-
dimensional vector space is always written 1 without further preci-
sion (there shall not be any ambiguity).

Let S be a set. The number of elements (or cardinality) of S is writ-
ten |S|. The incidence vector of a subset Y of S, denoted χY, is the vector
of RS defined for every s ∈ S by: χY(s) = 1 if s ∈ Y and χY(s) = 0
otherwise. If Y has a single element s, we write χs instead of χ{s}. For
every x ∈ RS, let x(Y) denote ∑s∈Y xs.

For each Y ⊆ S, we define the projection of RS on RY as the map
π : RS → RY which sends each vector x ∈ RS to its restriction to Y.
That is, the map just deletes the coordinates indexed by the elements
of S \ Y. We often refer to π simply as the projection RS → RY. The
projection of X ⊆ RS on RY is the set π(X).

For elements u, v of a set X, we write uv for the set {u, v}. A pair is
a set of cardinality 2. The symmetric difference of two sets X and Y
is denoted X∆Y.

25
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A multiset is a set in which the same element can occur more than
once. The number of occurrences of an element is its multiplicity.

The cardinality of a multiset F , denoted |F | (extending the notation
for sets), is the sum of the multiplicities of the elements of F .

The sum of two multisets F1 and F2, denoted F1 +F2, corresponds
to their union in which multiplicities are added. If F2 consists of a sin-
gle element s with multiplicity 1, we write the sum F1 + s instead of
F1 + {s}. The difference F1 − F2 of F1 and F2 is obtained by remov-
ing from F1 each element s of F2 as many times as its multiplicity
in F2 (if the latter is greater than the multiplicity in F1, then we sim-
ply delete every occurrence of x from F1). Similarly, we write F1 − x
instead of F1 − {x}.

A subset (resp. submultiset) of a set S (resp. multiset) is proper if
it is different from S. An element of a set F of subsets of a set X is
inclusion-wise maximal if it is not a proper subset of an element of F .
Besides, F covers X if each element belongs to at least one member
of F . It is easy to check that if F is closed by taking subsets, then F
covers X if and only if X can be partitioned into members of F .

The symbol � marks the end of the proof of a proposition, lemma,
theorem, corollary, whereas � denotes the end of a proof of a claim
inside a larger proof.

For further standard and basic related notations and notions, we
refer to Chapter 2 of [102].

3.2 graphs

In this thesis we only consider finite undirected graphs. They can
have multiple edges but no loops.

Let G be a graph. The set of vertices and the set of edges of G are
respectively denoted V(G) and E(G). The ends of an edge e of G are
its two elements. We use the notation e = uv to specify that u and v
are the ends of e. Two vertices u and v of G are adjacent if G has an
edge whose ends are u and v.

Edges are parallel if they have the same ends. The multiplicity of an
edge e of G is the number of edges which are parallel to e (including
e). Besides, G is simple if its edges all have multiplicity 1.

A graph is complete if its vertices are pairwise-adjacent. For each
X ⊆ V(G), the set of edges which have both ends in X is written
EG(X).

Let v be a vertex of G. A neighbor of v in G is a vertex adjacent to u.
The neighborhood of v in G, denoted NG(v), is the set of neighbors of
v in G. Besides, let NG [v] := NG(v) ∪ {v}.

An edge e and a vertex u of G are incident if u is an end of e. Two
edges are incident if they have at least one common end.
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3.2.1 Basic notions

degrees For each vertex u of G, we write δG(u) for the set of
edges of G which are incident with u. The degree of u in G, denoted
dG(u), is the number |δG(u)|. The largest degree of a vertex of G is
written ∆(G). A vertex of G is isolated if it has degree 0 (that is it
has no neighbor). Unless G is simple, the degree and the number of
neighbors of a vertex may differ.

A graph is k-regular if its vertices all have the same degree k. In this
case, we say that k is the degree of the graph.

Figure 3.1 – a 3-regular simple graph (Petersens’s graph)

isomorphisms Two graphs G1 and G2 are isomorphic if there exist
bijective maps f : V(G1) → V(G2) and g : E(G1) → E(G2) such that
for each uv ∈ E(G1), the ends of g(uv) are f (u) and f (v).

If G1 and G2 are simple, then this is equivalent to state that there
exists a bijective map (called an isomorphism) f : V(G1)→ V(G2) such
that for every pair uv of vertices of G1: the pair f (u) f (v) is an edge
of G2 if and only if uv is an edge of G1.

A simple graph H is vertex-transitive if for each pair of vertices u
and v of G, there exists an isomorphism of G onto itself which sends
u to v.

a1

a2

a3 a4

b1 b2

b3 b4

Figure 3.2 – two isomorphic graphs (ai → bi is an isomorphism)

operations on graphs For each F ⊆ E(G), let G − F denote
the graph (V(G), E(G)− F). We say that G− F is obtained from G by
deleting F and we refer to this operation as an edge-deletion. If F has a
single element e, then we write G− e instead of G− {e}.
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The underlying simple graph of G is the graph (unique up to isomor-
phism) obtained from G by deleting edges until no pair of parallel
edges remains.

For each set F of pairs of vertices of G, let G + F denote the graph
(V(G), E(G) + F). We say that G + F is obtained from G by adding
the pairs of F as edges. If F has a single element e, then we write G + e
instead of G + {e}.

For each X ⊆ V(G), let G − X denote the graph obtained from G
by deleting each vertex of X and each edge of G incident to a vertex
of X. We say that G−X is obtained from G by deleting X and we refer
to this operation as a vertex-deletion. If X has a single element v, then
we write G− v instead of G− {v}.

Let x̃ be a new element which does not belong to V(G) and let F
be the set of edges of G which have no end in X. We define:

Ẽ := F + {ux̃ : ∀uv ∈ E(G) with v ∈ X and u /∈ X} .

The pair (V(G)− X + x̃, Ẽ) is a graph, denoted G/X and we say that
it is obtained from G by identifying (or shrinking) the vertices of X to a
single vertex (see Figure 3.3).

X
(a) G

x̃
(b) G/X

Figure 3.3 – shrinking a set X of vertices of G to a single vertex x̃

For each edge e = uv of G, we write G/e for G/ {u, v} and say that
G/e is obtained from G by contracting e. We refer to this operation
as an edge-contraction. A minor of G is a graph obtained from G by a
sequence of vertex or edge-deletions and edge-contractions.

subgraphs A graph H is a subgraph of G if V(H) ⊆ V(G) and
E(H) ⊆ E(G). It is proper if it is distinct from G, and it is spanning
if V(H) = V(G). For each graph H, we will say that G contains H if
G has a subgraph isomorphic to H. For each X ⊆ V(G), the subgraph
of G induced by X, denoted G [X], is the subgraph G− (V(G) \ X). In
other words, it is the graph (X, EG(X)). A subgraph H of G is induced
if it is induced by some subset of vertices of G.

For each simple graph H, we say that G contains an induced H (or
that G has an induced H) if G has an induced subgraph whose un-
derlying simple graph is isomorphic to H.
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If G is simple, then G has an induced H if and only if there exists
X ⊆ V(G) such that H = G [X].

Two subgraphs are vertex-disjoint (resp. edge-disjoint) if they do not
have a common vertex (resp. edge).

union. intersection. complement The union of G1 and G2,
denoted G1 ∪ G2, is the graph (V(G1) ∪V(G2), E(G1) ∪ E(G2)). Their
intersection, denoted G1 ∩ G2, is the graph (V(G1) ∩ V(G2), E(G1) ∩
E(G2)).

The complement of a graph G, denoted G, is the simple graph whose
vertex-set is V(G) and whose edges are the pairs of non-adjacent
vertices of G.

paths , circuits and connectivity A path P of G is a se-
quence (u1, . . . , uk) (with k ≥ 1) of pairwise-distinct vertices of G
such that for each i ∈ [k− 1]: uiui+1 ∈ E(G). We will often identify it
to the subgraph ({u1, . . . , uk} , {u1u2, . . . , uk−1uk}).

The vertices u1 and uk (which may be the same) are the ends of
P and u2, . . . , uk−1 are the inner vertices of P. Besides, we say that P
joins its ends. Two paths are inner-disjoint if they do not share inner
vertices. For u, v ∈ V(G), a uv-path of G is a path joining u to v.

Let v ∈ V(G). The component of v in G is the subgraph of G induced
by the set of vertices which are joined to v by a path in G. The compo-
nents of the vertices of G define a partition of its vertex-set. A graph
is connected if it is a component of itself.

A circuit is a 2-regular connected graph. A circuit of G is a subgraph
of G which is a circuit.

The length of a path (or circuit) is the number of its edges. A k-
circuit is a circuit of length k. A path (or circuit) is odd if it has odd
length, and even otherwise. For u, v ∈ V(G), the distance of u and v in
G, denoted dG(u, v), is the smallest length of a uv-path of G.

A chord of a circuit C of G is an edge of G whose ends are two
non-adjacent vertices of C.

A hole of G is a circuit of G which has length at least 4 and no chord.
An antihole of G is a subgraph of G which is the complement of a hole
of G.

A hole (or antihole) is odd if it has an odd number of vertices.

trees A graph is a tree if it is connected and does not contain a
circuit. It is well-known that each connected graph has a spanning tree.
Besides, an easy induction shows that each tree with n vertices has n− 1
edges. Therefore, each spanning tree of a connected graph G has |V(G)| − 1
edges.

subdivisions A graph H is a subdivision of G if it is obtained from
G by replacing each edge e ∈ E(G) with a path Pe (of non-zero length)
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joining the ends of e such that: for every pair of edges e, f ∈ E(G),
the paths Pe and Pf do not share inner vertices.

If each odd circuit of G stays odd in the subdivision, we say that H
is an odd subdivision of G. If each Pe has odd length, then we further-
more say that H is a totally odd subdivision of G (see Figure 3.4).

Figure 3.4 – non-totally and totally odd subdivisions of K4

line graph The line graph of G, denoted L(G), is the simple graph
whose vertices are the edges of G and whose edge-set is the set of
pairs of incident edges of G. A graph H is a line-graph if there exists
a graph G such that H = L(G).

graphs Kn , Pn , Cn Simple complete graphs (or paths, circuits)
of the same size are obviously isomorphic to each other. We give
notations to represent each of these isomorphism classes.

Let n ≥ 1 be an integer and Vn := {v1 , . . . , vn} be a set of n
elements.

The graph Kn is the complete graph whose vertex-set is Vn (see
Figure 3.5). A graph is Kn-free if it does not contain Kn .

K3 K4 K5

Figure 3.5 – examples of complete graphs

Let Pn denote the graph whose vertex-set is Vn and whose edge-
set is E(Pn ) := {v1 v2 , . . . , vn−1 vn}. A graph is Pn-free if it does not
have an induced Pn .

Finally, for n ≥ 2 the graph Cn is defined by V (Cn ) := Vn and
E(Cn ) := E(Pn ) ∪ {v1 vn} (see Figure 3.6).

wheels Let n ≥ 3 be an integer. Let Wn denote the graph ob-
tained from Cn by adding a new vertex cn (the center of Wn) and
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C3 C4 C5

P5

Figure 3.6 – examples of circuits and paths

every edge between Cn and cn . The graph Wn is the wheel of size n (or
n-wheel)(see Figure 3.7). The circuit Cn of Wn is the rim of Wn .

W3 W4 W5

Figure 3.7 – examples of wheels

webs and antiwebs Let k ≥ 1 and n ≥ 3 be integers. Let Ek be
the set of pairs uv of vertices of Cn such that dCn(u, v) ≤ k. The graph
Ck

n is defined as Cn + Ek. For example, if n ≤ 2k + 1 then Ck
n = Kn.

Besides, Cn = C1
n.

A graph is a web if it is isomorphic to a Ck
n. An antiweb is the com-

plement of a web.

C2
7 = C7 C2

10

Figure 3.8 – examples of webs
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3.2.2 Higher connectivity. Menger’s theorem. Ear-decompositions

disjoint paths We will use Menger’s theorem several times in
this thesis. We follow the exposition of Chapter 9.1 in [102].

Let G be a graph and S, T be subsets of V(G). An {S, T}-path is a
path joining a vertex of S to a vertex of T. An {S, T}-separator of G is
a subset of vertices of G meeting every {S, T}-path.

Theorem 3.2.1 (Menger [80]) Let G be a graph and S, T ⊆ V(G). The
maximum number of vertex-disjoint {S, T}-paths is the minimum cardinal-
ity of an {S, T}-separator of G.

A maximum number of vertex-disjoint {S, T}-paths can be found
in polynomial-time (by a reduction to the max-flow min-cut algo-
rithm of Ford and Fulkerson [45, 46]. When max(|S|, |T|) ≤ 2, the
recent and faster algorithm of Tholey [114] can also be used.

cuts and connectivity Let G be a graph. A vertex-cut of G is a
set X ⊆ V(G) whose deletion increases the number of components of
G. A vertex-cut having k elements is called a k-vertex-cut. The unique
element of a 1-cut is a cut-vertex of G.

For each positive integer k, a graph is k-connected if it has more
than k vertices and no k-cut. A graph is k-edge-connected if deleting
less than k edges cannot increase the number of components.

blocks A bridge of a graph is an edge whose deletion increases
the number of components. A block of a graph G is either an isolated
vertex or the subgraph induced by the two ends of a bridge or a 2-
connected subgraph of G which is maximal for the subgraph relation.

Two blocks cannot intersect on more than one vertex, which must
be a cut-vertex.

ear-decompositions An ear-decomposition of a graph G is a se-
quence (C, P1, . . . , Pk) of a circuit C and paths (or circuits) P1, . . . , Pk of
G (with k ≥ 0) such that G = C∪ P1 ∪ · · · ∪ Pk and for each i ∈ [k]: if Pi
is a path, then exactly its ends are vertices of C∪ (P1 ∪ · · · ∪ Pi−1) and
if Pi is a circuit, then Pi has exactly one vertex in C ∪ (P1 ∪ · · · ∪ Pi−1).
The paths or circuits C, P1, . . . , Pk are the ears of the decomposition.

The decomposition is open if P1, . . . , Pk are all paths and C has
length at least 3. Besides, it is odd if all the ears have odd length.

Theorem 3.2.2 (Whitney [120]) A graph has an open ear-decomposition
if and only if it is 2-connected.

Theorem 3.2.3 (Robbins [95]) A graph has an ear-decomposition if and
only if it is 2-edge-connected.

The following shows that all ear-decompositions of a 2-edge-connected
graph have the same number of ears:
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Proposition 3.2.4 Let G be a 2-edge-connected graph.
The ear-decompositions of G have the same number of ears, which is:

|E(G)| − |V(G)|+ 1.

Proof – Let (C, P1, . . . , Pk) be an ear-decomposition of G.
Let e ∈ E(C) and for each 1 ≤ i ≤ k, let ei ∈ E(Pi). It is easy to

check that T := G − e− e1 − · · · − ek is a spanning tree of G. Hence,
the number of edges of G which do not belong to T is k + 1. Since T
is a tree: |E(T)| = |V(G)| − 1.

Therefore, k = |E(G)| − |V(G)|+ 1.

�
Hence, we may speak of the number of ears of a 2-edge-connected

graph. This number is also known as the cyclomatic number of the
graph.

Using Menger’s theorem (Theorem 3.2.1), it is straightforward to
check the following:

Proposition 3.2.5 Let G be a 2-edge-connected graph.
Each ear-decomposition of a 2-edge-connected subgraph H of G can be

completed in an ear-decomposition of G.
Furthermore if G is 2-connected, then the ear-decomposition of H can be

completed with open ears.

3.2.3 Cliques, stable sets, matchings.

Let G be a graph. A subset of vertices of G is a clique if it induces
a complete subgraph of G. In other words, it is a set of pairwise-
adjacent vertices of G. A triangle is a clique of 3 vertices.

A stable set of G is a set of pairwise-non-adjacent vertices of G. That
is a clique of G.

A matching of G is a set of pairwise-non-adjacent edges of G, that
is a stable set of L(G). A matching is perfect if it covers every vertex
of G.

Let c ∈ Z
V(G)
+ . The stability number of (G, c), denoted α(G, c), is the

largest value of c(S) over all stable sets S of G. Similarly, the clique
number of (G, c), denoted ω(G, c), is defined by ω(G, c) := α(G, c). It
is the largest value of c(K) over all cliques K of G.

A stable set (resp. clique) of G is of maximum-weight in (G, c) if it
attains the value α(G, c) (resp. ω(G, c)). We say that a stable set (or
clique) of G is maximum if it has maximum cardinality in G.

Let d ∈ Z
E(G)
+ . The matching number of (G, d), denoted ν(G, d), is

the maximum of d(M) over all matchings M of G. In other words,
ν(G, d) = α(L(G), d).

In particular, the stability number, clique number and matching num-
ber of G are defined respectively as α(G) := α(G, 1), ω(G) := ω(G, 1)
and ν(G) := ν(G, 1). That is, they are respectively the largest cardi-
nalities of a stable set, clique or matching of G.
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3.2.4 Graph colorings

chromatic number Let G be a graph and k be a non-negative
integer. A k-coloring of G is a map from V(G) → [k] which assigns
distinct numbers (called colors) to adjacent vertices. We say that G is
k-colorable if it admits a k-coloring. Clearly, G is k-colorable if and only
if V(G) can be covered by (equivalently, partitioned into) k stable sets.

The chromatic number of G, denoted χ(G), is the smallest integer
such that G is k-colorable.

bipartite graphs A graph is bipartite if it is 2-colorable. That is,
it has a bipartition: a partition of its vertex-set into two stable sets. It
is easy to show that a graph is bipartite if and only if it does not contain
an odd circuit.

clique-cover number The clique-cover number of G is denoted
χ(G) and is defined as χ(G) := χ(G). In other words, it is the smallest
number of cliques needed to cover (equivalently, partition) the vertex-
set of G.

chromatic index A k-edge-coloring of G is a map from E(G) →
[k] which assigns distinct numbers to incident edges: it is a k-coloring
of L(G). We say that G is k-edge-colorable if it has a k-edge-coloring.
Hence, G is k-edge-colorable if and only if its edge-set can be covered
(or partitioned) with k matchings.

The chromatic index of G, denoted χ′(G), is the smallest integer k
such that G is k-edge-colorable. Equivalently, χ′(G) = χ(L(G)).

weighted colorings Let c ∈ Z
V(G)
+ and k be a positive integer.

A k-coloring of (G, c) is a multiset F of cardinality k formed by stable
sets of G such that each v ∈ V(G) belongs to at least cv members of F .
We say that (G, c) is k-colorable if it admits a k-coloring. The chromatic
number of (G, c), denoted χ(G, c), is the smallest integer k such that
(G, c) is k-colorable.

Let S(G) denote the set of stable sets of G. It is easy to check that
we have:

χ(G, c) = min

{
∑

S∈S(G)

yS : y ∈ Z
S(G)
+ ; ∑

S∈S(G) : v∈S
yS ≥ cv, ∀v ∈ V(G)

}
.

(3.1)

Clearly, χ(G, 1) = χ(G). The clique-cover number of (G, c), denoted
χ(G, c), is defined by χ(G, c) := χ(G, c) and we have χ(G, 1) = χ(G).

In general, we will often speak of a coloring (or clique-cover) with-
out referring to its cardinality. A coloring (resp. clique-cover) of (G, c)
is optimal if it uses χ(G, c) stable sets (resp. χ(G, c) cliques).
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3.3 linear programming and polyhedra

We refer to Chapter 7 and 8 of [100] for the proofs of the results
stated in this section.

3.3.1 Linear programming

matrices and inequalities Vectors are column-matrices by
default and matrices are always of finite size. For each matrix M, we
write MT for the transpose of M. We use only the standard product
of matrices. A matrix of is rational if its coefficients are all rational
numbers. It is furthermore integral if its coefficients are all integers.
For a positive integer k, we say that a rational matrix M is 1

k -integral
if kM is integral.

A linear inequality over Rn is an inequality of the form aTx ≤ b
(x ∈ Rn), where a ∈ Rn and b ∈ R. Such an inequality is rational if a
and b are rational. It is tight for y ∈ Rn if aTy = b.

In this thesis, we only consider systems of finite number of rational
inequalities.

the duality theorem Several times throughout this document,
we will use the duality theorem of linear programming (due to Von
Neumann [117]) in the following form. We refer to Chapter 7 in [100]
for further details on this theorem and the complementary slackness
corollary.

Theorem 3.3.1 (Duality theorem of linear programming) For every ra-
tional matrix A with m rows and n columns and each c ∈ Qn and b ∈ Qm:

max cTx = min min yTb

s.t Ax ≤ b yTA ≥ cT

x ≥ 0 y ≥ 0

(3.2)

If the maximum is finite, then both the maximum and the minimum are
attained by rational vectors.

We will also use the following corollary:

Corollary 3.3.2 (Completementary slackness) In Theorem 3.3.1, if
the maximum is finite then: for every pair of respective optimal solutions x
and y for the maximum and the minimum, we have yT(Ax− b) = 0.

total dual-integrality Let A be a rational matrix with m
rows and n columns and b ∈ Qm. The system of linear inequalities
{Ax ≤ b, x ≥ 0} over Rn is totally dual-integral if for every c ∈ Zn

such that:

min
{

yTb : yTA ≥ cT; y ≥ 0
}
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is finite, this minimum is attained by an integral vector.
We use this notion through the following result due to Edmonds

and Giles:

Theorem 3.3.3 (Edmonds, Giles [35]) If {Ax ≤ b, x ≥ 0} is a total dual-
integral system over Rn and if b is integral then, for every c ∈ Zn such that:

max
{

cTx : Ax ≤ b, x ≥ 0
}

is finite, this maximum is attained on an integral vector.

3.3.2 Affine spaces and maps

A set A is an affine subspace of Rn it is of the form A = u + F,
where u ∈ Rn and F is a linear subspace of Rn. The linear space F is
uniquely determined by A and is called the direction of A.

An affine combination of a finite number of vectors x1, . . . , xk of Rn

is a vector of the form ∑k
i=1 λixi, where λ1, . . . , λk are real numbers

satisfying ∑k
i=1 λi = 1. The vectors x1, . . . , xk are affinely independent if

for every (λ1, . . . , λk) ∈ Rk such that ∑k
i=1 λixi = 0 and ∑k

i=1 λi = 0,
we have λ1 = · · · = λk = 0. Linear independent vectors are obviously
affinely independent too.

Let X ⊆ Rn. The set of all affine combinations of the elements of
X is an affine subspace of Rn. It is the affine hull of X and is denoted
aff(X).

The dimension of an affine subspace A of Rn is the dimension of its
direction (as a linear subspace). It is easy to check that is is the largest
number of affinely independent vectors of A minus one. The dimension of a
subset X of Rn is the dimension of aff(X).

3.3.3 Polyhedra

A set P ⊆ Rn is a polyhedron if there exists a finite number of linear
inequalities aT1 x ≤ b1, . . . , aTk x ≤ bk (x ∈ Rn) such that:

P =
{

x ∈ Rn : aTi x ≤ bi ∀i ∈ [k]
}

.

Such a set of inequalities is a description of P. We also say that P is
described by these inequalities. Besides, P is rational if the inequalities
aT1 x ≤ b1, . . . , aTk x ≤ bk are rational.

A polyhedron of Rn is full-dimensional if it has dimension n. That
is, P contains n + 1 affinely independent vectors.

In this thesis, we only consider rational polyhedra and almost al-
ways deal with full-dimensional ones.

faces A linear inequality aTx ≤ b over Rn is valid for P if every
x ∈ P satisfies aTx ≤ b.



3.3 linear programming and polyhedra 37

A non-empty set F ⊆ P is a face of P if there exists a valid inequality
aTx ≤ b for P such that F =

{
x ∈ P : aTx = b

}
. We say that the in-

equality aTx ≤ b defines F. It is straightforward to check that the faces
of P are polyhedra themselves and that a non-empty intersection of
faces is also a face.

integrality P is integral if each face of P contains an integral
point. Since the set of optimal solutions of a linear program is clearly
a face of the underlying polyhedron, we have the following straight-
forward characterization:

Proposition 3.3.4 Let P ⊆ Rn be a polyhedron. The following statements
are equivalent:

i) P is integral,
ii) for every c ∈ Zn such that max

x∈P
cTx is finite, this maximum is at-

tained by an integral point.

facets A facet of a polyhedron P is an inclusion-wise maximal
proper face of P. The following characterization can be obtained as a
consequence of the duality theorem of linear programming and basic
linear algebra arguments:

Proposition 3.3.5 Let P ⊆ Rn be a full-dimensional polyhedron and F be
a face of P. The following statements are equivalent:

i) F is a facet of P,
ii) F contains n affinely independent vectors.

This directly implies that for each facet F of a full-dimensional poly-
hedron P, the valid inequalities for P which define F are positive
multiples of each other. That is, F is defined by a unique valid inequality
(up to a positive scalar factor).

Let P be a polyhedron and S be a set of inequalities describing P.
An inequality e ∈ S is redundant if S− e also describes P. A descrip-
tion of P is irredundant if its has no redundant inequality. The follow-
ing result links inequalities of irredundant descriptions and facets:

Proposition 3.3.6 For every full-dimensional polyhedron P ⊆ Rn and
each irredundant description aT1 x ≤ b1, . . . , aTk x ≤ bk of P, the following
statements hold:

i) Each inequality aTi x ≤ bi (i ∈ [k]) defines a facet of P,
ii) Each facet of P is defined by a unique inequality aTi x ≤ bi (i ∈ [k]).

vertices Let P be a polyhedron. A vertex of P is a u ∈ P such that
for every v, w ∈ P: u = v+w

2 implies u = v = w. Equivalently, {u}
is a face of P. We will frequently use the following characterization of
vertices of a polyhedron:
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Proposition 3.3.7 Let P ⊆ Rn be a polyhedron described by the inequal-
ities aT1 x ≤ b1, . . . , aTk x ≤ bk and let u ∈ P. The following statements are
equivalent:

i) u is a vertex of P,
ii) there exist n inequalities aTi1 x ≤ bi1 , . . . , aTin

x ≤ bin which are tight
for u and such that the vectors ai1 , . . . , aik are linearly independent (or
span Rn).

It is easy to check that if P is an integral polyhedron contained in [0, 1]n,
then each integral point of P is a vertex of P.

polytopes A convex combination of vectors a1, . . . , ak of Rn is a
vector of the form ∑k

i=1 λiai, where λ1, . . . , λk are real non-negative
numbers such that ∑k

i=1 λi = 1. The convex hull of a set X ⊆ Rn is the
set of all convex combinations of elements of X.

A polytope of Rn is the convex hull of a finite set X ⊆ Rn. The finite
basis theorem for polytopes (attributed to Minkowski [82], Steinitz
[110] and Weyl [119]) states that:

Theorem 3.3.8 (Finite basis theorem for polytopes) A set P ⊆ Rn

is a polytope if and only if it is a bounded polyhedron.

Hence, the terminology given for polyhedra also applies to poly-
topes. In particular, it is straightforward to check that a polytope is the
convex hull of its vertices. This implies easily that a polytope is integral if
and only if its vertices are integral.

integer decomposition property For each subset X ⊆ Rn

and each λ ∈ R, let λX := {λx : x ∈ X}.
A polyhedron P ⊆ Rn has the integer decomposition property (abbre-

viated IDP) if for every positive integer k, each integral vector of kP
is the sum of k integral vectors of P.

3.4 the stable set polytope

3.4.1 Definitions. General properties

stable set polytope Let G be a graph. The stable set polytope of
G, denoted STAB(G), is the convex hull of the incidence vectors of
the stable sets of G. In particular, for every c ∈ Z

V(G)
+ :

α(G, c) = max
{

cTx : x ∈ STAB(G)
}

.

Clearly, STAB(G) is a full-dimensional polytope. Hence, Proposi-
tion 3.3.6 shows that STAB(G) can be uniquely described as the set
of solutions of a system of linear inequalities (up to positive scalar
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multiplication of these). It is not possible to test in polynomial-time if a
given vector belongs to STAB(G), unless P = NP (see [64]).

It is easy to check that for each v ∈ V(G), the inequality xv ≥ 0
defines a facet of STAB(G). They are the non-negativity inequalities and
define the trivial facets of STAB(G).

fractional colorings Let S(G) denote the set of stable sets of
G and let c ∈ Z

V(G)
+ . The fractional chromatic number of (G, c), denoted

χ f (G, c), is defined as the optimum value of the linear relaxation of
the integer program (3.1) for χ(G, c):

χ f (G, c) := min

{
∑

S∈S(G)

yS : y ∈ R
S(G)
+ ; ∑

S∈S(G) : v∈S
yS ≥ cv, ∀v ∈ V(G)

}
.

(3.3)

In particular, we always have χ(G, c) ≥ χ f (G, c). A fractional coloring
of (G, c) is a feasible solution for the minimum above. Theorem 3.3.1
implies directly that (G, c) always has a rational optimal fractional color-
ing.

The fractional chromatic number of G, denoted χ f (G), is defined by
χ f (G) := χ f (G, 1).

Clearly, an inequality aTx ≤ b defining a non-trivial facet of STAB(G)

must satisfy a ≥ 0 and b > 0. The duality theorem of linear program-
ming implies the following:

Proposition 3.4.1 Let G be a graph and c ∈ Z
V(G)
+ .

If STAB(G) is completely described by non-negativity inequalities and
aT1 x ≤ b1, . . . , aTk x ≤ bk (where a1, . . . , ak are non-negative and b1, . . . , bk
are positive), then:

χ f (G, c) = max
i∈[k]

cTai

bi
. (3.4)

Proof – Let M := max
i∈[k]

cTai

bi
. By the duality theorem of linear pro-

graming (Theorem 3.3.1), we have:

χ f (G, c) = max
{

cTx : x ≥ 0; x(S) ≤ 1 for all S ∈ S(G)
}

. (3.5)

Clearly, ai
bi

belongs to the polytope defined by the inequalities x ≥ 0
and x(S) ≤ 1 (for all S ∈ S(G)). This shows that χ f (G, c) ≥ M.

Let d ∈ RV(G) attaining the maximum in Equation (3.5). By the
duality theorem of linear programming:

max
{

dTx : x ∈ STAB(G)
}
= min

{
k

∑
i=1

yibi : y ≥ 0;
k

∑
i=1

yiaTi ≥ dT
}

.
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Let y be a vector attaining the minimum in this equation. Since the in-
equality dTx ≤ 1 is valid for STAB(G), we have ∑k

i=1 yibi ≤ 1. Hence:

χ f (G, c) = cTd ≤
k

∑
i=1

yibi
cTai

bi
≤ (

k

∑
i=1

yibi)M ≤ M,

as required.

�

computing χ f The maximum-weight stable set problem is as follows:

for a graph G and a weight c ∈ Z
V (G)
+ , find a stable set S of G such

that c(S) is maximum. This problem is NP-hard in general [64].
The problem of the computation of the (weighted) fractional chro-

matic number of a graph and the maximum-weight stable set prob-
lem are related as follows (through the Ellipsoid method):

Theorem 3.4.2 (Grötschel, Lovász and Schrijver [57]) Let C be a class
of graphs. The following statements are equivalent:

i) the fractional chromatic number of (G , c) can be computed in polyno-
mial time for every G ∈ C and every c ∈ Z

V (G)
+ ,

ii) the maximum-weight stable set problem can be solved in polynomial
time in C .

integer decomposition property Results of Baum and Trot-
ter imply the following characterization for the integer decomposition
property of the stable set polytope:

Theorem 3.4.3 (Baum, Trotter[4]) Let G be a graph. The following state-
ments are equivalent:

i) STAB(G) has the integer decomposition property,
ii) for every c ∈ Z

V (G)
+ : χ(G , c) = dχ f (G , c)e.

3.5 perfect graphs

A graph G is perfect if each induced subgraph H of G satisfies
χ(H ) = ω (H ). It is imperfect otherwise.

For example, bipartite graphs are perfect. Besides, it is easy to check
that perfect graphs cannot have odd holes or odd antiholes (see Sec-
tion 3.2.1 for the definition of holes and antiholes).

replication For every graph G and every c ∈ Z
V (G)
+ , let G c

denote the graph obtained as follows: replace each vertex v of G with
a new complete graph Kv of cardinality cv (in particular, delete v if
cv = 0) and for every u , v ∈ V (G): put every edge between Ku and
Kv if uv ∈ E(G) and no edge otherwise.

It is straightforward to check the following relations:
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Proposition 3.5.1 For every graph G and every c ∈ Z
V (G)
+ :

χ(G , c) = χ(G c ), ω (G , c) = ω (G c ) and χ f (G , c) = χ f (G c ).

weak perfect graph theorem The following theorem is due
to Lovász and solved Berge’s Weak Perfect Graph Conjecture [9]:

Theorem 3.5.2 (Lovász [71]) Let G be a graph. The following statements
are equivalent:

i) G is perfect,
ii) G is perfect,
iii) for every c ∈ Z

V(G)
+ : χ(G, c) = ω(G, c),

iv) for every c ∈ Z
V(G)
+ : χ(G, c) = α(c, G).

non-negativity and clique inequalities The non-negativity
inequalities for G are the xv ≥ 0, for v ∈ V(G). Each of them defines a
facet of STAB(G), and these facets are said to be trivial.

A clique-inequality of G is of the form x(K) ≤ 1, where K is a clique
of G. Padberg [87] showed that x(K) ≤ 1 defines a facet of STAB(G) if
and only if K is an inclusion-wise maximal clique of G (this can also be
directly proved using Proposition 3.3.5).

Let:

QSTAB(G) :=
{

x ∈ RV(G) : x ≥ 0; x(K) ≤ 1 for every clique K of G
}

.

polyhedral characterization Clearly, QSTAB(G) is a poly-
tope containing STAB(G). In general, this inclusion is strict (consider
C5 for example). Fulkerson [48] pointed out that the assertion of The-
orem 3.5.2 would imply that the equality of STAB and QSTAB char-
acterizes perfection. This is stated by Chvátal in [26]:

Theorem 3.5.3 ([26]) Let G be graph. The following statements are equiv-
alent:

i) G is perfect,
ii) STAB(G) = QSTAB(G).

By Proposition 3.4.1, this implies that for every perfect graph G and every
c ∈ Z

V(G)
+ : χ f (G, c) = ω(G, c).

minimally imperfect graphs An imperfect graph G is mini-
mally imperfect if all its proper induced subgraphs are perfect. It is
straightforward to check that odd holes and odd antiholes are mini-
mally imperfect.

A cornerstone-result of graph theory is the Strong Perfect Graph
Theorem, whose statement was conjectured by Berge [9].

It was proved by Chudnovsky, Robertson, Seymour and Thomas:

Theorem 3.5.4 (Chudnovsky et al. [24]) A graph is minimally imper-
fect if and only if it is an odd hole or an odd antihole.



42 preliminaries

In other words, perfect graphs are the graphs which do not have an odd
hole or odd antihole. The proof of this result is long and elaborated
but several special cases do have a simpler proof (for example, for
claw-free graphs [90]). We shall not use this statement in this thesis.

By Theorem 3.5.3, the stable set polytope of a minimally imperfect
graph must have a facet which is not defined by a non-negativity or
clique inequality. Padberg proved that there is only one such facet
and that it is defined by the full-rank inequality x(V(G)) ≤ α(G):

Theorem 3.5.5 (Padberg [89]) For each minimally imperfect graph G, the
inequality x(V(G)) ≤ α(G) defines a facet of STAB(G) and:

STAB(G) =

x ∈ RV(G) :
x ≥ 0,

x(K) ≤ 1 ∀K clique of G,

x(V(G)) ≤ α(G).

 .

(3.6)

3.6 h-perfect graphs

3.6.1 Definitions and basic results

odd-circuit inequalities Let G be a graph. An odd-circuit in-
equality is of the form x(V(C)) ≤ |V(C)|−1

2 , where C is an odd circuit
of G. Since α(C) = |V(C)|−1

2 , it is valid for STAB(G).
Let HSTAB(G) denote the polytope defined by the non-negativity,

clique and odd-circuit inequalities of G. In other words:

HSTAB(G) :=

x ∈ RV(G) :

x ≥ 0,

x(K) ≤ 1 ∀K clique of G,

x(V(C)) ≤ |V(C)| − 1
2

∀C odd circuit of G.

 .

(3.7)

A clique-inequality x(K) ≤ 1 with |K| = 2 is an edge-inequality. Let
TSTAB(G) denote the polytope defined by the non-negativity, edge
and odd-circuit inequalities.

Clearly, if G has no clique of cardinality 4 then HSTAB(G) and
TSTAB(G) coincide. Furthermore, we always have:

STAB(G) ⊆ HSTAB(G) ⊆ TSTAB(G).

Each inclusion is strict in general. For example, Theorem 3.5.5 easily
shows that STAB(C7) ( HSTAB(C7).

Besides: HSTAB(K4) ( TSTAB(K4), as shows the vector 1
3 .
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h-perfection A graph G is h-perfect if STAB(G) = HSTAB(G). It
is h-imperfect otherwise.

A graph G is t-perfect if STAB(G) = TSTAB(G), and t-imperfect oth-
erwise. For each graph G, cliques of cardinality 4 of G are contained
in inclusion-wise maximal cliques whose inequalities define facets of
STAB(G) (see Section 3.5). These inequalities cannot be defined by
edge or odd-circuit inequalities, hence:

Proposition 3.6.1 A graph is t-perfect if and only if it is h-perfect and has
no clique of cardinality 4.

Since both HSTAB(G) and TSTAB(G) are contained in [0, 1]V(G):

Proposition 3.6.2 A graph G is h-perfect (resp. t-perfect) if and only if
HSTAB(G) (resp. TSTAB(G)) is integral.

It is easy to check that for every v ∈ V(G): HSTAB(G − v) is the
projection of the face xv = 0 of HSTAB(G) on RV(G−v). This directly
implies:

Proposition 3.6.3 Each induced subgraph of an h-perfect graph is h-perfect.

This also shows that t-perfection is closed under taking induced subgraphs.

facets of HSTAB Some of the clique and odd-circuit inequali-
ties defining HSTAB(G) are redundant. In fact, the following well-
known statement holds:

Proposition 3.6.4 For every graph G:

HSTAB(G) :=


x ∈ RV(G) :

xv ≥ 0 ∀v ∈ V (G) ,

x(K) ≤ 1 ∀K inclusion-wise

maximal clique of G,

x(V(C)) ≤ |V(C)| − 1
2

∀C odd hole of G.


,

(3.8)

and this description is irredundant for HSTAB(G). In particular, each in-
equality defines a facet of HSTAB(G).

Proof – Consider the description D defining HSTAB(G), and keep
exactly one occurrence of each inequality (odd-circuit inequalities
may appear more than once).

The clique-inequalities which do not correspond to inclusion-wise
maximal cliques are clearly redundant.

Furthermore if C is an odd circuit which has a chord, then the
odd-circuit inequality defined by C is implied by the inequality of a
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proper odd circuit C′ of C and the edge-inequalities corresponding to
a perfect matching of C−V(C′).

Hence we may only keep the inequalities corresponding to maxi-
mal cliques and odd holes, and still have a descriptionD′ of HSTAB(G).
Now, we show that this description is irredundant. By Proposition 3.3.6,
this will imply the proposition.

Let K be an inclusion-wise maximal clique and u ∈ K. Clearly,
1
|K| (χ

K +χu) satisfies all the inequalities of D′ except x(K) ≤ 1. Hence,
this inequality is not redundant.

Finally, let C be an odd hole of G, v ∈ V(C) and let k := |V(C)|−1
2 .

It is straightforward to check that 1
|V(C)| (kχV(C) + χv) satisfies every

inequality of D′ except x(V(C)) ≤ k. Therefore, this inequality is not
redundant and we are done.

�
In particular since perfect graphs cannot have odd holes, this and

Theorem 3.5.3 directly imply that perfect graphs are h-perfect.
Odd holes form the most basic class of imperfect h-perfect graphs.

Besides, Proposition 3.6.4 and Theorem 3.5.3 easily show that each
imperfect h-perfect graph has an odd hole.

We end this section with another relation between perfection and
h-perfection. It follows directly from the following (see Section 3.2.1
for the definition of wheels):

Proposition 3.6.5 For each k ≥ 1, the graph W2k+1 is t-imperfect.

Proof – Let v be the center of G := W2k+1. Let x ∈ RV(G) be defined
for every u ∈ V(G) by: xu := 1

2k+1 if u = v and by xu := k
2k+1

otherwise. Clearly, x ∈ TSTAB(G) and x(V(G)) > α(G). Therefore x
shows that TSTAB(G) 6= STAB(G) and G is t-imperfect.

�
Hence, except W3 = K4, the odd wheels are h-imperfect. Since each

induced subgraph of an h-perfect graph is perfect or has an induced
C2k+1 with k ≥ 2, this propositions implies:

Proposition 3.6.6 The neighborhood of each vertex of an h-perfect graph
induces a perfect graph.

3.6.2 H-covers and strong h-perfection

h-covers Let G be a graph and c ∈ Z
V(G)
+ . An integral h-cover of

(G, c) is a multiset F of cliques and odd circuits of G such that each
vertex v of G belongs to at least cv elements of F .

The cost of a clique in an integral h-cover is 1, and the cost of an
odd circuit C is |V(C)|−1

2 . The cost of an integral h-cover of G is the
sum of the costs of its members. The minimum cost of an integral
h-cover of (G, c) is denoted ρh(G, c).
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Let K(G) be the set of cliques of G and O(G) be the set of its
odd circuits. Clearly integral h-covers of G correspond to integral
solutions of the following linear program, and the cost of the cover is
its value in the program:

min ∑
K∈K(G)

yK + ∑
C∈O(G)

|V(C)| − 1
2

yC

s.t ∑
K∈K(G)

yKχK + ∑
C∈O(G)

yCχV(C) ≥ c,

yK ≥ 0, yC ≥ 0 ∀K ∈ K(G), ∀C ∈ O(G)

(3.9)

A solution of this linear program is a fractional h-cover of (G, c) and
its cost is defined as its value in the program. The minimum cost of a
fractional h-cover of (G, c) is written ρh

f (G, c).
The second part of Theorem 3.3.1 shows that there always exists a

rational optimal fractional h-cover of (G, c). Furthermore, it is straight-
forward to check that there exists such an h-cover whose odd circuits
of length at least 5 are all odd holes.

Clearly, (3.9) is the dual program of maximizing cTx over the in-
equalities defining HSTAB(G). As STAB(G) ⊆ HSTAB(G), we always
have α(G, c) ≤ ρh

f (G, c).
The duality theorem of linear programming (Theorem 3.3.1) and

Proposition 3.3.4 imply the following statement:

Proposition 3.6.7 For every graph G, the following statements are equiv-
alent:

i) G is h-perfect,
ii) for every c ∈ Z

V(G)
+ : α(G, c) = ρh

f (G, c).

strong h-perfection A graph G is strongly h-perfect if the sys-
tem of non-negativity, clique and odd-circuit inequalities of G is to-
tally dual-integral (see Section 3.3.1).

Theorem 3.3.3 directly implies:

Proposition 3.6.8 For every graph G, the following statements are equiv-
alent:

i) G is strongly h-perfect,
ii) for every c ∈ Z

V(G)
+ : α(G, c) = ρh(G, c).

Besides, Theorem 3.3.3 and Proposition 3.3.4 show:

Proposition 3.6.9 Every strongly h-perfect graph is h-perfect.

A graph is strongly t-perfect if the system of non-negativity, edge and
odd-circuit inequalities is totally dual-integral. Similarly to Proposi-
tion 3.6.1: a graph is strongly t-perfect if and only if it is strongly h-perfect
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and has no clique of cardinality 4. In particular, Proposition 3.6.9 shows
that strongly t-perfect graphs are t-perfect.

The main problem on strong t-perfection is the following conjec-
ture, due to Schrijver:

Conjecture 3.6.10 (Schrijver [102]) Every t-perfect graph is strongly t-
perfect.

3.6.3 Some sufficient conditions of h-perfection

It is not easy in general to show that a specific graph is h-perfect. In
this section, we state useful conditions of h-perfection for this thesis.

clique-sums Let G be a graph with a vertex-cut X which is a
clique, and let C1, . . . , Ck be the components of G−X. For each i ∈ [k],
put Gi := G [Ci ∪ X]. We say that G is the clique-sum of the Gi (along
X). Chvátal proved:

Theorem 3.6.11 (Chvátal [26]) Let G and G1, . . . , Gk be graphs and for
each i ∈ [k], let Di be a description of STAB(Gi). If G is a clique-sum of
G1, . . . , Gk, then the union of D1, . . . , Dk is a description of STAB(G).

This directly implies:

Corollary 3.6.12 A clique-sum of h-perfect graphs is h-perfect.

In fact, the proof of Theorem 3.6.11 implicitly shows that this state-
ment still holds if h-perfection is replaced with strong h-perfection.

nice subgraphs A subgraph H of a graph G is nice if every
inclusion-wise maximal stable set of G meets H on α(H) vertices. In
particular, a clique (as a complete subgraph) is nice if it meets every
inclusion-wise maximal stable set of G.

The following is implicit in [102, Section 68.4 pg. 1194] and is not
difficult to check:

Proposition 3.6.13 Let G be a graph and H be a nice clique or odd cir-
cuit of G. If G − v is (strongly) h-perfect for every v ∈ V(H), then G is
(strongly) h-perfect too.

Proof – By Proposition 3.6.7, we need only to prove that for every
c ∈ Z

V(G)
+ : α(G, c) = ρh

f (G, c).

Let c ∈ Z
V(G)
+ . We proceed by induction on c(V(G)).

If there exists v ∈ V(H) such that cv = 0, then the required equality
follows from the assumption on G − v. Therefore, we may suppose
that every v ∈ V(H) satisfies cv ≥ 1.

Let d := c− χV(H). By induction, we have α(G, d) = ρh
f (G, d). Let

S be a stable set of G with d(S) = α(G, d). Since d is non-negative,
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we may suppose that S is inclusion-wise maximal. By assumption, S
meets H on α(H) vertices. Hence:

α(G, c) ≥ c(S) = α(G, d) + α(H) ≥ ρh
f (G, d) + α(H).

Now, ρh
f (G, d) + α(H) is clearly the cost of a fractional h-cover of

(G, c) obtained by adding H to an optimal fractional h-cover of (G, d).
This shows that α(G, c) ≥ ρh

f (G, c) and we obtain the required equal-
ity (as the converse inequality is always satisfied).

The proof directly shows that the statement remains true if we re-
place h-perfection with strong h-perfection.

�

almost-bipartite graphs A graph is almost-bipartite if it has
a vertex whose deletion yields a bipartite graph. Fonlupt and Uhry
proved:

Theorem 3.6.14 (Fonlupt, Uhry [44]) Every almost-bipartite graph is t-
perfect.

Further sufficient conditions of h-perfection (involving subdivisions
of K4) are available but we shall not use them in this thesis.

edge deletion and contraction We conclude this section
with two graphs showing that h-perfection (or t-perfection) is not closed
under edge-deletion nor edge-contraction.

Using the sufficient conditions given above, it is straightforward
to check (using Proposition 3.6.13 on a triangle and Corollary 3.6.12)
that the graph of Figure 3.9 is h-perfect. Contracting the edge e yields
the t-imperfect graph W−−5 (see Proposition 4.3.2).

e

Figure 3.9 – contracting an edge does not keep h-perfection

Similarly, it is straightforward to show that the graph of Figure 3.10

is h-perfect. Consider the vector x := 1
3 (χ

V(G) + χu).
Clearly, x ∈ HSTAB(G − uv). Besides, x(V(G)) > 2 = α(G − uv).

Hence, x /∈ STAB(G− uv) and G− uv is h-imperfect. This example is
due to Schrijver [102, pg. 1195].
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u

v

Figure 3.10 – deleting an edge does not keep h-perfection

3.6.4 The fractional chromatic number of h-perfect graphs

Since h-perfection is defined by a specific description of the stable
set polytope, Proposition 3.4.1 directly yields a formula for the frac-
tional chromatic number of an h-perfect graph [98].

For each graph G and c ∈ Z
V(G)
+ , let:

Γ(G, c) := max
{

2
|V(C)| − 1

c(V(C)) : C odd hole of G
}

.

Besides, let Γ(G) := Γ(G, 1).

Proposition 3.6.15 For every h-perfect graph G and every c ∈ Z
V(G)
+ :

χ f (G, c) = max(ω(G, c), Γ(G, c)).

Since Γ(G) ≤ 3 (and as observed in [98]), this implies:

Corollary 3.6.16 Every h-perfect graph G with ω(G) ≥ 3 satisfies:

χ f (G) = ω(G).

In particular, the fractional chromatic number of a t-perfect graph is at most
3.

This bound on the fractional chromatic number motivates several
questions studied in this thesis.

Since the clique and odd circuit inequalities are valid for STAB(G)

(whether G is h-perfect or not), Proposition 3.4.1 shows that we always
have χ f (G, c) ≥ max(ω(G, c), Γ(G, c)).

3.6.5 Algorithms

Grötschel, Lovász and Schrijver showed that finding a maximum-
weight stable set of a perfect graph can be done in polynomial-time.
They proved that this property extends to h-perfect graphs:

Theorem 3.6.17 (Grötschel, Lovász, Schrijver [56]) A maximum-weight
stable set of an h-perfect graph can be found in polynomial-time.
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Through the Ellipsoid method (see Section 3.4), this implies the
following :

Theorem 3.6.18 (Grötschel, Lovász, Schrijver [56, 57]) The weighted
fractional chromatic number of an h-perfect graph can be computed in poly-
nomial time.

Bruhn and Stein used this to show:

Theorem 3.6.19 (Bruhn, Stein [16]) A maximum clique of an h-perfect
graph can be found in polynomial-time.

By contrast, it is not known whether a maximum-weight clique can
be efficiently found in h-perfect graphs.

Schrijver [102, pg. 1194] showed that for each graph G and x ∈
QV(G), testing whether x ∈ TSTAB(G) (or finding a separating hy-
perplane certifying the contrary) reduces to a shortest path problem
in some auxiliary graph, and can be easily done in polynomial-time.
Through the Ellipsoid method, this implies that a maximum-weight
stable set of a t-perfect graph can be found efficiently (the case of h-
perfect graphs is more difficult, see Theorem 3.6.17). A combinatorial
algorithm for finding a maximum-cardinality stable set in t-perfect
graphs was given by Eisenbrand et al. [38].

Besides, it directly implies that showing a non-integral vertex of
TSTAB(G) can be carried out efficiently. Hence:

Theorem 3.6.20 (Schrijver [102]) T-perfection is in co-NP.

It is not known whether h-perfection belongs to one of the classes
NP or co-NP. Besides, no combinatorial certificate of t-imperfection is
known.

3.7 the matching polytope

Let G be a graph. The matching polytope of G, denoted MATCH(G),
is the convex hull of the incidence vectors of the matchings of G. That
is: MATCH(G) = STAB(L(G)).

Edmonds [34] gave an efficient algorithm to find a matching of max-
imum weight in a graph. As a by-product, he obtained a description
of the matching polytope. Padberg and Rao [88] gave a combinatorial
polynomial-time algorithm to test if a given vector belongs to this
polytope.

A graph H is factor-critical if for every vertex v ∈ V(H), the graph
H − v has a perfect matching. In [36], Edmonds and Pulleyblank de-
scribed the facets of MATCH(G). We need only the following part of
their result:
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Theorem 3.7.1 (Edmonds, Pulleyblank [36]) For every graph G:

MATCH(G) :=


x ∈ RE(G) :

x ≥ 0,

x(δG(v)) ≤ 1 ∀v ∈ V(G),

x(E(H)) ≤ |V(H)| − 1
2

∀H 2-connected induced

factor-critical subgraph of G.


.

(3.10)

The chromatic index of G is denoted χ′(G) and is the smallest num-
ber of matchings needed to cover (or, partition) the edge-set of G (see
Section 3.2.4). In other words, χ′(G) = χ(L(G)).

fractional chromatic index The fractional chromatic index of
G, denoted χ′f (G), is defined by χ′f (G) = χ f (L(G)).

Since (3.10) holds for every graph, Proposition 3.4.1 yields a for-
mula in general for the fractional chromatic index of graph. For every
graph G, let:

σ(G) := max
{

2|E(H)|
|V(H)| − 1

: H 2-connected factor-critical subgraph of G
}

.

Theorem 3.7.1 and Proposition 3.4.1 directly imply:

Theorem 3.7.2 (Stahl [109], Seymour [104]) For every graph G:

χ′f (G) = max(∆(G), σ(G)).

Padberg and Rao [88] showed a combinatorial polynomial-time al-
gorithm to determine the fractional chromatic index of a graph. An ef-
ficient algorithm also follows, through the Ellipsoid method, from Ed-
monds’ polynomial-time algorithm to find a maximum-weight match-
ing (see also Section 3.4).

factor-critical graphs Lovász showed the following charac-
terization (see Section 3.2.2 for the related terminology):

Theorem 3.7.3 (Lovász [72, 76]) A 2-connected graph is factor-critical if
and only if it has an open odd ear-decomposition.

This result plays a key-role in the characterization by Cao and
Nemhauser of h-perfect line-graphs.

3.8 h-perfect line-graphs

Various notions of perfection in line graphs were studied by Cao
and Nemhauser in [19].
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In particular, they characterized the h-perfection of a line-graph
L(H) in terms of forbidden subgraphs for H. This characterization
is stated and proved in [16, 18, 19]. The proof consists in combining
Theorem 3.7.1 with Theorem 3.7.3. We will use it in Chapter 6 and
Chapter 8.

Let C+
3 be the graph of Figure 3.11. An odd-C+

3 is a totally odd subdi-
vision of C+

3 (see Section 3.2.1 for the definition of these subdivisions).
It is strict if it is not C+

3 .

Figure 3.11 – the graph C+
3

Theorem 3.8.1 (Cao, Nemhauser [19]) For every graph H, the follow-
ing statements are equivalent:

i) L(H) is h-perfect,
ii) H does not contain a strict odd-C+

3 .

The corresponding characterization for t-perfection follows directly
from Proposition 3.6.1: L(H) is t-perfect if and only if L(H) is odd-C+

3 -
free and ∆(H) ≤ 3.

P0

P2

P1

Figure 3.12 – a graph is a skewed prism if it is not isomorphic to K4 and is
formed by two vertex-disjoint triangles joined by three vertex-
disjoint paths P0, P1 and P2 (drawn dotted) such that: both P0
and P2 are even, and P1 is odd. There are no other edges.

Skewed prisms are the line-graphs of the strict odd-C+
3 graphs. An

equivalent definition of those graphs is given in Figure 3.12. Taking
line-graphs, Theorem 3.8.1 directly yields:

Theorem 3.8.2 (Cao, Nemhauser [19]) Let G be a line-graph. The fol-
lowing statements are equivalent:

i) G is h-perfect,
ii) G does not have an induced skewed prism.
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O N O P E R AT I O N S P R E S E RV I N G H - P E R F E C T I O N

A vertex of a graph is contractible if its neighborhood is a stable set. The
t-contraction of G at a contractible v ∈ V(G) is the graph obtained from G by
shrinking v and its neighbors to a single vertex.

H-perfection is closed under vertex-deletion (Proposition 3.6.3). Gerards
and Shepherd [51] proved that t-perfection is closed under t-contraction.

A t-minor of a graph G is a graph obtained from G by a sequence of
vertex-deletions and t-contractions.

In this chapter we first observe that taking t-minors corresponds to taking
faces of the stable set polytope and use this to show that the integer decompo-
sition property of the stable set polytope is closed for t-minors. This allows us to
answer negatively (in Chapter 7) a question of Shepherd on the equivalence
of this property and 3-colorability for t-perfect graphs.

Furthermore, we characterize pairs of graphs G and contractible vertices
v ∈ V(G) such that HSTAB(G/NG [v]) is a face of HSTAB(G). We use this
to extend the result of Gerards and Shepherd by proving that h-perfection
is closed under t-contraction. Furthermore, our proof shows that perfection is
closed under t-minors (this is also implied by a proof of [16]).

Finally, we characterize which graphs can be substituted to a vertex of an h-
perfect graph such that the resulting graph remains h-perfect. This implies related
results on homogeneous sets in minimally h-imperfect graphs.

Un sommet d’un graphe est contractible si ses voisins forment un stable. La
t-contraction d’un graphe G en un sommet contractible v ∈ V(G) est le
graphe obtenu de G en identifiant v à tous ses voisins.

La h-perfection est clairement conservée par la suppression de sommets
(Proposition 3.6.3). Gerards et Shepherd [107] ont montré que la t-contraction
préserve la h-perfection.

Un t-mineur d’un graphe G est un graphe obtenu de G par une suite de
suppressions de sommets et de t-contractions (dans n’importe quel ordre).

Dans ce chapitre, nous remarquons d’abord que le polytope des stables
d’un t-mineur d’un graphe G correspond à une face de STAB(G). Cette
observation nous permet de prouver que les t-mineurs conservent la propriété
de décomposition entière du polytope des stables. Nous utiliserons ce résultat au
Chapitre 7 pour répondre négativement à une question de Shepherd sur les
graphes t-parfaits 3-colorables.

D’autre part, nous caractérisons les paires d’un graphe G et d’un sommet
contractible v de G telles que HSTAB(G/NG [v]) est une face de HSTAB(G).
Cette caractérisation implique directement que les t-mineurs conservent la h-
perfection et étend ainsi le résultat de Gerards et Shepherd. Notre preuve
montre de plus que les t-mineurs conservent la perfection (ce qui est aussi im-
pliqué par une preuve de [15]).

Enfin, nous caractérisons les graphes pouvant être substitués à un sommet
d’un graphe h-parfait de sorte que le graphe obtenu reste h-parfait. On en déduit
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un théorème sur les ensembles homogènes dans les graphes minimalement
h-imparfaits.

4.1 introduction

Let G be a graph and v ∈ V(G). We say that v is contractible in G if
NG(v) is a stable set. A t-contraction of G is the graph G/NG [v], where
v is a contractible vertex of G (recall that G/NG [v] denotes the graph
obtained by shrinking v and its neighbors in G to a single vertex and
deleting the loops which may arise, see Figure 4.1). If v is isolated,
then G/NG [v] and G are obviously identical. Hence, we need only to
consider non-isolated contractible vertices.

A t-minor of G is a graph obtained from a sequence of either vertex-
deletions or t-contractions in any order. It is proper if it is different
from G.

We say that a graph class C (or a property defining such a class) is
closed under an operation O if each graph obtained from a member of
C by using O belongs to C.

v

G

ṽ

G/NG [v]

Figure 4.1 – a t-contraction at vertex v

Recall that STAB(G) denotes the stable set polytope of G and that a
polyhedron P ⊆ Rn has the integer decomposition property (abbreviated
IDP) if for every positive integer k: each integral vector of kP is the
sum of k integral vectors of P.

Clearly, STAB(G− v) is the projection of the face xv = 0 of STAB(G)

on RV(G)−v. In this chapter, we first observe that STAB(G/NG [v]) can
be interpreted in the same way and prove:

Theorem 4.1.1 The integer decomposition property of the stable set poly-
tope is closed under t-minors.

If G is a t-perfect graph and STAB(G) has the IDP, then G is 3-
colorable (see Theorem 3.4.3 and Corollary 3.6.16). Conversely, is it
true that each 3-colorable t-perfect graph G is such that STAB(G) has the
IDP ? This problem was raised by Shepherd in [108]. Using Theo-
rem 4.1.1, we will show in Chapter 7 that the answer is negative.
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H-perfection is closed under taking induced subgraphs (Proposi-
tion 3.6.3). Gerards and Shepherd showed the following result (which
implies that t-perfection is closed under t-minors):

Theorem 4.1.2 (Gerards, Shepherd [51]) Let G be a graph and v be a
contractible vertex of G. If G is t-perfect, then G/NG [v] is t-perfect.

Developing further arguments to handle cliques with more than 3

vertices, we extend this result to h-perfect graphs:

Theorem 4.1.3 The class of h-perfect graphs is closed under t-minors.

In the process of proving this, we also characterize the pairs of
graphs G and contractible vertices v ∈ V(G) such that HSTAB(G/NG [v])
can be identified to a face of HSTAB(G) (recall that HSTAB(G) denotes
the polytope defined by non-negativity, clique and odd-circuit in-
equalities of G). We obtain as a byproduct:

Theorem 4.1.4 The class of perfect graphs is closed under t-minors.

This is also implied by a proof of [16] which shows (with trivial
modifications) that strong h-perfection is closed under t-minors. We do
not know whether it could be useful in simplifying proofs of state-
ments on perfect graphs.

An h-imperfect graph G is minimally h-imperfect (abbreviated MHI)
if every proper t-minor of G is h-perfect. Similarly, a t-imperfect graph
G is minimally t-imperfect (abbreviated MTI) if every proper t-minor
of G is t-perfect.

T-perfection is in co-NP (Theorem 3.6.20) but a combinatorial cer-
tificate of t-imperfection is not known. We do not know however
whether h-perfection belongs to NP or co-NP.

Since h-perfection and t-perfection are both closed under t-minors
(Theorems 4.1.2 and 4.1.3), a graph is t-perfect (resp. h-perfect) if and only
if it does not have a t-minor which is MTI (resp. MHI).

Hence, an approach to designing a co-NP certificate for t-perfection
(resp. h-perfection) would be by using a certificate of minimal t-imper-
fection (resp. minimal h-imperfection). For instance, Bruhn and Stein
[16] determined all the MTI claw-free graphs. The currently known
MTI and MHI graphs are reviewed in Chapter 5.

We now discuss substitutions in h-perfect graphs. Let G, H be
graphs and v ∈ V(G). The substitution of v by H in G, denoted Gv←H,
is the graph obtained from the union of disjoint copies of G− v and
H by adding the edge uw for each u ∈ NG(v) and w ∈ V(H).

Substitutions of vertices of perfect graphs by complete graphs play
a key-role in the proof of Lovász of the Weak Perfect Graph The-
orem (Theorem 1.1.1). A proof of the theorem which does not use
substitutions was given in [49]. We prove the following statement,
which hopefully clarifies the scope of using substitutions in studying
h-perfect graphs:
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Theorem 4.1.5 Let G be an h-perfect graph, v be a non-isolated vertex of
G and H be a graph. The graph Gv←H is h-perfect if and only if at least one
of the following statements holds:

i) H has no edge,
ii) H is perfect and v does not belong to an odd hole of G.

Our proof also shows the same result for strong h-perfection and
(strong) t-perfection.

A module of a graph G is a subset X ⊆ V(G) such that every v ∈
V(G) \ X satisfies NG(v) ⊇ X or NG(v) ∩ X = ∅. The trivial modules
of G are ∅, V(G) and the singletons of V(G) (they are clearly modules
of G). An homogeneous set of G is a non-trivial module of G.

A graph is prime if it has no homogeneous set. Prime graphs are
involved in decomposition results of certain classes of graphs (see [2]
for an example related to h-perfection).

We use Theorem 4.1.5 to derive the following (see Figure 4.2 for the
definition of W−−5 ):

Theorem 4.1.6 Except W−−5 , every minimally h-imperfect graph is prime.

Specializing to t-perfect graphs, this implies that K4 is the only non-
prime MTI graph.

We end this introduction by reviewing related results. A pair of
vertices u and v of a graph G is even if G does not have an induced
odd uv-path. These pairs were introduced by Fonlupt and Uhry [44]
who showed that perfection is closed under shrinking the two vertices of an
even pair. Even pairs of perfect graphs are closely related to designing
efficient combinatorial coloring-algorithms for perfect graphs (see [22,
41]). This result was extended by Fonlupt and Hadjar [43]: shrinking
an even pair keeps h-perfection. Taking a t-minor and shrinking an even
pair are the only currently known operations which keep h-perfection
and reduce the size of the graph.

Other operations considered in the literature include the union of
two graphs [50, 43] and the addition of an edge [43]. It does not seem
that these results imply directly Theorem 4.1.5.

Gerards and Shepherd [51] characterized the graphs whose sub-
graphs are all t-perfect: they are precisely the graphs which do not con-
tain a t-imperfect subdivision of K4 (these subdivisions have a combina-
torial characterization [3]).

outline In Section 4.2, we observe that taking t-minors corre-
sponds to taking faces of the stable set polytope and prove Theo-
rem 4.1.1.

In Section 4.3, we prove a characterization of pairs of graphs G and
contractible vertices v ∈ V(G) such that HSTAB(G/NG [v]) is a face
of HSTAB(G). We use this to show Theorem 4.1.3 and Theorem 4.1.4.
In Section 4.4, we explain that a proof of [16] shows that strong-h-
perfection (and perfection) is closed under t-minors.
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In Section 4.5, we prove Theorem 4.1.5 and derive Theorem 4.1.6.

4.2 t-minors and the stable set polytope

In this section, we show that taking a t-minor corresponds to taking
(a projection of) a face of the stable set polytope in general. We deduce
that the IDP of the stable set polytope is closed under t-minors.

Let G be a graph and v ∈ V(G). Let pG,v be the projection RV(G) →
RV(G−v). Obviously:

STAB(G− v) = pG,v(STAB(G) ∩
{

x ∈ RV(G) : xv = 0
}
).

The situation is similar for t-contractions. Suppose that v is a con-
tractible and non-isolated vertex of G and let ṽ be the new vertex of
G/NG [v]. Let:

F(G, v) := STAB(G) ∩
{

x ∈ RV(G) : xu + xv = 1 ∀uv ∈ E(G)
}

.

Clearly, F(G, v) is a face of STAB(G) (it is a non-empty intersection
of faces).

Let x ∈ F(G, v) and c be the common value of x over the neighbors
of v in G. Let γG,v(x) be the vector of RV(G/NG [v]) defined for each
u ∈ V(G/NG [v]) by:

(γG,v(x))u =

{
c if u = ṽ,

xu otherwise.

Hence, γG,v defines a map F(G, v)→ RV(G/NG [v]). We have the follow-
ing relation:

Proposition 4.2.1 Let G be a graph and v be a non-isolated vertex of G. If
v is contractible, then:

STAB(G/NG [v]) = γG,v(F(G, v)).

Proof – Let T be the set of stable sets of G which contain {v} or
NG(v). Clearly, F(G, v) is the convex hull of the incidence vectors of
the elements of T .

For every S ∈ T , let f (S) := S− v if v ∈ S, and f (S) := S−NG(v)+
ṽ otherwise. Since v is contractible, f is a bijection between T and the
set of stable sets of G/NG [v]. Obviously, γG,v sends χT to χ f (T) for
every T ∈ T and this directly implies the stated equality

�
Let G be a graph, v be a contractible and non-isolated vertex of G

and ṽ be the new vertex of G/NG [v]. Let u be a neighbor of v in G.
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The identification of RV(G/NG [v]) with RV(G−(NG [v]−u)) (that is, ṽ is
replaced with u) shows that γG,v is the restriction to F(G, v) of the pro-
jection RV(G) → RV(G−(NG [v]−u)).

We use this observation and Proposition 4.2.1 to prove Theorem 4.1.1.
The last ingredient is the following straightforward fact. For each pos-
itive integer k, a vector x of Rn is 1

k -integral if kx is integral.

Proposition 4.2.2 Let P ⊆ Rn be a polyhedron which has the integer
decomposition property and π be the projection Rn → Rm.

If for every k ≥ 1, each 1
k -integral vector of π(P) has a 1

k -integral pre-
image in P by π, then π(P) has the integer decomposition property.

The pre-image condition of the proposition is crucial. Indeed the IDP
of polytopes is not closed under taking projections in general, as shown by
a simple 0-1 example due to Sebő: let G be the union of two vertex-
disjoint copies of K4, and let v1 and v2 be respective vertices of the
two copies. Let P ⊆ RV(G) be the convex hull of the incidence vectors
of the cliques of size 3 of G containing v1 or v2. It is straightforward to
check that P has the IDP. Let π be the projection RV(G) → RV(G)−v1−v2

and Q := π(P). Clearly, the all-1 vector 1 of RV(G) belongs to 3P, thus
π(1) is an integral vector of 3Q. It is easy to check however that π(1)
cannot be written as the sum of 3 integral vectors of Q and therefore
Q does not have the IDP.

We now prove:

Theorem 4.1.1 The integer decomposition property of the stable set poly-
tope is closed under t-minors.

Proof – Let G be a graph such that STAB(G) has the IDP and H be
a proper t-minor of G. By induction, we may assume without loss of
generality that H is obtained from G by a single vertex-deletion or
t-contraction.

The discussion above shows that in both cases, STAB(H) is the im-
age of a face F of STAB(G) by a projection π such that the pair (F, π)

obviously satisfies the pre-image assumption of Proposition 4.2.2.
It is straightforward to check that F has the IDP (as a face of a

polyhedron which has the IDP). Therefore, Proposition 4.2.2 shows
that STAB(H) also has the IDP.

�

4.3 t-minors and h-perfection

In Section 4.3.1, we state a characterization of pairs of graphs G
and contractible vertices v ∈ V(G) such that HSTAB(G/NG [v]) can
be identified to a face of HSTAB(G) (through the map γG,v of Sec-
tion 4.2).

We use this to show that h-perfection is closed under t-contractions
(and thus t-minors).
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The proof of the characterization itself is postponed to Section 4.3.2,
and involves a structural lemma on cliques and t-contractions in cer-
tain graphs. Since we use this latter result also in Chapter 5, we
present it separately in Section 4.3.3.

4.3.1 HSTAB(G/NG [v]) as a face of HSTAB(G)

Let G be a graph and v be a contractible and non-isolated vertex of
G. We recall the notations of the previous section. Let:

F(G, v) := STAB(G) ∩
{

x ∈ RV(G) : xu + xv = 1 ∀uv ∈ E(G)
}

.

Let x ∈ F(G, v) and c be the common value of x over the neighbors
of v in G. Let γG,v(x) be the vector of RV(G/NG [v]) defined for each
u ∈ V(G/NG [v]) by:

(γG,v(x))u =

{
c if u = ṽ,

xu otherwise.

Furthermore, let:

Fh(G, v) := HSTAB(G)∩
{

x ∈ RV(G) : xu + xv = 1 ∀uv ∈ E(G)
}

.

In this section, we state a characterization of the equality:

HSTAB(G/NG [v]) = γG,v(Fh(G, v)),

in terms of forbidden-induced subgraphs of G. We use this and one
more result to show Theorem 4.1.3 (which states that h-perfection is
closed under t-minors).

Let K∗4 , W−5 and W−−5 be the graphs shown in Figure 4.2. The black-
filled vertices are called special.

Theorem 4.3.1 Let G be a graph and v be a contractible and non-isolated
vertex of G. The following statements are equivalent:

i) HSTAB(G/NG [v]) = γG,v(Fh(G, v)),
ii) v is not a special vertex of an induced K∗4 , W−5 or W−−5 of G.

The other result used in the proof of Theorem 4.1.3 is the h-imper-
fection of K∗4 , W−5 and W−−5 . We will use the following statement also
in Section 4.3.2.

Proposition 4.3.2 If G is one of the graphs K∗4 , W−5 , W−−5 and if v is a
special vertex of G, then HSTAB(G) has a non-integral vertex which belongs
to Fh(G, v). In particular, G is h-imperfect.

Proof – For each such graph G and special vertex v, the non-integral
vector x over V(G) given in Figure 4.2 belongs to Fh(G, v) and it is
straightforward to find |V(G)| linearly independent clique and odd-
circuit inequalities which are tight at x. Hence, x is a non-integral
vertex of HSTAB(G). In particular, G is h-imperfect.
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Figure 4.2 – the graphs K∗4 , W−5 and W−−5 , their respective special vertices
(shown black-filled) and a non-integral vertex of Fh at a special
vertex.

�
We now use this and ii)=>i) of Theorem 4.3.1 to prove that h-

perfection is closed under t-minors:

Theorem 4.1.3 The class of h-perfect graphs is closed under t-minors.

Proof – The case of vertex-deletion is straightforward (see Proposi-
tion 3.6.3) Hence we need only to prove that h-perfection is closed
under t-contractions.

Let G be an h-perfect graph and v ∈ V(G) be a contractible vertex.
We may obviously assume that v is non-isolated. We will prove that
HSTAB(G/NG [v]) = STAB(G/NG [v]) and this means that G/NG [v]
is h-perfect.

H-perfection is closed under vertex-deletion and K∗4 , W−5 and W−−5
are h-imperfect (Proposition 4.3.2). Hence, G cannot have an induced
K∗4 , W−5 or W−−5 and condition ii) of Theorem 4.3.1 is satisfied. Thus:

HSTAB(G/NG [v]) = γG,v(Fh(G, v)).

Since G is h-perfect, Fh(G, v) = F(G, v). Therefore, Proposition 4.2.1
shows that HSTAB(G/NG [v]) = STAB(G/NG [v]) as required.

�
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We will see in Chapter 5 that the graphs K∗4 , W−5 and W−−5 are
the only minimally h-imperfect K4-free graphs which are not mini-
mally t-imperfect (Theorem 5.1.4). Here, we merely needed their h-
imperfection.

Finally, we observe that Theorem 4.3.1 implies furthermore that the
class of perfect graphs is closed under t-minors. Recall that QSTAB(G)

denotes the polyhedron defined by non-negativity and clique inequal-
ities of a graph G.

Theorem 4.1.4 The class of perfect graphs is closed under t-minors.

Proof – The case of vertex-deletion is obvious. Let G be a perfect
graph and suppose that v is a contractible and non-isolated vertex of
G.

Put H := G/NG [v]. We prove that QSTAB(H) = STAB(H) and this
will imply the perfection of H (Theorem 3.5.3).

Since G is perfect, it does not have an odd hole. Clearly, this implies
that H does not have an odd hole and QSTAB(H) = HSTAB(H).

Furthermore, G cannot have an induced K∗4 , W−5 or W−−5 (they all
have odd holes). Hence, Theorem 4.3.1 shows that:

HSTAB(H) = γG,v(Fh(G, v)).

Now, G is h-perfect (as it is perfect). Thus, Fh(G, v) = F(G, v) and
Proposition 4.2.1 implies that QSTAB(H) = STAB(H) as stated.

�
This is also shown by a proof of Bruhn and Stein [16] (see Sec-

tion 4.4).

4.3.2 Proof of Theorem 4.3.1

This section is devoted to the proof of Theorem 4.3.1 (see the pre-
ceding section for the definition of γ and Fh).

Theorem 4.3.1 Let G be a graph and v be a contractible and non-isolated
vertex of G. The following statements are equivalent:

i) HSTAB(G/NG [v]) = γG,v(Fh(G, v)),
ii) v is not a special vertex of an induced K∗4 , W−5 or W−−5 of G.

First, the implication i)=>ii) follows from Proposition 4.3.2:

Proof (of Theorem 4.3.1, i)=>ii)) – Let H be an induced K∗4 , W−5 or
W−−5 of G such that v is a special vertex of H. To the contrary, suppose
that HSTAB(G/NG [v]) = γG,v(Fh(G, v)).

Let x be the non-integral vector of Fh(H, v) shown in Figure 4.2
(see Proposition 4.3.2). Let y ∈ RV(G) be defined for all u ∈ V(G) by:
yu = xu if u ∈ V(H) and yu = 0 otherwise.
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Clearly, y ∈ Fh(G, v). Put z = γG,v(y) and let K be the set of vertices
u of G/NG [v] such that zu 6= 0. Clearly, K is a clique of cardinality 4.

By assumption, z ∈ HSTAB(G/NG [v]) and thus z(K) ≤ 1. How-
ever, Figure 4.2 shows (in each case) that z(K) > 1: a contradiction.

�
We prove ii)=>i) by showing both inclusions of sets. We first ob-

serve that "⊆" holds in general.
By Proposition 3.6.4, for every graph G and x ∈ RV(G), we may

prove that x ∈ HSTAB(G) by showing that x satisfies the non-negativity,
clique and the odd-circuit inequalities corresponding to odd holes of G only.

Proposition 4.3.3 For every graph G and every contractible non-isolated
vertex v of G:

HSTAB(G/NG [v]) ⊆ γG,v(Fh(G, v)).

Proof – Let G′ := G/NG [v], F := Fh(G, v) and let ṽ be the new
vertex of G′.

Let y ∈ HSTAB(G′). Let x ∈ RV(G) be defined for each u ∈ V(G) as
follows:

xu =


1− yṽ if u = v,

yṽ if u ∈ NG(v),

yu otherwise.

For each u ∈ NG(v), xv + xu = 1. We will show that x ∈ HSTAB(G).
This will imply that x ∈ Fh(G, v) and, as y = γG,v(x) (obviously), end
the proof.

Clearly, x is non-negative and satisfies the clique inequalities.
Let C be an odd hole of G and l := |V(C)|. We show:

x(V(C)) ≤ l − 1
2

.

This is obvious if C contains at most one neighbor of v, so let us
assume the contrary.

If v ∈ V(C), then |NG(v) ∩ V(C)| = 2 (because C has no chord).
Hence, C′ := G′ [V(C)− NG [v] + ṽ] is an odd circuit of G′. Since
x ∈ HSTAB(G′), we have x(V(C′)) ≤ |V(C′)|−1

2 . Thus:

x(V(C)) = x(V(C′)) + 1 ≤ l − 1
2

.

So we may assume that v /∈ V(C) and put s := |NG(v) ∩ V(C)|.
Observe that H := G′ [V(C)− NG [v] + ṽ] is the union of circuits
C1, . . . , Cr, Cr+1, . . . , Cs which pairwise-intersect in ṽ and such that
C1, . . . , Cr are odd and Cr+1, . . . , Cs are even.
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If Ci is odd, then by assumption x(V(Ci)) ≤ |V(Ci)|−1
2 . Moreover, if

Cj is even then any perfect matching of Cj shows that x(V(Cj)) ≤
|Cj|

2 .
Clearly |V(C)| = ∑s

i=1 |V(Ci)|. Since C is odd, we have r ≥ 1 and
obtain:

x(V(C)) =
s

∑
i=1

x(V(Ci)) ≤
r

∑
i=1

|V(Ci)| − 1
2

+
s

∑
j=r+1

|V(Cj)|
2

≤ |V(C)| − 1
2

.

Therefore, x ∈ HSTAB(G).

�
Finally, we use the following lemma whose proof is postponed to

the next section. A 2-neighbor of a vertex v of a graph is a vertex at
distance exactly 2 of v (in the sense of shortest paths).

Lemma 4.3.4 Let G be a graph and let v be a vertex of G which is not a
special vertex of an induced K∗4 , W−5 or W−−5 of G. If K is a clique of G of
cardinality at least 3 which satisfies both following conditions:

i) the vertices of K are 2-neighbors of v,
ii) each w ∈ K has a neighbor vw ∈ NG(v) such that {vw : w ∈ K} is a

stable set,
then v has a neighbor u such that K + u is a clique of G.

We now use this and Proposition 4.3.3 to prove ii)=>i) of Theo-
rem 4.3.1:

Proof (of Theorem 4.3.1, ii)=>i)) – Let G be a graph and v be a
contractible vertex of G which is not a special vertex of an induced
K∗4 , W−5 or W−−5 of G. By Proposition 4.3.3, we need only show:

γG,v(Fh(G, v)) ⊆ HSTAB(G/NG [v]).

Let x ∈ Fh(G, v). Put y := γG,v(x). That is, for every u ∈ V(G/NG [v]):

yu =

{
1− xv if u = ṽ,

xu otherwise.

We prove that y ∈ HSTAB(G/NG [v]). Clearly, y is non-negative.
Let C be an odd circuit of G/NG [v] and l := |V(C)|. We first show:

y(V(C)) ≤ l − 1
2

.

It is obvious if ṽ /∈ V(C) so let us assume the contrary. If there
exists u ∈ NG(v) such that C′ := G [V(C)− ṽ + u] is an odd circuit of
G then, since x ∈ HSTAB(G), we have: y(V(C)) = x(V(C′)) ≤ l−1

2 .
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Otherwise, there must exist two neighbors u and w of v in G such
that C′ := G [V(C)− ṽ + u + w + v] is an odd circuit of G. Therefore:

y(V(C)) = x(V(C′))− 1 ≤ l − 1
2

.

Now, let K be a clique of G/NG [v]. We need to prove that y(K) ≤ 1.
If ṽ /∈ K or if |K| ≤ 2 then the result is obvious. If K is a triangle, then
it follows from the odd-circuit case.

So we may assume that |K| ≥ 4 and ṽ ∈ K. Let K′ := K − ṽ. The
clique K′ of G has at least 3 vertices and is obviously formed by 2-
neighbors of v only. Besides, each w ∈ K′ has a neighbor vw in NG(v)
(because w is adjacent to ṽ in G/NG [v]) and since v is contractible,
the set {vw : w ∈ K′} must be a stable set.

Thus, Lemma 4.3.4 implies that v has a neighbor u such that K′′ :=
K′ + u is a clique of G. Since x ∈ Fh(G, v), we have xu = xṽ and:

y(K) = x(K′′) ≤ 1,

as required.
Therefore, y ∈ HSTAB(G/NG [v]) and we are done.

�

4.3.3 A lemma for cliques and t-contractions

In this section, we prove Lemma 4.3.4. Besides, we show that it
implies a result on the cardinality of cliques in t-contractions which
will be useful in Chapter 5.

The lemma is derived from the following basic result on bipartite
graphs.

Let G be a bipartite graph with bipartition {A, B}. A P2,3 of G with
ends in A is a subgraph of G formed by the vertex-disjoint union of
a K2 and a P3 whose ends belong to A. Let 3K2 denote the graph
formed by 3 vertex-disjoint edges.

Proposition 4.3.5 Let G be a bipartite simple graph with bipartition {A, B}
such that |A| ≥ 3 and without isolated vertices.

If G has no induced 3K2, no induced P2,3 with ends in A and no induced
P5 with ends in A, then there exists b ∈ B such that NG(b) = A.

Proof – Let k = maxb∈B dG(b) and let b ∈ B with dG(b) = k. We
show that NG(b) = A.

We first observe that k ≥ 2: since G has no isolated vertex and
|A| ≥ 3, having k = 1 would yield an induced 3K2 of G contradicting
our assumption on G.

Now suppose by contradiction that there exists a vertex a ∈ A
which is not adjacent to b. Since a is not isolated, there exists b′ ∈
B \ {b} such that ab′ ∈ E(G).
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k ≥ 2. Let X := NG(b) \ NG(b′). We have |X| ≥ 1: otherwise
dG(b′) > dG(b), contradicting the choice of b.

Furthermore, |X| ≤ 1. Otherwise since k ≥ 2, b must have two
neighbors a1 and a2 which are not adjacent to b and {a, a1, a2, b, b′}
would induce a P2,3 with ends in A: a contradiction.

Therefore, X has a unique element a′. Since k ≥ 2, the vertex b
has a neighbor a′′ different from a and therefore (a′, b, a′′, b′, a) is an
induced P5 of G with ends in A: a contradiction again.

�

v

K

W

(a) case of 3K2

v

K

W

(b) case of P2,3

v

K

W

(c) case of P5

Figure 4.3 – obtaining an induced K∗4 , W−−5 and W−5 of G from subgraphs
of H

Recall that a 2-neighbor of a vertex v of a graph is a vertex at distance
exactly 2 of v. We now prove Lemma 4.3.4:

Lemma 4.3.4 Let G be a graph and let v be a vertex of G which is not a
special vertex of an induced K∗4 , W−5 or W−−5 of G. If K is a clique of G of
cardinality at least 3 which satisfies both following conditions:

i) the vertices of K are 2-neighbors of v,
ii) each w ∈ K has a neighbor vw ∈ NG(v) such that {vw : w ∈ K} is a

stable set,
then v has a neighbor u such that K + u is a clique of G.

Proof – Let W := {vw : w ∈ K}. Consider the underlying simple
graph H of the bipartite graph G [W ∪ K] − EG(K) with bipartition
{W, K}. The graph H does not have an induced 3K2, since G would
otherwise have an induced K∗4 with special vertex v (see Figure 4.3a).

Similarly, H cannot have an induced P2,3 (resp. P5) with ends in K
since it would yield an induced W−−5 (resp. W−5 ) of G with special
vertex v (see Figures 4.3b and 4.3c).

Hence, Proposition 4.3.5 shows (taking A := K and B := W) that
there exists u ∈ W such that NG(u) = K. Therefore, K + u is a clique
of G.

�
We will use the following immediate consequence of this lemma in

Chapter 5:
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Proposition 4.3.6 Let G be a graph and v be a contractible vertex of G.
If ω(G/NG [v]) > ω(G) ≥ 3, then v is a special vertex of an induced

K∗4 , W−5 or W−−5 of G.

Proof – Suppose that ω(G/NG [v]) > ω(G) ≥ 3.
Let ṽ be the new vertex of G/NG [v] and let K be a maximum clique

of G/NG [v].
We have ṽ ∈ K. Otherwise K would be a clique of G showing

ω(G) ≥ ω(G/NG [v]): a contradiction.
Put K′ := K− ṽ. Obviously K′ is a clique in G with at least 3 vertices

and formed by 2-neighbors of v. For each w ∈ K′, let vw be a common
neighbor of v and w. Since v is contractible, {vw : w ∈ K′} is a stable
set.

Furthermore, no neighbor u of v can form a clique with K′ since
K′ + u would otherwise be a clique of G of cardinality ω(G/NG [v]):
a contradiction.

Therefore, Lemma 4.3.4 implies that v must be a special vertex of
an induced K∗4 , W−5 or W−−5 of G.

�
This result does not hold if we omit the assumption ω(G) ≥ 3. For

example, the t-contraction of a vertex of C5 yields K3.

4.4 t-minors and strong h-perfection

It is not clear whether Theorem 4.3.1 implies that every t-minor of a
strongly h-perfect graph is strongly h-perfect too. However, it is well-
known that t-minors of strongly t-perfect graphs are strongly t-perfect
(see [102, pg. 1195]). The first published proof of this fact appears in
[15] and it can be directly used (with only trivial modifications) to
obtain the same result for strong h-perfection:

Theorem 4.4.1 (Bruhn, Stein [15]) Strong h-perfection is closed under
t-minors.

Proof (Bruhn, Stein [15]) – It is straightforward to show that strong
h-perfection is closed under vertex-deletion, so only t-contractions
need to be checked. Furthermore by induction, it suffices to prove
that a single t-contraction keeps strong h-perfection.

Let G be a strongly h-perfect graph, v be a contractible vertex of G
and H := G/NG [v]. Let ṽ denote the new vertex of H. Obviously, G
may be assumed simple and v non-isolated.

Let c ∈ Z
V(H)
+ . The aim of the proof is to show: α(H, c) = ρh(H, c)

(see Section 3.6.2 for the definition of ρh).
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Put β := c(V(H)) + 1 and let b ∈ ZV(G) be defined for every t ∈
V(G) by:

bt =


dG(v)β− cṽ if t = v,

β if t ∈ NG(v),

ct otherwise.

Let S be a stable set of (G, b) with b(S) = α(G, b). Clearly, either v ∈ S
or NG(v) ⊆ S.

If v ∈ S, then b(S) ≤ α(H, c) + bv. Otherwise, S− NG(v) + ṽ is a
stable set of H and this implies that b(S) ≤ d(v)β + α(H, c) − cṽ =

α(H, c) + bv. Hence, in both cases we get :

α(G, b) ≤ α(H, c) + bv. (4.1)

Since G is strongly h-perfect, there exists an h-cover F of G of cost
α(G, b). We may assume that every odd circuit of F whose length
is at least 5 is an odd hole of G (see Section 3.6.2). Moreover, we
can suppose that the multiset Fv of elements of F containing v has
exactly bv elements which are different from {v}.

Now, we build an h-cover D of (H, c) from F with cost α(G, b)− bv.
By Equation (4.1), this will prove α(H, c) ≥ ρh(H, c) and therefore the
theorem.

Since v is contractible, Fv is the union of a multiset Kv of cliques
of cardinality at most 2 and a multiset C of odd holes. For every odd
hole C in Fv, let C′ := H [V(C)− NG(v) + ṽ]. Clearly, C′ is a triangle
or odd hole of H and |V(C′)| = |V(C)| − 2. Let C ′ := {C′ : C ∈ C}.

We start the construction of D with D := C ′. Then, add to D every
clique and every odd hole of F which does not meet NG [v]. Also, for
every clique K in F \Fv meeting NG(v), add the clique (K \NG(v)) +
ṽ to D.

Now, let C be an odd hole in F \ Fv meeting NG(v). The graph
H [V(C)− NG(v) + ṽ] is the union of odd circuits C1, . . . , Cr and even
circuits Cr+1, . . . , Cs (possibly of length 2) which pairwise-intersect in
ṽ only. For i = 1, . . . , r, add Ci to D. For j = r + 1, . . . , s, choose a
perfect matching Mj of Cj and add every edge of Mj to D.

By construction, D is a multiset of cliques and odd holes of H.

D is an h-cover of (H, c) of cost α(G, b)− bv.

As mentioned above, this will end the proof of the theorem.
We first examine the cost of D: it is straightforward to check that

it is the sum of the costs of F \ Fv and C ′. By assumption, bv =

|Kv|+ |C|. Hence, the cost of C ′ is

∑
C∈C

|V(C)| − 1
2

− |C| = ∑
C∈C

|V(C)| − 1
2

+ |Kv| − bv,
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that is the cost of Fv minus bv. Thus the cost of D is indeed α(H, c)−
bv.

We now prove that D is an h-cover of (H, c). Obviously, every t ∈
V(H) \ {ṽ} is covered at least ct times by D (since bt = ct). So it
remains only to check that ṽ is covered at least cṽ times by D.

It is straightforward to check that each F ∈ F \ Fv which meets
NG(v) gives rise to |V(F) ∩ NG| elements of D (with repetitions) con-
taining ṽ. Also, each C ∈ C covers two neighbors of v while the as-
sociated circuit C′ ∈ C ′ covers ṽ only once. Finally, each clique in Kv

is different from {v}, thus it covers exactly one neighbor of v. Since
those cliques are not counted in D, we get that the number of times D
covers ṽ is at least: dG(v)β− |Kv| − |C| = bv. Indeed, bv = |Kv|+ |C|
because F covers v exactly cv times.

�
By Theorem 3.5.2, a graph G is perfect if and only if every induced

subgraph H of G has a clique-cover of cardinality α(H).
Clearly, a clique-cover K is an integral h-cover of cost |K|. Further-

more, in the proof above: if F contains cliques only, then D will be a
clique-cover.

Therefore, this proof also shows that perfection is closed under t-
minors (Theorem 4.1.4).

4.5 substitutions in h-perfect graphs

Let G, H be graphs and v ∈ V(G). The substitution of v by H in
G, denoted Gv←H, is the graph obtained from the union of disjoint
copies of G − v and H by adding the edge uw for each u ∈ NG(v)
and w ∈ V(H).

The following lemma, formulated by Fulkerson [48] and proved by
Lovász [71], plays a key-role in the proof of the Weak Perfect Graph
Theorem (Theorem 3.5.2).

Theorem 4.5.1 (Lovász [71]) Let G be a perfect graph and v ∈ V(G). If
H is a perfect graph, then the graph Gv←H is perfect.

In this section, we characterize the substitutions which keep h-
perfection.

v

Figure 4.4 – substituting a vertex of K2 by C5
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It is not true in general that substitutions by perfect graphs keep
h-perfection. Indeed, substituting a K2 for a vertex of C5 (which is
h-perfect) yields the h-imperfect graph W−−5 (see Proposition 4.3.2).
Furthermore, substituting an odd hole to a vertex of K2 yields an odd
wheel W2k+1 with k ≥ 2 (see Figure 4.4) and we have (see Section 3.6.1
for a proof):

Proposition 3.6.5 For each k ≥ 1, the graph W2k+1 is t-imperfect.

Further details on the stable set polytope of odd wheels can be
found in Chapter 5.

We use only the polyhedral characterization of perfect graphs to
prove our substitution theorem.

Obviously, if G is h-perfect and v is an isolated vertex of G, then
Gv←H is h-perfect if and only if H is h-perfect too.

Theorem 4.1.5 Let G be an h-perfect graph, v be a non-isolated vertex of
G and H be a graph. The graph Gv←H is h-perfect if and only if at least one
of the following statements holds:

i) H has no edge,
ii) H is perfect and v does not belong to an odd hole of G.

Proof – Let G′ := Gv←H. We first prove the "only if" part of the
statement.

only if: Suppose that G′ is h-perfect and that H has an edge.
Clearly, an odd hole of H would yield an induced W2k+1 of G′ with

k ≥ 2, contradicting the h-perfection of G′.
Hence, H has no odd hole. Since H is an induced subgraph of G′,

it is h-perfect and this implies that H is perfect (see Section 3.6.1).
To see that v does not belong to an odd hole of G, observe that G′

would otherwise have an induced subgraph which can be t-contracted
to W−−5 , contradicting the h-perfection of G (Proposition 4.3.2).

We now show the "if" part of the theorem.
If: The result is trival if H has at most one vertex, so we may hence-

forth assume that |V(H)| ≥ 2.
Let d ∈ Z

V(G′)
+ . We prove:

α(G′, d) = ρh
f (G

′, d). (4.2)

By Proposition 3.6.7, this will imply the h-perfection of G′. Since the
inequality ≤ always holds, we need only to show the converse.

Let dH be the restriction of d to V(H). Now, let c ∈ Z
V(G)
+ be defined

as follows: for every t ∈ V(G), ct := α(H, dH) if t = v and ct := dt

otherwise. It is straightforward to check that α(G′, d) = α(G, c).
Since G is h-perfect, Proposition 3.6.7 implies:

α(G′, d) = ρh
f (G, c). (4.3)
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Let y be a fractional rational h-cover of (G, c) of cost ρh
f (G, c) (see

Section 3.6.2) and let k be a positive integer such that ky is integral.
Let F be the integral h-cover of (G, kc) corresponding to ky.

Depending on whether condition i) or ii) of the statement of the
theorem holds, we build an integral h-cover F ′ of (G′, kd) of the cost
of F .

This construction will indeed end the proof of the "if" part of the
theorem: it implies kρh

f (G, c) ≥ ρh
f (G

′, kd) and since ρh
f (G

′, kd) ≥
kρh

f (G
′, d) (this is straightforward), we obtain ρh

f (G, c) ≥ ρh
f (G

′, d).
By (4.3), this shows α(G′, d) ≥ ρh

f (G
′, d) and we finally get (4.2) as

required.

Case 1. H has no edge. Clearly, by induction on |V(H)| we only need
to check the case |V(H)| = 2, so put V(H) = {u, w}.

Since v belongs to kcv elements of F and kcv = kdu + kdw, we
can choose a sub-multiset Fu of F with kdu elements all containing
v. Then, there is a sub-multiset Fw of F − Fu of kdw elements all
containing v.

Let F ′u := {F− v + u : F ∈ Fu} and F ′w := {F− v + w : F ∈ Fw}.
The multiset F ′ := F ′u + F ′w + (F − Fu −Fw) is clearly an integral
h-cover of (G′, kd) of the same cost as F .

Case 2. H is perfect and v does not belong to an odd hole of G. Here, Fv

only contains cliques. By definition, it has at least kα(H, dH) elements.
Let r := α(H, dH). Since H is perfect, (H, dH) has a clique-cover

formed by r cliques K1, . . . , Kr (Theorem 3.5.2).
Let K := {K′1, . . . , K′r} be a sub-multiset of Fv with kr elements and

let F ′ be obtained from F by replacing in K the clique K′i by the set
K′i ∪ Ki of G′ for every i ∈ [r].

In G′, every vertex of H is adjacent to every neighbor of v in G.
Thus, the sets Ki ∪ K′i are cliques of G′ and F ′ is an integral h-cover
of (G′, kd) which has the same cost as F .

�
A general result of Chvátal [26] shows that the stable set poly-

tope of Gv←H can be obtained from descriptions for STAB(G) and
STAB(H). This result can be used to give another proof of the "if"
part of our result.

The proof above directly shows however that the theorem remains
true if we replace h-perfection with strong h-perfection. Specializing Theo-
rem 4.1.5 to K4-free graphs, it is straightforward to prove:

Corollary 4.5.2 Let G be a (strongly) t-perfect graph, v be a non-isolated
vertex of G and H be a graph. The graph Gv←H is (strongly) t-perfect if and
only if at least one of the following statements holds:

i) H has no edge,
ii) v does not belong to an induced odd circuit of G and H is bipartite.



4.6 homogeneous sets in minimally h-imperfect graphs 71

4.6 homogeneous sets in minimally h-imperfect graphs

In this section, we show that Theorem 4.1.5 has a simple conse-
quence for the structure of h-imperfect graphs which are minimal
with respect to t-minors.

Recall that a graph G is minimally h-imperfect (resp. minimally t-
imperfect) if it is h-imperfect (resp. t-imperfect) and every proper t-
minor of G is h-perfect (resp. t-perfect).

A module of a graph G is a subset X ⊆ V(G) such that every v ∈
V(G) \ X satisfies NG(v) ⊇ X or NG(v) ∩ X = ∅. The trivial modules
of G are ∅, V(G) and the singletons of V(G) (they clearly are modules
of G). An homogeneous set of G is a non-trivial module of G. A graph
is prime if it has no homogeneous set.

The graph W−−5 is minimally h-imperfect (see Theorem 5.1.4) and
has an homogeneous clique of cardinality two. We prove that it is the
only minimally h-imperfect graph which is not prime.

Theorem 4.1.6 Except W−−5 , every minimally h-imperfect graph is prime.

Proof – Let G be a minimally h-imperfect graph and suppose that G
has an homogeneous set X. We show that W−−5 is a t-minor of G and
this will obviously prove the theorem.

Put H := G [X]. Let v ∈ X and put X′ := X− v. Since X is homoge-
neous, G is obtained from G− X′ by substituting v by H. Besides, G
is minimally h-imperfect thus G− X′ is h-perfect.

Therefore, H must have an edge: otherwise Theorem 4.1.5 would
imply that G is h-perfect, contradicting our assumption.

Let u ∈ V(G) \ X. The graph G − u is h-perfect and is obtained
from G− u− X′ by substituting v by H, which has at least one edge.
Thus, another application of Theorem 4.1.5 shows that H is perfect
and v does not belong to an odd hole of G− u− X′.

On the other hand, G is h-imperfect. Therefore, Theorem 4.1.5 im-
plies that v must belong to an odd hole C of G− X′.

Since H has at least an edge, v has a neighbor w in X. As C is
induced, it contains exactly two neighbors of v in G− X′. Now, every
neighbor of v is adjacent to w and therefore G [V(C) + w] can be t-
contracted to W−−5 . This shows that W−−5 is a t-minor of G.

�
Specializing our result to minimally t-imperfect graph, we directly

obtain:

Corollary 4.6.1 K4 is the only non-prime minimally t-imperfect graph.





5
M I N I M A L H - I M P E R F E C T I O N

T-perfection is in co-NP (Theorem 3.6.20) but no combinatorial certificate
of t-imperfection is known.

Gerards and Shepherd [51] showed that t-perfection is closed for t-minors.
A t-imperfect graph is minimally t-imperfect if all its proper t-minors are t-
perfect. Hence, a graph is t-imperfect if and only if it has a t-minor which is
minimally t-imperfect.

Therefore , studying minimally t-imperfect graphs may hopefully yield a
combinatorial certificate of t-imperfection and provide a solid basis towards
understanding the complexity of deciding t-perfection.

For example, Bruhn and Stein [16] determined every minimally t-imperfect
claw-free graphs. Bruhn and Schaudt [14] used this to show a polynomial-
time algorithm testing t-perfection in claw-free graphs.

Several minimally t-imperfect graphs have been identified by Shepherd
[108] and Bruhn, Stein [13, 16].

In this chapter, we will first review the known examples of minimally t-
imperfect graphs. We do not provide new ones, but give a description of their
stable set polytope and formulate a related conjecture. Moreover, we state
known and new conjectures and further questions on minimally t-imperfect graphs.

Clearly, K4 is the only minimally t-imperfect graph which is not min-
imally h-imperfect. In a second part, we prove that there are exactly three
minimally h-imperfect K4-free graphs which are not minimally t-imperfect: K∗4 ,
W−5 and W−−5 . These graphs show that conjectures stated for minimally t-
imperfect graphs have to be reformulated in order to extended to minimally
h-imperfect graphs.

It is not known whether h-perfection is in NP or co-NP. We state a con-
jecture of Sebő (personal communication) whose validity would imply that
odd antiholes with at least 9 vertices are the only minimally h-imperfect
graphs having cliques of cardinality larger than 3. In particular, it would
put h-perfection in co-NP.

We prove that the conjecture holds for a proper superclass of planar graphs.
Webs form a class of claw-free graphs containing the odd antiholes. We
determine the h-perfect and minimally h-imperfect webs. Our results hopefully
simplify the still open task of characterizing minimally h-imperfect claw-
free graphs.

Finally, we use the forbidden-induced-subgraph characterization of Cao
and Nemhauser (Theorem 3.8.2) to determine the minimally h-imperfect
line-graphs.

La t-perfection est une propriété co-NP (Théorème 3.6.20) mais on ne
connaît pas de certificat combinatoire de t-imperfection.

Gerards et Shepherd [51] ont montré que les t-mineurs conservent la t-
perfection. Un graphe t-imparfait est minimalement t-imparfait si tous ses t-
mineurs propres sont t-parfaits. Ainsi, un graphe est t-imparfait si et seule-
ment s’il a un t-mineur qui est minimalement t-imparfait.

73
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Dès lors, la caractérisation des graphes minimalement t-imparfaits fournit
une approche possible pour obtenir un certificat combinatoire de t-imperfection.
Elle donnerait aussi une base solide pour l’étude de la complexité de la re-
connaissance des graphes t-parfaits.

Par exemple, Bruhn et Stein [16] ont déterminé les graphes minimalement
t-imparfaits sans griffe. Bruhn et Schaudt [14] ont utilisé ce résultat dans leur
algorithme polynomial de reconnaissance des t-parfaits dans la classe des
graphes sans griffe.

Plusieurs autres exemples de graphes minimalement t-imparfaits ont été
donnés par Shepherd [108] et Bruhn, Stein [13, 16].

Dans ce chapitre, nous faisons d’abord l’inventaire des exemples connus
de graphes minimalement t-imparfaits et décrivons leur polytope des stables.
Nous ne proposons pas de nouvel exemple mais sommes conduits à énon-
cer une conjecture sur le polytope des stables des graphes minimalement
t-imparfaits. Par ailleurs, nous énumérons plusieurs conjectures connues et
en suggérons de nouvelles sur les propriétés combinatoires de ces graphes.

Il est facile de vérifier que K4 est l’unique graphe minimalement t-imparfait
qui n’est pas minimalement h-imparfait. Dans la seconde partie du cha-
pitre, nous prouvons qu’il y a exactement trois graphes sans K4 minimalement
h-imparfaits qui ne sont pas minimalement t-imparfaits : K∗4 , W−5 et W−−5 . Ces
graphes montrent que les conjectures formulées pour les minimalement t-
imparfaits doivent être modifiées pour être étendues aux minimalement h-
imparfaits.

L’appartenance de la h-perfection à NP ou co-NP est toujours ouverte.
Nous énonçons une conjecture de Sebő (communication personnelle) affir-
mant que les anti-trous impairs à au moins 9 sommets sont exactement les
graphes minimalement h-imparfaits qui contiennent K4. La validité de cette
conjecture placerait directement la h-perfection dans co-NP.

Nous prouvons que cette conjecture est satisfaite par une classe contenant
(strictement) les graphes planaires. Les graphes circulants forment une sous-
classe des graphes sans griffe qui contient tous les anti-trous impairs. On
caractérise les graphes circulants h-parfaits et minimalement h-imparfaits.
Nous expliquons en quoi ces résultats pourraient être utiles dans la re-
cherche d’une preuve de la conjecture de Sebő pour le cas des graphes sans
griffe.

Enfin, nous utilisons la caractérisation par sous-graphes-induits interdits
des graphes h-parfaits adjoints due à Cao et Nemhauser (Théorème 3.8.2)
pour déterminer tous les graphes adjoints minimalement t-imparfaits.

5.1 introduction

T-perfection belongs to co-NP but a combinatorial certificate of t-
imperfection is not known (Theorem 3.6.20). Whether t-perfection be-
longs to NP is open.

The Strong Perfect Graph Theorem (Theorem 1.1.2) shows that im-
perfection can be certified by showing an odd hole or odd antihole.
It is easy to check that a graph is an odd hole or odd antihole, and
this places perfection in co-NP (a simpler certificate is provided by
a theorem of Lovász [102, pg. 1109]). Odd holes and antiholes are
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the minimally imperfect graphs: they are imperfect and their proper
induced subgraphs are all perfect.

This suggests using operations which keep t-perfection and reduce
the size of the graph in the process of seeking a combinatorial co-NP
characterization of t-perfection.

Recall that a t-minor of a graph G is any graph obtained from G by
a sequence of vertex-deletions and t-contractions. It is proper if it is
different from G.

Gerards and Shepherd [51] proved that t-perfection is closed under t-
minors. A t-imperfect graph is minimally t-imperfect (abbreviated MTI)
if all its proper t-minors are t-perfect. Hence, a graph is t-imperfect if
and only if it has an MTI t-minor.

A combinatorial algorithm recognizing minimally t-imperfect (or
minimally h-imperfect) graphs would directly imply a combinatorial
certificate of t-imperfection (or h-imperfection).

The claw is the graph shown in Figure 5.1. A graph is claw-free if it
does not have an induced claw. It is straightforward to check that the
class of claw-free graphs is closed under t-minors.

Theorem 5.1.1 (Bruhn, Stein [16]) The minimally t-imperfect claw-free
graphs are K4, W5, C2

7 and C2
10.

Therefore, a claw-free graph is t-perfect if and only if it does not have one
of these graphs as a t-minor. This directly puts t-perfection of claw-free
graphs in co-NP and was used by Bruhn and Schaudt [14] to show a
polynomial-time algorithm testing t-perfection in claw-free graphs.

In this chapter, we will first review the currently known MTI graphs
which can be found in [13, 15]. There are several infinite families of
such graphs. No new example is provided and we do not know if
there are more.

Figure 5.1 – the claw

An imperfect graph G is minimally imperfect if every proper induced
subgraph of G is perfect. By the polyhedral characterization of perfec-
tion (Theorem 3.5.3), STAB(G) must have a non-trivial facet which is
not defined by a clique-inequality of G. Furthermore, the polytope
QSTAB(G) described by the non-negativity and clique-inequalities of
G (see Section 3.5) must have a non-integral vertex. Padberg proved
the following:
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Theorem 5.1.2 (Padberg, [89]) For every minimally imperfect graph G,
the inequality x(V(G)) ≤ α(G) defines a facet of STAB(G) and:

STAB(G) =

x ∈ RV(G) :
x ≥ 0,

x(K) ≤ 1 ∀K clique of G,

x(V(G)) ≤ α(G).

 .

Furthermore, 1
ω(G)

1 is the unique non-integral vertex of QSTAB(G).

In this context, Shepherd [107] called a graph G near-perfect if the
non-trivial facets of STAB(G) are defined by clique-inequalities or
the full-rank inequality x(V(G)) ≤ α(G). Hence, both perfect graphs
and minimally imperfect graphs are near-perfect. In general, it is not
true that the complement of a near-perfect graph is near-perfect (see
Figure 1.3). In [107], Shepherd showed that a graph G is minimally
imperfect if and only if G and G are near-perfect.

This motivates the definition of an analogous notion for h-perfection.
We say that a graph G is near-h-perfect if STAB(G) is described by
non-negativity, clique and odd-circuit inequalities and the full-rank
inequality of G. Near-h-perfect graphs include near-perfect and h-
perfect graphs.

An h-imperfect graph is minimally h-imperfect (abbreviated MHI) if
all its proper t-minors are h-imperfect. In Chapter 4, we showed that
h-perfection is closed under t-minors. Therefore, a graph is h-perfect
if and only if it does not have an MHI t-minor.

In this chapter, we will show that except odd wheels W2n+1 (with n ≥
2) and K∗4 (see Figure 5.2), the known examples of MHI graphs are near-h-
perfect. Hence, we conjecture the following:

Conjecture 5.1.3 Except K∗4 and the odd wheels W2n+1 with n ≥ 2, every
minimally h-imperfect graph is near-h-perfect.

We will survey questions of Bruhn and Stein [16] (and ask new
ones) related to MTI graphs.

Clearly, K4 is the only MTI graph which is not MHI. There are
K4-free MHI graph which are not MTI (they have K4 as a t-minor)
and we determine all of them (see Figure 5.2 for the definitions of K∗4 ,
W−5 , W−−5 ):

Theorem 5.1.4 The only K4-free minimally h-imperfect graphs are K∗4 , W−5
and W−−5 .

These graphs are precisely those involved in Theorem 4.3.1 of Chap-
ter 4. They also show that some of the conjectures formulated for MTI
graphs do not hold for MHI graphs in general.

On the other hand, we study minimally h-imperfect graphs with
cliques of cardinality at least 4. Odd antiholes with at least 7 ver-
tices form a class of minimally imperfect graphs with arbitrarily large
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(a) K∗4 (b) W−5 (c) W−−5

Figure 5.2 – the graphs K∗4 , W−5 and W−−5

clique number. Theorem 5.1.2 shows that they are also MHI (see
Proposition 5.4.4 for a direct proof).

Can a characterization of h-perfect graphs be reduced to one for
t-perfect graphs ? Sebő (personal communication) conjectures the fol-
lowing: a graph G is h-perfect if and only if every K4-free induced subgraph
of G is t-perfect and G has no odd antihole with at least 9 vertices.

An h-imperfect graph G is critically h-imperfect if every proper in-
duced subgraph of G is h-perfect. Clearly, this conjecture states:

Conjecture 5.1.5 (Sebő) Every critically h-imperfect graph with ω ≥ 4
is an odd antihole.

Since MHI graphs are critically h-imperfect, it would imply that
the MHI graphs are the MTI graphs (except K4), W−5 , W−−5 , K∗4 and the
C2n+1 with n ≥ 4.

We say that a graph G is 4-clique-separated if each non-complete
connected induced subgraph H of G with ω(H) ≥ 4 has a vertex-cut
which is a clique. It is easy to check that the class of 4-clique-separated
graphs is closed under taking induced subgraphs and contains no
odd antihole C2n+1 with n ≥ 4.

Tucker [116] proved that planar graphs are 4-clique-separated. We ob-
serve that Conjecture 5.1.5 holds for the class of 4-clique-separated
graphs in the simplest possible way:

Theorem 5.1.6 Critically h-imperfect 4-clique-separated graphs are K4-free.

In other words: a 4-clique-separated graph is h-perfect if and only if its
K4-free induced subgraphs are t-perfect.

Recall that for integers n ≥ 3 and k ≥ 1: Ck
n denotes the graph

obtained from Cn by adding an edge between two vertices whose
distance (in the sense of shortest paths) on Cn is at most k.

The graphs Ck
n are called webs (see Section 3.2.1). We prove:

Theorem 5.1.7 A web is h-perfect if and only if it is a circuit or a complete
graph or a Ck

2k+2 with k ≥ 1.

Theorem 5.1.8 A web is critically h-imperfect if and only if it is C2
10 or an

odd antihole C2n+1 with n ≥ 3.
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In particular, the critically h-imperfect webs which have cliques of
cardinality 4 are odd antiholes. Webs form a proper subclass of claw-
free graphs and we do not know if Conjecture 5.1.5 further holds for
the latter. Still, our results on webs show that the conjecture for claw-
free graphs is implied by the following statement (see Section 5.2.4
for the definition of partitionable graphs):

Conjecture 5.1.9 Each critically h-imperfect claw-free graph with ω ≥ 4
is partitionable.

Antiwebs (the complements of webs) also include odd antiholes,
but we do not know if critically h-imperfect antiwebs which have
cliques of cardinality 4 are odd antiholes. Antiwebs form a class of
nearly-bipartite graphs (that is each vertex has a neighbor in each odd
circuit). These graphs were studied by Shepherd in [108] (see also
Section 5.2.2).

We end this chapter by observing that the characterization of h-
perfect line-graphs by Cao and Nemhauser (Theorem 3.8.2) implies
a characterization of the minimal (under t-minors) h-imperfect line-
graphs:

Theorem 5.1.10 The minimally h-imperfect line-graphs are W−5 and W−−5 .

Hence, a line-graph is h-perfect if and only if it does not have W−5 or W−−5
as t-minor.

outline In Section 5.2, we review the known examples of MTI
graphs, state related properties and give a description of their respec-
tive stable set polytope. In particular we show that, except odd wheels
W2n+1 with n ≥ 2, all these examples are near-h-perfect.

In Section 5.3, we mention questions and conjectures of Bruhn and
Stein for MTI graphs and give new ones. We also discuss the problem
of finding more examples of MTI graphs.

In Section 5.4 we show that K∗4 , W−5 and W−−5 are the K4-free MHI
graphs which are not MTI. We describe the stable set polytope of
these graphs and observe that the conjectures given for MTI graphs
must be reformulated to be extended to MHI graphs. Besides, we
show that Conjecture 5.1.5 holds for 4-clique-separated graphs.

In Section 5.5, we determine the h-perfect and critically h-imperfect
webs. We use these results to show that Conjecture 5.1.5 for claw-free
graphs would follow from Conjecture 5.1.9. We conclude the chapter
by determining the MHI line-graphs.

5.2 a review of known minimally t-imperfect graphs .
consequences and conjectures

Since t-perfection is closed under t-minors (Theorem 4.1.2), a graph
G is MTI if and only if for every v ∈ V(G): G− v is t-perfect, and if v is
contractible then G/NG [v] is t-perfect.
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In this section, we review the currently known examples of MTI
graphs which can be found in [13, 15]. We do not provide new exam-
ples.

Our contribution consists in finding a description of the stable set
polytope for each of these examples (when such a description is
not known). This led us to the formulation of the notion of near-h-
perfection and a related conjecture. We will often use the following
result:

Proposition 5.2.1 Let G be a critically h-imperfect graph and F be a non-
trivial facet of STAB(G) which is not defined by a clique or odd-circuit
inequality.

If aTx ≤ b is valid for STAB(G) and defines F, then a > 0. Furthermore,
if every inclusion-wise maximal stable set is maximum, then

F = {x ∈ STAB(G) : x(V(G)) ≤ α(G)} ,

and G is near-h-perfect.

Proof – We first prove a > 0. Let G be a critically h-imperfect graph
and suppose to the contrary that G has a vertex v such that av = 0.
Let a′ be the restriction of a to V(G) \ {v}. It is straightforward to
check that a′Tx ≤ b (over RV(G−v)) defines a facet of STAB(G − v).
Since G is critically h-imperfect, a′Tx ≤ b is a clique or odd-circuit
inequality of G− v (up to a positive scalar factor). Hence F is defined
by a clique or odd circuit inequality of G: a contradiction.

Now, let us assume furthermore that every inclusion-wise maximal
stable set of G is maximum and let Fα be the face of STAB(G) defined
by the inequality x(V(G)) ≤ α(G). Since a > 0, every stable set S of
G satisfying a(S) = b is inclusion-wise maximal and thus has |S| =
α(G).

In other words, every vertex of F belongs to Fα and thus F ⊆ Fα.
Since F is a facet of STAB(G), we must have F = Fα.

�
The currently known MTI graphs can be grouped into four fami-

lies.

5.2.1 Odd wheels

Let k ≥ 3 and Ck be the circuit of length k. The wheel graph of order
k, denoted Wk, is obtained by adding to Ck a new vertex c which is
adjacent to every vertex of Ck (see Figure 5.3 for an example). The
rim of Wk is the circuit corresponding to Ck and c is the center of Wk.
Notice that Wk has k + 1 vertices.

Clearly, if k is even then Wk is almost-bipartite and Theorem 3.6.14

shows that it is t-perfect. By contrast, the following straightforward
statement holds [102, pg. 1194]:



80 minimal h-imperfection

Figure 5.3 – the graph W5

Proposition 5.2.2 For each integer n ≥ 1, W2n+1 is minimally t-imperfect.

Since K4 = W3 is h-perfect, W2n+1 is MHI if and only if n ≥ 2. Propo-
sition 5.2.2 and Proposition 5.2.1 yield the following well-known re-
sult:

Proposition 5.2.3 Let n ≥ 2 be an integer and W be the wheel of size
2n + 1. Let C be the rim and c be the center of W. The following holds:

STAB(W) =

x ∈ RV(W) :
xv ≥ 0 ∀v ∈ V(W),

x(K) ≤ 1 for each triangle K of W,

nxc + x(V(C)) ≤ α(W).

 .

Furthermore, each of the above inequalities defines a facet of STAB(W).

Proof – The non-negativity and inclusion-wise maximal clique in-
equalities define facets of STAB(W) (see Section 3.4).

Clearly, α(W) = n and the inequality nxc + x(V(C)) ≤ n is valid for
STAB(W). The 2n + 1 stable sets of cardinality n of C form, together
with {c}, a set of 2n + 2 affinely independent stable sets of W which
are tight for this inequality. Hence it defines a facet of STAB(W).

Suppose by contradiction that aTx ≤ b defines a non-trivial facet F
of STAB(W) which is not defined by a clique or odd-circuit inequality
or nxc + x(V(C)) ≤ n.

It is easy to check that since F is not defined by a triangle inequality
of W, a must be constant on the rim.

Since G is critically t-imperfect, Proposition 5.2.1 shows that a > 0
and thus we may assume without loss of generality that av = 1 for
every v ∈ V(C).

Furthermore, there must exists a stable set S of W such that a(S) =
b and n|S∩{c} |+ |S \ {c} | ≤ n− 1. Hence, c /∈ S and b = |S| ≤ n− 1.
Since aTx ≤ b is valid for STAB(W), we also have b ≥ α(C) = n: a
contradiction.

This shows that STAB(G) is described by non-negativity, clique-
inequalities, x(V(C)) ≤ n and nxc + x(V(C)) ≤ n. Besides, it is easy
to check that there are only 2n stable sets of G which are tight for
x(V(C)) ≤ n. Therefore, it does not define a facet of G.
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�
In particular, K4 is the only near-h-perfect odd wheel. We end this

section with the following consequence of Proposition 5.2.2 for criti-
cally h-imperfect graphs.

Corollary 5.2.4 A critically h-imperfect graph which is not an odd wheel
W2n+1 (with n ≥ 2) is such that each neighborhood induces a perfect graph.

Proof – Suppose that G has a vertex v such that G [NG(v)] is im-
perfect. Since this graph is a proper induced subgraph of G, it is h-
perfect and must have an odd hole. Hence, G has an induced W2n+1

with n ≥ 2 and, by criticality, must be isomorphic to it.

�
This result further holds for MHI graphs as they are obviously

critically h-imperfect.

5.2.2 Even Möbius Ladders

Let k ≥ 2, P := (u1, . . . , uk) and Q := (v1, . . . , vk) be two vertex-
disjoint copies of Pk. Let Mk be the graph obtained by taking the
union of P and Q and adding the edges u1vk, v1uk and uivi for each
i ∈ [k]. The graph Mk is the Möbius ladder of size k and has 2k vertices
(see Figure 5.4). A Möbius ladder Mk is even if k is even. For example,
M2 = K4. These graphs were introduced in the context of t-perfection
by Shepherd [108].

(a) M4 (b) M6

1

2

1

2
2

1

1

2

2

1

(c) M5

Figure 5.4 – examples of Möbius ladders and a 2-vertex-coloring of M5
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When k is odd, the graph Mk is bipartite (see Figure 5.4.c)). The
description of the stable set polytope of even Möbius ladders follows
from a general result of Shepherd for nearly-bipartite graphs.

A graph G is nearly-bipartite if for every vertex v of G, the graph G−
NG [v] is bipartite. Clearly, every Möbius ladder is nearly-bipartite.

An antiweb is the complement of a web, and Ck
n denotes the comple-

ment of the web Ck
n (for integers k ≥ 1 and n ≥ 3). See Section 3.2.1

for the definition of webs. Obviously, antiwebs are regular graphs.
An antiweb Ck

n is prime if n ≥ 2k + 2, and k + 1 and n are relatively
prime. For each odd integer k ≥ 3, the even Möbius ladder Mk+1 is
the prime antiweb Ck−1

2k+2 (see [108] for details). Besides, C2l+1 (with

l ≥ 2) is clearly isomorphic to the prime antiweb Ck−1
2k+1.

Let G be a graph. A set-join of G is a set {X1, . . . , Xl} of pairwise-
disjoint (possibly empty) subsets of vertices of G such that for all
1 ≤ i < j ≤ l and for each (u, v) ∈ Xi × Xj, we have uv ∈ E(G). It
is furthermore prime if each Xi is either a clique or induces a prime
antiweb. Finally, the inequality of G associated to a set-join {X1, . . . , Xl}
is:

l

∑
i=1

1
α(G [Xi])

x(Xi) ≤ 1.

Clearly, this inequality is valid for STAB(G). Shepherd proved the
following:

Theorem 5.2.5 (Shepherd, [108]) If G is a nearly-bipartite graph, then
the non-trivial facets of STAB(G) are defined by inequalities of prime set-
joins.

We use this result to simultaneously prove that the even Möbius lad-
ders are MTI (their critical t-imperfection is stated by Shepherd in
[108]) and give a description of their stable set polytope.

Corollary 5.2.6 The even Möbius ladders are minimally t-imperfect and
near-h-perfect.

Proof – Put M := M2k with k ≥ 2 (M2 is just K4). Clearly, M is 3-
regular and connected. Hence, its regular proper induced connected
subgraphs must be 2-regular. Besides, it is easy to check that 2-regular
prime antiwebs are odd holes.

Therefore, the proper induced subgraphs of M which are prime
antiwebs are its odd holes.

Obviously, M does not contain odd wheels. Thus, the prime set-
joins of M are the cliques, the odd holes of M and M itself.

Hence, Theorem 5.2.5 shows that the non-trivial facets of STAB(M)

are defined by cliques, odd-circuit inequalities and x(V(M)) ≤ α(M).
In other words, M is near-h-perfect.

Since being nearly-bipartite is clearly closed under taking induced
subgraphs, Theorem 5.2.5 also shows that M is a critically t-imperfect
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graph. Hence, it remains only to prove that every t-contraction of M
is t-perfect.

Since M is clearly vertex-transitive and every vertex of M is con-
tractible, we need only to show that M/NM [v] is t-perfect for some ar-
bitrary v ∈ V(M). Let ṽ be the new vertex of M/NM [v]. It is straight-
forward to check that (M/NM [v])− ṽ is bipartite. Hence M/NM [v]
is almost-bipartite and thus Theorem 3.6.14 shows that it is t-perfect.

�
Shepherd showed as a corollary of Theorem 5.2.5 that:

Theorem 5.2.7 (Shepherd [108]) A nearly-bipartite graph is t-perfect if
and only if it does not have an induced odd wheel or an induced prime
antiweb which is not an odd hole.

Hence, the MTI nearly-bipartite graphs are odd wheels and MTI
prime antiwebs. As we have seen above, prime antiwebs include the
even Möbius ladders. In Section 5.2.4, we will see that there is at least
one other example of an MTI prime antiweb: C2

10. We do not know if
there are more.

5.2.3 Squares of circuits

Dahl [32] gave a complete description of STAB(C2
n) for each integer

n ≥ 3. Bruhn and Stein [16] proved that K4 is a t-minor of C2
n for each

n ≥ 5 which is not 6, 7 or 10.
It is straightforward to check that C2

6 is perfect (and thus t-perfect)
and that C2

7 is MTI (the latter also follows from Theorem 5.1.2 by
observing that C2

7 = C7).

Theorem 5.2.8 (Bruhn, Stein [16]) Let n ≥ 3 be an integer. The follow-
ing statements hold:

a) C2
n is t-perfect if and only if n ∈ {3, 6},

b) C2
n is minimally t-imperfect if and only if n ∈ {4, 7, 10}.

(a) C2
7 (b) C2

10

Figure 5.5 – the minimally t-imperfect graphs C2
7 and C2

10

Since C2
7 = C7, Theorem 5.1.2 shows:

Corollary 5.2.9 C2
7 is near-perfect.
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Finally, the near-h-perfection of C2
10 is a direct consequence of re-

sults of Dahl [32, Lemma 3.2 and Theorem 3.3, pg. 9-10].

Proposition 5.2.10 C2
10 is near-h-perfect.

5.2.4 Partitionable graphs

A graph G is partitionable if |V(G)| = α(G)ω(G) + 1 and for every
v ∈ V(G): G − v has a partition into ω(G) stable sets which are all
of cardinality α(G) and a partition into α(G) cliques which are all of
cardinality ω(G). It is easy to check that each partitionable graph G
satisfies α(G) ≥ 2 and ω(G) ≥ 2.

For integers p ≥ 2 and q ≥ 2, a (p, q)-graph is a partitionable graph
with α(G) = p and ω(G) = q.

In this section, we review known examples of MTI partitionable
graphs and observe that they are near-h-perfect.

Clearly, partitionability only depends on the underlying simple
graph. Hence, we need only to consider simple graphs.

The class of partitionable graphs plays a key-role in the study of
perfect graphs. By a theorem of Lovász [71], every minimally imperfect
graph is partitionable.

It is an easy exercise to check that the (p, 2)-graphs are the odd holes.
Hence, they are all t-perfect. By contrast:

Proposition 5.2.11 Each partitionable graph G with ω(G) ≥ 3 is h-
imperfect.

Proof – Clearly, the vector x := 1
ω(G)

belongs to HSTAB(G) and

x(V(G)) =
1
3
(α(G)ω(G) + 1) > α(G).

Hence, x /∈ STAB(G) and G is h-imperfect.

�
Obviously, each (p, 4)-graph is not MTI. Hence, the MTI partition-

able graphs are (p, 3)-graphs.
Shepherd showed an algorithm testing partitionability [92, chap.

12], but it is still difficult in general to produce explicit examples
of partitionable graphs [11]. The (p, 3)-graphs with p ≤ 3 are well-
known however and we review these graphs below.

Clearly, the only MTI (2, 3)-graph is C7 (that is C2
7). We now review

(3, 3)-graphs.
An edge of a (p, q)-graph G is undetermined if it is not an edge of a

maximum clique of G (that is a clique of cardinality q).
A (p, q)-graph is normalized if it has no undetermined edge. For

each normalized partitionable graph H, let U(H) denote the set of
non-adjacent pairs of vertices uv of H such that each maximum clique
of H + uv is a clique of H.
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Chvátal, Graham, Whitesides and Perold [27] observed that for each
(p, q)-graph G and each undetermined e ∈ E(G): the maximum stable sets
of G− e are maximum stable sets of G.

In particular, G− e is a (p, q)-graph. This shows that each (p, q)-graph
is of the form H + F, where H is a normalized (p, q)-graph and F ⊆ U(H).

Let D be the graph of Figure 5.6. It is straightforward to check that
D is a normalized (3, 3)-graph. This graph was found by Huang [10]
and Chvátal et al. [27].

Theorem 5.2.12 (Chvátal et al. [27]) The normalized (3, 3)-graphs are
C2

10 and D.

u

v

(a) D

v1

v2

v3

v4

v5v6

v7

v8

v9

v10

(b) C2
10

Figure 5.6 – the two normalized (3, 3)-graphs

Clearly, U(D) = {uv} (see Figure 5.6) and U(C2
10) is the set of

diagonals vivi+5 with i ∈ [5]. The graphs obtained by adding (as edges)
pairs from U(D) and U(C2

10) to D and C2
10 respectively are shown in

Figure 5.7 and Figure 5.8.
Clearly, they all are (3, 3)-graphs. Besides, it is straightforward to

check that D+ = D, C2
10(5) = C2

10, C2
10(3) = C2

10(2)
′, C2

10(3)
′ = C2

10(2)
and C2

10(4) = C2
10(1).

Therefore:

Corollary 5.2.13 (Chvátal et al. [27]) The (3, 3)-graphs are D, C2
10,

C2
10(1), C2

10(2), C2
10(2)

′ and their complements.

Bruhn and Stein proved that all these graphs are MTI and showed that
they are minimally strongly t-imperfect: they are t-imperfect and their
proper t-minors are strongly t-perfect.

Theorem 5.2.14 (Bruhn, Stein [13, 15]) The (3, 3)-graphs are minimally
(strongly) t-imperfect.

The situation for (4, 3)-graphs is different. Indeed, a normalized
(4, 3)-graph found by Chvátal et al. [27] has a proper induced W7 [27,
graph of Figure 6 pg. 89]. Hence, it is not MTI.
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(a) C2
10 (b) C2

10(1) (c) C2
10(2)

(d) C2
10(2)

′ (e) C2
10(3) (f) C2

10(3)
′

(g) C2
10(4) (h) C2

10(5)

Figure 5.7 – the (3, 3)-graphs obtained from C2
10

(a) D (b) D+

Figure 5.8 – the (3, 3)-graphs obtained from D

We show that the (3, 3)-graphs are near-h-perfect. Since the inclusion-
wise maximal stable sets of C2

10 and D are maximum, Proposition 5.2.1
directly implies:

Proposition 5.2.15 C2
10 and D are near-h-perfect.

Besides, the near-h-perfection of C2
10 follows from results of Dahl

[32] (see Proposition 5.2.10).
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The other (3, 3)-graphs obtained from C2
10 and D have maximal sta-

ble sets which are not maximum. Even though our proofs for each
of these graphs are similar, we do not know of a more general argu-
ment which would imply their near-h-perfection all-at-once. As an
example, we present here the proof for C2

10(1).

Proposition 5.2.16 The graph C2
10(1) is near-h-perfect.

Proof – Put G := C2
10(1). We will use the vertex-numbering of Fig-

ure 5.9. By contradiction, suppose that STAB(G) has a non-trivial
facet F which is not defined by a clique or odd-circuit inequality or
x(V(G)) ≤ α(G). Let aTx ≤ b be a valid inequality for STAB(G)

defining F.
Since G is MTI (by Theorem 5.2.14), Proposition 5.2.1 shows that

a > 0. Put M := maxv∈V(G) av and let T := {v ∈ V(G) : av = M}. We
will prove that T = V(G). This will imply that b = M · α(G) and
contradict that F is not defined by x(V(G)) ≤ α(G).

Since F is not defined by x(V(G)) ≤ α(G) and as α(G) = 3, G has
a stable set S0 such that |S0| ≤ 2 and a(S0) = b. Since a > 0, S0 is
inclusion-wise maximal. Obviously, we must have S0 = {v1, v6} (that
is the only non-adjacent diagonal pair).

We claim that S0 ∩ T 6= ∅. Indeed, let v ∈ V(G) such that av = M.
Clearly v is a neighbor of v1 or v6, say v6 (by horizontal symmetry).
Then {v1, v} is a stable set and av1 + av ≥ a(S0) = b, thus av1 + av = b.
Therefore, av6 = av = M and v6 ∈ T.

By symmetry, we may henceforth assume that v6 ∈ T. Since F is
not defined by the clique inequality of K := {v6, v7, v8}, G has an
inclusion-wise maximal stable set S1 such that a(S1) = b and S1 ∩
{v6, v7, v8} = ∅. This implies that S1 = {v2, v5, v9}. Now, S1− v5 + v6

is a stable set thus: a(S1− v5 + v6) ≤ b, which implies that av5 ≥ av6 =

M. Hence, v5 ∈ T.
The same argument used successively with the clique {v5, v6, v7}

(resp. {v4, v5, v6}) instead of K yields v4, v7 ∈ T (resp. v3 ∈ T). Now,
we also have v1 ∈ T. Indeed, {v6, v3} is a stable set and since v3 ∈ T:
av6 + av3 ≥ av6 + av1 = b, thus av1 = av3 = M.

Finally, b = a(S0) = av1 + av6 = 2M because v1, v6 ∈ T. However
{v1, v4, v7} is a stable set contained in T, hence a({v1, v4, v7}) = 3M ≤
2M. This is absurd.

�
The proofs for the other (3, 3)-graphs follow the same plan. We do

not include them as they do not clearly provide further information
on how to build a general argument.

Theorem 5.2.17 The (3, 3)-graphs are near-h-perfect.
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v1

v2
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v9

v10

Figure 5.9 – denoting the vertices of C2
10(1) for the proof of Proposi-

tion 5.2.16

5.3 conjectures and questions on minimally t-imperfect

graphs

The currently known MTI graphs are (see the previous section):

odd wheels, even Möbius ladders, C2
7 and the (3, 3)-graphs (∗)

We do not know if this list is complete. More examples of MTI graphs
may be found by investigating t-perfection in particular families of
graphs which are closed under t-minors (see the next section). For
example: K4, W5, C2

7 and C2
10 are the MTI claw-free graphs [16].

In this section, we list known and new conjectures, and questions
which may motivate further research on MTI graphs.

connectivity Recall that a vertex-cut of a connected graph G is
a set X ⊆ V(G) such that G− X is not connected. Clearly, each MTI
graph is connected and has no vertex-cut which is a clique (see Corol-
lary 3.6.12). However, can two non-adjacent vertices of an MTI graph
form a vertex-cut ? In other words:

Question 5.3.1 (Bruhn, Stein [16]) Is every minimally t-imperfect graph
3-connected ?

In this context, it is worth mentioning the following result:

Theorem 5.3.2 (Bruhn, Stein [16]) Let G be a minimally t-imperfect graph.
If G has a vertex-cut {u, v} formed by two non-adjacent vertices, then

G− u− v has exactly two connected components C1, C2. Furthermore, for
exactly one i ∈ {1, 2}: G [Ci ∪ {u, v}] is a path between u and v.

This directly implies that if an MTI graph has no vertex of degree
2, then it must be 3-connected. Therefore, Bruhn and Stein also asked
the following:

Question 5.3.3 (Bruhn, Stein [16]) Does every minimally t-imperfect graph
have minimum degree 3 ?



5.3 conjectures and questions on minimally t-imperfect graphs 89

All known examples obviously have minimum degree 3. In Sec-
tion 5.4, we will see that this is not true for MHI graphs.

near-h-perfection In the preceding sections, we gave a descrip-
tion of the stable set polytope of each MTI graph of the list (∗). We
observed that, except odd wheels W2n+1 with n ≥ 2, these graphs are
near-h-perfect. Hence, we conjecture the following:

Conjecture 5.3.4 Except the odd wheels W2n+1 with n ≥ 2, every mini-
mally t-imperfect graph is near-h-perfect.

If valid, this would provide an analog of Theorem 5.1.2 for min-
imal t-imperfection. Furthermore, it would imply (through Proposi-
tion 3.4.1) the following formula for the fractional chromatic number
of an MTI graph G which is not a W2n+1 with n ≥ 2 (see Section 3.6.4
for the notation Γ):

χ f (G) = max
(

ω(G), Γ(G),
|V(G)|
α(G)

)
.

In Section 5.4, we will see that the statement of Conjecture 5.3.4 does
not hold for MHI graphs in general.

fractional chromatic number As clique and odd circuit in-
equalities of a graph G are always valid for STAB(G), Proposition 3.4.1
shows that every graph G satisfies χ f (G) ≥ max(ω(G), Γ(G)).

Besides, Proposition 3.6.15 states that equality holds when G is t-
perfect. Bruhn (personal communication) conjectures that this prop-
erty characterizes t-perfection.

Conjecture 5.3.5 (Bruhn) Every minimally t-imperfect graph G satis-
fies:

χ f (G) > max(ω(G), Γ(G)).

It is straightforward to check that this holds for every graph in (∗).
Now, if Conjecture 5.3.4 is valid then Conjecture 5.3.5 is equivalent

to the following statement: except the W2n+1 with n ≥ 2, every minimally
t-imperfect graph G satisfies:

|V(G)| > α(G) ·max(ω(G), Γ(G)).

This statement may be compared to the following characterization of
perfect graphs due to Lovász:

Theorem 5.3.6 (Lovász [71]) For every graph G, the following statements
are equivalent:

i) G is perfect,
ii) every induced subgraph H of G satisfies |V(H)| ≤ α(H)ω(H).
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vertices of TSTAB By Theorem 5.1.2, every minimally imper-
fect graph G is such that QSTAB(G) has a unique non-integral ver-
tex which is 1

ω (G)
1.

Proposition 3.6.2 shows that if G is an MTI graph, then TSTAB(G)

has at least one non-integral vertex. Bruhn and Stein asked whether
there could be more non-integral vertices of TSTAB(G):

Question 5.3.7 (Bruhn, Stein [16]) For a minimally t-imperfect graph
G, does TSTAB(G) have precisely one non-integral vertex ?

It is not difficult to check that the answer is positive at least for the
odd wheels, C2

7 and C2
10. We do not know if it holds for every MTI

graph of the list (∗). We will see in Section 5.4 that it does not hold
for two K4-free MHI graphs which are not MTI.

Finally, trying to extend the proof of Theorem 5.1.2 by Padberg led
us to ask:

Question 5.3.8 Can a minimally t-imperfect graph have both contractible
and non-contractible vertices ?

Question 5.3.9 Do the odd holes of a minimally t-imperfect graph all have
the same length ?

The answers to these questions are obviously positive for the graphs
of the list (∗). In Section 5.4.1, we will see that the answer to Ques-
tion 5.3.8 is positive for each K4-free MHI graph which is not MTI.

more mti graphs We end this section by discussing how other
examples of MTI graphs might be found.

CLearly, the class of planar graphs is closed under t-minors. Among
the known examples of MTI graphs, only the odd wheels (including
K4) and C2

10 are planar. Bruhn (personal communication) asks the fol-
lowing:

Question 5.3.10 (Bruhn) Are there minimally t-imperfect planar graphs
other than C2

10 and the odd wheels ?

We will show in Section 5.4.2 that the MHI planar graphs are K4-
free and that characterizing h-perfect planar graphs can be easily re-
duced to determining the t-perfect ones.

Let k ≥ 1 be an integer. A graph is Pk-free if it does not have an
induced Pk (see Section 3.2.1). It is straightforward to check that the
class of Pk-free graphs is closed under t-minors. Hence, the class of
Pk-free graphs may be of interest for seeking new examples of MTI
graphs.

Esperet et al. [40] proved that every {P5, K4}-free graph is 5-colorable.
Besides, a maximum-weight stable set can be found in polynomial-time in
P5-free graphs [70].

The known MTI P5-free graphs are K4, W5, C2
7 and C2

10.
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Question 5.3.11 Are there minimally t-imperfect P5-free graphs other than
K4, W5, C2

7 and C2
10 ?

Sumner proved the following theorem:

Theorem 5.3.12 (Sumner, [111]) Each triangle-free P5-free graph is either
bipartite, or obtained from C5 by substituting its vertices by stable sets.

Since substituting stable sets for vertices of a t-perfect graph keeps
t-perfection (Theorem 4.1.5), this implies:

Corollary 5.3.13 Every triangle-free P5-free graph is t-perfect.

5.4 minimally h-imperfect graphs in general

In this section, we first determine the K4-free MHI graphs which
are not MTI. Then, we give a description of their stable set polytope.
Our results show that some of the conjectures and questions given
for MTI graphs need to be reformulated for MHI graphs. Moreover,
we state a conjecture of Sebő for critically h-imperfect graphs with
cliques of cardinality 4 and prove it for 4-clique-separated graphs
(which include planar graphs).

5.4.1 K4-free minimally h-imperfect graphs. Near-h-perfection and conjec-
tures

We first show:

Theorem 5.1.4 The only K4-free minimally h-imperfect graphs are K∗4 , W−5
and W−−5 .

Proof – The h-imperfection of K∗4 , W−5 and W−−5 is stated in Propo-
sition 4.3.2. Furthermore, it is straightforward to check that every
proper t-minor of each of these graphs is formed by clique-sums of
odd circuits and complete graphs, thus it is h-perfect (Corollary 3.6.12).
Therefore, they are MHI.

Conversely, let G be a K4-free MHI graph which is not MTI.
Clearly, G is t-imperfect. Moreover for each v ∈ V(H): G − v is h-
perfect and K4-free, thus it is t-perfect. Since G is not MTI, G must
have a contractible vertex u such that G/NG [u] is t-imperfect. Since
h-perfection is closed under t-contractions (Theorem 4.1.3), G/NG [u]
is h-perfect. Hence, G/NG [u] has a K4.

In particular, ω(G/NG [u]) > ω(G) and Proposition 4.3.6 implies
that u must be a special vertex of an induced K∗4 , W−5 or W−−5 of G.
Since G is MHI and each of these graphs is MHI, H must coincide
with one of them.

�
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These graphs are precisely those appearing in our characterization
of graphs and contractible vertices for which t-contraction can be
interpreted as taking a face of HSTAB (Theorem 4.3.1). Besides, we
proved that W−−5 is the only MHI graph which has an homogeneous set
(see Theorem 4.1.6 in Chapter 4). Since the inclusion-wise maximal
stable sets of W−5 and W−−5 are maximum, Proposition 5.2.1 implies:

Proposition 5.4.1 W−5 and W−−5 are near-h-perfect.

Let c denote the vertex of K∗4 which is not adjacent to its triangle
(see Figure 5.10).

Proposition 5.4.2 The non-trivial facets of STAB(K∗4) are defined by clique,
odd-circuit inequalities and the inequality

2xc + x(V(K∗4) \ {c}) ≤ 3, (5.1)

which defines a facet of STAB(K∗4).

Proof – Put G := K∗4 . In this proof, we speak of a maximal stable set
to mean "inclusion-wise maximal".

The inequality (5.1) is obviously valid for STAB(G) and it is easy
to find 7 tight linearly independent stable sets of G. Hence, it defines
a facet of STAB(G).

Now, let F be a non-trivial facet of STAB(G) which is not defined by
a clique or odd circuit-inequality. Let aTx ≤ b be a valid inequality of
STAB(G) defining F. We will show that aTx ≤ b is a positive multiple
of (5.1).

By Theorem 5.1.4, K∗4 is MHI. Hence, Proposition 5.2.1 shows that
a > 0. We use the numbering of the vertices of G given in Figure 5.10.

c

v1 v2 v3

v5
v4 v6

Figure 5.10 – notation for the vertices of K∗4

Since F is not defined by the inequality of the odd hole C :=
cv2v5v4v1, there exists a stable set S of G such that a(S) = b and
|S ∩ V(C)| < 2. Since a > 0, S is maximal and this implies that
S = {c, v6}. Hence ac + av6 = b. Using the same argument with
the other induced odd holes of G (all have length 5), we obtain:
ac + av4 = ac + av5 = b. Therefore: av4 = av5 = av6 .

Since F is not defined by the clique-inequality of v4v5v6, there exists
a maximal stable set S′ such that a(S′) = b and S′ ∩ {v4, v5, v6} = ∅.
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This implies that S′ = {v1, v2, v3}. Now S′ − v1 + v4 is a stable set of
G and aTx ≤ b is valid for STAB(G). Therefore, a(S′ − v1 + v4) ≤ b
and thus we get av4 ≤ av1 . Similarly, we obtain av5 ≤ av2 and av6 ≤ av3 .

Again, F is not defined by the inequality associated to the clique
cv1 so there is a maximal stable set S′′ such that a(S′′) = b and which
is disjoint from cv1. Clearly, v4 ∈ S′′ and S′′ − v4 + v1 is a stable set of
G. Hence a(S′′ − av4 + av1) ≤ a(S′′), that is av1 ≤ av4 .

We similarly show av2 ≤ av5 and av3 ≤ av6 . Therefore: av1 = av4 ,
av2 = av5 and av3 = av6 .

The equalities obtained yield that: avi = avj for every 1 ≤ i, j ≤ 6.
Hence, we can assume without loss of generality that av = 1 for every
v ∈ V(G) \ {c} and thus b = a(S′) = 3. Besides, a(S) = ac + 1 = 3
thus ac = 2. This shows that aTx ≤ b is a positive multiple of (5.1)
and ends the proof.

�
Finally, we discuss possible generalizations of the conjectures stated

in Section 5.3. First, since K∗4 is not near-h-perfect, we must exclude it
in extending Conjecture 5.3.4 to MHI graphs:

Conjecture 5.1.3 Except K∗4 and the odd wheels W2n+1 with n ≥ 2, every
minimally h-imperfect graph is near-h-perfect.

Furthermore, notice that the non-integral vertex of HSTAB(W−−5 )

given in Figure 4.2 yields another non-integral vertex by vertical sym-
metry (this is observed in [16]). Hence, HSTAB(W−−5 ) has more than
one non-integral vertex and this implies that the answer to Ques-
tion 5.3.7 is negative for MHI graphs in general.

With Question 5.3.3 in mind and observing that K∗4 , W−5 and W−−5
are the only known minimally h-imperfect graphs which have ver-
tices of degree 2, we ask:

Question 5.4.3 Are K∗4 , W−5 and W−−5 the only minimally h-imperfect
graphs which have vertices of degree 2 (or, which are not 3-connected) ?

Besides, each of these three graphs both have contractible and non-
contractible vertices (see Question 5.3.8). We do not know if they are
the only MHI graphs which have this property.

5.4.2 A conjecture of Sebő for critically h-imperfect graphs with ω ≥ 4

In this section, we investigate the structure of MHI graphs which
have cliques of cardinality larger than 3. Odd antiholes form a class of
minimally imperfect graphs with clique numbers taking any integer
value larger than 2. Except C5 = C5, they are also MHI. This is well-
known and follows from Theorem 5.1.2. It can also be proved directly:
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Proposition 5.4.4 For every n ≥ 3, the odd antihole C2n+1 is minimally
h-imperfect.

Proof – Since C2n+1 (with n ≥ 3) is minimally imperfect and not an
odd hole, it is critically h-imperfect. It has no contractible vertex and
thus it is MHI.

�
Actually, odd antiholes with at least 9 vertices are the only known

examples of critically h-imperfect graphs which have cliques of cardi-
nality larger than 4. Sebő (personal communication) conjectures the
following:

Conjecture (Sebő) Let G be a graph. The following statements are equiv-
alent:

i) G is h-perfect,
ii) each induced K4-free subgraph of G is t-perfect and G has no induced

C2n+1 with n ≥ 4.

This means that a characterization of h-perfection by forbidden induced-
subgraphs could be reduced to one for t-perfection. As t-perfection is
in co-NP, the conjecture would imply that h-perfection is also in co-NP.

It is straightforward to check that the conjecture has the following
equivalent form:

Conjecture 5.1.5 (Sebő) Every critically h-imperfect graph with ω ≥ 4
is an odd antihole.

Since MHI graphs are obviously critically h-imperfect, this would
directly imply that the MHI graphs are: the MTI graphs (except K4), K∗4 ,
W−5 , W−−5 and the odd antiholes C2n+1 with n ≥ 4.

We observe that Conjecture 5.1.5 would imply that the Strong Perfect
Graph Theorem (Theorem 1.1.2) can be easily proved from the K4-free case
due to Tucker [116], and the latter has a considerably simpler proof
than the general case (due to Chudnovsky et al. [24]).

Indeed, a minimally imperfect graph G which is not an odd hole
is obviously critically h-imperfect and Conjecture 5.1.5 would imply
that G is either an odd antihole or is K4-free. Then, Tucker’s theorem
for K4-free minimally imperfect graphs [116] shows that G must be
an odd antihole.

This indicates that using the Strong Perfect Graph Theorem may be
crucial in showing Conjecture 5.1.5. For example, it would suffice to
prove that every critically h-imperfect graph is minimally imperfect.

If every MTI graph has minimum degree 3 (that is, the answer to
Question 5.3.3 is yes) and Conjecture 5.1.5 is valid, then Question 5.4.3
would also have a positive answer.

By Theorem 5.1.2 odd antiholes are near-perfect and thus near-h-
perfect. Hence, since W−5 and W−−5 are near-h-perfect: the validity
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of both Conjecture 5.3.4 and Conjecture 5.1.5 would imply Conjec-
ture 5.1.3.

We end this section by proving that Conjecture 5.1.5 holds for a
certain class of graphs which contains planar graphs. We say that a
graph G is 4-clique-separated if every non-complete connected induced
subgraph H of G with ω(H) ≥ 4 has a vertex-cut which is a clique. It
is easy to check that the C2n+1 with n ≥ 4 are not 4-clique-separated.

Theorem 5.1.6 Critically h-imperfect 4-clique-separated graphs are K4-free.

Proof – To the contrary, suppose that H is a critically h-imperfect
4-clique-separated graph with ω(H) ≥ 4. Clearly, it is connected and
non-complete. Hence it has a vertex-cut K which is a clique. Since
H is critically h-imperfect, this implies that H is a clique-sum of h-
perfect graphs and Corollary 3.6.12 shows that H must be h-perfect:
a contradiction.

�
Since the class of 4-clique-separated graphs is closed under tak-

ing induced subgraphs, this shows that a 4-clique-separated graph is h-
perfect if and only if all its K4-free induced subgraphs are t-perfect. Tucker
proved the following result:

Theorem 5.4.5 (Tucker [116]) Let G be a non-complete connected planar
graph. If G has a clique K of cardinality 4, then K contains a triangle which
is a cut.

Since planarity is closed under taking induced subgraphs, this im-
plies that planar graphs are 4-clique-separated. There are non-planar 4-
clique-separated graphs (for example the complete bipartite graph
K3,3).

Hence, Conjecture 5.1.5 directly follows for planar graphs:

Corollary 5.4.6 A planar graph is h-perfect if and only if each of its K4-
free induced subgraphs is t-perfect.

If Question 5.3.10 has a negative answer, then this would imply that
a planar graph is h-perfect if and only if does not have an induced C2

10 or
W2n+1 with n ≥ 2.

A graph is chordal if each circuit of length greater than 3 has a chord.
Dirac [33] proved that a graph is chordal if and only if each inclusion-
wise minimal vertex-cut is a clique. It is easy to check that the class of
4-clique-separated graphs and the class of chordal graphs are incom-
parable with respect to inclusion.

5.5 on minimally h-imperfect claw-free graphs

A graph is claw-free if it does not have an induced claw (see Fig-
ure 5.1). It is straightforward to check that the class of claw-free
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graphs form a proper superclass of line-graphs and that it is closed
under t-minors.

Bruhn and Schaudt [14] gave a polynomial-time algorithm deciding
t-perfection in claw-free graphs. The complexity of testing h-perfection
in claw-free graphs is not known.

Theorem 5.1.1 (Bruhn, Stein [16]) The minimally t-imperfect claw-free
graphs are K4, W5, C2

7 and C2
10.

Theorem 5.1.4 shows that W−5 and W−−5 are the K4-free claw-free
graphs which are MHI but not MTI.

Hence, to obtain an excluded-t-minor characterization of h-perfect
claw-free graphs, it suffices to find the MHI claw-free graphs which
have cliques of cardinality 4. In this case, Conjecture 5.1.5 states that
these graphs are odd antiholes:

Conjecture 5.5.1 Every critically h-imperfect claw-free graph with ω ≥ 4
is an odd antihole.

If valid, this would imply that the MHI claw-free graphs are K4, W5,
C2

10, W−5 , W−−5 and the odd antiholes C2n+1 with n ≥ 3 (C7 = C2
7). In

particular, it would put h-perfection of claw-free graphs in co-NP and
hopefully help in designing an efficient algorithm.

Webs (see definition in Section 3.2.1) form a class of claw-free graphs
which contains all odd antiholes (they are the Ck

2k+3 with k ≥ 1).
In Section 5.5.1, we characterize h-perfect and critically h-imperfect

webs. We prove and use a basic property of odd holes in claw-free
graphs (Proposition 5.5.3) that will play an important role in the next
chapter.

We observe in Section 5.5.3 that our results for webs and a theorem
of Giles, Trotter and Tucker [54] show that Conjecture 5.5.1 follows
from Conjecture 5.1.9.

On the other hand, in Section 5.5.4 we observe that the characteriza-
tion by Cao and Nemhauser of h-perfect line-graphs (Theorem 3.8.2)
implies that the MHI line-graphs are W−5 and W−−5 .

5.5.1 H-perfect and critically h-imperfect webs

Let k ≥ 1 and n ≥ 3 be integers. Clearly, if k = 1 or n ≤ 2k +
1 then Ck

n is a circuit or a complete graph and thus it is h-perfect.
Furthermore, Ck

2k+2 is isomorphic to K2k+2 minus a perfect matching
and it is straightforward to check that this graph is perfect (and thus
h-perfect). In this section, we prove that there are no other h-perfect
webs.

On the other hand, if k ≥ 2 then Ck
2k+3 is the odd antihole C2k+3,

which is critically h-imperfect. We will show that C2
10 is the only other

critically h-imperfect web.
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Both results are implied by the following lemma, which gives cer-
tain h-imperfect t-minors of Ck

n when n ≥ 2k + 4. Its proof is post-
poned to the next section.

Lemma 5.5.2 Let k ≥ 2 and n be two integers such that n ≥ 2k + 4. If Ck
n

does not have an odd antihole with at least 7 vertices, then at least one of the
following statements holds:

i) Ck
n has an induced C2

l with l ≥ 8,
ii) Ck

n has a t-minor among W5, W−5 or W−−5 .

We use this to determine the h-perfect webs:

Theorem 5.1.7 A web is h-perfect if and only if it is a circuit or a complete
graph or a Ck

2k+2 with k ≥ 1.

Proof – See the first paragraph of this section for the h-perfection of
circuits, complete graphs and webs Ck

2k+2 with k ≥ 1.
Let k ≥ 1 and n ≥ 3 be integers. Put G := Ck

n and suppose that
G is neither a circuit nor a complete graph, and that n 6= 2k + 2. In
particular, k ≥ 2 and n > 2k + 2. We prove that G is h-imperfect.

If n = 2k + 3 then G is isomorphic to C2k+3, which is h-imperfect
(by Proposition 5.4.4).

If n ≥ 2k + 4, then Lemma 5.5.2 shows that G has a t-minor which
is one of W5, W−5 , W−−5 , the webs C2

l with l ≥ 8 or the odd anti-
holes C2m+1 with m ≥ 3. By Theorem 5.1.4, Theorem 5.2.8 and Propo-
sition 5.4.4, none of these graphs are h-perfect. Since h-perfection
is closed under t-minors (Theorem 4.1.3), this shows that G is h-
imperfect.

�
The critical h-imperfection of C2

10 and the odd antiholes C2l+1 with
l ≥ 3 follows respectively from Theorem 5.2.8 and Proposition 5.4.4.
We use Lemma 5.5.2 to prove that these are the only critically h-
imperfect webs:

Theorem 5.1.8 A web is critically h-imperfect if and only if it is C2
10 or an

odd antihole C2n+1 with n ≥ 3.

Proof – Let k ≥ 1 and n ≥ 3 be integers and let G := Ck
n be a critically

h-imperfect web which is not an odd antihole. By Theorem 5.1.7, we
have k ≥ 2 and n ≥ 2k + 3. In particular, no vertex of G is contractible
and thus it is MHI. Moreover Ck

2k+3 is an odd antihole, thus n ≥
2k + 4.

By criticality, G cannot contain an induced C2l+1 with l ≥ 3. We
may apply Lemma 5.5.2 to G.

Suppose first that G has a t-minor among W5, W−5 or W−−5 . Since G
is MHI, G is isomorphic to one of these three graphs. However, none
of them is a web: a contradiction.
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Hence, G has an induced C2
l for an integer l ≥ 8. By Theorem 5.2.8,

the graphs C2
l with l ≥ 8 are h-imperfect and among them, only C2

10
is critically h-imperfect.

As G is critically h-imperfect itself, this implies that G must be
isomorphic to C2

10.

�

5.5.2 Proof of Lemma 5.5.2

To prove Lemma 5.5.2, we use the following basic property of odd
holes in claw-free graphs. It will also play a key-role in Chapter 6:

Proposition 5.5.3 Let G be a claw-free graph. If G has a vertex v and an
odd hole C such that v has at least 3 neighbors in C, then G has a t-minor
among W5, W−5 and W−−5 . In particular, G is h-imperfect.

Proof – Let N = |NG(v) ∩ V(C)|, H = G [V(C) ∪ {v}] and suppose
that N ≥ 3. Since G is claw-free, we have N ≤ 5.

If N ≤ 4 then H is of the form shown in Figures 5.11a and 5.11b,
and can hence be t-contracted respectively to W−−5 (if N = 3) and W−5
(if N = 4).

Otherwise, if N = 5 then H is isomorphic to W5 (Figure 5.11c).
By Theorem 5.1.4 and Proposition 5.2.2, G has an h-imperfect t-

minor in each case. Since h-perfection is closed under t-minors (The-
orem 4.1.3), G is h-imperfect too.

�

v

(a) N = 3

v

(b) N = 4

v

(c) N = 5

Figure 5.11 – The different possibilities for H: dotted and dashed lines de-
note pairwise-disjoint paths. Each ordinary line denotes an
edge, dotted lines correspond to odd paths and the dashed
one to a non-trivial even path. There is no other edge.

We need the two following results of Trotter: Notice that if k ≥
bn/2c (that is, n ≤ 2k + 1), then Ck

n is just a clique. Hence, we often
exclude this trivial case.

Theorem 5.5.4 (Trotter [115]) Let n, n′ ≥ 3 and k, k′ ≥ 1 be integers
such that k ≤ bn/2c and k′ ≤ bn′/2c. The following statements are equiv-
alent:
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i) Ck′
n′ is an induced subgraph of Ck

n
ii) n(k′ + 1) ≥ n′(k + 1) and nk′ ≤ n′k.

Corollary 5.5.5 (Trotter, [115]) Let n ≥ 3 and k ≥ 1. If n ≥ 2k + 4,
then Ck

n contains an odd hole or odd antihole.

The following proposition is a straightforward application of Theo-
rem 5.5.4:

Proposition 5.5.6 Let n ≥ 8 and k ≥ 2. The following conditions are
equivalent:

i) Ck
n contains an induced C2

l with l ≥ 8,

ii) d 2n
k e ≤ b

3n
k+1c and 8 ≤ 3n

k+1 .

We can now prove Lemma 5.5.2:

Lemma 5.5.2 Let k ≥ 2 and n be two integers such that n ≥ 2k + 4. If Ck
n

does not have an odd antihole with at least 7 vertices, then at least one of the
following statements holds:

i) Ck
n has an induced C2

l with l ≥ 8,
ii) Ck

n has a t-minor among W5, W−5 or W−−5 .

Proof (of Lemma 5.5.2) – Let k ≥ 2 and n be integers such that n ≥
2k + 4 and suppose that G := Ck

n does not have an odd antihole with
at least 7 vertices. Furthermore, we assume that G does not have a
t-minor among W5, W−5 or W−−5 . We will show that G has an induced
C2

l for some integer l ≥ 8.
By definition, G is obtained from Cn by adding pairs uv of non-

adjacent vertices of Cn which have distance at most k on Cn (in the
sense of shortest paths). Let H be the circuit of Ck

n corresponding to
Cn and for every u, v ∈ V(H), let dH(u, v) denote the distance of u
and v in H.

Claim: There exists an integer r ≥ 5 such that n = kr.

Proof – By Corollary 5.5.5, G contains an odd hole or an odd antihole.
Since G does not contain an odd antihole with at least 7 vertices and
as C5 is isomorphic to C5, G must contain an induced odd hole. Let
C be an odd hole of G. Let v ∈ V(C) and let NC(v) = {u, w}. Clearly,
dH(u, v) ≤ k. We now prove:

dH(u, v) = k. (5.2)

Suppose to the contrary that dH(u, v) ≤ k − 1. This implies that
dH(v, w) ≥ 2. Otherwise, we would have dH(u, w) ≤ k and thus uw
would be a chord of C contradicting that it is a hole.

Let t be the neighbor of v in H which belongs to the shortest path
of H joining v and w. Since dH(v, w) ≥ 2, we have t 6= w. Besides, t
is adjacent to w. As dH(u, v) ≤ k− 1, we have dH(t, u) ≤ k and thus
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tu ∈ E(G). Furthermore, t /∈ V(C) since vt would otherwise be a
chord of C.

Therefore, t is a vertex of G which does not belong to C and which
has at least 3 neighbors on C. Since G is claw-free, Proposition 5.5.3
shows that G [V(C) ∪ {t}] must have a t-minor among W5, W−5 or
W−−5 . This contradicts our assumptions and ends the proof of (5.2).

In particular, each pair of adjacent vertices u, v ∈ V(C) satisfies
dH(u, v) = k. This easily implies that |V(G)| = k|E(C)| and proves
the claim.

�
By assumption, G has no odd antihole with at least 7 vertices.

Hence (by Proposition 5.5.6), showing that G contains an induced
C2

l with l ≥ 8 only requires checking: i) d 2n
k e ≤ b

3n
k+1c and ii) 8 ≤ 3n

k+1 .
Since n = kr, i) can be rewritten: 2r ≤ d 3kr

k+1e which holds because
k ≥ 2. Similarly ii) is equivalent to 8 ≤ (3r − 8)k, which is true be-
cause k ≥ 2 and r ≥ 5.

�

5.5.3 Perspectives

In this section, we use Theorem 5.1.8 to hopefully simplify Conjec-
ture 5.5.1. We mentioned already that proving this conjecture only
requires showing that critically h-imperfect claw-free graphs with
ω ≥ 4 are minimally imperfect (see Section 5.4.2). It makes sense to
try to prove it this way since the Strong Perfect Graph Theorem (The-
orem 3.5.4) has a considerably simpler proof for the class of claw-free
graphs [90].

Still, claw-freeness can be used to replace the minimal-imperfection
condition with the weaker condition of partitionability (see Section 5.2.4).
Giles, Trotter and Tucker showed:

Theorem 5.5.7 (Giles, Trotter, Tucker [54]) Each partitionable claw-free
graph is a web.

Combining Theorem 5.1.8 and Theorem 5.5.7 directly yields:

Proposition 5.5.8 Let G be a critically h-imperfect claw-free graph with
ω(G) ≥ 4. If G is partitionable, then G is an odd antihole.

Therefore, Conjecture 5.5.1 would follow from:

Conjecture 5.1.9 Each critically h-imperfect claw-free graph with ω ≥ 4
is partitionable.

Since odd antiholes are obviously partitionable, this must hold if
Conjecture 5.1.5 is valid.
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In their series of papers on claw-free graphs, Chudnovsky and Sey-
mour [21] gave a decomposition theorem for quasi-line graphs. Eisen-
brand et al. [39] used this to prove Ben Rebea’s conjecture, which
gives a description of the stable set polytope of quasi-line graphs. We
do not know if these results could be used to prove Conjecture 5.1.9.

5.5.4 An excluded-t-minor characterization of h-perfect line-graphs

It is straightforward to check that the class of line graphs is closed
under t-minors. Cao and Nemhauser [19] gave a forbidden-induced-
subgraph characterization of h-perfection in line-graphs (Theorem 3.8.2).
Bruhn and Stein [16] observed that this result implies that K4 is the
only MTI line-graph. Hence:

Theorem 5.5.9 (Bruhn, Stein [16]) A line-graph is t-perfect if and only
if it does not have K4 as t-minor.

In this section, we observe that Theorem 3.8.2 also yields a simi-
lar result for h-perfect line-graphs. We recall this theorem here (see
Figure 5.12 for the definition of skewed prisms):

Theorem 3.8.2 (Cao, Nemhauser [19]) Let G be a line-graph. The fol-
lowing statements are equivalent:

i) G is h-perfect,
ii) G does not have an induced skewed prism.

It is straightforward to check that W−5 and W−−5 are the respective
line-graphs of the graphs obtained from C5 by adding either a single
chord or a single parallel edge. By Theorem 5.1.4, they are MHI.

P0

P2

P1

Figure 5.12 – a graph is a skewed prism if it is not isomorphic to K4 and is
formed by two vertex-disjoint triangles joined by three vertex-
disjoint paths P0, P1 and P2 (drawn dotted) such that: both P0
and P2 are even, and P1 is odd. There are no other edges.

We prove:

Theorem 5.1.10 The minimally h-imperfect line-graphs are W−5 and W−−5 .

Proof – Suppose that G is an h-imperfect line-graph. We prove that
W−5 or W−−5 is a t-minor of G.

By Theorem 3.8.2, G must have an induced skewed prism H. We
use the notation of Figure 5.12.
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If P1 has only one edge, then one of P0 and P2 must be of length
at least 2 (because H 6= K4). Without loss of generality, we may as-
sume that |E(P0)| ≥ 2. Now, we perform t-contractions in H at the
internal vertices of P2 (if any) to reduce it to a single vertex. Besides,
we t-contract the internal vertices of P0 in H such that exactly two
edges of P0 remain. Clearly, the graph obtained is isomorphic to W−5 .
Therefore, W−5 is a t-minor of G.

Hence, we may assume that |E(P1)| > 1. Since P1 is odd, we have
|E(P1)| ≥ 3. In H, we perform t-contractions at the internal vertices
of the paths P0, P2 (if any) until each of them has a single vertex.
Moreover, we do the same for P1 until exactly 3 edges of P1 remain.
Clearly, the graph obtained is isomorphic to W−−5 , thus it is a t-minor
of G.

�
Therefore:

Corollary 5.5.10 A line-graph is h-perfect if and only if it does not have
W−5 or W−−5 as a t-minor.
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I N T E G E R R O U N D - U P P R O P E RT Y F O R T H E
C H R O M AT I C N U M B E R O F S O M E H - P E R F E C T
G R A P H S

For every graph G and every c ∈ Z
V(G)
+ , the weighted chromatic number

of (G, c) is the minimum cardinality of a multiset F of stable sets of G such
that every v ∈ V(G) belongs to at least cv members of F .

In this chapter, we prove that every h-perfect line-graph and every t-perfect
claw-free graph G has the integer round-up property for the chromatic number:
for every non-negative integer weight c on the vertices of G, the weighted
chromatic number of (G, c) can be obtained by rounding up its fractional re-
laxation. In other words, the stable set polytope of G has the integer decomposition
property.

Another occurrence of this property was recently obtained by Eisenbrand
and Niemeier for fuzzy circular interval graphs (extending results of Niessen,
Kind and Gijswijt). These graphs form another proper subclass of claw-free
graphs.

Our results imply the existence of a polynomial-time algorithm which com-
putes the weighted chromatic number of t-perfect claw-free graphs and h-perfect
line-graphs. They also yield a new case of a conjecture of Goldberg and Seymour
on edge-colorings.

Results of Gerards [50] show that the stable set polytope of certain t-
perfect graphs is the projection of a polyhedron defined by totally unimodu-
lar constraints. Hence, it has the integer decomposition property (through a
theorem of Sebő [103]). Laurent and Seymour [102] found a t-perfect graph
which does not have this property.

In general, is it true that each polytope which has the integer decomposition
property is the projection of a polyhedron defined by totally unimodular constraints
? We explain that an example of Gisjwijt and Regts [53] implies that the
answer is negative even for 0-1 polytopes.

Pour tout graphe G et tout c ∈ Z
V(G)
+ , le nombre chromatique pondéré

de (G, c) est le cardinal minimum d’un multi-ensemble F de stables de G
tel que tout sommet v de G appartient à au moins cv membres de F .

Nous prouvons dans ce chapitre que tout graphe h-parfait adjoint et tout
graphe t-parfait sans griffe G a la propriété d’arrondi entier pour le nombre chro-
matique : pour tout poids entier positif c sur les sommets de G, le nombre
chromatique pondéré de (G, c) s’obtient en arrondissant sa relaxation frac-
tionnaire à l’entier supérieur. En d’autres termes, le polytope des stables de G
a la propriété de décomposition entière.

Cette propriété a été récemment obtenue par Eisenbrand et Niemeier
pour les graphes circulaires flous (ce qui étend des résultats de Niessen,
Kind et Gijswijt). Ces graphes forment une autre sous-classe propre des
graphes sans griffe.

103
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On déduit de nos résultats l’existence d’un algorithme polynomial pour le
calcul du nombre chromatique pondéré d’un graphe h-parfait adjoint ou t-parfait
sans griffe. Ils impliquent aussi un nouveau cas d’une conjecture de Goldberg et
Seymour sur l’arête-coloration.

Des résultats de Gerards [50] impliquent que le polytope des stables de
certains graphes t-parfaits est la projection d’un polyèdre défini par des
contraintes totalement unimodulaires. En particulier, le polytope des stables
a la propriété de décomposition entière (par un théorème de Sebő [103]).
Laurent et Seymour [102] ont donné un graphe t-parfait qui n’a pas cette
propriété.

En général, est-il vrai que tout polytope qui a la propriété de décomposition
entière est la projection d’un polyèdre défini par des contraintes totalement unimo-
dulaires ? Nous expliquons en quoi un exemple de Gijswijt et Regts implique
que la réponse est non, même pour les polytopes 0-1.

6.1 introduction

We first recall the definitions of the weighted (fractional or integral)
chromatic number of a graph. See Section 3.2.4 and Section 3.4 for
further notions and related results.

Let G be a graph and let S(G) denote the set of stable sets of G.
For every c ∈ Z

V(G)
+ , the weighted chromatic number of (G, c), denoted

χ(G, c), is the minimum cardinality of a multiset F of stable sets of
G such that every v ∈ V(G) belongs to at least cv members of F . In
other words:

χ(G, c) = min

{
∑

S∈S(G)

yS : y ∈ Z
S(G)
+ ; ∑

S∈S(G)

ySχS ≥ c

}
. (6.1)

The chromatic number χ(G) is equal to χ(G, 1), where 1 is the all-1 vec-
tor of ZV(G). We will speak of the unweighted case when considering
the weight function 1.

Replacing Z with R in (6.1), we obtain a linear program whose
optimum value is the weighted fractional chromatic number of (G, c). We
write it χ f (G, c) (and simply χ f (G) in the unweighted case). Hence,
the inequality dχ f (G, c)e ≤ χ(G, c) always holds.

The chromatic number of a graph has been extensively studied in
various contexts of discrete optimization and graph theory (see for
example [63]). Karp [64] proved that it is NP-hard to compute and
several inapproximability results were later obtained (see Huang [61]
for a recent example). Finding its fractional counterpart is also an NP-
hard problem in general since it is equivalent to the maximum-weight
stable set problem, through the ellipsoid method [57] (a proof of this
fact using a Karp-reduction is not known).

It follows from results of Grötschel, Lovász, Schrijver [57] that the
(integer or fractional) weighted chromatic number of a perfect graph can be
found in polynomial-time. Furthermore:
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Theorem 3.6.18 (Grötschel, Lovász, Schrijver [56, 57]) The weighted
fractional chromatic number of an h-perfect graph can be computed in poly-
nomial time.

The complexity of determining χ(G, c) in h-perfect graphs is un-
known. Hence, the study of the gap between the weighted chromatic
number of (G, c) and its fractional version may help to design (either
exact or approximation) polynomial-time algorithms for this problem.
We do not know of any result giving a bound on this gap for every
h-perfect graph and every weight.

A graph G has the integer round-up property for the chromatic number
(abbreviated IRCN) if for every c ∈ Z

V(G)
+ : χ(G, c) = dχ f (G, c)e. By

Theorem 3.4.3, this is equivalent to state that STAB(G) has the integer
decomposition property, that is: for every positive integer k, each inte-
gral vector of kSTAB(G) is the sum of k incidence vectors of stable
sets.

Therefore, Theorem 3.6.18 implies that if every graph of a subclass
G of h-perfect graphs has this property, then their weighted chromatic
number can be computed in polynomial-time (for every weight).

A graph is claw-free if it does not have an induced claw (shown in
Figure 6.1). Claw-free graphs form a proper superclass of line graphs.

Figure 6.1 – the claw

The class of h-perfect claw-free graphs was investigated by Bruhn
and Stein in [16]. In particular, they proved the unweighted case of
the IRCN for these graphs:

Theorem 6.1.1 (Bruhn, Stein [16]) Every h-perfect claw-free graph G sat-
isfies χ(G) = dχ f (G)e.

The line graph of the Petersen graph shows that this is not true for
line graphs in general. In this chapter, we extend this result to arbi-
trary weights for two subclasses of h-perfect claw-free graphs. First,
we will show:

Theorem 6.1.2 Every h-perfect line-graph has the integer round-up prop-
erty for the chromatic number.

The corresponding unweighted result was obtained by Bruhn and
Stein [16] and serves as a lemma for Theorem 6.1.1. The proof con-
sists in coloring the edges of the source graph, whose structure is
described by a result of Cao and Nemhauser (Theorem 3.8.1). We
follow the same idea to show Theorem 6.1.2. Further arguments are
needed to handle phenomena which occur only in the weighted case.
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The chromatic index of a graph G, denoted χ′(G), is the minimum
number of colors needed to assign to each edge of G a color such that
two incident edges receive different colors. Conjectures of Goldberg
[55] and Seymour [104] imply that for every graph G, χ′(G) is equal to
dχ′f (G)e or dχ′f (G)e+ 1 .

As an intermediate step towards Theorem 6.1.2, we prove in Sec-
tion 6.2 a new case of these conjectures. Let C+

5 be the graph of Fig-
ure 6.2. We say that a graph is odd-C+

5 -free if it does not contain a
totally odd subdivision of C+

5 (odd-C+
5 -free graphs are the graphs

which do not contain a simple odd-C+
3 , see Section 3.8).

Theorem 6.1.3 Every odd-C+
5 -free graph H satisfies: χ′(H) = dχ′f (H)e.

There are not many known classes of graphs that are defined by
an excluded-subgraph (or minor) assumption and for which χ′(G) =

dχ f (L(G))e holds for every member G of the class. Seymour [105]
showed that this holds for graphs without a subdivision of the com-
plete graph K4 (that is series-parallel graphs; Fernandes and Thomas
[42] later found a shorter proof) and Marcotte [78] proved it for graphs
which do not have a minor isomorphic to K5 minus an edge. These
edge-coloring results do not imply one another and are all examples
of the IRCN for subclasses of line graphs.

Figure 6.2 – the graph C+
5 , also known as the house

The other main result of this chapter is the following:

Theorem 6.1.4 Every t-perfect claw-free graph has the integer round-up
property for the chromatic number.

The unweighted case is implied by Theorem 6.1.1 and is obtained
by a reduction to the line-graph case (through decompositions along
vertex-cuts). We had to follow a new approach in proving Theorem 6.1.4:
if G is a t-perfect claw-free graph and c ∈ Z

V(G)
+ , then we can either

reduce the size of c using certain subgraphs (and use induction) or
apply Theorem 6.1.2.

We do not know if every h-perfect claw-free graph has the IRCN. It
does not hold for h-perfect graphs in general as shown by an example
of Laurent and Seymour [102, pg. 1207].

To our knowledge, there are only two known other results on the
IRCN for h-perfect (imperfect) graphs: Kilakos and Marcotte [67]
proved it for series-parallel graphs. They developed a general method
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to prove the IRCN. We do not see how to apply this method to t-
perfect claw-free graphs.

Besides, Gerards (unpublished, [102, pg. 1207]) showed the IRCN
for graphs which do not contain an odd-K4 (an odd-K4 is a subdivision
of K4 in which the triangles become odd circuits).

We say that a polyhedron P ⊆ Rn is totally unimodular if there
exist a totally unimodular matrix A (that is, A is integral and each
determinant of a square submatrix of A is 0,-1 or 1) and an integral
vector b such that P = {x ∈ Rn : Ax ≤ b}.

Results of Gerards [50] imply that the stable set polytope of certain
graphs which do not contain an odd-K4 (including almost-bipartite
graphs) is a projection of a totally unimodular polyhedron. A theo-
rem of Sebő [103] shows that such projections have the integer de-
composition property.

Is it true that each polytope which has the integer decomposition prop-
erty is a projection of a totally unimodular polyhedron ? This question is
related to extended formulations, which recently received considerable
attention (see [28]). We observe that an example due to Gisjwijt and
Regts [53] shows that the answer is negative even for 0-1 polytopes (that
is which have 0-1 vertices only):

Proposition 6.1.5 There exists a 0-1 polytope which has the integer de-
composition property and is not the projection of a totally unimodular poly-
hedron.

We end this section with related results and the outline of the chap-
ter.

Circular arc graphs form another class of claw-free graphs which
have the IRCN. This was obtained by Niessen and Kind [86], Gijswijt
[52] and later extended to fuzzy circular interval graphs by Eisen-
brand et al. [37] (both these classes are incomparable with the class
of h-perfect claw-free graph in terms of inclusion). These graphs ap-
pear in the context of the problem of finding a nice description of the
stable set polytope of claw-free graphs.

A graph is quasi-line if the neighborhood of each vertex is covered
with two cliques. In other words, quasi-line graphs are the comple-
ments of nearly-bipartite graphs. Quasi-line graphs form a proper
superclass of line graphs and a proper subclass of claw-free graphs.

In [16], Bruhn and Stein observed that h-perfect claw-free graphs
are quasi-line. Chudnovsky and Seymour [21] gave a decomposition
theorem for quasi-line graphs (as a particular case of a more gen-
eral result for claw-free graphs [23]). We do not use this result in our
proofs and we do not know if it could be applied to understand h-
perfect claw-free graphs in general (see also Section 5.5). Using the
results of [21], King and Reed [69] proved that χ and χ f agree asymp-
totically in quasi-line graphs.
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outline Section 6.2 contains the proof of Theorem 6.1.2. We use
it to prove Theorem 6.1.4 in Section 6.3.

In Section 6.4, we derive an explicit formula for the weighted chro-
matic number of h-perfect line-graphs and t-perfect claw-free graphs
as a consequence of Theorems 6.1.2 and 6.1.4. Finally, we state a re-
lated formula for the chromatic index of odd-C+

5 -free graphs and dis-
cuss the algorithmic aspects of our results.

We end this chapter by observing that Proposition 6.1.5 follows
from results of Gijswijt and Regts.

6.2 h-perfect line-graphs

The purpose of this section is to prove Theorem 6.1.2. In Section 6.2.1,
we state an edge-coloring result (Theorem 6.1.3) and show that it
easily implies Theorem 6.1.2 (through Theorem 3.8.1 by Cao and
Nemhauser).

Section 6.2.2 is devoted to the proof of this edge-coloring statement.
It relies on an auxiliary result (Lemma 6.2.2) whose proof is post-
poned to Section 6.2.3.

6.2.1 Reduction to an edge-coloring result

The graph C+
5 is shown in Figure 6.2. An odd-C+

5 of H is a subgraph
of H which is isomorphic to a totally odd subdivision of C+

5 . A graph
is odd-C+

5 -free if it does not have an odd-C+
5 .

Various notions of perfection in line graphs were studied by Cao
and Nemhauser in [19]. They characterized the h-perfection of L(H)

in terms of the exclusion of certain graphs as subgraphs of H (The-
orem 3.8.1). We will use this result again in Chapter 8 to obtain a
polynomial-time algorithm deciding h-perfection in the class of line
graphs. Here we need only the following part of their result, which
directly follows from observing that each odd-C+

5 is an odd-C+
3 (see

Section 3.8).

Theorem 6.2.1 (Cao, Nemhauser [19]) Let H be a graph. If L(H) is h-
perfect, then H is odd-C+

5 -free.

For the required terminology and notations of (integral or frac-
tional) edge-coloring, we refer the reader to Section 3.2.1.

Theorem 6.1.3 Every odd-C+
5 -free graph H satisfies: χ′(H) = dχ′f (H)e.

We first show that this result and Theorem 6.2.1 imply Theorem 6.1.2.
For each graph G and c ∈ Z

V(G)
+ , let Gc be the graph obtained by sub-

stituting each vertex v ∈ V(G) by a stable set of cardinality cv (see
also the paragraph of Proposition 3.5.1).

Theorem 6.1.2 Every h-perfect line-graph has the integer round-up prop-
erty for the chromatic number.
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Proof (of Theorem 6.1.2) – Let G be an h-perfect line-graph, c ∈
Z

V(G)
+ and H be a graph such that G = L(H). Let H′ be the graph

obtained from H by replacing each edge e = uv ∈ E(H) by ce paral-
lel edges between u and v. It is straightforward to check that Gc =

L(H′). By Proposition 3.5.1, χ(G, c) = χ(Gc) = χ′(H′) and similarly,
χ f (G, c) = χ′f (H′).

By Theorem 6.2.1, H is odd-C+
5 -free. Therefore, H′ is also odd-C+

5 -
free (it only depends on its underlying simple graph, which is the
same as H) and the conclusion follows from Theorem 6.1.3.

�

6.2.2 Proof of Theorem 6.1.3

Let H be a graph. An odd ring of a graph H is an induced subgraph
of H whose underlying simple graph is an odd circuit (hence an odd
ring may have parallel edges). Let:

Γ′(H) = max
{

2
|V(R)| − 1

|E(R)| : R is an odd ring of H
}

,

An edge e of a graph H is critical if χ′(H − e) < χ′(H) (that is,
χ′(H − e) = χ′(H)− 1).

The main ingredient of the proof of Theorem 6.1.3 is the following
"concentration" lemma:

Lemma 6.2.2 Let H be a graph such that χ′(H) > ∆(H) and let e ∈ E(H).
If e is critical and is not an edge of an odd-C+

5 of H, then there exists an odd
ring R of H such that e ∈ E(R) and:

|E(R)| = r · χ′(H − e) + 1,

where r = |V(R)|−1
2 .

We need one more result on the fractional chromatic index of a
graph. In Section 6.4, we will see that equality actually holds in the
statement i) below for every odd-C+

5 -free graph. As a byproduct, we
will obtain a new formula for the chromatic index of these graphs. We
defer this formula for the sake of clarity, since only the lower bound
is needed in the proof of Theorem 6.1.3.

Since rings are obviously 2-connected and factor-critical graphs (see
definition in Section 3.7), the statement i) below is a straightforward
consequence of Theorem 3.7.2. We give a direct proof:

Proposition 6.2.3 Let H be a graph. The following statements hold:
i) χ′f (H) ≥ max(∆(H), Γ′(H)),

ii) for every subgraph K of H, we have χ′f (K) ≤ χ′f (H).
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Proof – Let M(H) be the set of all matchings of H. By the duality
theorem of linear programming, we have:

χ′f (H) = max
{

x(E(H)) : x ∈ Q
E(H)
+ ; x(M) ≤ 1, for every M ∈ M(H)

}
.

Let v ∈ V(H) and R be an odd ring of H. Let δ(v) denote the set of
edges of H incident with v. Clearly, each matching of H contains at
most one edge of δ(v) and at most 2

|V(R)|−1 |E(R)| edges of R. Hence,

both χδ(v) and 2
|V(R)|−1 χE(R) are feasible solutions of the linear pro-

gram above and this implies i).
Statement ii) follows from the fact that any optimal solution x of the

linear program above for χ′f (K) can be extended to a feasible solution
of the program for χ′f (H), by setting xe = 0 for every e ∈ E(H) \ E(K).

�
We are now ready to prove Theorem 6.1.3 (the proof of Lemma 6.2.2

being postponed to the next part):

Theorem 6.1.3 Every odd-C+
5 -free graph H satisfies: χ′(H) = dχ′f (H)e.

Proof – For every graph G, let κ(G) := dχ′f (G)e.
By contradiction, let H be an odd-C+

5 -free graph with χ′(H) 6=
κ(H) and choose |E(H)| minimum. We actually have χ′(H) > κ(H)

(since χ′(G) ≥ κ(G) clearly holds for every graph G).
Let e ∈ E(H) and H′ = H − e. Since H is minimal, χ′(H′) = κ(H′).

Besides, Proposition 6.2.3.ii) implies that κ(H′) ≤ κ(H). Hence:

χ′(H)− 1 ≤ χ′(H′) ≤ κ(H′) ≤ κ(H) ≤ χ′(H)− 1,

and these inequalities are in fact equalities. In particular, e is a critical
edge of H and κ(H) = χ′(H′).

Since H is odd-C+
5 -free, Lemma 6.2.2 can be applied to H and e.

Hence, H has an odd ring R such that e ∈ E(R) and:

|E(R)| = r · χ′(H′) + 1,

where r = |V(R)|−1
2 . By Proposition 6.2.3.i), κ(H) ≥ |E(R)|

r . Therefore,
κ(H) > χ′(H′): a contradiction.

�

6.2.3 Proof of Lemma 6.2.2

A matching M of a graph H covers a vertex v of H if M has an edge
incident with v, and that it misses v otherwise.

Proposition 6.2.4 Let H be a graph such that χ′(H) > ∆(H) and let
e = uv be a critical edge of H. If Λ is an optimal edge-coloring of H − e,
then:
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i) every matching M ∈ Λ covers at least one of u and v ,
ii) there exist two matchings A, B ∈ Λ such that A covers u and misses

v, whereas B covers v and misses u.

Proof – If i) did not hold, then Λ could be extended to an edge-
coloring Λ′ of H (by adding e to a matching which misses both u and
v). This would contradict χ′(H − e) < χ(H).

We now prove ii). By the symmetry between u and v, it is enough
to prove that there is a matching in Λ which covers u and misses v.
Suppose to the contrary that every matching in Λ covering u covers
v too. By i), every M ∈ Λ covers v, so χ′(H − e) = dH(v) − 1 ≤
∆(H)− 1. Thus χ′(H) ≤ ∆(H), which contradicts the assumption on
H.

�
For every graph H and each F ⊆ E(H), we write H [F] for the

graph (V(H), F) (ambiguity with the notation for subgraphs induced
by sets of vertices should not occur). We will often use the following
basic recoloring-argument, which corresponds to switching the colors
on a bi-edge-colored component of a graph.

Proposition 6.2.5 Let H be a graph, Λ be an edge-coloring of H and A, B
be distinct elements of Λ.

If K is a component of H [A∆B], then switching A and B on E(K) in Λ
yields an edge coloring of H which uses |Λ| colors.

We give a few more definitions for the proof of Lemma 6.2.2. Let H
be a graph.

Let R be an odd ring of H. A matching M of H is an R-matching
if |E(R) ∩M| = |V(R)|−1

2 and M misses a (necessarily unique) vertex
of C. The end-edges of a path P of H are the edges of P (if it has any)
which are incident to its ends.

We shall detect odd-C+
5 subgraphs of H using the following basic

remark: the odd-C+
5 subgraphs of H are the simple graphs formed by an

odd circuit C and an odd path P of H such that V(C) ∩ V(P) is the set of
ends of P. In other words, an odd-C+

5 is a simple graph which has an
open-ear decomposition with exactly two ears which are both odd. In
particular, an odd circuit with a chord forms an odd-C+

5 .

Lemma 6.2.2 Let H be a graph such that χ′(H) > ∆(H) and let e ∈ E(H).
If e is critical and is not an edge of an odd-C+

5 of H, then there exists an odd
ring R of H such that e ∈ E(R) and:

|E(R)| = r · χ′(H − e) + 1,

where r = |V(R)|−1
2 .

Proof – Let H be a graph (with possibly multiple edges) such that
χ′(H) > ∆(H) and let e be a critical edge of G which is not an edge
of an odd-C+

5 of H.
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Let u and v be the ends of e and Λ be an optimal edge-coloring of
H − e. By Proposition 6.2.4, there exist matchings A, B ∈ Λ such that
A covers u and misses v, whereas B covers v and misses u.

Consider the component P of u in the graph H [A∆B]. It is either
a path or a circuit, but B misses u so it must be a path. We have
v ∈ V(P): otherwise, (Λ \ {A, B}) ∪ {A∆E(P), B∆E(P)} would be
an optimal edge-coloring of H − e (by Proposition 6.2.5) in which
A∆E(P) misses both u and v. It could therefore be extended to an
edge-coloring of H, contradicting χ′(H − e) < χ′(H).

So P is a uv-path and the circuit L of H obtained by adding e to P
is odd. If L had a chord f , then L and f would form an odd-C+

5 of H
containing e: a contradiction.

Thus, V(L) induces an odd ring R of H. Let r = |V(R)|−1
2 . We claim:

R contains exactly r edges of each matching M of Λ. (6.2)

Let us immediately show that this claim implies the theorem: except
e, every edge of R belongs to a matching of Λ and these matchings are
pairwise-disjoint. Therefore, the number of edges of R is |Λ|r + 1 =

r · χ′(H − e) + 1 and the conclusion follows.
We now prove (6.2). Let M ∈ Λ. If M ∈ {A, B}, then M has r edges

in R because the edges of P alternate between A and B. So let us
henceforth assume that M /∈ {A, B}. Using the symmetry between u
and v, we may suppose without loss of generality that M covers u.
Let K be the component of u in H [M∆B]. The graph K is a path since
B misses u. We have:

K ∩ R is an even path. (6.3)

Suppose to the contrary that K ∩ R has more than one component.
Then, there exists a (non-zero length) path Q of K which is edge-
disjoint from R and whose ends belong to V(R). Since B is an R-
matching, both end-edges of Q must belong to M and Q is odd.
Hence, the graph L and Q together form an odd-C+

5 of H contain-
ing e: a contradiction with our assumption. So K ∩ R is connected
and it joins u to some vertex w of R.

Suppose |E(K ∩ R)| > 0. Since B is an R-matching missing u, the
vertex w is covered by B in the graph K∩ R. Therefore, the path K∩ R
has exactly one end-edge in B and it must be even as stated above.
This proves (6.3).

Let M′ = M∆E(K). By (6.3) and since the edges of K ∩ R alternate
between M and B, we obtain:

|M ∩ E(R)| = |M′ ∩ E(R)|,

We now show that |M′ ∩ E(R)| = r. This will end the proof of (6.2).
Let B′ = B∆E(K) and Λ′ = (Λ \ {M, B}) ∪ {M′, B′}. By Proposi-

tion 6.2.5, Λ′ is an optimal edge-coloring of H − e. Notice that M′
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misses u. Therefore, M′ must cover v: otherwise, Λ′ could be ex-
tended to an edge-coloring of H by adding e to M′ and this would
contradict χ′(H − e) < χ′(H).

Let K′ be the component of v in H [M′∆A] and T = K′ ∩ R. Since A
is an R-matching of H which misses v, we can repeat the argument
of the proof of (6.3) to show that T is a path. Now, we have:

u ∈ V(T).

Indeed, suppose that u /∈ V(T) and let M′′ = M∆E(K′), A′ = A∆E(K′)
and Λ′′ = (Λ′ \ {M′, A}) ∪ {M′′, A′}. As above, Proposition 6.2.5
implies that Λ′′ is an optimal edge-coloring of H − e. However, M′′

misses both ends of e so Λ′′ can be extended to an edge-coloring of
H by adding e to M′′: a contradiction.

Since M′ does not contain an edge parallel to e (it misses u) and
since u ∈ V(T), the only way for T to be a path is that it coincides
with P in the underlying simple graph of H. But T alternates between
M′ and A, hence |M′ ∩ E(R)| = |M′ ∩ E(R)| = r.

�

6.3 t-perfect claw-free graphs

Our purpose is to prove Theorem 6.1.4. Section 6.3 gives an outline
of the proof and hopefully clarifies that we have to take a new ap-
proach compared to the unweighted case. The proofs of the two main
lemmas are postponed to Sections 6.3.2 and 6.3.3.

6.3.1 How the proof works ?

The unweighted case of Theorem 6.1.4 was obtained by Bruhn and
Stein in [16] and appears as a preliminary result of Theorem 6.1.1. It
is not difficult to see that it means that t-perfect claw-free graphs are
3-colorable (see Corollary 3.6.16).

Theorem 6.3.1 (Bruhn, Stein) Each t-perfect claw-free graph is 3-colorable.

Let us briefly recall the approach of the proof: the result is first proved
for line graphs (using edge-colorings). Then, considering a t-perfect
claw-free graph they show: if G is 3-connected then it is either a line graph
or one of a few exceptional graphs which can be easily 3-colored. Otherwise,
they use a 2-vertex-cut (a subset of at most two vertices of G whose
deletion disconnects G) to decompose the graph into smaller pieces
and apply induction (which is not direct).

Unfortunately, it is not straightforward how two weighted color-
ings with a small number of colors can be combined along a 2-vertex-
cut such that the number of colors remains small. Kilakos and Mar-
cotte [67] gave general sufficient conditions under which this opera-
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u

v

Figure 6.3 – a diamond with central vertices u, v

tion can be performed. However, it is not clear how to apply it directly
to t-perfect claw-free graphs.

Therefore, we follow a different approach. We proceed by an induc-
tion where the line graphs form the base case. In the presence of cer-
tain subgraphs, we reduce the weight function. If no such subgraph
appears, then we show that the graph considered is a line graph and
apply Theorem 6.1.2.

A diamond of a simple graph G is an induced subgraph D of G
which is isomorphic to the complete graph K4 minus an edge (see
Figure 6.3). A vertex u of D is central if dD(u) = 3.

A central vertex u of D is small if dG(u) = 3. We say that D is small
if it has a small central vertex and that it is large otherwise. Notice
that if D is large, then both of its central vertices have degree at least
4 in G.

Lemma 6.3.2 Let G be a t-perfect claw-free simple graph and c ∈ Z
V(G)
+ .

Suppose that G has a small diamond D with a small central vertex v such
that cv ≥ 1. Put c′ = c− χv.

If χ(G, c′) = dχ f (G, c′)e, then χ(G, c) = dχ f (G, c)e.

So an induction on the size of the weight function can be performed
as long as there is a small diamond in the graph. Now, the follow-
ing result shows that the remaining case falls in the scope of Theo-
rem 6.1.2.

Lemma 6.3.3 Let G be a t-perfect claw-free simple graph. If every diamond
of G is large, then G is a line graph.

The starting point of the approach of Bruhn and Stein for Theorem 6.1.1
is the use of Harary’s characterization of line graphs of simple graphs
(in terms of triangles). It plays a similar role in the proof of Lemma 6.3.3.
The other key-ingredient is the characterization of t-perfection among
squares of circuits. These two results are stated in Section 6.3.3.

We now prove that Theorem 6.1.4 follows from Lemmas 6.3.2, 6.3.3
and Theorem 6.1.2.

Proof (of Theorem 6.1.4) – To the contrary, let (G, c) be a counter-
example which is minimum with respect to |V(G)|+ c(V(G)).

Clearly, we can assume that G is simple and that no coordinate of
c is equal to zero. Thus, G cannot have a small diamond because of
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Lemma 6.3.2. Therefore, Lemma 6.3.3 shows that G is a line graph
and the conclusion follows from Theorem 6.1.2.

�

6.3.2 Proof of Lemma 6.3.2

Let G be a graph and v ∈ V(G). We write NG(v) for the set of
neighbors of v. In particular, if G is simple then dG(v) = |NG(v)| and
∆(G) is the largest number of neighbors of a vertex of G. We will use
the following direct consequence of Proposition 5.5.3 page 98:

Proposition 6.3.4 Let G be a t-perfect claw-free graph. If v ∈ V(G) and
C is an odd hole of G, then v has at most 2 neighbors in C.

We will use again color exchanges on bi-colored components but
for colorings of the vertices (the statement of Proposition 6.2.5 can be
easily translated using line graphs). We can now prove Lemma 6.3.2:

Proof (of Lemma 6.3.2) – We start with an argument similar to the
proof of Proposition 6.2.4. Let D = G [{x, v, w, y}], where x and y are
the two vertices of degree 2 in D. Hence, the neighbors of v in G are
x, y and w. Let F be a coloring of (G, c′). Without loss of generality,
we can assume that every u ∈ V(G) belongs to exactly c′u members
of F .

If there exists an S ∈ F such that S∩ (NG(v)∪ {v}) = ∅, then (F \
{S}) ∪ {S ∪ {v}} is a coloring of (G, c) with χ(G, c′) colors. Clearly,
χ f (G, c′) ≤ χ f (G, c) and the result of the lemma follows.

Hence we will assume that every member of F meets NG(v) ∪ {v}.
For every u ∈ V(G), let Fu denote the set of members of F containing
u. First, suppose that Fx ⊆ Fy. Then, the number of members of F
intersecting NG(v) ∪ {v} is:

χ(G, c′) = |Fy ∪ Fw ∪ Fv| = |Fy|+ |Fw|+ |Fv| ≤ ω(G, c)− 1,

as {v, w, y} is a clique. By Proposition 3.6.15, we obtain that χ(G, c′) ≤
dχ f (G, c)e − 1. So adding {v} to F gives a coloring of (G, c) with
dχ f (G, c)e colors and we are done.

Therefore, we may assume that Fx * Fy and by symmetry, that
Fy * Fx. Let S ∈ Fx \ Fy and T ∈ Fy \ Fx. Consider H = G [S∆T].
Let K be the component of x in H. We claim:

y /∈ V(K).

Suppose to the contrary that y ∈ V(K) and let P be a shortest (thus
induced) path of K joining x and y. The vertices of P alternate between
S and T, hence P has odd length. As G does not have a clique of
cardinality 4 (it is t-perfect), the length of P is at least 3. Let L =

G [V(P) ∪ {v}]. By assumption, dG(v) = 3 so L is an odd hole of G.
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Now, w does not belong to L (as it is adjacent to x and y) and it has
at least 3 neighbors in L. By Proposition 6.3.4, this contradicts the
t-perfection of G.

The lemma now easily follows: (F \{S, T})∪{S∆E(K), T∆E(K)} is
a coloring of (G, c) with χ(G, c′) colors and χ(G, c′) = dχ f (G, c′)e ≤
dχ f (G, c)e.

�

6.3.3 Proof of Lemma 6.3.3

In Section 5.2.3, we stated a theorem of Bruhn and Stein (Theo-
rem 5.2.8) characterizing t-perfection among the webs C2

n. We repeat
part i) of this statement below, which is the only one needed in this
chapter:

Theorem 6.3.5 (Bruhn, Stein [16]) Let n ≥ 3 be an integer. The graph
C2

n is t-perfect if and only if n ∈ {3, 6}.

Figure 6.4 – the graph C2
7

We will use that t-perfect claw-free simple graphs have small de-
gree. This is shown in [16]. We give a proof here.

Proposition 6.3.6 Every t-perfect claw-free simple graph has maximum
degree at most 4.

Proof – Let G be a t-perfect claw-free simple graph and let v ∈ V(G).
Since G is simple, we have dG(v) = |NG(v)|. First, notice that dG(v) ≤
5: otherwise, by Ramsey’s theorem, NG(v) would contain either a
triangle or a stable set of cardinality 3. So G would contain a K4 or a
claw: a contradiction.

Now, if dG(v) = 5 then G [NG(v)] is a graph with 5 vertices having
no stable set of cardinality 3 and no triangle. Hence it is an odd circuit
of length 5 and this contradicts Proposition 6.3.4 (in Section 6.3.2).

�
The last ingredient needed to prove Lemma 6.3.3 is the following

proposition on claw-free simple graphs. Recall that ω(G) denotes the
maximum cardinality of a clique of a graph G.
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Proposition 6.3.7 Let G be a connected claw-free simple graph such that
∆(G) ≤ 4 and ω(G) ≤ 3. If every diamond of G is large, then at least one
of the following statements holds:

i) G is a line graph,
ii) there exists an integer k ≥ 7 such that G is isomorphic to C2

k .

The proof of this proposition is postponed to the end of this section.
We first show that these results imply Lemma 6.3.3:

Proof (of Lemma 6.3.3) – Let G be a t-perfect claw-free simple graph
such that every diamond of G is large. Clearly, we need only to prove
that each component of G is a line graph.

Let H be a component of G. Since H is an induced subgraph of G,
we have that H is claw-free and that it is t-perfect too. By Proposi-
tion 6.3.6, this implies ∆(H) ≤ 4. Furthermore, ω(H) ≤ 3 and every
diamond of H is large.

By Theorem 6.3.5, the graphs C2
k with k ≥ 7 are not t-perfect. Hence,

H cannot be isomorphic to one of them. Therefore, Proposition 6.3.7
shows that H is a line graph.

�
We end this section with the proof of Proposition 6.3.7. We need

a characterization of line graphs by Harary in terms of diamonds. A
triangle T of a graph G is odd if G contains a vertex v /∈ T which
has an odd number of neighbors in T. A diamond of G is odd if both
of its triangles are odd triangles of G. The implication ii)⇒i) of the
following result is the key to obtain line graphs:

Theorem 6.3.8 (Harary [60]) Let G be a claw-free simple graph. The fol-
lowing statements are equivalent:

i) G is the line graph of a simple graph,
ii) G does not have an odd diamond.

Actually, we do not use the simplicity of the graph H whose line
graph is G since Theorem 6.1.2 holds for line graphs of non-necessarily
simple graphs.

Proof (of Proposition 6.3.7) – Let G be a connected claw-free sim-
ple graph with ∆(G) ≤ 4, ω(G) ≤ 3 and such that every diamond of
G is large. Furthermore, let us assume that G is not a line graph. We
have to prove:

there exists an integer k ≥ 7 such that G is isomorphic to the graph C2
k .

By Theorem 6.3.8, G has an odd diamond D. Put D = G [v1, v2, v3, v4],
where v2 and v3 are the central vertices of D. Since D is large, we have
dG(v2) = 4. Hence, v2 has a neighbor v5 ∈ V(G) \ {v1, v3, v4}. As G
is claw-free, v5 is adjacent to at least one of v1 and v4. Using the sym-
metry between v1 and v4, we can assume without loss of generality
that v4v5 ∈ E(G).
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Again, D is large so dG(v3) = 4. Since v5 cannot be a neighbor of
v3 (otherwise {v2, v3, v4, v5} would be a clique of cardinality 4), there
exists v6 ∈ V(G) \ {v1, . . . , v5} such that v3v6 ∈ E(G). But G is claw-
free so at least one of v1v6 and v4v6 is an edge of G. However:

v4v6 /∈ E(G). (6.4)

Otherwise, v1, v5 and v6 would be the only vertices of G having a
neighbor in the triangle v2v3v4 (because ∆(G) = 4). But each of these
vertices have exactly two neighbors on v2v3v4. Thus v2v3v4 would not
be an odd triangle of G. This contradicts that D is odd.

Therefore, v1v6 ∈ E(G). Since v1 is a central vertex of the diamond
induced by {v1, v2, v3, v6} (and every diamond of G is large), we must
have dG(v1) = 4. Furthermore:

v1v5 /∈ E(G). (6.5)

Else, the same argument used to prove (6.4) shows that v1v2v3 would
not be an odd triangle, contradicting that D is odd.

So v1 must have a neighbor v7 /∈ {v2, . . . , v6} and as G is claw-
free, v7 is adjacent to at least one of v2 and v6. But v2 already has
4 neighbors among {v1, v3, v4, v5, v6}, thus v2v7 /∈ E(G) and v6v7 ∈
E(G).

Let H = G [{v1, . . . , v7}] (see Figure 6.5).

v7

v6

v3

v2

v4
v1

v5

Figure 6.5 – the construction of v1, . . . , v7. Dotted lines indicate pairs of non-
adjacent vertices.

Case 1. NG(v4) and NG(v6) are contained in V(H).
Since v4 and v6 are both central vertices of diamonds of G, we

have dG(v6) = dG(v4) = 4. Recall that v4v6 /∈ E(G) (Equation (6.4)).
Thus, v5v6 ∈ E(G) and v4v7 ∈ E(G). In particular, the vertices v3, v5

and v7 are neighbors of v4. But G has no clique of cardinality 4 so
v3v7 /∈ E(G) and v3v5 /∈ E(G). Since G is claw-free, this implies that
v5v7 ∈ E(G) (see Figure 6.6).

Now, the map 1 → v7, 2 → v6, 3 → v1, 4 → v3, 5 → v2, 6 → v4,
7 → v5 defines an isomorphism from C2

7 to a subgraph of H. Since
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C2
7 is 4-regular and ∆(G) = 4, the graph H is in fact isomorphic to

C2
7 and is a component of G. Since G is connected, G = H and the

conclusion follows.

v7

v6

v3

v2

v4
v1

v5

Figure 6.6 – case 1. building a C2
7 from v1, . . . , v7 when NG(v4) ∪ NG(v6) ⊆

V(H).

Case 2. At least one of v4 and v6 has a neighbor outside of V(H).
Using the symmetry between v4 and v6, we can assume without

loss of generality that v6 has a neighbor v8 /∈ V(H). Now, the ver-
tices v3, v7 and v8 are three neighbors of v6. Since G has no clique
of cardinality 4, we have v3v7 /∈ E(G). Furthermore, v3 already has
4 neighbors among the vertices of H so v3v8 /∈ E(G) and, since G is
claw-free, we have v7v8 ∈ E(G). Define w1 = v8, w2 = v7, w3 = v6,
w4 = v1 w5 = v3, w6 = v2, w7 = v4, w8 = v5. Notice that (w1, . . . , w8)

is a path such that wiwi+2 ∈ E(G) for every 1 ≤ i ≤ 6.
Let Q = (z1, . . . , zk) be a path of G such that zizi+2 ∈ E(G) for

every 1 ≤ i ≤ k− 2, and choose k maximum. The path P shows that
k ≥ 8. Let L = G [z1, . . . , zk]. We claim:

L is isomorphic to C2
k . (6.6)

Since ∆(G) = 4 and C2
k is 4-regular, this implies that L is a component

of G. As G is connected, we have G = L and this ends the proof of
Proposition 6.3.7. We now prove (6.6).

Since z2 is a central vertex of the diamond induced by {z1, z2, z3, z4},
we have dG(z2) = 4. Furthermore, NG(z2) ⊆ V(L): we could other-
wise use a vertex z0 ∈ NG(z2) \V(L) to extend Q (z0 must be adjacent
to z1 because G is claw-free) and contradict the maximality of k. For
the same reason, NG(zk−1) ⊆ V(L).

Now, notice that for every i ∈ {3, . . . , k− 2}: dL(zi) = 4. Hence, at
least one of zk and zk−1 is a neighbor of z2. However, z2zk−1 cannot
be an edge of G: the vertices z1, z4 and zk−1 would otherwise be
three pairwise non-adjacent neighbors of z2 and G would contain an
induced claw: a contradiction.
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Therefore, z2zk ∈ E(G). Similarly, dG(zk−1) = 4 and z1zk−1 ∈ E(G).
Since G is claw-free, this implies that z1zk ∈ E(G) (see Figure 6.7).
Finally, the map i→ zi defines an isomorphism from C2

k to a subgraph
of L. Since C2

k is 4-regular, L is in fact isomorphic to C2
k .

�

z1

z2 z3 z4 zk−3 zk−2 zk−1

zk

Figure 6.7 – case 2. building an induced C2
k (with k ≥ 8) from Q. The dotted

line indicates that z2zk−1 /∈ E(G)

6.4 minmax formulae and algorithmic remarks

In this section, we first obtain an explicit formula for the weighted
chromatic number of t-perfect claw-free graphs and h-perfect line-
graphs. We also give a corresponding formula for the chromatic index
of an odd-C+

5 -free graph without referring to its line graph. Finally,
we discuss the algorithmic aspects of our results.

Using Proposition 3.6.15, Theorems 6.1.2 and 6.1.4, we obtain:

Corollary 6.4.1 Let G be a graph and c ∈ Z
V(G)
+ . If G is a t-perfect

claw-free graph or an h-perfect line-graph, then:

χ(G, c) = max(ω(G, c), dΓ(G, c)e).

It is easy to check that Γ(G, 1) ≤ 3, thus we obtain the 3-coloring
result of Bruhn and Stein (Theorem 6.3.1) in another way. We expect
that a similar result holds for h-perfect claw-free graphs in general.

In Section 6.2.3, we used the fact that every graph H satisfies the in-
equality χ′f (H) ≥ max(∆(H), Γ′(H)). In fact, equality holds for each
odd-C+

5 -free graph:
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Proposition 6.4.2 Every odd-C+
5 -free graph H satisfies:

χ′f (H) = max(∆(H), Γ′(H)).

Proof – By Theorem 3.7.2, χ′f (H) = max(∆(H), σ(H)) where:

σ(H) := max
{

2|E(F)|
|V(F)| − 1

: F 2-connected factor-critical subgraph of G
}

.

Let F be a 2-connected factor-critical subgraph of G and let F′ be
the underlying simple graph of F. By Theorem 3.7.3, F′ has an open
odd ear-decomposition D. Clearly, if D has at least two ears, then F′

contains an odd-C+
5 . Hence D has exactly one ear, that is F′ is a circuit

and F is a ring.
Therefore, σ(H) ≤ Γ′(H). The converse inequality follows since

rings are 2-connected factor-critical graphs.

�
Using this and Theorem 6.1.3, we get:

Corollary 6.4.3 Every odd-C+
5 -free graph H satisfies:

χ′(H) = max(∆(H), dΓ′(H)e).

We now discuss how the terms of the formula of Corollary 6.4.3 are
related. The difference Γ′ − ∆ can be arbitrarily large for odd-C+

5 -free
graphs. Indeed, let m be a positive integer and let the graph Hm be
obtained as follows (see also Figure 6.8): start with a circuit C of
length 5, replace every edge of C with m parallel edges and add a
new vertex v /∈ V(C) adjacent to exactly two non-adjacent vertices of
C.

Clearly, Hm is odd-C+
5 -free and ∆(Hm) = 2m+ 1 whereas Γ′(Hm) =

5m
2 .

v

Figure 6.8 – the graph H3

As a first algorithmic remark, notice that it is straightforward to
turn the proofs of Proposition 6.2.4 and Lemma 6.2.2 into a polynomial-
time algorithm which computes an optimal edge-coloring of an odd-
C+

5 -free graph.
The maximum-weight stable set problem can be formulated as follows:

considering a graph G and a weight c ∈ Z
V(G)
+ , find a stable set
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S of G such that c(S) is maximum. Grötschel, Lovász and Schrijver
[56] proved that this problem is solvable in polynomial-time for h-perfect
graphs. Since we only consider claw-free graphs, we can use a specific
algorithm (whose construction is more elementary):

Theorem 6.4.4 (Minty [83], Sbihi [97], Nakamura and Tamura [85])
The maximum-weight stable set problem can be solved in polynomial-time
in the class of claw-free graphs.

By results of Grötschel, Lovász and Schrijver [57], this implies that
there exists a polynomial-time algorithm to find the weighted fractional chro-
matic number of (G, c) for every claw-free graph G and every c ∈ Z

V(G)
+ .

Adding a rounding-step to this algorithm and using theorems 6.1.2
and 6.1.4, we obtain:

Corollary 6.4.5 There exists a polynomial-time algorithm which computes
χ(G, c) for every graph G and every weight c ∈ Z

V(G)
+ such that G is either

an h-perfect line-graph or a t-perfect claw-free graph.

We do not know of a combinatorial polynomial-time algorithm which
computes the fractional chromatic number of a t-perfect graph. Fur-
thermore, contrarily to the case of perfect graphs, our results do not
directly yield an efficient combinatorial algorithm to find an optimal
coloring of the input graph.

6.5 a question on the integer decomposition property

An integral matrix is totally unimodular if its square submatrices all
have determinant 0,-1 or 1. A polyhedron P ⊆ Rn is totally unimodular
if there exist a totally unimodular matrix A and an integral vector b
such that P = {x ∈ Rn : Ax ≤ b}. As in Section 3.1, we say that a
map Rn → Rm with n ≥ m is a projection if it only deletes some of the
coordinates. A projection of a polyhedron is its image by a projection.

Recall that a polyhedron P ⊆ Rn has the integer decomposition prop-
erty (abbreviated IDP) if for each positive integer k, every integral
vector of kP is the sum of k integral vectors of P.

Baum and Trotter [5] showed that totally unimodular polyhedra have
the IDP. Furthermore, Sebő proved:

Theorem 6.5.1 (Sebő [103]) Each projection of a totally unimodular poly-
hedron has the integer decomposition property.

Results of Gerards [50] imply that for certain graphs which do not
contain an odd subdivision of K4 (including almost-bipartite graphs), the
stable set polytope of G is the projection of a totally unimodular polyhedron.
Besides, these graphs are t-perfect [50].

By Theorem 6.5.1, this cannot hold for all t-perfect graphs. Indeed,
some of them do not have the IRCN (see Section 6.1) and thus their
stable set polytope cannot have the IDP (Theorem 3.4.3).
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Does the converse statement of Theorem 6.5.1 hold? In other words,
is it true that each polyhedron which has the integer decomposition property
is the projection of a totally unimodular polyhedron ?

In this section, we observe that a result and an example due to
Gijswijt and Regts [53] directly imply that the answer is negative.
Then, we show the useful properties of this example (they are stated
without proof in [53]).

The example of [53] is built from a counter-example by Bruns et
al. [17] to a conjecture of Sebő on Hilbert bases of rational cones (see
below). Consider the following vectors of R6:

y1 = (0, 1, 1, 0, 0, 0) y6 = (1, 0, 0, 1, 0, 1)

y2 = (0, 1, 1, 1, 0, 0) y7 = (1, 0, 0, 0, 1, 0)

y3 = (0, 1, 0, 1, 1, 0) y8 = (1, 0, 1, 0, 0, 1)

y4 = (0, 1, 0, 0, 1, 1) y9 = (1, 0, 0, 1, 0, 0)

y5 = (0, 1, 0, 0, 0, 1) y10 = (1, 0, 1, 0, 1, 0)

.

For each i ∈ [10], let zi be obtained from yi by deleting the first
coordinate. Let Q be the convex hull of z1, . . . , z10.

A polyhedron P ⊆ Rn has the integer Carathéodory property (abbre-
viated ICP) if: for every positive integer k and each integral vector w
of kP, there exist non-negative integers λ1, . . . , λn+1 and affinely inde-
pendent integral vectors w1, . . . , wn+1 of P such that λ1 + · · ·+λn+1 =

k and w = ∑n+1
i=1 λiwi.

Gijswijt and Regts state (without proof) in [53] that Q has the IDP
and not the ICP. Furthermore, they extended Theorem 6.5.1 as follows:

Theorem 6.5.2 (Gijswijt, Regts [53]) Each projection of a totally unimod-
ular polyhedron has the integer Carathéodory property.

Therefore, this and the polytope Q directly show:

Proposition 6.1.5 There exists a 0-1 polytope which has the integer de-
composition property and is not the projection of a totally unimodular poly-
hedron.

We now give a proof that the polytope Q has the claimed properties.
We need definitions and a result of [17].

Let w1, . . . , wk be rational vectors of Rn. A non-negative combination
of w1, . . . , wk is a vector of the form ∑k

i=1 λkwk, where λ1, . . . , λk are
non-negative real numbers. It is integral if λ1, . . . , λk are integers.

Let X be a finite set of rational vectors. The cone generated by X is
the set of non-negative combinations of the elements of X.

The set X is a Hilbert basis if each integral vector of the cone gener-
ated by X is an integral non-negative combination of the elements of
X.
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It is straightforward to check that the convex hull of X has the IDP if
and only if {(1 x) : x ∈ X} is a Hilbert basis (where (1 x) denotes the
vector of Rn+1 obtained by adding a new first coordinate equal to 1).

The cone of R6 generated by y1, . . . , y10 is denoted C6.

Theorem 6.5.3 (Bruns et al. [17]) The set
{

y1, . . . , y10} is a Hilbert ba-
sis, and C6 contains an integral vector y∗ which cannot be expressed as a
non-negative integer combination of at most 6 vectors yi (i ∈ [10]).

We can now prove the stated properties of Q:

Proposition 6.5.4 Q has the integer decomposition property.

Proof – For each i ∈ [10], let xi := (1 zi). We need only to show that{
x1, . . . , x10} is a Hilbert basis (see above).
Let w be an integral vector of the cone generated by x1, . . . , x10.

There exist non-negative reals λ1, . . . , λ10 such that w = ∑10
i=1 λixi.

Put w′ := ∑10
i=1 λiyi. Clearly, w′ = (w1 − w2, w2, ..., w6) and thus

w′ ∈ C6 ∩Z6.
By Theorem 6.5.3, the yi form a Hilbert basis of C6 and thus there

exist non-negative integers µ1, . . . , µ10 such that w′ = ∑10
i=1 µiyi. Hence,

w = ∑10
i=1 µixi and we are done.

�

Proposition 6.5.5 Q does not have the integer Carathéodory property.

Proof – Suppose to the contrary that Q has the ICP. Let λ1, . . . , λ10

be non-negative reals such that y∗ = ∑10
i=1 λiyi. Put z∗ := (y∗2 , . . . , y∗6)

and k := y∗1 + y∗2 .
Clearly, z∗ ∈ kQ ∩ Z5. Hence, there exist non-negative integers

µ1, . . . , µ6 and affinely independent integral vectors u1, . . . , u6 of Q
such that ∑6

i=1 µi = k and z∗ = ∑6
i=1 µiui.

Since Q ⊆ [0, 1]5, each ui is a vertex of Q and is among the zj.
Therefore, y∗ = ∑6

i=1 yi and this contradicts Theorem 6.5.3.

�
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The integer round-up property for the chromatic number (abbreviated
IRCN) was conjectured to hold for t-perfect graphs by Shepherd [63, pg.
144]. This was disproved by Laurent and Seymour [102, pg. 1207] who
showed that the complement of the line graph of the prism is t-perfect and
4-chromatic.

Indeed, it is straightforward to check that every t-perfect graph which has
the IRCN must be 3-colorable (Corollary 3.6.16).

In [108], Shepherd raised the problem of the converse: does every 3-
colorable t-perfect graph have the IRCN? In this chapter, we first show that
the answer is negative in general.

Our construction uses the complement of the line graph of the prism and
the fact that the IRCN is closed under t-contractions (this is a straightfor-
ward reformulation of Theorem 4.1.1).

We say that a graph is complement-line if it is the complement of a line
graph. In [108], Shepherd described the stable set polytope of complement-
line graphs. We use this description to obtain an excluded-induced-subgraph
characterization of h-perfect complement-line graphs G such that for every induced
subgraph H of G: χ(H) = dχ f (H)e. We show that deciding this property (in-
cluding the construction of an optimal coloring) can be done in polynomial-
time. These results involve a new example of a t-perfect 4-chromatic graph: the
complement of the line-graph of W5.

Sebő showed that the (ω + 1)-colorability of h-perfect graphs would fol-
low from the case ω ≤ 2 (see [16]). Partial results on the chromatic number
of triangle-free t-perfect graphs are in Marcus’ thesis [79] but no constant
bound is known. Using t-contractions, we first observe that studying the chro-
matic number of t-perfect triangle-free graphs can be restricted to graphs whose
vertices are covered by 5-circuits.

On the other hand, we show that a result of Randerath, Schiermeyer and
Tewes [94] implies that every h-perfect P6-free graph G is (ω(G) + 1)-colorable
(this bound is tight). Besides, an algorithm of Randerath and Schiermeyer
[93] can be used to build in polynomial-time an (ω + 1)-coloring of h-perfect
P6-free graphs.

La propriété d’arrondi entier du nombre chromatique (abrégé AENC) des
graphes t-parfaits a été conjecturée par Shepherd [63, pg. 144], et a été in-
firmée par Laurent et Seymour ([102, pg. 1207]) : ils ont montré que le
complémentaire du graphe adjoint du prisme est t-parfait mais n’est pas
3-colorable.

On vérifie en effet facilement qu’un graphe t-parfait qui a la propriété
AENC est nécessairement 3-colorable (Corollaire 3.6.16).

Shepherd a posé le problème de la réciproque dans [108] : est-il vrai que
tout graphe t-parfait et 3-colorable a la propriété AENC ?

Dans ce chapitre, nous montrons d’abord que la réponse est négative.

125
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Nous construisons un graphe t-parfait 3-colorable qui n’a pas la propriété
AENC à partir du complémentaire du graphe adjoint du prisme et en uti-
lisant que les t-contractions conservent la propriété AENC (cette dernière
assertion est une reformulation triviale du Théorème 4.1.1).

On dit qu’un graphe est complémentaire-adjoint s’il est le complémentaire
d’un graphe adjoint. Shepherd a donné dans [108] une description com-
plète du polytope des stables des complémentaire-adjoints. Nous utilisons
ce résultat pour caractériser les graphes complémentaire-adjoints t-parfaits dont
chaque sous-graphe induit H satisfait χ(H) = dχ f (H)e. Nous montrons que
cette propriété peut être décidée (et la construction d’une coloration opti-
male trouvée) en temps polynomial. Ces résultats mettent en jeu un nouvel
exemple de graphe t-parfait 4-chromatique : le complémentaire du graphe ad-
joint de W5.

Sebő a prouvé que la (ω + 1)-colorabilité des graphes h-parfaits décou-
lerait du cas ω ≤ 2 [16]. Plusieurs résultats partiels sur le nombre chroma-
tique des graphes t-parfaits sans triangle ont été obtenus dans la thèse de
Marcus [79] mais on ne sait pas s’il est borné. Nous remarquons que les
t-contractions peuvent être utilisées pour réduire le problème au cas des
graphes sans triangle et dont les sommets sont couverts par les circuits de longueur
5.

D’autre part, nous montrons qu’un résultat de Randerath, Schiermeyer
et Tewes [94] implique que les graphes h-parfaits sans P6 (induit) sont (ω +

1)-colorables (la bornée est serrée). Enfin, un algorithme de Randerath et
Schiermeyer [93] peut être utilisé pour construire en temps polynomial une
(ω + 1)-coloration d’un graphe h-parfait sans P6.

7.1 introduction

We first repeat the definitions of the coloring parameters to accom-
modate the reader.

A graph G has the integer round-up property for the chromatic number
(IRCN) if for every c ∈ Z

V(G)
+ : χ(G, c) = dχ f (G, c)e (see Section 6.1

or Chapter 3 for the definition of the involved parameters). By Theo-
rem 3.4.3, G has the IRCN if and only if STAB(G) has the integer decom-
position property.

We proved in Chapter 6 that h-perfect line-graphs and t-perfect claw-
free graphs have the IRCN (Theorem 6.1.2 and Theorem 6.1.4).

The fractional chromatic number of an h-perfect graph satisfies the
following formula (see Section 3.6 for the definitions of the parame-
ters):

Proposition 3.6.15 For every h-perfect graph G and every c ∈ Z
V(G)
+ :

χ f (G, c) = max(ω(G, c), Γ(G, c)).

Hence, every t-perfect graph G satisfies χ f (G) ≤ 3 and t-perfect
graphs which have the IRCN must be 3-colorable.

In fact, Proposition 3.6.15 implies:

Proposition 7.1.1 Let G be a t-perfect graph. The following statements are
equivalent:
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i) G is 3-colorable,
ii) every induced subgraph H of G satisfies: χ(H) = dχ f (H)e.

Clearly, ii) means that the equality of the IRCN is satisfied for each
c ∈ {0, 1}V(G). The IRCN (and hence the 3-colorability) of t-perfect
graphs was conjectured by Shepherd [63, pg. 144]. Laurent and Sey-
mour ([102], pg. 1207) gave an example of a t-perfect 4-chromatic
graph: the complement of the line graph of the prism Π (see Fig-
ure 7.1). In particular, L(Π) is a t-perfect graph which does not have the
IRCN.

Π L(Π)

Figure 7.1 – the prism Π and the complement of its line graph

Shepherd [108] raised the following problem: does every 3-colorable
t-perfect graph G have the IRCN? By Proposition 7.1.1, this is equiva-
lent to ask whether the IRCN of t-perfect graphs is implied by the 0-1
case for the weights on the vertices.

In this chapter, we prove that the answer is negative.

Theorem 7.1.2 The graph of Figure 7.2 is a 3-colorable t-perfect graph
which does not have the integer round-up property for the chromatic number.

The replication lemma for perfect graphs can be stated as follows (see
Section 3.5 for further details):

Theorem 7.1.3 (Lovász [71]) Let G be a graph. The following statements
are equivalent:

i) for every induced subgraph H of G: χ(H) = χ f (H),

ii) for every c ∈ Z
V(G)
+ , χ(G, c) = χ f (G, c).

The graph of Figure 7.2 shows (through Proposition 7.1.1) that there is
no statement analogous to the replication lemma for the IRCN, even
for t-perfect graphs. It has a triangle and we do not know whether
each triangle-free 3-colorable t-perfect graph has the IRCN.

Kilakos and Marcotte [67] gave an example of a graph G and a
weight c ∈ Z

V(G)
+ satisfying χ(G, c) > dχ f (G, c)e whereas every in-

duced subgraph H of G satisfies χ(H) = dχ f (H)e. Their example is
not h-perfect.
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Figure 7.2 – an example of a 3-colorable t-perfect graph which does not have
the IRCN

We do not know if there exists a constant c ∈ R such that every
h-perfect graph G satisfies χ(G)− χ f (G) ≤ c. The graph L(Π) shows
that such a constant must be at least 1. We will see below that a
conjecture of Sebő [16] would imply that c = 1 is true. Besides, the
complexity of determining the chromatic number of a t-perfect graph
is not known. This motivated us to examine the chromatic number of
h-perfect complements of line graphs.

We say that a graph is complement-line if it is the complement of
a line graph. In [108], Shepherd gave a complete description of the
stable set polytope of complement-line graphs (it is a direct corollary
of Theorem 5.2.5). As a consequence, he characterized h-perfection
for those graphs.

We use this result to show that L(W5) (shown in Figure 7.3) is
another 4-chromatic t-perfect graph and:

Theorem 7.1.4 For every h-perfect complement-line graph G, the following
statements are equivalent:

i) every induced subgraph H of G satisfies χ(H) = dχ f (H)e,
ii) G has no induced L(Π) or L(W5).

Our proof directly yields a polynomial-time algorithm which checks i)
in the class of h-perfect complement line-graphs (and finds an optimal
coloring if it holds).

By Proposition 7.1.1, Theorem 7.1.4 implies that a t-perfect complement-
line graph is 3-colorable if and only if it does not have an induced L(Π)

or L(W5). Furthermore, the thesis of Marcus [79] shows that every t-
perfect complement-line graph is 4-colorable. Hence, the algorithm can be
used to compute the chromatic number of a t-perfect complement-line graph
in polynomial-time: it finds either a 3-coloring or an induced L(Π) or
L(W5).

A graph G is nearly-bipartite if for every v ∈ V(G), the graph
G− NG [v] is bipartite It is straightforward to check that complement-
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W5 L(W5)

Figure 7.3 – the 5-wheel and the complement of its line-graph

line graphs form a subclass of nearly-bipartite graphs. Shepherd [108]
characterized t-perfection in nearly-bipartite graphs in terms of for-
bidden induced subgraphs. We do not know if Theorem 7.1.4 can be
extended to nearly-bipartite graphs nor if part i) of Theorem 7.1.4 can
be replaced by the IRCN under the same assumptions.

The only known examples of non-3-colorable t-perfect graphs which
are minimal for vertex-deletion are L(Π) and L(W5). They both have
a triangle. Sebő conjectures the following:

Conjecture 7.1.5 (Sebő, in [16]) Each t-perfect triangle-free graph is 3-
colorable.

Moreover, he observed that if C is a class of graphs closed under tak-
ing induced subgraphs and if every t-perfect triangle-free graph of C is 3-
colorable, then every h-perfect graph G of C must satisfy χ(G) ≤ ω(G) + 1.
In this case, it is easy to see that each graph G of C has χ(G) ≤
dχ f (G)e+ 1.

Marcus’ thesis [79] contains partial results on Conjecture 7.1.5. We
observe that the conjecture may be restricted to graphs whose vertex set is
covered by 5-circuits.

Finally, we observe that a result of [94] implies that Conjecture 7.1.5
holds for the class of P6-free graphs (a graph is P6-free if it does not have
an induced path of length 5). Since this class is closed under taking
induced subgraphs, we obtain:

Theorem 7.1.6 Each h-perfect P6-free graph G satisfies χ(G) ≤ ω(G) + 1.

Results of [93] imply a polynomial-time algorithm for finding an
(ω + 1)-coloring, and the graph L(Π) (or L(W5)) shows that this
bound is tight (see Section 7.5.3).

We end this introduction with a summary of related results and the
outline of the chapter.

Sbihi and Uhry [98] proved that a t-perfect graph whose odd holes
are all of the same length is 3-colorable. A graph G is hereditary t-
perfect if each subgraph of G is t-perfect. Gerards and Shepherd [51]
proved that hereditary t-perfect graphs are the graphs which do not contain
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a non-t-perfect subdivision of K4 (these subdivisions were characterized
by Barahona and Mahjoub [3]). They showed that these graphs can
be recognized in polynomial-time and that they are 3-colorable (an
optimal coloring can be built efficiently). These graphs include series-
parallel graphs [12] and odd-K4-free graphs [50].

On the other hand, Bruhn and Stein [16] proved that every h-perfect
claw-free graph G satisfies χ(G) = dχ f (G)e and gave a polynomial-
time algorithm to compute the chromatic number of these graphs (the
algorithm is combinatorial in the t-perfect case and uses the Ellipsoid
Method otherwise).

outline We prove Theorem 7.1.2 in Section 7.2.
In Section 7.3, we state Shepherd’s description of the stable set poly-

tope of complement-line graphs and the consequent characterization
of the h-perfection of L(G) in terms of the structure of G. We also
give the definitions of the parameters which translate the coloring
problem on L(G) to a covering problem for the edge set of G with
stars and triangles. We check that L(Π) and L(W5) are 4-chromatic
t-perfect graphs (this is new for W5) and give a min-max theorem
for the covering problem for graphs whose complement-line graph is
h-perfect.

In Section 7.4, we prove Theorem 7.1.4 and give a polynomial-time
algorithm which builds the corresponding coloring. We also discuss
possible extensions of to the weighted case.

Section 7.5 surveys previous results on Conjecture 7.1.5. We remark
that it can be reduced to graphs whose vertex-set is covered by 5-
circuits. Finally, we show that it holds for P6-free graphs and ask a
few related questions.

7.2 integer round-up property and 3-colorings

In this section, we first clarify the relation between 3-colorability
and the IRCN for t-perfect graphs and then show an example of a
3-colorable t-perfect graph which does not have the IRCN.

For every graph G , let Γ(G) denote the maximum of the ratio
2|V(C)|
|V(C)|−1 over every odd hole C of G. Specialized to the unweighted
case, the formula for the weighted fractional chromatic number of an
h-perfect graph (Proposition 3.6.15) gives:

Proposition 7.2.1 Every h-perfect graph G satisfies:

χ f (G) = max(ω(G), Γ(G)).

This easily shows that every t-perfect graph G satisfies χ f (G) ≤ 3. In
particular, if a graph is t-perfect and has the IRCN, then it is 3-colorable. In
fact, it is straightforward to check that Proposition 7.2.1 implies:
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Proposition 7.1.1 Let G be a t-perfect graph. The following statements are
equivalent:

i) G is 3-colorable,
ii) every induced subgraph H of G satisfies: χ(H) = dχ f (H)e.

That is, the 3-colorability of a t-perfect graph is equivalent to the
equality of the IRCN for 0-1 weights.

Let Q be the graph of Figure 7.4a. It is 3-colorable (as shows Fig-
ure 7.4b).

Theorem Q is a 3-colorable t-perfect graph which does not have the integer
round-up property for the chromatic number.

Clearly, Proposition 7.1.1 is an NP-characterization of the 0-1 case
of the IRCN for t-perfect graphs. The graph Q shows that it does not
extend to arbitrary weights. Still, we do not know if the IRCN for
t-perfect graphs is in NP.

We now prove Theorem 7.1.2:

v1 v3

v2
v4 v5

v7 v8

v6

(a) The graph Q

2 3

1
3 2

1 3

1 3

2 1

(b) A 3-coloring of Q

Figure 7.4
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Theorem 4.1.1 states that the integer decomposition property of the sta-
ble set polytope is closed under t-minors (see Section 4.1 for the definition
of t-minors). Besides, Theorem 3.4.3 by Baum and Trotter shows that
for every graph G, STAB(G) has the integer decomposition property if
and only if G has the integer round-up property for the chromatic number.
Therefore, Theorem 4.1.1 is equivalent to the following statement:

Theorem 7.2.2 The integer round-up property for the chromatic number is
closed under t-minors.

To show that Q does not have the IRCN, we will use the following
observation due to Laurent and Seymour :

Proposition 7.2.3 (Laurent, Seymour [102]) The graph L(Π) is a non-
3-colorable t-perfect graph.

A proof of this is given in Section 7.3. We now show:

Proposition 7.2.4 Q does not have the integer round-up property for the
chromatic number.

Proof – As L(Π) is a non-3-colorable t-perfect graph (Proposition 7.2.3),
it cannot have the IRCN.

Besides, L(Π) is obtained from Q by t-contracting v6 (or v7). Thus,
Theorem 7.2.2 shows that Q cannot have the IRCN.

�
Since L(Π) is not 3-colorable (Proposition 7.2.3), the graph Q shows

that 3-colorability is not closed under taking t-contractions for t-perfect
graphs.

The t-perfection of Q follows from the following two results (the
first is a special case of Proposition 3.6.13). A clique of a graph G is
nice if it meets every inclusion-wise maximal stable set of G.

Proposition 7.2.5 Let G be a t-perfect graph and let K be a clique of G. If
K is nice and G− v is t-perfect for every v ∈ K, then G is also t-perfect.

A graph is almost-bipartite if it has a vertex whose deletion yields a
bipartite graph.

Theorem 3.6.14 (Fonlupt, Uhry [44]) Every almost-bipartite graph is t-
perfect.

We now show:

Proposition 7.2.6 The graph Q is t-perfect.

Proof – We use the numbering of the vertices of Q given in Fig-
ure 7.4.

It is straightforward to check that {v1, v2, v3} is a nice clique of Q.
We prove that the graphs Q− v1, Q− v2 and Q− v3 are t-perfect. By
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Proposition 7.2.5, this will imply the t-perfection of Q. Since Q− v1

and Q − v3 are obviously isomorphic, we only need to show the t-
perfection of Q− v1 and Q− v2.

We first show that Q − v2 is t-perfect. Put Q2 := Q − v2. Clearly,
v1v3 is a nice clique of Q2. Moreover, Q2− v1 and Q2− v3 are isomor-
phic. Hence by Proposition 7.2.5, the t-perfection of Q2 follows from
the t-perfection of Q2 − v1. Put Q3 := Q2 − v1. It is easy to check that
{v4, v5, v10} is a nice clique of Q3. Using Proposition 7.2.5 again, the
t-perfection of Q2 follows from the t-perfection of Q3 − v4, Q3 − v5

and Q3 − v10. Figure 7.5 shows that these graphs are almost-bipartite
and Theorem 3.6.14 implies that they are t-perfect.

1

1

2 1

2 1

2 3

(a) Q3 − v4

2

2

1 2

1 2

1 3

(b) Q3 − v5

1

1 2

2

1 2

1 3

(c) Q3 − v10

Figure 7.5 – a 3-coloring with one color used exactly once

We now prove that Q− v1 is t-perfect. Put Q1 := Q− v1. It is easy
to show that {v4, v5, v10} is a nice clique of Q1. Figure 7.6 shows that
Q1− v4 and Q1− v5 are almost-bipartite, hence they are t-perfect. Fur-
thermore, Q1 − v10 − v11 is almost-bipartite (see Figure 7.6) and thus
t-perfect. Since Q1 − v10 is a clique-sum of this graph and a triangle,
Corollary 3.6.12 is also t-perfect.

Therefore, Proposition 7.2.5 implies that Q1 is t-perfect.

�
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1
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(a) Q1 − v4

1

2
1

2 1

1 2

3 2

(b) Q1 − v5

1

2
1 3

1 2

1 2

(c) Q1 − v10 − v11

Figure 7.6

7.3 the structure of h-perfect complement-line graphs

7.3.1 Small graphs and ST-covers

In [108], Shepherd gave a complete description for the stable set
polytope of complement-line graphs (as a corollary of Theorem 5.2.5).

A set-join of a graph G is a set {X1, . . . , Xl} of pairwise-disjoint
(possibly empty) subsets of vertices of G such that for all 1 ≤ i < j ≤ l
and for each (u, v) ∈ Xi × Xj, we have uv ∈ E(G). The inequality
associated to this set-join is:

k

∑
i=1

1
α(G [Xi])

x(Xi) ≤ 1.

It is obviously valid for STAB(G).

Theorem 7.3.1 (Shepherd [108]) Let G be a complement-line graph. The
non-trivial facets of STAB(G) are defined by inequalities of set-joins of
cliques and odd antiholes of G.

A set-join of a clique and C5 (that is C5) forms obviously a W5,
which is h-imperfect (Proposition 5.2.2). Moreover, the odd antiholes
C2n+1 with n ≥ 3 are h-imperfect (Proposition 5.4.4).
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Since h-perfection is closed under taking induced subgraphs (Propo-
sition 3.6.3), this theorem directly implies:

Corollary 7.3.2 (Shepherd [108]) A complement-line graph is h-perfect
if and only if it does not have an induced W5 or C2n+1 with n ≥ 3.

This characterization can be directly translated in terms of the source
graph. We say that a graph H is small if each odd circuit of H has
length at most 5 and every edge of H is incident to every 5-circuit of
H.

Corollary 7.3.3 Let H be a graph. The following statements are equiva-
lent:

i) L(H) is h-perfect,
ii) H is small.

We will use this result in Section 7.4 to characterize the h-perfect
complement-line graphs G such that every induced subgraph H of G
satisfies χ(H) = dχ f (H)e.

We now give the definitions of the parameters involved in coloring
the vertices of h-perfect complement-line graphs. For our purposes,
we need only to consider simple graphs for the source-graphs of
complement-line graphs (see Section 7.4). Therefore, the definitions
and results only involve simple graphs.

Let H be a simple graph. A full star is a set δH(v), where v ∈ V(H).
A star is a subset of a full star.

A set S of stars and triangles of H (here triangles are identified
to their edge-sets) is an ST-cover of H if each edge of H belongs
to at least (equivalently, to exactly) one element of S . Let γ(H) de-
note the minimum cardinality of an ST-cover of H. Furthermore, let
ν(H) denote the largest number of edges of a matching of H. Clearly,
ω(L(H)) = ν(H). The following equality is also straightforward:

Proposition 7.3.4 For every simple graph H: χ(L(H)) = γ(H).

This does not hold for non-simple graphs. Indeed, consider the
graph H obtained from a triangle by adding a single parallel edge.
Clearly, χ(L(H)) = 1 whereas γ(H) = 2.

We use these notions and Corollary 7.3.3 to give a proof of the
following:

Proposition 7.3.5 (Seymour, Laurent [102]) The graph L(Π) is t-perfect
and 4-chromatic.

Proof – The prism Π has 6 vertices so it is obviously small and
ω(L(Π)) = ν(Π) = 3. Hence, Corollary 7.3.3 shows that L(Π) is
t-perfect.

We prove that γ(Π) = 4. Let T1 and T2 be the two triangles of
Π. Clearly, {E(T1)} ∪ {δΠ(v) : v ∈ T2} is an ST-cover of Π and thus
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γ(Π) ≤ 4. To see that γ(Π) ≥ 4, consider the perfect matching M
of Π formed by the edges joining its two triangles and let F be an
ST-cover of Π. Since the edges of M do not belong to triangles, F
must cover M with three distinct stars. It is easy to check that for any
choice of such stars, there is always an edge of a triangle of Π which
remains uncovered. Hence F must contain one more star or triangle
and |F | ≥ 4. Therefore, γ(Π) = 4.

�
Finally, we show that L(W5) is a new example of a 4-chromatic t-

perfect graph. In Section 7.4, we will obtain that these two graphs are
the only t-perfect complement-line 4-chromatic graphs whose proper
induced subgraphs are 3-colorable.

Proposition 7.3.6 The graph L(W5) is t-perfect and 4-chromatic.

Proof – The t-perfection is shown as for L(Π), hence we need only
to show that γ(W5) = 4.

Let T be a triangle of W5. Clearly, {T} ∪ {δW5(v) : v /∈ T} is an ST-
cover of W5, hence γ(W5) ≤ 4.

It is straightforward to check that W5 cannot be covered by 3 stars.
Thus, each ST-cover of W5 has size at least 4 or contains a triangle. Be-
sides, for each triangle T of W5, the graph W5 − E(T) has a matching
of cardinality 3 and thus γ(W5 − E(T)) ≥ 3. This shows γ(W5) ≥ 4
and the proposition.

�

7.3.2 The Cunningham-Marsh formula for small graphs

In this section, we specialize to small simple graphs the theorem of
Cunningham and Marsh [31] stating the total dual-integrality of the
matching polytope (see Section 3.3.1 and Section 3.7 for the defini-
tions of total dual-integrality and the matching polytope of a graph).
We will use the formula obtained in this way to prove Theorem 7.1.4
in Section 7.4.

For every graph G and c ∈ Z
E(G)
+ , let ν(G, c) denote the maximum

of c(M) over all matchings M of G. In particular, ν(G) = ν(G, 1). A
graph G is factor-critical if for every v ∈ V(G), the graph G− v has a
perfect matching.

Theorem 7.3.7 (Cunningham, Marsh [31]) For every graph H and each
c ∈ Z

E(H)
+ , the number ν(H, c) is the minimum of

|U |+ ∑
F∈F

|V(F)| − 1
2

over all pairs of a multiset U of vertices of H and a multiset F of 2-connected
factor-critical induced subgraphs of H such that:
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∑u∈U χδH(u) + ∑F∈F χE(F) ≥ c.

Furthermore, a pair (U ,F ) attaining the minimum can be found in polynomial-
time.

We use the following theorem of Lovász to precise the structure of
2-connected factor-critical subgraphs of small graphs (see Section 3.2.2
for definitions of ear-decompositions):

Theorem 3.7.3 (Lovász [72, 76]) A 2-connected graph is factor-critical if
and only if it has an open odd ear-decomposition.

This implies:

Proposition 7.3.8 A 2-connected factor-critical subgraph of a small simple
graph is a triangle or has a spanning 5-circuit.

Proof – Let H be a 2-connected factor-critical subgraph of a small
simple graph and suppose that H is not a triangle.

Since H is small, simple and not a triangle, Theorem 3.7.3 easily
shows that H must have exactly 5 vertices.

Besides, an open odd ear-decomposition of H starts with either a
5-circuit, or a triangle followed by an ear of length 3. In both cases,
this shows a spanning 5-circuit of H.

�
Let H be a simple graph. We say that an induced subgraph of H

is a full-C5 if it has a spanning 5-circuit. An odd cover of a graph H is
a set S of stars, triangles and full-C5 subgraphs of H such that each
e ∈ E(G) is an edge of at least one element of S . The cost of a star or
triangle is 1, and the cost of a full-C5 is 2.

The cost of an odd cover is the sum of the costs of its members. Let
γo(H) denote the minimum cost of an odd cover of H. An ST-cover
is clearly an odd cover, hence: γ(H) ≥ γo(H).

Combining Theorem 7.3.7 with Proposition 7.3.8 yields directly the
following min-max formula for small-graphs:

Corollary 7.3.9 For every small simple graph H: ν(H) = γo(H).

7.4 colorings of h-perfect complement-line graphs

7.4.1 The main result and a corollary

Proposition 7.2.1 shows that L(Π) and L(W5) satisfy χ = dχ f e+ 1
(see Figures 7.1 and 7.3 for Π and W5).

By contrast, every h-perfect line-graph G satisfies χ(G) = dχ f (G)e
[16].

The thesis of Marcus [79] shows that every h-perfect complement-line
graph G satisfies χ(G) ≤ dχ f (G)e + 1. The aim of this section is to
prove the following:
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Theorem 7.1.4 For every h-perfect complement-line graph G, the following
statements are equivalent:

i) every induced subgraph H of G satisfies χ(H) = dχ f (H)e,
ii) G has no induced L(Π) or L(W5).

The graphs Π and W5 are not subgraphs of each other, hence they
are both necessary in this statement.

A possible extension of Theorem 7.1.4 to arbitrary weights (that is
to the IRCN) is discussed in Section 7.4.3.

To prove Theorem 7.1.4 for a graph G, we work in a graph H such
that G = L(H). The structure of H is given by Corollary 7.3.3.

Hence, we consider small graphs and use the parameter γ (see
Section 7.3 for their definitions). For every graph H, let γ f (H) :=
χ f (L(H)).

The main argument is stated in the following lemma, whose proof
is postponed to the next section.

Lemma 7.4.1 Let H be a small simple graph. If H does not contain Π or
W5, then γ(H) = dγ f (H)e.

We now show that this lemma implies Theorem 7.1.4.
Let G be a graph. Adding a sibling to G means substituting a vertex

of G with two non-adjacent vertices (see Section 4.5). It is easy to
check that if G′ is obtained by adding siblings to G, then χ(G′) =

χ(G) and χ f (G′) = χ f (G).

Proof (of Theorem 7.1.4) – The implication i)=>ii) is immediate as
both L(Π) and L(W5) have a fractional chromatic number equal to 3

and are 4-chromatic.
Conversely, let G be an h-perfect complement-line graph which

does not have an induced L(Π) or L(W5).
We show that χ(G) = dχ f (G)e and this will prove ii)=>i). Let H

be a graph such that G = L(H) and let H′ be the underlying simple
graph of H. Put G′ := L(H′). Clearly, G is obtained from G′ by adding
siblings. Hence, χ(G) = χ(G′) and χ f (G) = χ f (G′). Thus we need
only to prove that χ(G′) = dχ f (G′)e.

By Corollary 7.3.3, H is small. Since being small does not depend
on the multiplicity of edges, H′ is small too.

As G has no induced L(Π) or L(W5), H′ cannot contain the prism
or the 5-wheel. Hence, Lemma 7.4.1 implies that γ(H′) = dγ f (H′)e.
Since H′ is simple, Proposition 7.3.4 shows that χ(G′) = γ(H′). Be-
sides, γ f (H′) = χ f (G′) so we finally obtain χ(G′) = dχ f (G′)e as
required.

�
We end this section with corollaries of Theorem 7.1.4. First, Propo-

sition 7.1.1 directly implies:
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Corollary 7.4.2 For every t-perfect complement-line graph G, the follow-
ing statements are equivalent:

i) χ(G) ≤ 3,
ii) G does not have an induced L(Π) or L(W5).

As we shall see in the next section, the proof of Lemma 7.4.1 can
be easily converted into a polynomial-time algorithm which finds an
optimal ST-cover of a small simple graph which does not contain
Π or W5. Since a source-graph of a line-graph can be computed in
polynomial-time [96], we obtain:

Corollary 7.4.3 The chromatic number and an optimal coloring of an h-
perfect complement-line graph which does not have an induced L(Π) or
L(W5) can be computed in polynomial-time (with a combinatorial algo-
rithm).

The thesis of Marcus [79] shows that every t-perfect complement-
line graph is 4-colorable. Since deciding whether a graph contains
Π or W5 can be obviously carried out in polynomial-time, Corol-
lary 7.4.2 implies:

Corollary 7.4.4 The chromatic number a t-perfect complement-line graph
can be obtained in polynomial-time.

7.4.2 Proof of Lemma 7.4.1

Recall that γ(H) (resp. γo(H)) respectively denote the minimum-
cost of an ST-cover (resp. odd cover) of a graph H. Clearly, every
graph H satisfies γ(H) ≥ γo(H).

The following is straightforward:

Proposition 7.4.5 γ is non-decreasing for the subgraph relation.

We now prove Lemma 7.4.1:

Lemma 7.4.1 Let H be a small simple graph. If H does not contain Π or
W5, then γ(H) = dγ f (H)e.

Proof – Clearly, we may assume without loss of generality that H
has no isolated vertex. It is straightforward to check that γ(H) ≥
dγ f (H)e. We prove the converse inequality.

First, suppose that γ(H) = γo(H). By Corollary 7.3.9, γ(H) = ν(H).
On the other hand, L(H) is h-perfect (Corollary 7.3.3). Therefore,
Proposition 7.2.1 implies:

γ f (H) = χ f (L(H)) ≥ ω(L(H)) = ν(H)

and γ(H) ≤ dγ f (H)e as required.
Hence, we may assume from now on that γ(H) > γo(H). In partic-

ular, H contains a 5-circuit and thus L(H) has an induced C5. Using
Proposition 7.2.1 for L(H), we obtain dγ f (H)e ≥ dΓ(L(H))e ≥ 3.
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We will prove:

H has an ST-cover of cardinality 3. (7.1)

This will imply γ(H) ≤ 3 and end the proof of the lemma.
Let S be an odd cover of minimum cost. Since γ(H) > γo(H), S

must contain a full-C5 K. First, if S = {K}, then H is a subgraph of K5

and it is easy to check that γ(K5) ≤ 3. Thus, Proposition 7.4.5 shows
that γ(H) ≤ 3 and we are done.

Therefore, we may henceforth assume that S 6= {K}.

Claim 1. The cost of S is 3.

Proof – Obviously, the cost of S is at least 3. Let M be a maximum
matching of H. By Theorem 7.3.7, S has cost |M| and this implies (by
complementary slackness (Corollary 3.3.2)) that |M ∩ E(K)| = 2.

Since H is small, M cannot have more than one edge which does
not belong to E(K). Hence, |M| ≤ 3 and the claim follows.

�
In particular, M has an edge e which has exactly one end in K.

Let u and v be the ends of e, with u ∈ V(K). Put u1 := u and let
C = (u1, . . . , u5) be a spanning 5-circuit of K.

Claim 2. V(H) \V(K) = {v}.

Proof – Since S has cost 3, it has exactly one element U other than K,
and U must have cost 1. Thus U is either a star or the edge-set of a
triangle. Let N := {e, u2u3, u4u5}. Since N is a maximum matching
of H and e /∈ E(K), Corollary 7.3.9 implies (through complementary
slackness) that e ∈ U.

Therefore, if U is a star then U ⊆ δH(u1) or U ⊆ δH(v). Else, U is
a triangle which has two vertices on K (otherwise it would have an
edge with no end in K contradicting that H is small).

Therefore, in both cases every edge of H which is not an edge of K
is incident to at least one of u1 and v. The claim follows as no vertex
of H is isolated by assumption.

�
We are now ready to build an ST-cover of H with 3 elements, as

required by (7.1). Our construction depends on the degree of v in H.
Since H has no isolated vertex, dH(v) ≥ 1. As H has no W5 sub-

graph, we also have dH(v) ≤ 4.

Case 1. dH(v) = 1.
If u2u5 /∈ E(H), then we take the full stars at u1, u3 and u4 to form a

convenient ST-cover of H. Otherwise, we simply replace the full star
at u1 by the triangle u1u2u5 to get the required ST-cover.
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Case 2. dH(v) = 2.
First, suppose that the neighbors of v on C are consecutive. Without

loss of generality, we may assume that NG(v) = {u1, u2}. If u3u5 /∈
E(H), then the full stars at u1, u2 and u4 form a convenient ST-cover.
Otherwise, we replace u4 with the triangle u3u4u5.

Now, suppose that the neighbors of v on C are not consecutive. By
symmetry, we may assume that NG(v) = {u1, u3}. If both u2u5 and
u2u4 are edges of H, then the triangle u2u4u5 and the full stars at u1,
u3 form an ST-cover cover with 3 elements. Hence, we may assume
that one of these two edges do not belong to H. By symmetry again,
we may suppose that u2u5 /∈ E(H). Then, the full stars at u1, u3 and
u4 form an ST-cover of H as required.

Case 3. dH(v) = 3.
Similarly, we first suppose that the neighbors of v are consecutive

on C. Without loss of generality, we have NH(v) = {u1, u2, u5}. Since
H does not contain W5, at most one of u1u3 and u1u4 is an edge of H.
By symmetry, we may assume that u1u4 /∈ E(H). Furthermore, since
H does not contain Π, we have u2u4 /∈ E(H). Thus the triangle vu1u2

together with the two full stars at u3 and u5 form an ST-cover of H
as required.

Now, suppose that the neighbors of v are not consecutive on C.
Without loss of generality, we may assume that NH(v) = {u1, u3, u4}.
Since H does not contain Π, we have u2u5 /∈ E(H). Hence, the triangle
vu3u4 and the full stars at u3 and u4 form a convenient ST-cover at v.

Case 4. dH(v) = 4.
Without loss of generality, we may assume that u2 is the vertex of

C which is not a neighbor of v. Since H does not contain Π, both u2u4

and u2u5 cannot be edges of H. Hence, the triangle vu4u5 together
with the two full stars at u1 and u3 form an ST-cover as required.

�
It is straightforward to transform our proof into a combinatorial

polynomial-time algorithm which finds an optimal ST-cover for each
small simple graph H which does not contain Π or W5.

First, find a maximum matching M and a minimum-cost odd cover
S of H (using the algorithm of Theorem 7.3.7). If S has no full-C5,
then it is the required ST-cover and M certifies its optimality. Other-
wise if H has at most 5 vertices, then it is easy to build an optimal
ST-cover of H from one for K5. Else, let K be the full-C5 of H, v be
the unique vertex of H which does not belong to it and follow the
cases of the proof above to build an ST-cover of H with 3 elements (a
certificate of optimality being a 5-circuit).

By contrast, finding an optimal ST-cover of a graph is NP-hard in gen-
eral. Indeed, in triangle-free graphs it reduces to finding a minimum-
cardinality vertex-cover. It is well-known that the latter is NP-hard in
this class [91].
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7.4.3 Towards the integer round-up property

In this section, we discuss a possible extension of Theorem 7.1.4
to the weighted case. In Chapter 6, we proved that every h-perfect
line-graph has the IRCN.

In Section 7.2, we gave an example of a 3-colorable t-perfect graph
which does not have the IRCN. This example is not complement-line.
Hence, the following is still open:

Question 7.4.6 Is it true that each 3-colorable t-perfect complement-line
graph has the integer round-up property for the chromatic number?

More generally, is it true that each h-perfect complement-line graph which
does not have an induced L(Π) or L(W5) has the integer round-up property
for the chromatic number?

We now formulate this question in terms of the source graphs. We
will use the following well-known fact, which is a straightforward
consequence of the forbidden-induced-subgraph characterization of
line-graphs due to Beineke [6] (it can also be proved directly using
Theorem 6.3.8):

Proposition 7.4.7 C5 is the only odd antihole which is a line-graph.

Let H be a simple graph and c ∈ Z
E(H)
+ . An ST-cover of (H, c) is

a multiset F of stars and edge-sets of triangles of H such that each
edge e of H belongs to at least ce members of F .

Let γ(H, c) denote the minimum cardinality of an ST-cover of (H, c).
It is straightforward to check that γ(H, c) = χ(L(H), c). As before, we
put γ f (H, c) := χ f (L(H), c).

Besides, let Γ′5(H, c) denote the maximum ratio of c(E(C))
2 over all

5-circuits C of H. The maximum value of c(M) over all matchings M
of H is denoted ν(H, c) as usual.

Since the complement of the line-graph of a small graph is h-perfect
(Corollary 7.3.3), Proposition 3.6.15 and Proposition 7.4.7 straightfor-
wardly imply:

Proposition 7.4.8 For every small simple graph H and every c ∈ Z
E(H)
+ :

γ f (H, c) = max(ν(H, c), Γ′5(H, c)).

Hence, the second part of Question 7.4.6 asks:

Question 7.4.9 Is it true that every small simple graph H which does not
contain Π or W5 satisfies:

γ(H, c) = max(ν(H, c), dΓ′5(H, c)e) ?

We do not know whether the proof techniques developed in Sec-
tion 7.4.2 could be extended to answer this.
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Recall that a graph is nearly-bipartite if every vertex has a neighbor
on each odd circuit. Clearly, every complement-line graph is nearly-
bipartite. In [108], Shepherd showed that a nearly-bipartite graph is t-
perfect if and only if it does not have an induced odd wheel or prime antiweb
other than an odd hole (see also Section 5.2.2). We do not know if Theo-
rem 7.1.4 further holds for nearly-bipartite graphs.

7.5 on colorings of h-perfect graphs in general

No constant bound is currently known for the chromatic number
of a t-perfect graph. The graphs L(Π) and L(W5) show the largest
known value of the chromatic number of t-perfect graphs, which is
4. In particular, the chromatic number of a t-perfect graph cannot
always be obtained by rounding-up its fractional chromatic number.

In Section 7.5.1, we survey linear-programming arguments to ob-
tain bounds for the chromatic number of an h-perfect graph.

In Section 7.5.2, we state a related conjecture of Sebő for triangle-
free graphs and show that it can be reduced to the case of C5-covered
graphs.

Finally in Section 7.5.3, we observe that the conjecture holds for the
class of P6-free graphs.

7.5.1 A survey of results on the chromatic number of h-perfect graphs

Using decomposition techniques along vertex-cuts, Gerards and
Shepherd [51] showed the 3-colorability of t-perfect graphs whose
subgraphs are all t-perfect and gave a combinatorial polynomial-time
algorithm to optimally color those graphs.

In this section, we survey results on bounds for the chromatic num-
ber of h-perfect graphs which arise from linear programming (as in
[16].

Let C be a class of graphs. We say that C is hereditary if it is closed
under taking induced subgraphs. Sebő showed that a bound for the
chromatic number of an hereditary class of h-perfect graphs can be
obtained from a bound for the triangle-free case (that is when ω ≤ 2).
We first state this result and give a proof.

It is obtained by a repeated application of the following well-known
and simple observation:

Proposition 7.5.1 For every h-perfect graph G:
i) If ω(G) ≥ 3, G has a stable set intersecting each maximum clique of

G.
ii) If ω(G) ≤ 2 and G is non-bipartite, then G has a stable set intersect-

ing each odd circuit C of minimum length on |V(C)|−1
2 vertices.
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Proof – Suppose that G is h-perfect. Let S be the set of stable sets
of G. By the duality theorem of linear programming (Theorem 3.3.1),
we have:

max
{

1Tx : x ≥ 0; x(S) ≤ 1 ∀S ∈ S
}
= min

{
∑

S∈S
yS : y ≥ 0; ∑

S∈S
ySχS ≥ 1

}
.

Clearly, the right-hand side is the fractional chromatic number of G.
Let y be an optimal solution for the minimum and let S ∈ S such that
yS > 0. By complementary slackness, for every optimal solution x for
the maximum:

x(S) = 1. (7.2)

If ω(G) ≥ 3, then Proposition 7.2.1 shows χ f (G) = ω(G). Hence
every maximum clique of G is an optimal solution for the maximum
and i) follows from (7.2).

Otherwise, suppose that ω(G) ≤ 2. Clearly, we may assume that G
is non-bipartite. Let l be the minimum length of an odd circuit of G.

By Proposition 7.2.1, χ f (G) =
l

l−1
2

. Hence for each odd circuit C of

length l, the vector
2

l − 1
χV(C) is an optimal solution for the maximum

and (7.2) implies ii).

�
The most general form of Sebő’s result is the following statement

(this is essentially in [79]):

Theorem 7.5.2 (Sebő [13, 79]) Let C be an hereditary class of h-perfect
graphs, f : C → Z+ be non-increasing for the induced-subgraph relation
and k ≥ 3 be an integer.

If every graph H of C with no clique of cardinality k has χ(H) ≤ f (H),
then each G ∈ C with ω(G) ≥ k satisfies:

χ(G) ≤ ω(G) + f (G)− k + 1.

Proof – Let G be a graph of C and put l := ω(G). Since C is hered-
itary, Proposition 7.5.1.i) shows that there exist pairwise-disjoint sta-
ble sets S1, . . . , Sl−k+1 of G such that H := G− S1 − · · · − Sl−k+1 has
no clique of cardinality k. By assumption, χ(H) ≤ f (H). Therefore:
χ(G) ≤ f (H) + l − k + 1. As f is non-increasing for the induced-
subgraph relation, we have f (H) ≤ f (G) and the conclusion follows.

�
Sbihi and Uhry used i) of Proposition 7.5.1 to show:

Theorem 7.5.3 (Sbihi, Uhry [98]) Every t-perfect simple graph whose in-
duced odd circuits all have the same length is 3-colorable.
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Using Theorem 7.5.2 and the formula for the fractional chromatic
number of an h-perfect graph (Proposition 7.2.1), this directly yields:

Corollary 7.5.4 Every h-perfect simple graph G whose induced odd cir-
cuits all have the same length satisfies χ(G) = dχ f (G)e.

We end this section with an algorithmic remark on Theorem 7.5.2.
Using a well-known technique, Bruhn and Stein [16] obtained the
following algorithmic version of Proposition 7.5.1.i):

Theorem 7.5.5 For every h-perfect graph G with ω(G) ≥ 3, a stable set
intersecting every maximum clique of G can be computed in polynomial-
time.

For a class C of graphs and an integer k ≥ 1, let C≥k (resp. C<k)
denote the class of graphs of C which have (resp. do not have) a clique
of cardinality k. The theorem above directly implies the following
algorithmic form of Theorem 7.5.2 (this is implicit in [16]):

Corollary 7.5.6 Let C be an hereditary class of h-perfect graphs, f : C →
Z+ be non-increasing for the induced-subgraph relation and k ≥ 3 be an
integer.

If a coloring of H with f (H) colors can be computed efficiently for each
graph H ∈ C<k, then for each G ∈ C≥k: an (ω(G)+ f (G)− k+ 1)-coloring
of G can be found in polynomial-time.

This is used in [16] to derive a polynomial-time optimal algorithm for
coloring h-perfect claw-free graphs. We also apply this result in the
next section to show that an (ω + 1)-coloring of an h-perfect P6-free
graph can be built efficiently.

7.5.2 A conjecture for triangle-free graphs

The two known examples of non-3-colorable t-perfect graphs have
triangles. Sebő conjectures the following:

Conjecture 7.1.5 (Sebő, in [16]) Each t-perfect triangle-free graph is 3-
colorable.

Theorem 7.5.2 directly shows that the validity of this conjecture
would imply the following bound for h-perfect graphs (equivalent to
Conjecture 7.1.5):

Conjecture 7.5.7 (Sebő [16, 79]) Each h-perfect graph G satisfies:

χ(G) ≤ ω(G) + 1.

Partial results on this conjecture were given by Marcus in her thesis.
In particular, she proved that it holds for h-perfect complement-line
graphs (see Section 7.4).
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Proposition 7.5.8 (Marcus [79]) Every t-perfect triangle-free graph with
at most 14 vertices and at least one 5-circuit is 3-colorable.

Proposition 7.5.9 (Marcus [79]) Every t-perfect triangle-free graph with
at most 28 vertices is 4-colorable.

In this section, we first show that Conjecture 7.1.5 can be reduced
to graphs whose vertices all belong to 5-circuits. This was suggested
by Sebő (personal communication). We refer the reader to Section 4.1
for the definitions of contractible vertices and t-contractions.

Proposition 7.5.10 Let G be a t-perfect graph and v be a contractible ver-
tex of G.

If G/NG [v] has at least one edge, then χ(G) ≤ χ(G/NG [v]).

Proof – Let k := χ(G/NG [v]) and ṽ be the new vertex of G/NG [v].
Let f be a k-coloring of G/NG [v]. Put x := f (ṽ).

We color each vertex of G with colors used by f as follows: each
neighbor of v is colored with x, and v receives another color (which
exists since k ≥ 2). The other vertices keep the color received from f
in G/NG [v]. It is straightforward to check that we obtain a k-coloring
of G and thus χ(G) ≤ k.

�
We say that a graph G is C5-covered if each vertex of G belongs to

at least one induced C5 of G. Using t-contractions, we obtain:

Proposition 7.5.11 Let C be an hereditary class of t-perfect triangle-free
graphs which is closed under t-contractions.

If every triangle-free C5-covered graph of C is 3-colorable, then every graph
of C is 3-colorable.

Proof – Suppose that every C5-covered graph of C is 3-colorable.
Seeking a contradiction, let G be a non-3-colorable graph of C with
|V(G)| minimum. By assumption, G is not C5-covered and thus it has
a vertex v which does not belong to an induced C5 of G. In particular,
the t-contraction G/NG [v] is triangle-free.

As C is closed under t-contractions, G/NG [v] belongs to C.
The minimality of G shows that χ(G/NG [v]) ≤ 3. Obviously, G

has at least one edge and therefore Proposition 7.5.10 implies that
χ(G) ≤ 3: a contradiction.

�
This directly implies that Conjecture 7.1.5 is equivalent to the fol-

lowing slightly stronger conjecture:

Conjecture 7.5.12 Each t-perfect triangle-free C5-covered graph is 3-colorable.

Still, we do not know how to use this additional structure to even-
tually prove Conjecture 7.1.5.
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7.5.3 The case of P6-free graphs

Let k be a positive integer. A graph is Pk-free if it does not have an
induced path with k vertices. We end this chapter by observing that
a result of Randerath, Schiermeyer and Tewes implies the validity of
Conjecture 7.1.5 for P6-free graphs.

Classes of graphs defined by excluding long induced paths received
considerable attention in graph theory and combinatorial optimiza-
tion: several NP-complete problems have been proven to be polynomial-
time-solvable in the class of Pk-free graphs for small values of k. A
recent example is the polynomial-time algorithm of Lokshtanov, Vat-
shelle and Villanger [70] for the maximum-weight stable set problem
in P5-free graphs.

v

Figure 7.7 – the Mycielski-Grötzsch graph

The Mycielski-Grötzsch graph is shown in Figure 7.7. It is the image
of the 5-circuit in the construction due to Mycielski to obtain triangle-
free graphs with arbitrary large chromatic number [84].

It is straightforward to check that it is triangle-free, 4-chromatic, P6-
free and that a t-contraction at v yields W5 (after deleting loops and
parallel edges). Since W5 is t-imperfect and as t-perfection is closed
under t-contractions (Theorem 4.1.2): the Mycielski-Grötzsch graph is
t-imperfect.

Two vertices u and v of a graph G are similar if NG(v) ⊆ NG(u)
or NG(u) ⊆ NG(v). Randerath, Schiermeyer and Tewes proved the
following:

Theorem 7.5.13 (Randerath, Schiermeyer, Tewes [94]) Let G be a con-
nected triangle-free and P6-free non-3-colorable graph.

If G does not have a pair of similar vertices, then it has an induced
Mycielski-Grötzsch graph.

We show that this implies Conjecture 7.1.5 for P6-free graphs:

Corollary 7.5.14 Every t-perfect triangle-free P6-free graph is 3-colorable.

Proof – Let G be a t-perfect triangle-free and P6-free graph which is
not 3-colorable and with |V(G)| minimum.

Clearly, G is connected: otherwise its components are t-perfect,
triangle-free, P6-free and the minimality of G implies that they are
all 3-colorable. Hence, G must be 3-colorable: a contradiction.
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Furthermore, G has no pair u and v of similar vertices: otherwise,
a 3-coloring of G − u could be straightforwardly extended into a 3-
coloring of G (similar vertices cannot be adjacent) and this would
contradict χ(G) > 3.

Hence Theorem 7.5.13 shows that G has an induced Mycielski-
Grötzsch graph. As we observed above, it is not t-perfect and this
contradicts the t-perfection of G.

�
Since the class of P6-free graphs is obviously hereditary, Theorem 7.5.2

implies directly:

Corollary 7.5.15 Every h-perfect P6-free graph G is (ω(G)+ 1)-colorable.
This bound is tight.

It is straightforward to check that line graphs cannot have an induced
P6 (which is shown in Figure 7.8). Hence, complement-line graphs are
P6-free and L(Π) and L(W5) show the tightness of the bound stated above.

Besides, this corollary clearly implies that every h-perfect P6-free
graph G satisfies χ(G) ≤ dχ f (G)e+ 1. Hence, it extends the result of
Marcus’ thesis for h-perfect complement-line graphs (see Section 7.4.1).

Figure 7.8 – the graph P6

By contrast, the current best upper bound known for the chromatic
number of P6-free graphs is given by a result of Gyárfás [58]: every
P6-free graph G is 5ω(G)−1-colorable.

In [93], Randerath and Schiermeyer gave a combinatorial polynomial-
time algorithm which decides whether a P6-free graph is 3-colorable
and finds a 3-coloring if it exists. Combining this algorithm with
Corollary 7.5.6, we get:

Corollary 7.5.16 An (ω + 1)-coloring of an h-perfect P6-free graphs can
be computed in polynomial-time.

We do not know if h-perfection can be tested in polynomial-time
in the class of P5-free graphs (see Section 5.3 for further details on
this problem). Furthermore, both L(Π) and L(W5) have an induced
P5. Hence, we ask the following:

Question 7.5.17 Does each h-perfect P5-free graph G has:

χ(G) = dχ f (G)e?

Notice that a positive answer would not directly imply the IRCN for
h-perfect P5-free graphs. Indeed, the class of h-perfect P5-free graphs



7.5 on colorings of h-perfect graphs in general 149

is not closed under substitutions of vertices by complete graphs (as
shows W−5 , which is t-imperfect and obtained from C5 by substituting
a vertex by a K2).

Esperet et al. [40] proved that every K4-free and P5-free graph is 5-
colorable, improving a bound of Gyárfás [58].

Besides, Corollary 7.5.15 implies that every t-perfect P5-free graph
is 4-colorable. A positive answer to the question above would imply
that this bound can be reduced to 3.





8
E A R - D E C O M P O S I T I O N S A N D H - P E R F E C T I O N I N
L I N E - G R A P H S

The results of this chapter are the subject of [8].
Let C+

3 denote the graph obtained from the triangle by adding a single
parallel edge. An odd-C+

3 is a totally odd subdivision of C+
3 . A graph is

odd-C+
3 -free if it does not contain an odd-C+

3 .
Using Theorem 3.8.1 by Cao and Nemhauser, it is not difficult to show

that testing h-perfection in line-graphs reduces to deciding whether a graph
is odd-C+

3 -free.
Results of Kawarabayashi, Reed, Wollan [66] (see also Huynh [62]) imply

that recognizing odd-C+
3 -free graphs can be done in polynomial-time. Still, they

build upon the general techniques of the Graph Minor Project of Robertson
and Seymour. Hence, it is natural to ask for a more adapted algorithm.

Bruhn and Schaudt [14] showed a simpler polynomial-time algorithm which
checks whether a graph with maximum degree 3 is odd-C+

3 -free. By Theorem 3.8.1,
this algorithm tests t-perfection in line-graphs.

In this chapter, we first prove a good characterization of odd-C+
3 -free graphs

in terms of bases of their cycle space. Through ear-decompositions, it implies a
rather simple and elementary polynomial-time algorithm deciding whether a graph
(with arbitrary degrees) is odd-C+

3 -free. We use this algorithm to test efficiently
h-perfection in line-graphs.

The study of odd-C+
3 -free graphs motivates the introduction of a new

graph parameter. For each graph G, let β(G) denote the largest integer k
such that G has a subgraph which has an open odd ear-decomposition with
k ears. For example, G is odd-C+

3 -free if and only if β(G) ≤ 1.
The computational complexity of determining β is not known. We ob-

serve that the results of Kawarabayashi, Reed, Wollan and Huynh imply
that the problem is Fixed-Parameter-Tractable. We also state a conjecture re-
lating β to edge-colorings and the integer decomposition property of the
matching polytope.

For each 2-connected graph G, β(G) is the largest number of odd ears
starting an open ear-decomposition of G. Is β(G) always near the largest num-
ber of odd ears in an open ear-decomposition of G ? The latter parameter, denoted
ϕ(G), was introduced by Frank [47] (in the equivalent form of the smallest
number of even ears).

We answer this question negatively by showing a sequence (Hk)k≥1 of
2-connected graphs such that β(Hk) = 2 whereas ϕ(Hk)→ ∞.

Kawarabayashi, Lee and Reed [65] gave a polynomial-time algorithm de-
ciding whether a graph contains a totally odd subdivision of K4. This algo-
rithm uses techniques of the Graph Minor Project. We show that ϕ can be
used to build a simpler algorithm for this problem in the class of graphs satisfying
β ≤ 1.

Cao’s thesis [18] contains several results and statements on simple odd-
C+

3 -free graphs (that is the odd-C+
5 -free graphs of Chapter 6). They suggest

the relation with totally odd subdivisions of K4 and motivated the use of ϕ
in our study of odd-C+

3 -free graphs. We give counter-examples to some of
these statements.

151
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Les résultats de ce chapitre font l’objet de [8].
Notons C+

3 le graphe obtenu du triangle en ajoutant une seule arête paral-
lèle. Un C+

3 -impair est une subdivision totalement impaire de C+
3 . Un graphe

est sans C+
3 -impair s’il n’a pas de sous-graphe isomorphe à un C+

3 -impair.
Il n’est pas difficile de voir que le Théorème 3.8.1 de Cao et Nemhauser

implique que tester la h-perfection du graphe adjoint d’un graphe G se
réduit à décider si G est sans C+

3 -impair.
Des résultats de Kawarabayashi, Reed, Wollan [66] (voir aussi Huynh [62])

impliquent que les graphes sans C+
3 -impair peuvent être reconnus en temps po-

lynomial. Cependant, ces résultats se fondent sur les techniques générales
du Graph Minor Project de Robertson et Seymour et il convient donc de
chercher un algorithme plus adapté.

Bruhn et Schaudt [14] ont donné un algorithme plus simple pour décider
si un graphe de degré maximum 3 est sans C+

3 -impair. D’après le Théorème
3.8.1, cet algorithme reconnaît efficacement la t-perfection dans les graphes
adjoints.

Dans ce chapitre, nous prouvons d’abord une bonne caractérisation des
graphes sans C+

3 -impair en termes de bases de l’espace des circuits modulo
2. Par les décompositions d’oreilles, ce résultat implique un algorithme plus
simple et élémentaire pour la reconnaissance des graphes sans C+

3 -impair
(sans restriction sur leurs degrés). Nous utilisons cet algorithme pour tester
efficacement la h-perfection dans la classe des graphes adjoints.

L’étude des graphes sans C+
3 -impair nous invite à introduire un nouveau

paramètre de graphe. Pour tout graphe G, notons β(G) le plus grand entier k
tel que G a un sous-graphe admettant une décomposition d’oreilles ouvertes
à k oreilles. Par exemple, G est sans C+

3 -impair si et seulement si β(G) ≤ 1.
La complexité algorithmique du calcul de β n’est pas connue. Cependant,

nous observons que les résultats de Kawarabayashi, Reed, Wollan et Huynh
impliquent que le problème est résoluble en temps polynomial à paramètre fixé.
Nous énonçons de plus une conjecture qui relie β à l’arête-coloration et à la
propriété de décomposition entière du polytope des couplages.

Il est clair que lorsque G est un graphe 2-connexe, β(G) est simplement
le plus grand nombre d’oreilles impaires au début d’une décomposition
d’oreilles ouvertes de G. Le paramètre β(G) est-il toujours proche du plus grand
nombre d’oreilles impaires dans une décomposition d’oreilles ouvertes de G ? Cette
dernière quantité, notée ϕ(G), a été introduite et étudiée par Frank [47]
(sous la forme équivalente du plus petit nombre d’oreilles paires).

Nous montrons que la réponse à cette question est négative en construi-
sant une suite (Hk)k≥1 de graphes 2-connexes tels que β(Hk) = 2 tandis que
ϕ(Hk)→ ∞.

Kawarabayashi, Lee et Reed [65] ont donné un algorithme polynomial
pour reconnaître les graphes sans subdivision totalement impaire de K4. Il
utilise des techniques du Graph Minor Project. Nous montrons que ϕ peut
être utilisée pour construire un algorithme plus simple pour ce problème
dans la classe des graphes qui satisfont β ≤ 1.

La thèse de Cao [18] contient plusieurs résultats et énoncés sur les graphes
simples sans C+

3 -impair (qui sont les graphes sans C+
5 -impair vus au Cha-

pitre 6). Ces résultats suggèrent que les graphes sans C+
3 -impair et les sub-

divisions totalement impaires de K4 sont liées, et ont motivé l’utilisation
de ϕ dans notre étude. Par ailleurs, nous proposons des contre-exemples à
certains énoncés de [18] portant sur les graphes sans C+

3 -impair.
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8.1 introduction

The graph C+
3 is shown in Figure 8.1. An odd-C+

3 is a totally odd
subdivision of C+

3 (see Section 3.2.1 for the definition of subdivisions).
These graphs are also called skewed thetas [14]. An odd-C+

3 is strict if
it is not C+

3 .

C+
3

Figure 8.1 – C+
3 and two odd-C+

3 graphs

Cao and Nemhauser [19] proved the following characterization of
h-perfection in line-graphs:

Theorem 3.8.1 (Cao, Nemhauser [19]) For every graph H, the follow-
ing statements are equivalent:

i) L(H) is h-perfect,
ii) H does not contain a strict odd-C+

3 .

Deciding whether a graph G is a line-graph (and building a graph H such
that G = L(H) if it exists) can be done in polynomial-time [96]. Hence,
testing h-perfection in line-graphs reduces to detecting strict odd-C+

3
subgraphs.

A general algorithm of Kawarabayashi, Reed and Wollan (and in-
dependently of Huynh in his thesis) implies the following:

Theorem 8.1.1 (Kawarabayashi, Reed, Wollan [66] and Huynh [62])
Let H be a graph. Deciding whether a graph contains a totally odd subdivi-
sion of H can be done in polynomial-time.

This obviously yields an efficient algorithm deciding whether a graph con-
tains an odd-C+

3 .
We will show in Section 8.2.2 that any polynomial-time algorithm

which tests whether a graph is odd-C+
3 -free can be easily used to efficiently

detect strict odd-C+
3 subgraphs. Hence, Theorem 8.1.1 implies:

Corollary 8.1.2 H-perfection can be tested in polynomial-time in the class
of line-graphs.

By contrast, the computational complexity of deciding t-perfection
(and thus h-perfection) in general is unknown.

The algorithms of Kawarabayashi, Reed, Wollan and Huynh are
built upon elaborated techniques of the Graph Minor Project of Robert-
son and Seymour and are oriented towards generality. Therefore, it
is natural to ask for simpler and more adapted algorithms testing
whether a graph is odd-C+

3 -free.
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Bruhn and Schaudt [13] provided a simpler algorithm for detecting
odd-C+

3 subgraphs in graphs with maximum degree at most 3 and it does
not use the techniques of the Graph Minor Project. The degree as-
sumption is crucial and it is not clear whether the method can be
extended to arbitrary degrees. Using this algorithm, they proved that
t-perfection can be tested in polynomial-time in the class of claw-free
graphs (which forms a proper superclass of line-graphs).

In this chapter, we give a new polynomial-time algorithm for the recog-
nition of odd-C+

3 -free graphs with arbitrary degrees. It does not use the
Graph Minor Project and is rather elementary and simple.

A cycle of G is the union of edge-disjoint circuits of G. The cycle
space of a graph G, denoted C(G), is the subspace of (the vector space)
F

E(G)
2 generated by the incidence vectors of edge-sets of cycles of G.
A cycle basis of G is a set of cycles whose incidence vectors form a

basis of C(G). A cycle basis is odd if all its elements have odd cardi-
nality, and it is totally odd if they furthermore pairwise-intersect in an
odd number of edges.

The first main result of this chapter is the following characterization
of odd-C+

3 -free graphs. We clearly need only to consider 2-connected
non-bipartite graphs:

Theorem 8.1.3 Let G be a 2-connected non-bipartite graph. The following
statements are equivalent:

i) G is odd-C+
3 -free,

ii) G has a totally odd cycle basis,
iii) each odd cycle basis of G is totally odd.

Clearly, the property of being odd-C+
3 -free is co-NP. The equiva-

lence of i) and ii) provides an NP-characterization of odd-C+
3 -free graphs.

It is well-known that bases of the cycle space of a 2-connected
graph can be built from ear-decompositions. We use this fact and
Theorem 8.1.3 in our polynomial-time algorithm for the recognition
of odd-C+

3 -free simple graphs.
Our algorithm can be straightforwardly extended to test also whether

the odd circuits of a binary matroid pairwise-intersect in an odd number of
elements using only a polynomial number of calls to an independence
oracle (through the generalization of ear-decompositions to binary
matroids by Coullard and Hellerstein [30]). This is detailed in [8].

The rest of this chapter is concerned with statements and questions
on a new parameter, which is motivated by the nice properties of
odd-C+

3 -free graphs.
For each graph G, let β(G) denote the largest integer k such that

G contains a graph H having an open odd ear-decomposition with k
ears.

For example, a graph G is odd-C+
3 -free if and only if β(G) ≤ 1, and

G is bipartite if and only if β(G) = 0.
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We will observe that Theorem 8.1.1 immediately implies: for each
fixed k, deciding whether a graph G satisfies β(G) = k can be done in
polynomial-time. In other words:

Theorem 8.1.4 Determining β is Fixed-Parameter-Tractable.

The computational complexity of determining β is unknown:

Question 8.1.5 ([8]) Can β can be computed in polynomial-time ?

In fact, we do not know if the property β(G) ≥ k (for each graph G
and integer k) admits a co-NP-characterization (the definition clearly
shows that it belongs to NP).

An odd-C+
5 is a totally odd subdivision of C+

5 (the graph C+
5 is

shown in Figure 8.2). Clearly, odd-C+
5 graphs and simple odd-C+

3
graphs are the same.

Figure 8.2 – C+
5

In Chapter 6, we proved that each graph G which does not contain an
odd-C+

5 satisfies χ′(G) = dχ′f (G)e (Theorem 6.1.3).
Through Theorem 3.4.3 by Baum and Trotter, this easily shows

that for each graph G whose underlying simple graph satisfies β ≤ 1,
MATCH(G) has the integer decomposition property.

We conjecture that this can be extended as follows:

Conjecture For each graph G whose underlying simple graph satisfies
β ≤ 3, the polytope MATCH(G) has the integer decomposition property.

If valid, the bound 3 would be optimal. Indeed, let T be the Pe-
tersen graph minus a vertex (see Figure 8.3). It is straightforward
to check that β(T) = 4, whereas χ′f (T) = 3 and χ′(T) = 4 (see
Section 8.3.2.2 for further details). Hence, Theorem 3.4.3 implies that
MATCH(T) does not have the integer decomposition property.

Figure 8.3 – the Petersen graph minus a vertex
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For each 2-connected graph G, β(G) is obviously the largest number of
odd ears which start an open ear-decomposition of G. The other results of
this chapter concern the relation between β and the largest number of
odd ears (not necessarily at start) in an ear-decomposition. The latter
was introduced and studied by Frank [47] (in the equivalent form of
the minimum number of even ears).

For each 2-connected graph G, let ϕ(G) denote the largest number
of odd ears in an open ear-decomposition of G. Clearly, ϕ(G) ≥ β(G).

We show a sequence of 2-connected graphs (Hk)k≥1 such that β(Hk) =

2 for all k, whereas ϕ(Hk) → ∞. In other words, a large number of
odd ears in ear-decompositions does not certify a large value of β in
general.

Cao’s thesis [18] suggests that totally odd subdivisions of K4 are
related to odd-C+

3 subgraphs (see Figure 8.4). We show that totally
odd subdivisions of K4 can be easily detected in polynomial-time in odd-C+

3 -
free graphs (using an algorithm of Frank [47]).

The currently known algorithms for detecting totally odd subdi-
visions of K4 in arbitrary graphs are not elementary: Theorem 8.1.1
directly provides one, and Kawarabayashi, Li and Reed [65] gave a
simpler and more adapted algorithm. Both use the techniques of the
Graph Minor Project.

Our simplification for odd-C+
3 -free graphs is rather specific and

does not directly extend to larger values of β. Still, β could possibly
be useful in detecting totally odd subdivisions of K4 in general.

Finally, we review the results of Cao’s thesis concerning odd-C+
3 -

free graphs and observe that some of the statements are incorrect. In
particular, the construction procedure given for odd-C+

5 -free graphs
does not work. Still, it motivated the use of ϕ in our study odd-C+

3 -
free graphs. The final product of this is our algorithm for detecting
totally odd subdivisions of K4 in odd-C+

3 -free graphs.

Figure 8.4 – a totally odd subdivision of K4. Each edge of K4 is replaced
with an odd path

outline In Section 8.2, we prove Theorem 8.1.3 and build our
algorithm for the recognition of odd-C+

3 -free graphs. Furthermore, we
show that any efficient algorithm deciding whether a simple graph is
odd-C+

3 -free can be used to test h-perfection in polynomial-time in
the class of line-graphs.
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In Section 8.3, we give the definition and equivalent formulations
of β and discuss related problems.

In Section 8.4 we show that ϕ can get arbitrarily large while β re-
mains constant, and use results of Frank to design a simpler efficient
algorithm to detect totally odd subdivisions of K4 in odd-C+

3 -free
graphs.

Finally, we discuss related statements of Cao’s thesis in Section 8.5.

8.2 a new algorithm for the recognition of odd-C+
3 -free

graphs

In Section 8.2.1, we state and prove a good characterization of
odd-C+

3 -free graphs after a few preliminary results (whose proofs
are postponed to Section 8.2.3). In Section 8.2.2, we use it to show
a new polynomial-time algorithm for their recognition and, through
Theorem 3.8.1, derive an efficient algorithm testing h-perfection in
line-graphs.

8.2.1 A binary characterization of odd-C+
3 -free graphs

Let F2 denote the field of two elements.
Let G be a graph. Clearly, the sum in the vector space F

E(G)
2 of

the incidence vectors of F1 ⊆ E(G) and F2 ⊆ E(G) is the incidence
vector of F1 ∆ F2.

The cycle space of G, denoted C (G), is the subspace of (the vector
space) F

E(G)
2 spanned by the incidence vectors of edge-sets of circuits

of G.
A cycle is the union of edge-disjoint circuits of G. It is well-known

that C (G) is the set of incidence vectors of edge-sets of cycles of G.
A cycle basis of G is a set of cycles {C1 , . . . , Ck} of G such that{
χE(C1 ) , . . . , χE(Ck )

}
is basis of C (G).

After stating a few useful results, we prove our characterization of
odd-C+

3 -free graphs (Theorem 8.1.3). The proofs of these preliminary
statements are postponed to Section 8.2.3.

Since an odd-C+
3 is 2-connected and non-bipartite, a graph is odd-

C+
3 -free if and only if its non-bipartite blocks are odd-C+

3 -free. Hence, we
need only to consider 2-connected non-bipartite graphs.

Cao’s thesis [18] shows that the odd circuits of a 2-connected odd-
C+

3 -free simple graph pairwise-intersect in an odd number of edges. We
first observe that this property characterizes 2-connected odd-C+

3 -free
graphs:

Lemma 8.2.1 Let G be a 2-connected graph. The following statements are
equivalent:

i) G is odd-C+
3 -free,



158 ear-decompositions and h-perfection in line-graphs

ii) for each pair of odd circuits C1 and C2 of G: |E(C1 ) ∩ E(C2 ) | is
odd.

The proof (given in Section 8.2.3) easily implies that an odd-C+
3 of a

2-connected graph can be built efficiently from two odd circuits which meet
on an even number of edges.

Besides, this results shows that deciding whether a graph is odd-
C+

3 -free amounts to check that its odd circuits pairwise-intersect in
an odd number of edges. Still, this is not an NP-characterization of
odd-C+

3 -free graphs as the number of odd circuits in a 2-connected
graph may be exponential in the number of vertices and edges.

A cycle of a graph is odd if it has an odd number of edges, and a
cycle basis of a graph is odd if it has only odd elements. The following
lemma is crucial in the proof of Theorem 8.1.3. The cycle basis is built
using a carefully chosen ear-decomposition of the graph:

Lemma 8.2.2 Each 2-connected non-bipartite graph has an odd cycle basis
formed by circuits only.

Furthermore, such a cycle basis can be found in polynomial-time.

In general, a cycle basis is not necessarily formed by circuits only.
Indeed, each incidence vector of an non-empty cycle obviously be-
longs to a basis of the cycle space.

An odd cycle basis of a graph is totally odd if its elements pairwise-
intersect in an odd number of edges. For example, each set of 3 cir-
cuits of a totally odd subdivision T of K4 form a totally odd cycle
basis of T (hence the chosen terminology).

The following statement shows that the existence of a totally odd
cycle basis constrains odd cycles to pairwise-intersect in an odd num-
ber of edges:

Proposition 8.2.3 If a 2-connected graph has a totally odd cycle basis, then
its odd cycles pairwise-intersect in an odd number of edges.

We now use these results to prove Theorem 8.1.3:

Theorem 8.1.3 Let G be a 2-connected non-bipartite graph. The following
statements are equivalent:

i) G is odd-C+
3 -free,

ii) G has a totally odd cycle basis,
iii) each odd cycle basis of G is totally odd.

Proof – We first show that i)=>ii). Suppose that G is odd-C+
3 -free.

Since G is 2-connected and non-bipartite, Lemma 8.2.2 shows that G
has an odd cycle basis {C1, . . . , Ck} such that each Ci (i ∈ [k]) is a
circuit.

As G is odd-C+
3 -free, Lemma 8.2.1 shows that the odd circuits

C1, . . . , Ck pairwise-intersect in an odd number of edges. Therefore,
the basis {C1, . . . , Ck} is totally odd.
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We now prove ii)=>iii). Suppose that G has a totally odd cycle basis
B. By Proposition 8.2.3, odd cycles of G pairwise-intersect in an odd
number of edges. Since the elements of an odd cycle basis of G are
odd cycles, this implies that all odd cycle bases of G must be totally
odd.

Finally, we show iii)=>i). Suppose that each odd cycle basis of G
is totally odd. Since G is 2-connected and non-bipartite, Lemma 8.2.2
shows that G has an odd cycle basis B. By assumption, B is totally
odd. Hence, Proposition 8.2.3 implies that odd cycles, and in partic-
ular odd circuits, pairwise-intersect in an odd number of edges. By
Lemma 8.2.1, this shows that G is odd-C+

5 -free.

�

8.2.2 The algorithm. Recognition of h-perfect line-graphs

Proving that a graph is odd-C+
3 -free obviously amounts to showing

that its non-bipartite blocks are as such. By Theorem 8.1.3, proving
that a 2-connected non-bipartite graph G is odd-C+

3 -free can be car-
ried out by providing a set of circuits which forms a totally odd cycle
basis of G.

Besides, the following well-known result shows that each cycle ba-
sis of G has polynomial-size in the number of vertices and edges of
G:

Proposition 8.2.4 Each connected graph G satisfies:

dim C(G) = |E(G)| − |V(G)|+ 1.

Since checking that a polynomial number of circuits form a totally
odd cycle basis of G can be obviously done in polynomial-time, the
equivalence of i) and ii) in Theorem 8.1.3 is indeed an NP-characterization
for odd-C+

3 -free graphs.
We now use Theorem 8.1.3 to show the following new and simpler

polynomial-time algorithm for the recognition of odd-C+
3 -free graphs.
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Obviously, we may assume that the input graphs are 2-connected
(the algorithm can be applied to each block in general).

Algorithm 1: Deciding whether a graph is odd-C+
3 -free

Input: A 2-connected graph G
Output: "TRUE" if G is odd-C+

3 -free, and an odd-C+
3 of G otherwise

1 if G is bipartite then
2 return TRUE;
3 else
4 Find an odd cycle basis B of G (using Lemma 8.2.2);
5 for each pair of elements of C and D of B do
6 if |E(C) ∩ E(D)| is even then
7 Build an odd-C+

3 H from C and D (see Lemma 8.2.1);
8 return H;

9 return TRUE;

The correctness of this algorithm is a straightforward corollary of
Theorem 8.1.3.

By Lemma 8.2.2, line 4 can be carried out in polynomial-time. Be-
sides, Proposition 8.2.4 shows that there is only a polynomial num-
ber of pairs to check at line 5. Finally, an odd-C+

3 can be built effi-
ciently from two odd circuits meeting on an even number of edges
(see Lemma 8.2.1 and its proof). Therefore, the overall execution-time of
the algorithm is polynomial in the size of the input graph.

We end this section by observing that any algorithm which decides
whether a simple graph is odd-C+

3 -free (for example the algorithm
above) can be easily used to test h-perfection in line-graphs.

Recall the characterization by Cao and Nemhauser of h-perfect line-
graphs. An odd-C+

3 is strict if it is not C+
3 :

Theorem 3.8.1 (Cao, Nemhauser [19]) For every graph H, the follow-
ing statements are equivalent:

i) L(H) is h-perfect,
ii) H does not contain a strict odd-C+

3 .

Since checking whether a graph is a line-graph (and building a
corresponding source-graph if it exists) can be done in polynomial-
time [96], the problem of deciding h-perfection in line-graphs reduces
to the detection of strict odd-C+

3 subgraphs.
It is easy to check that Theorem 3.8.1 implies that a line graph L(H)

is t-perfect if and only if H is odd-C+
3 -free and ∆(H) ≤ 3. An elementary

algorithm for the recognition of odd-C+
3 -free graphs with maximum

degree at most 3 was shown by Bruhn and Schaudt [14].
Clearly, the only strict odd-C+

3 graphs which are not simple are
obtained by adding a single parallel edge to an odd circuit of length
at least 5. The following proposition shows that it is easy to detect
these once simple odd-C+

3 subgraphs have been cleared out (using
Algorithm 1 for example):
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Proposition 8.2.5 Let G be a graph whose underlying simple graph is
odd-C+

3 -free. The following statements are equivalent:
i) G does not contain a strict odd-C+

3 ,
ii) for each edge e = uv of G which has at least one other parallel edge,

the graph G− (NG(u) ∩ NG(v)) does not have a non-bipartite block
containing both u and v.

Proof – Let e = uv be an edge of G which has at least one other
parallel edge f . If u and v belong to the same non-bipartite block B of
G− (NG(u) ∩ NG(v)), then G contains an even uv-path P which has
length at least 4 and P + e + f is a strict odd-C+

3 of G. This proves
i)=>ii).

Conversely, suppose that G contains a strict odd-C+
3 F. Since the

underlying simple graph of G is odd-C+
3 -free by assumption, F must

be formed by an odd circuit C of length at least 5 with a single parallel
edge e = uv.

As G does not contain a simple odd-C+
3 , C cannot have a chord

and this shows that no vertex of C is a common neighbor of u and
v. In particular, C is entirely contained in a non-bipartite block of
G− (NG(u) ∩ NG(v)) and this proves ii)=>i).

�
Hence, testing efficiently whether a graph G (with underlying sim-

ple graph H) contains a strict odd-C+
3 can be done as follows: first, we

use an efficient algorithm for the recognition of odd-C+
3 -free simple

graphs on H. Then, we test whether property ii) of Proposition 8.2.5
holds (this can be obviously carried out in polynomial-time).

By Theorem 3.8.1, using Algorithm 1 in this procedure yields in a
new and simpler way:

Corollary 8.1.2 H-perfection can be tested in polynomial-time in the class
of line-graphs.

8.2.3 Proofs of the preliminary results

We first show Lemma 8.2.1:

Lemma 8.2.1 Let G be a 2-connected graph. The following statements are
equivalent:

i) G is odd-C+
3 -free,

ii) for each pair of odd circuits C1 and C2 of G: |E(C1) ∩ E(C2)| is odd.

Proof – Clearly, an odd-C+
3 has exactly two odd circuits which have

an even number of common edges. This shows ii)=>i).
Conversely, suppose that G has odd circuits C1 and C2 such that
|E(C1) ∩ E(C2)| is even. We show that G contains an odd-C+

3 .
First, let us assume that |V(C1)∩V(C2)| ≤ 1. Since G is 2-connected,

Menger’s theorem (Theorem 3.2.1) shows that there exist two vertex-
disjoint {V(C1), V(C2)}-paths P and Q (one may have length 0 if C1
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and C2 meet). Let p and q be the respective ends of P and Q on C1

and let R be the unique pq-path of C1 whose parity is distinct from
|E(P)|+ |E(Q)|. Clearly, R ∪ P ∪Q ∪ C2 is an odd-C+

3 subgraph of G.
Now, suppose that C1 and C2 have at least two vertices in common.

Since both are odd, C1 6= C2 and V(C1) ∩V(C2) defines a partition of
C1 into edge-disjoint paths P1, . . . , Pk (k ≥ 1) which have exactly their
ends in V(C2). Since |E(C1)∩ E(C2)| is even and as C1 is odd, at least
one of these paths (say P1) must be odd and C2 ∪ P1 is an odd-C+

3 of
G.

�
The proof easily shows how to build efficiently an odd-C+

3 of a 2-
connected graph from two odd circuits meeting on an even number
of edges.

We now prove Lemma 8.2.2:

Lemma 8.2.2 Each 2-connected non-bipartite graph has an odd cycle basis
formed by circuits only.

Furthermore, such a cycle basis can be found in polynomial-time.

Proof – Let G be a 2-connected non-bipartite graph and C be an odd
circuit of G. By Proposition 3.2.5, G has an open ear-decomposition
(C, P1, . . . , Pk).

For each i ∈ [k], the graph C ∪ P1 · · · ∪ Pi−1 is 2-connected and
non-bipartite. Hence, Menger’s theorem (Theorem 3.2.1) straightfor-
wardly shows that it contains a path Qi which joins the ends of Pi and
such that the circuit Pi ∪Qi is odd (consider two vertex-disjoint paths
joining the ends of Pi to C).

For each i ∈ [k], let Ci := Pi ∪ Qi. Put B := {C, C1, . . . , Ck}. We
show that B is a cycle basis of G and this will prove the statement.

It follows from a standard argument that we give here. Proposi-
tion 3.2.4 and Proposition 8.2.4 show that |B| = dim C(G). Hence,
it suffices to prove that the elements of B are linearly independent
in F

E(G)
2 . Put C0 := C. By contradiction, suppose that there exist

0 ≤ i1 < . . . < il ≤ k (with l ≥ 1) such that ∑l
j=1 χ

E(Cij ) = 0.
This means: E(Ci1)∆ · · ·∆E(Cil ) = ∅. Taking the symmetric differ-

ence with E(Cil ) on both sides, we obtain:

E(Ci1)∆ · · ·∆E(Cil−1) = E(Cil ).

Clearly, at least one edge of Cil does not belong to E(Ci1) ∪ · · · ∪
E(Cil−1) and this contradicts the equality above.

�
Several polynomial-time algorithms are available for finding an

open ear-decomposition of a 2-connected graph (see [99] for a recent
example). Also, parallel algorithms were given by Lovász [74] and
Miller, Ramachandran [81].
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As the paths Qi can be found in polynomial-time (with an efficient
algorithm for finding two vertex-disjoint paths, see Section 3.2.2), the
cycle basis of the proof can easily be built in polynomial-time.

Finally, it remains only to prove Proposition 8.2.3:

Proposition 8.2.3 If a 2-connected graph has a totally odd cycle basis, then
its odd cycles pairwise-intersect in an odd number of edges.

Proof – Let · denote the standard bilinear form on F
E(G)
2 . That is, for

subsets F1 and F2 of E(G): χF1 · χF2 is the parity of |F1 ∩ F2|. Until the
end of this proof, all equalities take place in F

E(G)
2 .

Suppose that G has a totally odd cycle basis B and let C1 and C2 be
odd cycles of G. We show that χE(C1) · χE(C2) = 1, as stated.

Since B is a cycle basis of G, there exists B1 ⊆ B and B2 ⊆ B such
that:

χE(C1) = ∑
C∈B1

χE(C) and χE(C2) = ∑
D∈B2

χE(D).

Since C1 and B are odd, multiplying by the all-1 vector 1 on both
sides of the first equality yields: |B1| = 1 (that is, B1 has odd cardinal-
ity). Similarly, |B2| = 1. Since B is totally odd, we obtain by linearity:

χE(C1) ·χE(C2) = ∑
C∈B1 , D∈B2

χE(C) ·χE(D) = ∑
C∈B1, D∈B2

1 = |B1||B2| = 1,

and this ends the proof of the proposition.

�

8.3 starting with odd ears

In Section 8.3.1, we define β and review its interpretations. In Sec-
tion 8.3.2, we discuss the complexity of its computation and observe
that Theorem 8.1.1 implies that determining β is a fixed-parameter-
tractable problem. We also state a related conjecture on the matching
polytope.

8.3.1 Definition and interpretations of β

Clearly, an odd-C+
3 is a graph which has an open odd ear-decomposition

of two ears.
For each graph G, let β(G) denote the largest integer k such that

G has a subgraph which has an open odd ear-decomposition with k
ears.

For example, a graph G is odd-C+
3 -free if and only if β(G) ≤ 1, and G

is bipartite if and only if β(G) = 0.
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Proposition 3.2.5 easily implies that for each 2-connected graph G:
β(G) is the largest number of odd ears starting an open ear-decomposition
of G.

A graph G is factor-critical if for each v ∈ V(G), the graph G − v
has a perfect matching.

Theorem 3.7.3 (Lovász [72, 76]) A 2-connected graph is factor-critical if
and only if it has an open odd ear-decomposition.

Proposition 3.2.4 states that the ear-decompositions of a 2-edge-connected
graph G all have the same number of ears, which is |E(G)| − |V(G)|+ 1.
Thus, we may speak of the number of ears of a 2-edge-connected graph,
and for each graph G: β(G) is the largest number of ears of a 2-connected
factor-critical subgraph of G.

Hence, Theorem 3.7.3 states that a 2-connected graph G is factor-
critical if and only if β(G) = |E(G)| − |V(G)|+ 1.

A graph which has a spanning factor-critical subgraph is obviously
factor-critical. Therefore, each 2-connected factor-critical subgraph of
a graph G with β(G) ears is necessarily induced.

Edmonds and Pulleyblank proved:

Theorem 3.7.1 (Edmonds, Pulleyblank [36]) For every graph G:

MATCH(G) :=


x ∈ RE(G) :

x ≥ 0,

x(δG(v)) ≤ 1 ∀v ∈ V(G),

x(E(H)) ≤ |V(H)| − 1
2

∀H 2-connected induced

factor-critical subgraph of G.


.

(3.10)

Furthermore they showed that for each 2-connected factor-critical
subgraph H of G, the inequality x(E(H)) ≤ |V(H)|−1

2 defines a facet of
MATCH(G) if and only if H is an induced subgraph of G.

This shows that, as the largest number of ears of such subgraphs,
β(G) can be used as a parameter to separate on, for questions re-
lated to the matching polytope (for example the integer decomposi-
tion property, see Section 8.3.2.2).

For each graph G, let β′(G) denote the largest number of ears of a
(non-necessarily 2-connected) factor-critical subgraph of G. Clearly,
β′(G) ≥ β(G) and the inequality may obviously be strict in gen-
eral. We do not know whether equality always holds when G is 2-
connected.
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8.3.2 Problems

8.3.2.1 Computational complexity

Clearly, the property β(G) ≥ k belongs to the class NP: it can be
proved by providing an open odd ear-decomposition of a subgraph
of G with k ears.

We do not know if it admits a co-NP-characterization and the com-
putational complexity of determining β is open:

Question 8.1.5 ([8]) Can β can be computed in polynomial-time ?

Figure 8.5 – the graph C+
3

We now observe that Theorem 8.1.1 of Kawarabayashi, Reed, Wol-
lan and Huynh immediately implies that determining β is fixed-para-
meter-tractable. That is: for each non-negative integer k, there exists a
polynomial-time algorithm deciding whether a graph G satisfies β(G) = k.

Let k be a non-negative integer. For each p ∈ {0, 1}E(K2k), let Kp
2k be

the graph obtained from K2k by subdividing exactly once each edge e
of K2k such that p(e) = 0.

Obviously, for each graph G: β(G) ≥ k if and only if it contains a
totally odd subdivision of a factor-critical Kp

2k for some p ∈ {0, 1}E(K2k).
Therefore, this and Theorem 8.1.1 directly imply that β(G) ≥ k can

be checked in polynomial-time in the number of edges and vertices
of G (and in at least exponential-time in k). In other words:

Theorem 8.1.4 Determining β is Fixed-Parameter-Tractable.

In Section 8.2, we gave a simpler algorithm which tests β ≥ 2. We
do not know a similar algorithm testing β ≥ k for a larger constant k.

8.3.2.2 β and the integer decomposition property

It is well-known that the chromatic index of a graph cannot always
be obtained by rounding-up its fractional chromatic index (see Sec-
tion 3.2.4 for the definition of these parameters). The smallest known
example is given by the Petersen graph minus a vertex, (denoted T
and shown in Figure 8.3). Indeed, Theorem 3.7.2 easily shows that
χ′f (T) = 3, whereas χ′(T) = 4.

Recall that a graph is odd-C+
5 -free if it does not contain a totally odd

subdivision of C+
5 (the graph C+

5 is shown in Figure 8.2).
For each graph G, let Ĝ denote the underlying simple graph of G.

Clearly, a graph G is odd-C+
5 -free if and only if β(Ĝ) ≤ 1 (that is, Ĝ is

odd-C+
3 -free).
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Theorem 6.1.3 of Chapter 6 states that each odd-C+
5 -free graph G sat-

isfies χ′(G) = dχ′f (G)e. We conjecture that this result can be extended
as follows:

Conjecture 8.3.1 Each graph G with β(Ĝ) ≤ 3 satisfies χ′(G) = dχ′f (G)e.

The bound 3 would be best possible. Indeed, T does not satisfy this
rounding equality (see above) and β(T) = 4 (T is factor-critical and
2-connected). It is not clear whether the "Kempe-chains argument"
used in the proof for odd-C+

5 -free graphs could be extended.
Recall that a polytope P ⊆ Rn has the integer decomposition property

if for every positive integer k, each integral vector of kP is the sum
of k integral vectors of P (see Chapter 6 and Chapter 7 for further
details).

An inflation of a graph G is a graph obtained from G by adding
parallel edges (possibly none). Theorem 3.4.3 directly shows that for
each graph G: MATCH(G) has the integer decomposition property if and
only if each inflation H of G satisfies χ′(H) = dχ′f (H)e.

Clearly, the class of graphs whose underlying simple graph satisfies
β ≤ 3 is closed under inflations. Therefore, Conjecture 8.3.1 would
imply:

Conjecture 8.3.2 Let G be a graph. If β(Ĝ) ≤ 3, then MATCH(G) has
the integer decomposition property.

This is related to conjectures of Goldberg and Seymour which state:

Conjecture 8.3.3 (Goldberg [55], Seymour [104]) Each graph G satis-
fies χ′(G) ≤ dχ′f (G)e+ 1.

The perfect matching polytope of a graph is the convex hull of the
incidence vectors of perfect matchings. Obviously, it is a face of the
matching polytope. Lovász [75] conjectures that the perfect matching
polytope of a graph without a Petersen minor has the integer decomposition
property. This implies the 4-color theorem (through planar duality).

Besides, Shepherd and Kilakos [68] conjecture that every graph G
which does not have T as a minor satisfies χ′(G) = dχ′f (G)e. This would
imply that the matching polytope (and thus the perfect matching
polytope) of such graphs has the integer decomposition property.

This and Conjecture 8.3.1 do not clearly imply one another. Indeed,
it is easy to find graphs without T as a minor and with an arbitrarily
large value of β. Also, the graph obtained from T by subdividing each
edge exactly once is bipartite (that is β = 0) and has obviously T as a
minor.

8.4 relations with the largest number of odd ears

In Section 8.4.1, we show that the largest number of odd ears ϕ

in an ear-decomposition may be arbitrarily large whereas β remains
constant.
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In Section 8.4, we use state and prove a characterization of odd-
C+

3 -free graphs which do not contain a totally odd subdivision of K4.
We use a few preliminary propositions and lemmas whose proofs are
postponed to Section 8.4.3.

8.4.1 Frank’s parameter ϕ

For each 2-edge-connected graph G, let ϕ(G) denote the smallest
number of even ears in an ear-decomposition of G. We say that an
ear-decomposition of G is optimal if it has exactly ϕ(G) even ears.

The parameter ϕ was introduced by Frank in [47]. In particular,
he showed a polynomial-time algorithm to compute ϕ and an optimal ear-
decomposition.

In this section, we deal with open ear-decompositions only. The re-
sults in [47] are stated for 2-edge-connected graphs and non-necessarily
open ear-decompositions. Still, it is not difficult to check that the
smallest number of even ears in an open ear-decomposition of a 2-connected
graph G is also ϕ(G). Besides, each result of [47] for 2-edge-connected
graphs and ear decompositions stays valid if "2-edge-connected" and
"ear-decomposition" are respectively replaced with "2-connected" and
"open ear-decomposition" (see [20, Section 3] for a proof).

For each 2-edge-connected graph G, put:

ϕ(G) := |E(G)| − |V(G)|+ 1− ϕ(G).

Since the ear-decompositions of G all have the same number |E(G)| −
|V(G)| + 1 of ears (Proposition 3.2.4): ϕ(G) is the largest number of
odd ears in an ear-decomposition (open or not) of G. Hence, optimal ear-
decompositions of G are those which have ϕ(G) odd ears.

Every 2-connected graph G obviously satisfies ϕ(G) ≥ β(G). We
build a sequence of graphs showing that β(G) may remain constant
while ϕ gets arbitrarily large (even in simple graphs which have an
edge whose deletion yields a bipartite graph).

Let k ≥ 3 be an integer and T1, . . . , Tk be k vertex-disjoint copies of
the graph C+

5 (see Figure 8.2). Let vi be the unique vertex of degree 2

in the triangle of Ti and let ui be one of its neighbors.
Now, let Hk be the graph obtained by identifying all the vi to a

single vertex v, all the ui to a single vertex u and keeping only one
copy of the edge uv (see Figure 8.6).

It is straightforward to check the following:

Proposition 8.4.1 For each k ≥ 2:

β(Hk) = 2 and ϕ(Hk) ≥ k.

Proof – We first observe that ϕ(Hk) ≥ k. Start an ear-decomposition
of Hk with a triangle T and continue by adding all the ears of length
2 corresponding to the other triangles. Now, only odd ears can be
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Figure 8.6 – the graphs H2, H3 and H4

added to complete this ear-decomposition into one for Hk and there
are k such ears. Hence, ϕ(Hk) ≥ k.

We now prove that β(Hk) = 2. Any Ti shows that β(Gk) ≥ 2. Let
(C, P1, . . . , Pl) be an open ear-decomposition of Hk starting with two
odd ears C and P1. We prove that P2 is even and this will end the
proof.

Clearly, Hk − uv is bipartite and therefore each odd circuit of Hk
contains uv. In particular, uv ∈ E(C).

Now, this directly implies that (C, P1) must be an open odd ear-
decomposition of a Ti. Hence, the ends of P2 must be u and v, which
are in the same class in a bipartition of Hk − uv. Therefore P2 is even.

�
In [47], Frank showed a min-max theorem for ϕ in terms of maximum-

cardinality joins: a join of a graph G is a set F ⊆ E(G) such that each
circuit C of G satisfies |E(C) ∩ F| ≤ |E(C) \ F| (see also [1]). We do
not know of a similar min-max result for β.

8.4.2 Totally odd subdivisions of K4 in odd-C+
3 -free graphs

Cao’s thesis [18] suggests that totally odd subdivisions of K4 are
related to odd-C+

3 -free graphs (see Section 8.5 for further details). In
this section, we show a simple polynomial-time algorithm for detect-
ing totally odd subdivision of K4 in odd-C+

3 -free graphs.
Finding such subdivisions of K4 is not elementary in general: the

simplest algorithm available for their detection in arbitrary graphs
uses techniques of the Graph Minor Project [65].

Our algorithm is based on the following characterization. We prove
it after stating a few preliminary results whose proofs are postponed
to the next section.

Clearly, we need only to consider simple 2-connected graphs (and
the following statement is false for non-simple graphs in general, as
shows the graph obtained from C4 by adding two parallel edges).

Theorem 8.4.2 Let G be a 2-connected odd-C+
3 -free simple graph. The fol-

lowing statements are equivalent:
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i) G does not contain a totally odd subdivision of K4,
ii) ϕ(G) ≤ 1.

Using the algorithm of Frank [47] to compute ϕ and an optimal ear-
decomposition, our proof can be easily converted into a polynomial-
time algorithm for the detection of totally odd subdivisions of K4 in
odd-C+

3 -free simple graphs.
The proof of this result uses a few preliminary results (that we

prove in the next section).
An odd theta is a graph formed by three inner-disjoint odd paths

with the same ends (each path may have one edge only, see Fig-
ure 8.7). First, we will use the following facts:

Figure 8.7 – examples of odd thetas

Proposition 8.4.3 Let G be a 2-connected bipartite graph. If G has an ear-
decomposition with an open odd ear, then each vertex of G belongs to an odd
theta subgraph of G.

The proof will directly show that such an odd theta can be built
efficiently from an ear-decomposition having an open odd ear.

Proposition 8.4.4 Let G be a 2-connected non-bipartite graph, C an odd
circuit of G and v ∈ V(G) \ V(C). If G contains three inner-disjoint odd
paths {v, V(C)}-paths, then G contains an odd-C+

3 or a totally odd subdivi-
sion of K4.

The proof of this (given in the next section) will easily show that an
odd-C+

3 or a totally odd subdivision of K4 can be found in polynomial-
time under the corresponding assumptions.

The other main ingredient is the following lemma, which may be
of independent interest:

Lemma 8.4.5 Each 2-connected non-bipartite graph has an open optimal
ear-decomposition which starts with an odd ear.

Using the algorithm of Frank [47], the proof shows that such a
decomposition can be found in polynomial-time.

The last tool is the following easy part of Lemma 8.2.1 (in Sec-
tion 8.2):

Proposition 8.4.6 If a 2-connected graph G has two odd circuits which
have at most one common vertex, then G contains an odd-C+

3 .
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The ends of an odd-C+
3 (or an odd theta) are its two vertices of

degree 3. We now prove Theorem 8.4.2.

Proof – Clearly, any open ear-decomposition of a totally odd subdi-
vision of K4 which starts with an odd circuit has two odd ears. This
shows that ii)=>i).

We now prove the converse. Since a totally odd subdivision of K4

has an odd circuit, we may assume that G is non-bipartite. Suppose
that ϕ(G) ≥ 2. We will show a totally odd subdivision of K4 in G.

Since G is 2-connected and non-bipartite, Lemma 8.4.5 shows that
G has an open optimal ear-decomposition (C, P1, . . . , Pk) such that C
is odd.

Let H := G/V(C) (and delete the created loops). Let c be the new
vertex.

Claim 1. H is bipartite.

Proof – Suppose to the contrary that H contains an odd circuit D. In
G, the graph D is either an odd circuit meeting C in at most one
vertex or an odd path which has exactly its ends in C.

If D is an odd circuit in D, Proposition 8.4.6 directly shows an odd-
C+

3 and this contradicts the assumption on G.
Hence, D is an odd path which has exactly its ends in C. Therefore,

D ∪ C is an odd-C+
3 : a contradiction.

�

Claim 2. G/H contains an odd theta T containing c.

Proof – Since ϕ(G) ≥ 2, there exists 1 ≤ i ≤ k such that Pi is odd.
Since G is simple and odd-C+

3 -free, Pi cannot be an edge with both
ends in C. Hence, Pi is not deleted as a loop of H and corresponds to
a path or a circuit of H with the same length.

As H is bipartite, Pi cannot be a circuit of H. Besides, the ends of Pi
must clearly belong to the same block B of H. It is straightforward to
check that the ears of (C, P1, . . . , Pk) which are contained in B define
an ear-decomposition of B in which Pi is an open odd ear.

Since G is 2-connected, B must contain c. Therefore, Proposition 8.4.3
shows that B contains an odd theta T containing c.

�
We now show:

Claim 3. c is an end of T.

Proof – Suppose to the contrary that c is not an end of T. Let u and v
be the ends of T and Q1, Q2 and Q3 be the three (odd) uv-paths of T.
Without loss of generality, we may assume that c is an inner-vertex of
Q1.
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First, suppose that Q1 is not a path of G. In this case, Q1 corre-
sponds in G to two vertex-disjoint paths Q′1 and Q′′1 joining respec-
tively u and v to vertices s and t of C. Since C is odd, the two st-paths
of C have distinct parities. Using these paths, it is straightforward to
check that T ∪ C always contains an odd-C+

3 with ends u and v. This
contradicts that G is odd-C+

3 -free.
Hence, we may assume that Q1 remains a path in G. Then, T is an

odd theta of G which has exactly one vertex w in common with C in
G.

Since G is 2-connected, Menger’s theorem (Theorem 3.2.1) shows
that G − w contains a path P which joins a vertex x of C to vertex y
of T and which has no other vertex in C ∪ T.

If y ∈ V(Q1), then (using that C contains xw-paths of both parities)
it is easy to find an odd-C+

3 in G with ends u and v, contradicting
that G is odd-C+

3 -free. Therefore, we may assume without loss of
generality that y ∈ Q2 and that the uy-path of Q2 is odd. Again, it
is straightforward to build an odd-C+

3 of G (with ends u and y): a
contradiction.

�
Let c′ be the other end of T. The three paths of T in H correspond to

three inner-disjoint odd {c′, V(C)}-paths of G. Since G is 2-connected
and odd-C+

3 -free, Proposition 8.4.4 shows that G contains a totally
odd subdivision of K4, as required.

�
It is straightforward to convert this proof into a polynomial-time algo-

rithm deciding whether an odd-C+
3 -free simple graph contains a totally odd

subdivision of K4.
Recall that a graph G is odd-C+

3 -free if and only if β(G) ≤ 1. Is it
true that graphs with β = 2 must contain a totally odd subdivision of K4

whenever ϕ is large ? The graphs Hk given in Section 8.4.1 show that
the answer is negative.

Indeed, β(Hk) = 2 and each Hk has an edge whose deletion yields
a bipartite graph. This shows that Hk does not contain a totally odd
subdivision of K4.

8.4.3 Proofs of the propositions and lemmas

We first prove Proposition 8.4.3:

Proposition 8.4.3 Let G be a 2-connected bipartite graph. If G has an ear-
decomposition with an open odd ear, then each vertex of G belongs to an odd
theta subgraph of G.

Proof – Suppose that G has an ear-decomposition (C, P1, . . . , Pk) which
has an open odd ear.



172 ear-decompositions and h-perfection in line-graphs

We first show that G contains an odd theta. Without loss of gener-
ality, we may assume that Pk is an open odd ear in the decomposition.
Let u1 and u2 be the ends of Pk. Let H := C ∪ P1 ∪ · · · ∪ Pk−1.

Since H has an ear-decomposition, it is 2-edge-connected. In par-
ticular, Menger’s theorem shows that H contains two edge-disjoint
u1u2-paths Q and R. Since Pk is odd and G is bipartite, both Q and R
are odd. Clearly, V(Q) ∩ V(R) defines a partition of the edge-set of
Q into paths Q1, . . . , Ql . Since Q is odd, one of those paths, say Q1,
must be odd. It is easy to check that R ∪Q1 ∪ Pk is an odd theta of G.

Finally, we prove that every vertex of G belongs to an odd theta.
Let T be an odd theta of G and let s ∈ V(G) \ V(T). Since G is
2-connected, Menger’s theorem shows that there are two {s, V(T)}-
paths Q1 and Q2 whose only common vertex is s. A straightforward
and short case-checking shows that Q1 ∪ Q2 ∪ T always has an odd
theta containing s.

�
It is straightforward to convert this proof into a polynomial-time

algorithm which finds an odd theta containing a prescribed vertex
under these assumptions.

We now show the second ingredient of the proof of Theorem 8.4.2:

Proposition 8.4.4 Let G be a 2-connected non-bipartite graph, C an odd
circuit of G and v ∈ V(G) \ V(C). If G contains three inner-disjoint odd
paths {v, V(C)}-paths, then G contains an odd-C+

3 or a totally odd subdivi-
sion of K4.

Proof – Let P1, P2, P3 be three inner-disjoint odd {v, V(C)}-path and
let k := |(∪3

i=1V(Pi)) ∩V(C)|.

Case 1. k = 1. Let u be the unique vertex of (∪3
i=1V(Pi)) ∩V(C).

Since G is 2-connected, G− u contains a path Q which has an end
s in C, an end t in ∪3

i=1V(Pi) and no other vertex in these two graphs.
Without loss of generality, we may assume that t ∈ P1.

Let P be the tv-path of P1 and let R be the us-path of C whose parity
is the one of |E(P)|+ |E(Q)|. It is easy to check that P∪Q∪R∪ P2∪ P3

is an odd-C+
3 of G (with ends u and v), which shows that β(G) ≥ 2.

Case 2. k = 2. Without loss of generality, we may assume that P2 and
P3 intersect C at the same vertex u and that P1 meets C at a vertex
s 6= u. Let Q be the odd su-path of C. Clearly, Q ∪ (∪3

i=1Pi) is an
odd-C+

3 (with ends u and v), and this shows β(G) ≥ 2.

Case 3. k = 3. Let Q1, Q2 and Q3 be the three paths partitioning (the
edge-set of) C defined by the respective ends of P1, P2 and P3 on
C. If one of the Qi is even, then it is straightforward to check that
C ∪ P1 ∪ P2 ∪ P3 contains an odd-C+

3 showing β(G) ≥ 2.
Therefore, we may assume that Q1, Q2 and Q3 are odd. Hence,

C ∪ P1 ∪ P2 ∪ P3 is a totally odd subdivision of K4.
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�
Using an efficient algorithm for finding two vertex-disjoint paths, it

is easy to convert this proof into a polynomial-time algorithm which
finds an odd-C+

3 or a totally odd subdivision of K4 as stated in the
proposition.

The proof of Lemma 8.4.5 uses the following theorem of Frank:

Theorem 8.4.7 (Frank [47]) Let G be a 2-connected graph. For each edge
e of G, there exists an open optimal ear-decomposition of G whose first ear
contains e.

Furthermore, such a decomposition can be found in polynomial-time.

We show:

Lemma 8.4.5 Each 2-connected non-bipartite graph has an open optimal
ear-decomposition which starts with an odd ear.

Proof – Let (C, P1, . . . , Pk) be an open optimal ear-decomposition of
G. If C is odd, then we are done.

Hence, we may assume that C is even. Let i be the smallest integer
of [k] such that C ∪ P1 ∪ · · · ∪ Pi is non-bipartite.

Put H := C ∪ P1 ∪ · · · ∪ Pi and let e ∈ E(Pi).
Since H has an open ear-decomposition, it is 2-connected. Hence,

Theorem 8.4.7 shows that H has an open optimal ear-decomposition
(D, Q1, . . . , Qi) whose first ear contains e (the number of ears is in-
deed i + 1 as all ear-decompositions of H have the same number of
ears).

Clearly, H − e is bipartite. Hence, every circuit of H containing e is
odd. In particular, D is odd.

Since (C, P1, . . . , Pk) is an optimal ear-decomposition of G, the de-
composition (C, P1, . . . , Pi) must be optimal for H.

Hence, the ear-decomposition (D, Q1, . . . , Qi, Pi+1, . . . , Pk) is open
and optimal for G. This proves the lemma.

�
This proof and Theorem 8.4.7 directly show that such a decomposi-

tion can be found in polynomial-time.

8.5 cao’s thesis and motivations

Recall that an odd-C+
5 is a totally odd subdivision of C+

5 (the graph
C+

5 is shown in Figure 8.2). A graph is odd-C+
5 -free if it does not con-

tain an odd-C+
5 .

Clearly, a graph is odd-C+
5 -free if and only if its underlying simple

graph is odd-C+
3 -free.

Cao’s thesis [18] contains several results and statements on odd-
C+

5 -free graphs. For example, it shows that two odd circuits of an
odd-C+

5 -free graph must intersect on an odd number of edges (see
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Lemma 8.2.1, this is also used in [14]). Furthermore, the thesis states
a construction procedure for these graphs.

In this section, we state (with correction) a result of the thesis [18]
which motivated the use of the parameter ϕ of Frank in our study of
odd-C+

3 -free graphs (see Section 8.4). The final product of this moti-
vation is Theorem 8.4.2.

Besides, we show that some statements on odd-C+
5 -free graphs of

[18] and the procedure for their construction are incorrect (with ex-
plicit counter-examples).

We first recall the definitions of [18] to keep the same terminology.
A graph is critical non-bipartite if it is non-bipartite and each pair of
odd circuits has at least one common edge. A critical non-bipartite
graph is furthermore elementary if it has an edge whose deletion
yields a bipartite graph.

A graph H is basic if it is obtained from a graph G by subdividing
each edge of G exactly once. The vertices of G in H are the basic
vertices of H. A graph is critical non-basic if it is not basic and has an
edge whose deletion yields a basic graph.

critical graphs It is straightforward to check that each critical
non-basic graph is odd-C+

5 -free and elementary critical non-bipartite.
Lemma 4.5 pg. 70 in [18] states that the converse holds: each 2-connected
odd-C+

5 -free and elementary critical non-bipartite graph is critical non-basic.
The graph of Figure 8.8 shows that this is false: it is obviously 2-
connected, odd-C+

5 -free and elementary critical non-bipartite (delet-
ing uv yields a bipartite graph) but it is not critical non-basic.

u v

Figure 8.8 – an odd-C+
5 -free 2-connected elementary critical non-bipartite

graph which is not critical non-bipartite

totally odd subdivisions of K4 The following result links
totally odd subdivisions of K4 with odd-C+

5 -free graphs. In [18], it
is stated with "critical non-basic" in place of "elementary critical non-
bipartite" and the graph of Figure 8.8 shows that it is incorrect as
such. Still, exchanging these two properties corrects the statement:

Theorem 8.5.1 (Cao [18]) Let G be a non-bipartite graph and C be an odd
circuit of G. If G does not contain a totally odd subdivision of K4, then for
each component K of G − E(C): the graph C ∪ K is elementary critical
non-bipartite.
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construction of odd-C+
5 -free graphs The conclusion of the

section of [18] devoted to odd-C+
5 -free graphs is a construction proce-

dure for odd-C+
5 -free graphs. We observe that it is incorrect. For this

purpose, we need only to state a special case of the procedure.
The sides of a totally odd subdivision of K4 are the paths corre-

sponding to the original edges of K4.
Let F be a totally odd subdivision of K4. Let P1 and P2 be two

vertex-disjoint paths and for each i ∈ {1, 2}, let ui and vi be the ends
of Pi. Let G be a graph obtained by identifying u1, v1, u2, v2 to distinct
vertices of F such that for each i ∈ {1, 2}: ui and vi are identified to
vertices which are on sides of F which have a common end w and
have even distance to w in F.

Cao’s thesis states that each graph obtained in this way is odd-C+
5 -free.

The graph of Figure 8.9 shows that this is false: it is obviously built
as in the procedure, but the thick edges show an odd-C+

5 .

Figure 8.9 – a counter-example to the construction of [18] for odd-C+
5 -free

graphs





9
C O N C L U S I O N

Perfect graphs show that combinatorial conditions on graphs may
imply a nice characterization of the facets of the stable set polytope.
Conversely, how does a nice facet structure of this polytope act on
the combinatorial parameters of the graph ? Very little is known on
this "meta-problem" and the study of h-perfect graphs represents one
of the most elementary approaches: the only facets not defined by
non-negativity or cliques are given by odd-circuit inequalities.

Compared to perfect graphs, is there only a small number of fam-
ilies of minimally t-imperfect (or minimally h-imperfect) graphs for
t-minors operations ? Do they have a nice characterization ? Can h-
perfection be tested in polynomial-time ? Is the chromatic number of
an h-perfect graph always close to its clique number ?

None of these questions is answered in general. We hopefully clar-
ified several aspects in particular cases.

In this final chapter, we review questions and conjectures of the
previous chapters and provide a few more.

combinatorial characterization The complexity of decid-
ing t-perfection is open. It is not difficult to check that t-perfection is
in co-NP (see [102, pg. 1194]). However, no combinatorial certificate
of t-imperfection is known.

Using operations which keep t-perfection and reduce the size of the
graph may yield an "excluded-minor characterization" which would
provide such a certificate. Taking a t-minor and shrinking an even
pair are the only known operations of this nature.

In Chapter 5, we reviewed the currently known minimally t-imperfect
graphs which can be found in [15, 13] (see Chapter 5 for their defini-
tions):

odd wheels, even Möbius ladders, C2
7 and the (3, 3)-graphs (∗)

We do not know if there are other minimally t-imperfect graphs.
Seeking excluded-t-minor characterizations for particular cases may
yield further examples. In particular (see Section 5.2.4 for the defini-
tion of partitionable graphs):

Question 5.3.11 Are there minimally t-imperfect P5-free graphs other than
K4, W5, C2

7 and C2
10 ?

Question 9.0.1 Are there minimally t-imperfect partitionable graphs G
with α(G) ≥ 4 ?

177
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It is not known whether h-perfection belongs to NP or co-NP. Re-
call that an h-imperfect graph is critically h-imperfect if all its proper
induced subgraphs are h-perfect.

Conjecture 5.1.5 (Sebő) Every critically h-imperfect graph with ω ≥ 4
is an odd antihole.

This would imply that an h-imperfect graph has either an induced
C2k+1 with k ≥ 4 or a K4-free minimally h-imperfect graph. By The-
orem 5.1.4, the latter is either a minimally t-imperfect graph or one
of K∗4 , W−5 and W−−5 . Since t-perfection is in co-NP (see above), the
conjecture would place h-perfection in co-NP.

We explained in Chapter 5 that if valid, Conjecture 5.1.5 would
easily imply the Strong Perfect Graph Theorem (through the K4-free
case due to Tucker [116]). Hence, one may have to use the theorem in
trying to prove Conjecture 5.1.5. For example, it would suffice to show
that every critically h-imperfect graph with ω ≥ 4 is minimally imperfect.

We observed in Chapter 4 that perfection is closed under t-minors. It is
not clear whether this operation could simplify any part of the theory
of perfect graphs.

Besides, we may expect that super-classes of h-perfect graphs (for
example, a-perfect graphs [118]) are also closed under t-minors.

claw-free h-perfect graphs We showed that Conjecture 5.1.5
holds trivially for planar graphs. It is still open for claw-free graphs.

Clearly, each odd antihole is claw-free and partitionable (see Sec-
tion 5.2.4 for the definition of partitionable graphs). In Section 5.5,
we showed that a theorem of [116] and Theorem 5.1.8 imply that the
odd antiholes C2k+1 with k ≥ 4 are the only critically h-imperfect claw-free
partitionable graphs with ω ≥ 4.

Hence, proving Conjecture 5.1.5 for claw-free graphs amounts to
showing:

Conjecture 5.1.9 Each critically h-imperfect claw-free graph with ω ≥ 4
is partitionable.

By Theorem 5.1.1 and Theorem 5.1.4, if valid this would imply that
the minimally h-imperfect claw-free graphs are: W5, W−5 , W−−5 , C2

10 and the
C2k+1 with k ≥ 3. Thus, h-perfection of claw-free graphs would belong
to co-NP.

We do not know whether the decomposition theorem for claw-free
graphs by Chudnovsky and Seymour [23] can be used to prove this.

Bruhn and Schaudt [14] showed that t-perfect claw-free graphs can
be recognized in polynomial-time. In Chapter 8, we gave a simple and
efficient algorithm testing h-perfection in line-graphs. We hope that a
proof of Conjecture 5.1.9 could be combined with this algorithm to
obtain an efficient algorithm for the recognition of h-perfect claw-free
graphs.
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Question 9.0.2 Can h-perfection be tested in polynomial-time in the class
of claw-free graphs ?

structure of minimally h-imperfect graphs Bruhn and
Stein [16] asked (see Section 5.3):

Question 9.0.3 Is it true that every minimally t-imperfect graph is 3-connected
?

By Theorem 5.3.2 of [16], this is equivalent to: does each minimally
t-imperfect graph have minimum degree 3 ?

Recall that TSTAB(G) denotes the polyhedron of RV(G) described
by non-negativity, edge and odd-circuits inequalities of a graph G.

Question 5.3.7 (Bruhn, Stein [16]) For a minimally t-imperfect graph
G, does TSTAB(G) have precisely one non-integral vertex ?

Our attempts at answering these questions using the techniques of
the proof of Theorem 5.1.2 by Padberg [89] suggested the two follow-
ing problems on the combinatorial structure of minimally t-imperfect
graphs:

Question 5.3.8 Can a minimally t-imperfect graph have both contractible
and non-contractible vertices ?

Question 5.3.9 Do the odd holes of a minimally t-imperfect graph all have
the same length ?

We proved that the only K4-free minimally h-imperfect graphs which are
not minimally t-imperfect are K∗4 , W−−5 and W−5 (Theorem 5.1.4). They
are not 3-connected and have both contractible and non-contractible
vertices.

Besides, TSTAB(W−−5 ) has exactly two non-integral vertices. Hence,
extending the questions above to minimally h-imperfect graphs re-
quires adding certain exceptions:

Question 5.4.3 Are K∗4 , W−5 and W−−5 the only minimally h-imperfect
graphs which have vertices of degree 2 (or, which are not 3-connected) ?

Recall that HSTAB(G) denotes the polyhedron of RV(G) described
by non-negativity, clique and odd-circuits inequalities of a graph G.

Question 9.0.4 Except W−−5 , is it true that each minimally h-imperfect
graph G is such that HSTAB(G) has a unique non-integral vertex ?

Notice that W−−5 (see Figure 4.2.c) is also the only minimally h-imperfect
graph which is not prime (Theorem 4.1.6).

The results of Padberg [89] on minimally imperfect graphs and
of Shepherd [108] on near-perfect graphs motivates the study of the
stable set polytope of minimally h-imperfect graphs.
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A graph G is near-h-perfect if its stable set polytope is described
by non-negativity, clique, odd circuit inequalities and the full-rank
inequality x(V(G)) ≤ α(G). The study of the currently known exam-
ples of minimally t-imperfect and minimally h-imperfect graphs (see
Chapter 5) suggests the following:

Conjecture 5.3.4 Except the odd wheels W2n+1 with n ≥ 2, every mini-
mally t-imperfect graph is near-h-perfect.

Besides, Bruhn (personal communication) conjectures:

Conjecture 5.3.5 (Bruhn) Every minimally t-imperfect graph G satis-
fies:

χ f (G) > max(ω(G), Γ(G)).

The validity of Conjecture 5.3.4 would imply that Conjecture 5.3.5
is equivalent to stating: except the W2n+1 with n ≥ 2, every minimally
t-imperfect graph G satisfies: |V(G)| > α(G) ·max(ω(G), Γ(G)). There-
fore, this would provide an analogous statement to the following re-
sult of Lovász [71]: every minimally imperfect graph G satisfies |V(G)| >
α(G)ω(G).

The results of Section 5.4.1 show that extending Conjecture 5.3.4 to
minimally h-imperfect graphs again requires more exceptions:

Conjecture 5.1.3 Except K∗4 and the odd wheels W2n+1 with n ≥ 2, every
minimally h-imperfect graph is near-h-perfect.

chromatic number It is not known whether there exists k ∈ Z

such that every t-perfect graph is k-colorable. The graphs L(Π) shows
the largest known value of the chromatic number of a t-perfect graph,
which is 4 (see Chapter 7).

Conjecture 7.1.5 (Sebő, in [16]) Each t-perfect triangle-free graph is 3-
colorable.

He showed that this would imply that every h-perfect graph G satisfies
χ(G) ≤ ω(G) + 1 (see Chapter 7) and thus that t-perfect graphs are 4-
colorable.

A graph is C5-covered if every vertex belongs to at least one induced
5-circuit. We showed that Conjecture 7.1.5 would follow from the C5-
covered case (this reduction was suggested by Sebő).

Conjecture 7.5.12 Each t-perfect triangle-free C5-covered graph is 3-colorable.

A graph is k-critical if it has chromatic number k and all its proper
induced subgraphs are (k − 1)-colorable. Theorem 7.1.4 shows that
L(Π) and L(W5) are the only t-perfect complements of line-graphs
which are 4-critical.
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Question 9.0.5 Are L(Π) and L(W5) the only 4-critical t-perfect graphs
?

Besides, we proved that each h-perfect P6-free graph G satisfies χ(G) ≤
ω(G) + 1 (Theorem 7.1.6). In particular, each P6-free t-perfect graph
is 4-colorable. The graphs L(Π) and L(W5) are t-perfect and P6-free.
Hence they certify that this bound is tight.

However, these two graphs are not P5-free and we do not know if
the bound 4 could be improved for the subclass of P5-free graphs

Question 9.0.6 Is it true that each t-perfect P5-free graph is 3-colorable ?

By Theorem 7.5.2, this would imply that each h-perfect P5-free
graph G satisfies χ(G) = dχ f (G)e.

integer decomposition In Chapter 6, we proved that each t-
perfect claw-free graph and each h-perfect line-graph has the IRCN.
We conjecture that it also holds for h-perfect claw-free graphs:

Conjecture 9.0.7 Each h-perfect claw-free graph has the integer round-up
property for the chromatic number.

The proof of the t-perfect case merely needs the t-imperfection of
certain graphs. Hence, we expect that this conjecture can be proved
without knowing whether Conjecture 5.1.5 holds for claw-free graphs.

Let G be the complement of a line-graph. We proved that each
induced subgraph H of G satisfies χ(H) = dχ f (H)e if and only if G
does not have an induced L(Π) or L(W5). We conjecture that this 0-1
case of the IRCN extends as follows:

Conjecture 9.0.8 Let G be an h-perfect complement of a line-graph. The
following statements are equivalent:

i) G has the integer round-up property for the chromatic number,
ii) G does not have an induced L(Π) or L(W5).

By Proposition 3.6.15, a t-perfect graph G is 3-colorable if and only if the
round-up equality of the IRCN holds for 0-1 weights (see Section 3.6.4 and
Chapter 7). This is an NP-characterization of the unweighted case of
the IRCN.

In Chapter 7, we showed a t-perfect graph which is 3-colorable and
does not have the IRCN. Hence this characterization does not extend
to arbitrary weights. We do not know if the IRCN of t-perfect graphs
is in NP.

Our example has a triangle and we do not know if 3-colorability
certifies the IRCN for t-perfect triangle-free graphs. If this and Con-
jecture 7.1.5 hold, then each triangle-free t-perfect graph would have
the IRCN.

Question 9.0.9 (Sebő) Does each triangle-free t-perfect graph have the in-
teger round-up property for the chromatic number?
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Except t-perfect claw-free graphs and h-perfect line-graphs, the
only class of t-perfect graphs for which the IRCN is known is the
class of odd-K4-free graphs [102] (that is graphs which do not contain
an odd subdivision of K4).

A graph is hereditary t-perfect if all its subgraphs are t-perfect. Obvi-
ously, odd-K4-free graphs are hereditary t-perfect. Gerards and Shep-
herd [51] proved that a graph is hereditary t-perfect if and only if it does
not contain a t-imperfect subdivision of K4, and that these graphs are
3-colorable. The t-imperfect subdivisions of K4 are characterized by
Barahona and Mahjoub in [3].

Question 9.0.10 Do hereditary t-perfect graphs have the integer round-up
property for the chromatic number?

A decomposition result for hereditary t-perfect graphs along vertex-
cuts with at most two vertices is given in [51]. The elementary bricks
of the decomposition are the odd-K4-free graphs and a few other basic
graphs. Hence, it is tempting to try proving the IRCN by showing it
for these bricks and lifting the property along the vertex-cuts.

It is not clear whether the method of Kilakos and Marcotte [67] can
be applied.

parity and ear-decompositions Let G be a graph. Recall that
β(G) denotes the largest integer k such that G has a subgraph which
has an open odd ear-decomposition with k ears.

We have seen that β is related to h-perfection in line-graphs, the
matching polytope and totally odd subdivisions of K4.

Besides, determining β is a fixed-parameter-tractable problem (see
Theorem 8.1.4). Clearly, the property β(G) ≥ k is in NP (for a graph
G and a non-negative integer k). We do not know if it is in co-NP.

Question 8.1.5 ([8]) Can β can be computed in polynomial-time ?

For each 2-connected graph G, let ϕ(G) denote the largest number
of odd ears in an open ear-decomposition of G. Frank [47] showed
that ϕ(G) and an optimal ear-decomposition can be computed in
polynomial-time. Further related results were obtained by Szigeti [113]
and Szegedy [112].

Clearly, each 2-connected graph G satisfies ϕ(G) ≥ β(G). In Chap-
ter 8, we showed a sequence of graphs (Hk)k≥1 such that β(Hk) = 2
whereas ϕ(Hk)→ +∞.

Still, it is not clear whether results on ϕ could be useful in comput-
ing β.

On the other hand, β(G) is the largest number of ears of a 2-
connected factor-critical subgraph of a graph G. Hence, Theorem 3.7.1
shows that β(G) can be used as a parameter to separate on, for ques-
tions on the matching polytope (see Section 8.3.1 for further details).
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For each graph G, let Ĝ denote the underlying simple graph of
G. A first result in this direction is Theorem 6.1.3, which states that
each graph G with β(Ĝ) ≤ 1 is such that MATCH(G) has the integer
decomposition property. We conjecture the following extension:

Conjecture 8.3.1 Each graph G with β(Ĝ) ≤ 3 satisfies χ′(G) = dχ′f (G)e.

The bound 3 would be tight, as shows the Petersen graph minus a
vertex (see Section 8.3.2.2).

Finally, we proved that totally odd subdivisions of K4 can be easily
detected using ϕ in odd-C+

3 -free graphs (that is graphs satisfying β ≤
1).

As the currently known algorithms for detecting totally odd subdi-
visions of K4 in arbitrary graphs use techniques of the Graph Minor
Project, it is natural to ask for a rather simple and elementary algo-
rithm. We saw in Section 8.4.2 that our approach for graphs with
β ≤ 1 cannot be directly extended to larger values of β. This does not
exclude a possible use of β for detecting totally odd subdivisions of
K4 in general.





10
C O N C L U S I O N ( E N F R A N Ç A I S )

Les graphes parfaits montrent qu’imposer des hypothèses combina-
toires sur un graphe peut conduire à une structure simple des facettes
de son polytope des stables. Réciproquement, une structure similaire
des facettes induit-elle des propriétés combinatoires remarquables
sur le graphe ? On sait très peu de choses sur ce méta-problème et
l’étude de la h-perfection en est une approche élémentaire : les seules
facettes qui ne sont pas définies par la non-negativité ou des cliques
sont données par des circuits impairs.

En comparaison des graphes parfaits, existe-t-il aussi seulement
un petit nombre de familles de graphes minimalement t-imparfaits
(ou h-imparfaits) ? Admettent-ils une bonne caractérisation ? La h-
perfection peut-elle être testée en temps polynomial ? Le nombre chro-
matique d’un graphe h-parfait reste-t-il proche de ω ?

Aucune de ces questions n’a encore reçue de réponse définitive. On
espère avoir contribué à clarifier certains cas particuliers.

Dans ce dernier chapitre, on se propose d’énumérer les questions et
conjectures énoncées dans les chapitres précédents. Nous suggérons
aussi quelques perspectives et problèmes supplémentaires.

caractérisations combinatoires On ne connaît pas la com-
plexité de la reconnaissance de la t-perfection. Il n’est pas difficile de
voir que le problème est dans co-NP (voir [102, pg. 1194]). Cependant
on ne dispose pas d’un certificat combinatoire de t-imperfection.

L’utilisation d’opérations qui préservent la t-perfection et réduisent
la taille du graphe pourrait conduire à une caractérisation par mineurs-
exclus et un tel certificat. Les t-mineurs et la contraction d’une paire
d’amis sont les seules opérations de cet ordre connues à ce jour.

Dans le Chapitre 5, nous avons dressé l’inventaire des exemples
connus de graphes minimalement t-imparfaits présentés dans [15, 13]
(voir leur définition dans le Chapitre 5)

les roues impaires, les échelles de Möbius paires, C2
7 et les (3, 3)-graphes (∗)

Nous ne connaissons pas d’autres exemples de graphes minima-
lement t-imparfaits, et l’étude de la t-perfection dans des classes de
graphes fermées par t-mineurs pourrait conduire à de tels exemples.
En particulier (voir la Section 5.2.4 pour la définition d’un graphe par-
titionnable) :

Question 5.3.11 K4, W5, C2
7 et C2

10 sont-ils les seuls graphes minimalement
t-imparfaits sans P5 (induit) ?

185
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Question 10.0.1 Existe-t-il des graphes minimalement t-imparfaits parti-
tionnables de stabilité supérieure ou égale à 4 ?

L’appartenance de la h-perfection à NP ou co-NP reste ouverte. Rap-
pelons qu’un graphe h-imparfait est critique si tous ses sous-graphes
induits propres sont h-parfaits.

Conjecture 5.1.5 (Sebő) Tout graphe h-imparfait critique avec ω ≥ 4 est
un anti-trou impair.

Si cette conjecture est valide, alors les graphes minimalement h-
imparfaits sont des anti-trous impairs ou n’ont pas de K4. D’après
le Théorème 5.1.4, les minimalement h-imparfaits sans K4 sont mi-
nimalement t-imparfaits ou l’un des graphes K∗4 , W−5 , W−−5 . Ainsi,
puisque la t-perfection est co-NP, la conjecture impliquerait une ca-
ractérisation co-NP de la h-perfection.

Au Chapitre 5, on a montré que l’énoncé de la Conjecture 5.1.5 peut
être facilement utilisé pour déduire le Théorème Fort des Graphes
Parfaits du cas particulier des graphes sans K4 (considérablement
plus simple et dû à Tucker [116]). Ainsi, il paraît nécessaire de faire
intervenir le théorème fort pour prouver la Conjecture 5.1.5.

Par exemple, il suffirait de montrer que tout graphe h-imparfait cri-
tique est minimalement imparfait.

Nous avons observé dans le Chapitre 4 que la perfection est conser-
vée par la t-contraction. On ne sait pas si cette opération pourrait être
utilisée avec profit dans certaines parties de la théorie des graphes
parfaits.

graphes h-parfaits sans griffe On a montré que la Conjec-
ture 5.1.5 est trivialement satisfaite par les graphes planaires. Cepen-
dant, le cas des graphes sans griffe reste ouvert.

Tout anti-trou impair est évidemment sans griffe et partitionnable.
Nous avons montré dans la Section 5.5 qu’un théorème de [116] et
le Théorème 5.1.8 impliquent que les graphes h-imparfaits critiques
sans griffe, partitionnables et avec ω ≥ 4 sont des anti-trou impairs.
Ainsi, il suffirait de prouver l’assertion suivante pour démontrer la
Conjecture 5.1.5 :

Conjecture 5.1.9 Tout graphe h-imparfait critique sans griffe avec ω ≥ 4
est partitionnable.

D’après les Théorèmes 5.1.1 et 5.1.4, la validité de cette assertion
impliquerait que les graphes minimalement h-imparfaits sans griffe sont :
W5, W−5 , W−−5 , C2

10 et les C2k+1 avec k ≥ 3. Ainsi, la h-perfection d’un
graphe sans griffe serait une propriété co-NP.
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Nous ne savons pas si le théorème de décomposition des graphes
sans griffe dû à Chudnovsky et Seymour [23] pourrait être utilisé afin
de produire une preuve de la Conjecture 5.1.9.

Bruhn et Schaudt [14] ont montré que les graphes t-parfaits sans
griffe peuvent être reconnus en temps polynomial. Nous avons donné
au Chapitre 8 un algorithme simple et efficace pour décider la h-
perfection d’un graphe adjoint.

Question 10.0.2 Peut-on décider en temps polynomial la h-perfection d’un
graphe sans griffe ?

structure des graphes minimalement h-imparfaits Dans
[16], Bruhn et Stein posent la question suivante (voir Section 5.3) :

Question 10.0.3 Les graphes minimalement t-imparfaits sont-ils tous 3-
connexes ?

D’après le Théorème 5.3.2 de [16], cela équivaut à demander : les
graphes minimalement t-imparfaits ont-ils tous un degré minimum supé-
rieur ou égal à 3 ?

On rappelle que TSTAB(G) désigne le polyèdre de RV(G) décrit
par les inégalités de non-négativité, cliques et circuits impairs d’un
graphe G.

Question 5.3.7 (Bruhn, Stein [16]) Soit G un graphe minimalement t-
imparfait. Le polytope TSTAB(G) a-t-il un unique sommet non-entier ?

La preuve du théorème analogue pour le cas parfait (Théorème
5.1.2 dû à Padberg [89]) suggère les deux problèmes associés sui-
vants :

Question 5.3.8 Un graphe minimalement t-imparfait peut-il avoir à la fois
des sommets contractibles et non-contractibles ?

Question 5.3.9 Les trous impairs d’un graphe minimalement t-imparfait
ont-ils tous la même longueur ?

On a démontré que K∗4 , W−5 et W−−5 sont les seuls graphes minimale-
ment t-imparfaits sans K4 qui ne sont pas minimalement t-imparfaits (Théo-
rème 5.1.4). Ils ne sont pas 3-connexes et ont tous à la fois des som-
mets contractibles et non-contractibles.

Par ailleurs, TSTAB(W−−5 ) a exactement deux sommets non-entiers.
Ainsi, l’extension des questions ci-dessus aux graphes minimalement
t-imparfaits aux h-imparfaits requiert certaines exceptions supplémen-
taires :

Question 5.4.3 K∗4 , W−5 et W−−5 sont-ils les seuls graphes minimalement
h-imparfaits qui ont des sommets de degré 2 (c’est à dire qui ne sont pas



188 conclusion (en français)

3-connexes) ?

On rappelle que HSTAB(G) est le polyèdre de RV(G) décrit par les
inégalités de non-négativité, cliques et circuits impairs d’un graphe
G.

Question 10.0.4 W−−5 est-il le seul graphe minimalement h-imparfait dont
le polytope des stables a plus d’un sommet non-entier ?

Notons que W−−5 est le seul graphe minimalement h-imparfait qui
n’est pas premier (voir Théorème 4.1.6).

Les résultats de Padberg sur les graphes minimalement imparfaits
[89] et ceux de Shepherd sur les proche-parfaits [108] motivent l’étude
du polytope des stables des graphes minimalement h-imparfaits.

Un graphe G est proche-h-parfait si son polytope des stables est
décrit par les inégalités de non-négativité, cliques, circuits impairs
et l’inégalité de plein-rang x(V(G)) ≤ α(G). L’étude des exemples
connus de graphes minimalement t-imparfaits et h-imparfaits nous a
conduit à conjecturer l’assertion suivante :

Conjecture 5.3.4 Exceptées les roues impaires W2n+1 avec n ≥ 2, tout
graphe minimalement t-imparfait est proche-h-parfait.

Par ailleurs, Bruhn conjecture (communication personnelle) :

Conjecture 5.3.5 (Bruhn) Tout graphe minimalement t-imparfait G sa-
tisfait : χ f (G) > max(ω(G), Γ(G)).

Si la Conjecture 5.3.4 est valide, alors l’assertion de la Conjecture 5.3.5
est équivalente à affirmer qu’à l’exception des W2n+1 avec n ≥ 2, tout
graphe minimalement t-imparfait G satisfait :

|V(G)| > α(G) ·max(ω(G), Γ(G)).

Ceci fournirait ainsi un résultat analogue au théorème de Lovász pour
les graphes parfaits [71] qui affirme que tout graphe minimalement im-
parfait G satisfait |V(G)| > α(G)ω(G).

Les résultats de la Section 5.4.1 montrent qu’on ne peut étendre
la Conjecture 5.3.4 aux graphes minimalement h-imparfaits qu’en in-
cluant une nouvelle exception :

Conjecture 5.1.3 A l’exception de K∗4 et des roues impaires W2n+1 avec
n ≥ 2, tout graphe minimalement h-imparfait est proche-h-parfait.

nombre chromatique On ne sait pas s’il existe une constante k
telle que tout graphe t-parfait est k-colorable. La plus grande valeur
connue du nombre chromatique d’un graphe t-parfait est 4, comme
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le montre L(Π) (voir aussi le Chapitre 7).

Conjecture 7.1.5 (Sebő, dans [16]) Tout graphe t-parfait sans triangle
est 3-colorable.

Sebő a démontré que la validité de cette conjecture impliquerait
que tout graphe h-parfait est (ω + 1)-colorable (voir le Chapitre 7).
En particulier, les graphes t-parfaits seraient 4-colorables.

Un graphe est C5-couvert si tout sommet appartient à au moins un
trou impair de longueur 5. Nous avons montré que la Conjecture 7.1.5
découlerait du cas C5-couvert (cette réduction est suggérée par Sebő) :

Conjecture 7.5.12 Tout graphe t-parfait sans triangle et C5-couvert est
3-colorable.

Un graphe est k-critique si son nombre chromatique est k et tous ses
sous-graphes induits propres sont (k − 1)-colorables. Le Théorème
7.1.4 montre que L(Π) et L(W5) sont les seuls graphes complémentaire-
adjoints qui sont t-parfaits et 4-critiques.

Question 10.0.5 L(Π) et L(W5) sont-ils les seuls graphes t-parfaits 4-
critiques ?

D’autre part, nous avons prouvé que tout graphe h-parfait sans P6 (in-
duit) est (ω + 1)-colorable (Théorème 7.1.6). En particulier, tout graphe
t-parfait sans P6 est 4-colorable. Les graphes L(Π) and L(W5) certi-
fient que la borne ω + 1 est serrée.

Ces graphes contiennent cependant tous deux un P5 induit et nous
ne savons donc pas si la borne supérieure 4 pourrait être diminuée
pour la classe des graphes sans P5 (induit).

Question 10.0.6 Les graphes t-parfaits sans P5 sont-ils 3-colorables ?

D’après le Théorème 7.5.2, une réponse positive impliquerait que
tout graphe h-parfait sans P5 (induit) G satisfait : χ(G) = dχ f (G)e.

propriété de décomposition entière Nous avons prouvé
au Chapitre 6 que les graphes t-parfaits sans griffe et les graphes
h-parfaits adjoints ont la propriété d’arrondi entier pour le nombre
chromatique (abrégée AENC). Nous conjecturons que cette propriété
est partagée par les graphes h-parfaits sans griffe :

Conjecture 10.0.7 Tout graphe h-parfait sans griffe a la propriété d’ar-
rondi entier pour le nombre chromatique.

Notons que la preuve du cas t-parfait n’utilise pas pleinement la
caractérisation de [16], mais seulement la t-imperfection de certains
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graphes. On s’attend ainsi à ce que cette conjecture puisse être prou-
vée sans connaître la validité de la Conjecture 5.1.5 pour les graphes
sans griffe.

Soit G le complémentaire d’un graphe adjoint. Nous avons démon-
tré que tout sous-graphe induit H de G satisfait χ(H) = dχ f (H)e si
et seulement si G n’a pas de sous-graphe induit isomorphe à L(Π) ou
L(W5). Nous conjecturons que ce cas 0-1 peut s’étendre à des poids
quelconques :

Conjecture 10.0.8 Soit G un graphe h-parfait qui est le complémentaire
d’un graphe adjoint. Les assertions suivantes sont équivalentes :

i) G a la propriété d’arrondi entier pour le nombre chromatique,
ii) G n’a pas de sous-graphe induit isomorphe à L(Π) ou L(W5).

La Proposition 3.6.15 affirme qu’un graphe t-parfait est 3-colorable
si et seulement s’il a la propriété AENC pour les poids 0-1 (voir la Sec-
tion 3.6.4 et le Chapitre 7). Ce qui est clairement une caractérisation
NP du cas 0-1 de la propriété AENC.

Nous avons donné au Chapitre 7 un exemple de graphe t-parfait
3-colorable qui n’a pas la propriété AENC. Ainsi, cette caractérisation
ne s’étend pas à tout poids et nous ne savons pas si la propriété AENC
pour les graphes t-parfaits appartient à NP.

Notre exemple contient un triangle. Ainsi, l’équivalence de la 3-
colorabilité et de la propriété AENC reste ouverte pour les graphes
t-parfaits sans triangle. Si celle-ci est vraie et si la Conjecture 7.1.5 est
valide, alors tout graphe t-parfait sans triangle a la propriété AENC.

Question 10.0.9 (Sebő) Les graphes t-parfaits sans triangle ont-ils la pro-
priété d’arrondi entier pour le nombre chromatique ?

À l’exception des graphes t-parfaits sans griffe ou h-parfaits ad-
joints, la propriété AENC n’est connue que pour une seule autre
classe de graphes h-parfaits : les graphes sans subdivision impaire
de K4 [102].

Un graphe est t-parfait héréditaire si tous ses sous-graphes sont t-
parfaits (par exemple les graphes sans subdivision impaire de K4).
Gerards et Shepherd [51] ont démontré que les graphes t-parfaits
héréditaires sont exactement ceux qui ne contiennent pas de subdi-
vision t-imparfaite de K4, et que ces graphes sont 3-colorables. Les
subdivisions de K4 qui ne sont pas t-parfaites ont été caractérisées
par Barahona et Mahjoub dans [3].

Question 10.0.10 Les graphes t-parfaits héréditaires ont-ils la propriété
d’arrondi entier pour le nombre chromatique ?

Gerards et Shepherd [51] ont montré un résultat de décomposition
pour les graphes t-parfaits héréditaires en termes de séparateurs à
au plus 2 sommets. Les briques élémentaires de cette décomposition
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sont les graphes sans K4-impair et quelques autres graphes. Il est
dès lors tentant d’approcher la question ci-dessus en prouvant la pro-
priété AENC pour ces briques d’abord et en transmettant ensuite la
propriété au graphe considéré.

Dans ce contexte, il n’est pas évident que la méthode proposée et
utilisée par Kilakos et Marcotte [67] pour les graphes série-parallèles
s’applique ici.

parité et décompositions d’oreilles Soit G un graphe. Rap-
pelons que β(G) désigne le plus grand entier k tel que G a un sous-
graphe admettant une décomposition d’oreilles ouvertes à k oreilles.

Le paramètre β est relié à la h-perfection des graphes adjoints, au
polytope des couplages et aux subdivisions totalement impaires de
K4.

Par ailleurs, le calcul de β est un problème résoluble en temps po-
lynomial à paramètre fixé (Théorème 8.1.4). La propriété β ≥ k est
évidemment dans NP, mais nous ne savons pas si elle appartient à
co-NP. Aussi, nous posons la question suivante :

Question 8.1.5 β peut-il être calculé en temps polynomial ?

Pour tout graphe 2-connexe G, ϕ(G) désigne le plus grand nombre
d’oreilles impaires dans une décomposition d’oreilles ouvertes de G.
Frank [47] a prouvé que ϕ et une décomposition d’oreilles optimales
peuvent être calculées en temps polynomial. Ces résultats ont été éten-
dus par Szigeti [113] et Szegedy [112].

On vérifie aisément que tout graphe 2-connexe G satisfait ϕ(G) ≥
β(G). Nous avons construit au Chapitre 8 une suite de graphes (Hk)k≥1
telle que β(Hk) = 2 tandis que ϕ(Hk)→ +∞.

On ne peut cependant pas écarter définitivement l’utilité de ϕ dans
le calcul de β.

Soit G un graphe. On a vu que β(G) est le plus grand nombre
d’oreilles d’un sous-graphe facteur-critique 2-connexe d’un graphe G.
Ainsi, le Théorème 3.7.1 montre que β peut être utilisé comme pa-
ramètre critique dans des questions liées au polytope des couplages
(voir la Section 8.3.1 pour davantage de détails).

Un premier résultat dans cette direction est le Théorème 6.1.3 : il
énonce que le polytope des couplages de tout graphe G avec β(Ĝ) ≤ 1 a la
propriété de décomposition entière (où Ĝ désigne le sous-graphe simple
sous-jacent à G). Nous conjecturons l’extension suivante :

Conjecture 8.3.1 Tout graphe G avec β(Ĝ) ≤ 3 satisfait χ′(G) = dχ′f (G)e.

Le graphe de Petersen montre que la borne 3 serait alors serrée
(voir Section 8.3.2.2).
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Enfin, nous avons prouvé qu’une subdivision totalement impaire
de K4 peut être facilement détectée dans les graphes sans C+

3 -impair
(c’est à dire avec β ≤ 1) en utilisant ϕ.

Étant donné que les algorithmes généraux disponibles pour la dé-
tection d’une subdivision totalement impaire de K4 utilisent les tech-
niques du Graph Minor Project, la recherche d’algorithmes élémen-
taires pour ce problème reste pertinente. On a observé à la Section 8.4.2
que notre approche pour les graphes sans C+

3 -impair ne peut être di-
rectement étendue à des valeurs plus grandes de β. Ceci n’exclut ce-
pendant pas un éventuel usage profitable de β pour la détection des
subdivisions totalement impaires de K4 en général.
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