1,377 research outputs found

    Criticality and Universality in the Unit-Propagation Search Rule

    Full text link
    The probability Psuccess(alpha, N) that stochastic greedy algorithms successfully solve the random SATisfiability problem is studied as a function of the ratio alpha of constraints per variable and the number N of variables. These algorithms assign variables according to the unit-propagation (UP) rule in presence of constraints involving a unique variable (1-clauses), to some heuristic (H) prescription otherwise. In the infinite N limit, Psuccess vanishes at some critical ratio alpha\_H which depends on the heuristic H. We show that the critical behaviour is determined by the UP rule only. In the case where only constraints with 2 and 3 variables are present, we give the phase diagram and identify two universality classes: the power law class, where Psuccess[alpha\_H (1+epsilon N^{-1/3}), N] ~ A(epsilon)/N^gamma; the stretched exponential class, where Psuccess[alpha\_H (1+epsilon N^{-1/3}), N] ~ exp[-N^{1/6} Phi(epsilon)]. Which class is selected depends on the characteristic parameters of input data. The critical exponent gamma is universal and calculated; the scaling functions A and Phi weakly depend on the heuristic H and are obtained from the solutions of reaction-diffusion equations for 1-clauses. Computation of some non-universal corrections allows us to match numerical results with good precision. The critical behaviour for constraints with >3 variables is given. Our results are interpreted in terms of dynamical graph percolation and we argue that they should apply to more general situations where UP is used.Comment: 30 pages, 13 figure

    Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class

    Full text link
    The probability P(alpha, N) that search algorithms for random Satisfiability problems successfully find a solution is studied as a function of the ratio alpha of constraints per variable and the number N of variables. P is shown to be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and exponentially small in N above. The critical behaviour is universal for all algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon) alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to the critical behaviour of random graphs, and the scaling function Phi is exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure

    Adaptation to criticality through organizational invariance in embodied agents

    Get PDF
    Many biological and cognitive systems do not operate deep within one or other regime of activity. Instead, they are poised at critical points located at phase transitions in their parameter space. The pervasiveness of criticality suggests that there may be general principles inducing this behaviour, yet there is no well-founded theory for understanding how criticality is generated at a wide span of levels and contexts. In order to explore how criticality might emerge from general adaptive mechanisms, we propose a simple learning rule that maintains an internal organizational structure from a specific family of systems at criticality. We implement the mechanism in artificial embodied agents controlled by a neural network maintaining a correlation structure randomly sampled from an Ising model at critical temperature. Agents are evaluated in two classical reinforcement learning scenarios: the Mountain Car and the Acrobot double pendulum. In both cases the neural controller appears to reach a point of criticality, which coincides with a transition point between two regimes of the agent's behaviour. These results suggest that adaptation to criticality could be used as a general adaptive mechanism in some circumstances, providing an alternative explanation for the pervasive presence of criticality in biological and cognitive systems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0525

    Regimes of self-organized criticality in the atmospheric convection

    Full text link
    Large scale organization in ensembles of events of atmospheric convection can be generated by the combined effect of forcing and of the interaction between the raising plumes and the environment. Here the "large scale" refers to the space extension that is larger or comparable with the basic resolved cell of a numerical weather prediction system. Under the action of external forcing like heating individual events of convection respond to the slow accumulation of vapor by a threshold-type dynamics. This is due to the a time-scale separation, between the slow drive and the fast convective response, expressed as the "quasi-equilibrium". When there is interaction between the convection plumes, the effect is a correlated response. We show that the correlated response have many of the characteristics of the self-organized criticality (SOC). It is suggested that from the SOC perspective, a description of the specific dynamics induced by "quasi-equilibrium" can be provided by models of "punctuated equilibrium". Indeed the Bak-Sneppen model is able to reproduce (within reasonable approximation) two of the statistical results that have been obtained in observations on the organized convection. We also give detailed derivation of the equations connecting the probabilities of the states in the update sequence of the Bak-Sneppen model with K=2K=2 random neighbors. This analytical framework allows the derivation of scaling laws for the size of avalanches, a result that gives support to the SOC interpretation of the observational data.Comment: Text prepared for the Report of COST ES0905 collaboration (2014). Latex 45 page

    On the critical nature of plastic flow: one and two dimensional models

    Full text link
    Steady state plastic flows have been compared to developed turbulence because the two phenomena share the inherent complexity of particle trajectories, the scale free spatial patterns and the power law statistics of fluctuations. The origin of the apparently chaotic and at the same time highly correlated microscopic response in plasticity remains hidden behind conventional engineering models which are based on smooth fitting functions. To regain access to fluctuations, we study in this paper a minimal mesoscopic model whose goal is to elucidate the origin of scale free behavior in plasticity. We limit our description to fcc type crystals and leave out both temperature and rate effects. We provide simple illustrations of the fact that complexity in rate independent athermal plastic flows is due to marginal stability of the underlying elastic system. Our conclusions are based on a reduction of an over-damped visco-elasticity problem for a system with a rugged elastic energy landscape to an integer valued automaton. We start with an overdamped one dimensional model and show that it reproduces the main macroscopic phenomenology of rate independent plastic behavior but falls short of generating self similar structure of fluctuations. We then provide evidence that a two dimensional model is already adequate for describing power law statistics of avalanches and fractal character of dislocation patterning. In addition to capturing experimentally measured critical exponents, the proposed minimal model shows finite size scaling collapse and generates realistic shape functions in the scaling laws.Comment: 72 pages, 40 Figures, International Journal of Engineering Science for the special issue in honor of Victor Berdichevsky, 201

    Scaling properties of driven interfaces in disordered media

    Full text link
    We perform a systematic study of several models that have been proposed for the purpose of understanding the motion of driven interfaces in disordered media. We identify two distinct universality classes: (i) One of these, referred to as directed percolation depinning (DPD), can be described by a Langevin equation similar to the Kardar-Parisi-Zhang equation, but with quenched disorder. (ii) The other, referred to as quenched Edwards-Wilkinson (QEW), can be described by a Langevin equation similar to the Edwards-Wilkinson equation but with quenched disorder. We find that for the DPD universality class the coefficient λ\lambda of the nonlinear term diverges at the depinning transition, while for the QEW universality class either λ=0\lambda = 0 or λ0\lambda \to 0 as the depinning transition is approached. The identification of the two universality classes allows us to better understand many of the results previously obtained experimentally and numerically. However, we find that some results cannot be understood in terms of the exponents obtained for the two universality classes {\it at\/} the depinning transition. In order to understand these remaining disagreements, we investigate the scaling properties of models in each of the two universality classes {\it above\/} the depinning transition. For the DPD universality class, we find for the roughness exponent αP=0.63±0.03\alpha_P = 0.63 \pm 0.03 for the pinned phase, and αM=0.75±0.05\alpha_M = 0.75 \pm 0.05 for the moving phase. For the growth exponent, we find βP=0.67±0.05\beta_P = 0.67 \pm 0.05 for the pinned phase, and βM=0.74±0.06\beta_M = 0.74 \pm 0.06 for the moving phase. Furthermore, we find an anomalous scaling of the prefactor of the width on the driving force. A new exponent φM=0.12±0.06\varphi_M = -0.12 \pm 0.06, characterizing the scaling of this prefactor, is shown to relate the values of the roughnessComment: Latex manuscript, Revtex 3.0, 15 pages, and 15 figures also available via anonymous ftp from ftp://jhilad.bu.edu/pub/abms/ (128.197.42.52

    Directed avalanche processes with underlying interface dynamics

    Full text link
    We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall. The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-Parisi-Zhang (KPZ) universality class. We formulate relations between the critical exponents of the various avalanche distributions and those of the roughness of the growing interface. The nonlinear nature of the underlying KPZ dynamics provides a nontrivial test of such generic exponent relations. The numerical values of the avalanche exponents are close to the conventional KPZ values, but differ sufficiently to warrant a detailed study of whether avalanche correlated Monte Carlo sampling changes the scaling exponents of KPZ interfaces. We demonstrate that the exponents remain unchanged, but that the traces left on the surface by previous avalanches give rise to unusually strong finite-size corrections to scaling. This type of slow convergence seems intrinsic to avalanche dynamics.Comment: 13 pages, 13 figure

    Adaptation to criticality through organizational invariance in embodied agents

    Get PDF
    Many biological and cognitive systems do not operate deep within one or other regime of activity. Instead, they are poised at critical points located at phase transitions in their parameter space. The pervasiveness of criticality suggests that there may be general principles inducing this behaviour, yet there is no well-founded theory for understanding how criticality is generated at a wide span of levels and contexts. In order to explore how criticality might emerge from general adaptive mechanisms, we propose a simple learning rule that maintains an internal organizational structure from a specific family of systems at criticality. We implement the mechanism in artificial embodied agents controlled by a neural network maintaining a correlation structure randomly sampled from an Ising model at critical temperature. Agents are evaluated in two classical reinforcement learning scenarios: the Mountain Car and the Acrobot double pendulum. In both cases the neural controller appears to reach a point of criticality, which coincides with a transition point between two regimes of the agent''s behaviour. These results suggest that adaptation to criticality could be used as a general adaptive mechanism in some circumstances, providing an alternative explanation for the pervasive presence of criticality in biological and cognitive systems
    corecore