1,311 research outputs found

    Quantitative maritime security assessment: a 2020 vision

    Get PDF
    Maritime security assessment is moving towards a proactive risk-based regime. This opens the way for security analysts and managers to explore and exploit flexible and advanced risk modelling and decision-making approaches in maritime transport. In this article, following a review of maritime security risk assessment, a generic quantitative security assessment methodology is developed. Novel mathematical models for security risk analysis and management are outlined and integrated to demonstrate their use in the developed framework. Such approaches may be used to facilitate security risk modelling and decision making in situations where conventional quantitative risk analysis techniques cannot be appropriately applied. Finally, recommendations on further exploitation of advances in risk and uncertainty modelling technology are suggested with respect to maritime security risk quantification and management

    How can the UK road system be adapted to the impacts posed by climate change? By creating a climate adaptation framework

    Get PDF
    This paper aims to analyse the impacts of climate change to the current and predicted future situations of road transportation in the UK and evaluate the corresponding adaptation plans to cope with them. A conceptual framework of long-term adaptation planning for climate change in road systems is proposed to ensure the resilience and sustainability of road transport systems under various climate risks such as flooding and increased temperature. To do so, an advanced Fuzzy Bayesian Reasoning (FBR) model is first employed to evaluate the climate risks in the UK road transport networks. This modelling approach can tackle the high uncertainty in risk data and thus facilitate the development of the climate adaptation framework and its application in the UK road sector. To examine the feasibility of this model, a nationwide survey is conducted among the stakeholders to analyse the climate risks, in terms of the timeframe of climate threats, the likelihood of occurrence, the severity of consequences, and infrastructure resilience. From the modelling perspective, this work brings novelty by expanding the risk attribute “the severity of consequence” into three sub-attributes including economic loss, damage to the environment, and injuries and/or loss of life. It advances the-state-of-the-art technique in the current relevant literature from a single to multiple tier climate risk modelling structure. Secondly, an Evidential Reasoning (ER) approach is used to prioritise the best adaptation measure(s) by considering both the risk analysis results from the FBR and the implementation costs simultaneously. The main new contributions of this part lie in the rich raw data collected from the real world to provide useful practical insights for achieving road resilience when facing increasing climate risk challenges. During this process, a qualitative analysis of several national reports regarding the impacts posed by climate change, risk assessment and adaptation measures in the UK road sector is conducted for the relevant decision data (i.e. risk and cost). It is also supplemented by an in-depth interview with a senior planner from Highways England. The findings provide road planners and decision makers with useful insights on identification and prioritisation of climate threats as well as selection of cost-effective climate adaptation measures to rationalise adaptation planning. © 2019 Elsevier Lt

    Planning Inspection of Sewer Pipelines Using Defect Based Risk Approach

    Get PDF
    Due to the poor conditions of wastewater networks, there is an increasing need in the capital investments allocated for enhancing their condition. As per the Canadian Infrastructures Report Card, one third of the total lengths of sewer pipes in Canada is in fair to very poor condition (Canadian Infrastructures Report Card, 2016). As such, there is an urgent need for inspection planning tools, with which decision makers could assess the condition of pipelines and identify pipes with higher risk of failure. These tools are potentially of service in prioritizing and optimizing inspection activities that lead to decisions regarding appropriate courses of action, especially in cases of limited resources and funding. The goal of this research is to develop an optimization model for scheduling the inspection of sewer pipelines by performing defect-based risk assessment. The risk of failure is determined to identify critical pipe sections; by combining likelihood and consequence of failure values using the Sugeno Fuzzy Inference System. The developed optimization model determines the inspection sequence of pipeline sections in addition to optimizing the utilization of inspection crews by minimizing both time and cost of inspections. The risk assessment model is divided into two sub models: likelihood and consequences of failure. Structural and operational defects and pipeline characteristics in an existing sewage network are used to develop the likelihood model that determines the structural, operational and overall condition ratings of pipelines. Method-wise, Bayesian Belief Network (BBN) is used to develop a static condition assessment model using probabilities of occurrences and conditional probabilities. Moreover, time dimension is introduced to the developed BBN model using logistic regression as temporal links which are required to convert BBN into Dynamic Bayesian Network (DBN). The accuracy of the model’s prediction is examined through referencing of actual data, where the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for the BBN model are 0.67, 1.06, 0.56 and 1.05, 1.60, 0.95 for structural, operational and overall conditions, respectively. The second sub-model representing the consequences of failure is developed to determine the impact of sewer pipelines’ failure using Cost Benefit Analysis (CBA). Developing this sub model involves identifying and analyzing costs of failure and benefits resulting from avoiding such failures. In order to validate the CBA model, actual costs from a real failure incident are compared with the proposed model's outputs. During the implementation of the CBA model, it is found that the indirect costs resulting from sewer pipelines’ failure represent a significant portion of the total failure costs. The proposed risk assessment model is validated using actual data derived from inspected sewer pipelines. Cost savings of around 67% could be achieved if the risk assessment model is applied and deployed over ongoing inspection practices followed by municipalities. A Mixed Integer Linear Programming (MILP) model is developed to optimize scheduling of inspection activities by including sewer sections, time and cost of inspections. This model is developed using GAMS and solved using CPLEX to maximize the number of sections and minimize time and cost. The output from the MILP model is compared to the results of another model solved using the Genetic Algorithm (GA) approach. It is found that the MILP model could perform better than the GA model in terms of optimal solutions. Additionally, a resulting inspection cost reduction of approximately 38% could be achieved when utilizing the MILP model. It is expected that the proposed inspection scheduling model could help decision makers better assess the condition of sewer pipelines and improve their decision-making on proactive or reactive measures. The proposed model could help allocate budgets more efficiently in addition, to being an enabler for better inspection programs, particularly in cases of limited funds and task forces

    A Resilience Modelling Approach for Oil Terminal Operations Under High Uncertainties

    Get PDF
    Oil terminals are complex infrastructures due to their diverse operational activities. They are exposed to diverse risks because they usually operate in a dynamic environment in which safety barriers are sometime overwhelmed, leading to the disruption of operations due to a high level of uncertainty. However, the ability of oil terminals to minimise vulnerability and maximise resilience depends on the availability of the correct anticipated information at the right time for a decision-making process. An important finding from the reviewed literature revealed that uncertainties and the unpredictability of the convergent effect of several hazardous factors have the potential to cause major disruptions such as fire, explosion and transit accidents. The consequences of these disruptions can lead to infrastructure damage and loss of life. The common operational threats to oil terminal operations (OTOs) substantiates the need for a holistic resilience model for operations in offshore/onshore terminals such as berthing/unberthing, vessel manoeuvring, loading and offloading, storage, etc. Due to the uncertainties associated with these operations and the cases of reported incidents/accidents, this research focuses more on the aspect of loading and offloading operations at ship/terminal interface. An emphasis on a resilience modelling approach provides a flexible yet robust model for OTOs to address disruption proactively, particularly with constantly evolving hazards and threats. This thesis introduces an innovative approach towards resilience modelling based on a developed novel framework. The key aspect of the framework was supported using three proposed models: (1) the integration of Utility Theory and Swiss Cheese Model (UtiSch_+), to evaluate the relative importance of the identified hazard factors (HFs), (2) a Bayesian network (BN), to calculate the overall probability that a specific hazard is present and, (3) an Analytical Hierarchical Process (AHP) - Prospect Theory (PT) approach, as an important model for a strategic decision selection method. An empirical study was conducted to test the validity the proposed models, using case studies and Sensitivity Analysis (SA). The result obtained demonstrated that the models are effective techniques to obtain the relative weight of the identified Hazard Factors (HFs) in order to prioritise them, for dynamic hazards probability evaluation and to prioritise suggested resilience strategies in order of importance to mitigate hazard/risk level. Evidently, the result revealed appears reasonable and appropriate for investment, in order to support a strategic decision for the selection of a resilience strategy for resilience improvement in OTOs

    Advanced system engineering approaches to dynamic modelling of human factors and system safety in sociotechnical systems

    Get PDF
    Sociotechnical systems (STSs) indicate complex operational processes composed of interactive and dependent social elements, organizational and human activities. This research work seeks to fill some important knowledge gaps in system safety performance and human factors analysis using in STSs. First, an in-depth critical analysis is conducted to explore state-of-the-art findings, needs, gaps, key challenges, and research opportunities in human reliability and factors analysis (HR&FA). Accordingly, a risk model is developed to capture the dynamic nature of different systems failures and integrated them into system safety barriers under uncertainty as per Safety-I paradigm. This is followed by proposing a novel dynamic human-factor risk model tailored for assessing system safety in STSs based on Safety-II concepts. This work is extended to further explore system safety using Performance Shaping Factors (PSFs) by proposing a systematic approach to identify PSFs and quantify their importance level and influence on the performance of sociotechnical systems’ functions. Finally, a systematic review is conducted to provide a holistic profile of HR&FA in complex STSs with a deep focus on revealing the contribution of artificial intelligence and expert systems over HR&FA in complex systems. The findings reveal that proposed models can effectively address critical challenges associated with system safety and human factors quantification. It also trues about uncertainty characterization using the proposed models. Furthermore, the proposed advanced probabilistic model can better model evolving dependencies among system safety performance factors. It revealed the critical safety investment factors among different sociotechnical elements and contributing factors. This helps to effectively allocate safety countermeasures to improve resilience and system safety performance. This research work would help better understand, analyze, and improve the system safety and human factors performance in complex sociotechnical systems

    An integrated fuzzy risk assessment for seaport operations

    Get PDF
    Seaport operations are characterised by high levels of uncertainty, as a result their risk evaluation is a very challenging task. Much of the available data associated with the system’s operations is uncertain and ambiguous, requiring a flexible yet robust approach of handling both quantitative and qualitative data as well as a means of updating existing information as new data becomes available. Conventional risk modelling approaches are considered to be inadequate due to the lack of flexibility and an inappropriate structure for addressing the system’s risks. This paper proposes a novel fuzzy risk assessment approach to facilitating the treatment of uncertainties in seaport operations and to optimise its performance effectiveness in a systematic manner. The methodology consists of a fuzzy analytical hierarchy process, an evidential reasoning (ER) approach, fuzzy set theory and expected utility. The fuzzy analytical hierarchy process is used to analyse the complex structure of seaport operations and determine the weights of risk factors while ER is used to synthesise them. The methodology provides a robust mathematical framework for collaborative modelling of the system and allows for a step by step analysis of the system in a systematic manner. It is envisaged that the proposed approach could provide managers and infrastructure analysts with a flexible tool to enhance the resilience of the system in a systematic manner

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)
    • …
    corecore